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Abstract: In this paper we develop a method for obtaining digital rational approximations 
to fractional-order operators of type s , where . The proposed method is based on 
the least-squares (LS) minimization between the impulse response of the fractional 
Euler/Tustin operators and the digital rational-fraction approximation. We make a 
comparison with other approaches and the results reveal that the LS method gives 
superior approximations. The effectiveness of the method is demonstrated both in the 
time and frequency domains through an illustrative example. Copyright © 2004 IFAC
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1. INTRODUCTION 

In the literature we find several different definitions 
for the fractional-order operator D , where the order 
can be an arbitrary non-integer value; see, for 
example, (Oldham and Spanier, 1974; Podlubny, 
1999). In this study we admit only values of .
From a control and signal processing perspective, the 
Grünwald-Letnikov definition (Podlubny, 1999) 
seems to be the most appropriate, particularly for a 
digital realization (Machado, 2001). Furthermore, the 
definition poses fewer restrictions upon on the 
functions to which it is applied (Oldham and Spanier, 
1974). It is given by the expression: 
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where f(t) is the applied function,  is the Gamma 
function and h the time increment. Note that formula 
(1a) is defined by an infinite series revealing that the 
fractional-order operators are global operators and 
that have, implicitly, a memory of all past function 
values. 

One of the mathematical tools commonly used for the 
analysis and synthesis of automatic control systems is 
the Laplace transform. Fortunately, his generalization 
to a fractional-order is very straightforward. For 
instance, the Laplace transform of a fractional 
derivative/integral of order  of the function f(t), 
D [f(t)], under null initial conditions, is given by the 
simple expression: 

( ) ( )L D f t s F s , (2)

where F(s) = L{f(t)}. Note that (2) is a direct
generalization of the classical integer-order scheme 
with the multiplication of the signal transform by the 
Laplace operator s. This means that frequency-based 
analysis methods have a straightforward adaptation to 
the fractional-order case. 

The usual approach for obtaining discrete equivalents 
of the fractional-order operator s , , adopts a 
generating function (Vinagre, et al., 2000; Chen and 
Moore, 2002). By other words, given a continuous 
transfer function, G(s), a discrete equivalent, G(z),
can be found by the substitution:
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where H (z) denotes the fractional discrete equivalent 
of order  of the fractional-order operator s ,
expressed as a function of the complex variable z or 
the shift operator z 1. In these s z conversion 
schemes (also called analog to digital open-loop 
design methods) we usually adopt either the Euler (or 
first backward difference) or the Tustin (or bilinear) 
generating functions (Machado, 2001). Table 1 
indicates the two mentioned conversion methods that 
will be used in this study.

Table 1 s  z conversion schemes

Method H (z
1
)

Euler
Grünwald-Letnikov 
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In general, the irrational functions H (z) (Table 1) are 
approximated either through polynomials or through 
rational functions (i.e., the ratio of two polynomials). It 
is well known that rational approximations frequently 
converge faster than polynomial approximations and 
have a wider domain of convergence in the complex 
domain. In the work that follows, we develop rational 
approximations of the z variable to fractional-order 
operators of type s , which make them suited for Z-
transform analysis and digital implementation. 

Rational approximations Hm,n(z
1) of m and n order to 

irrational transfer functions of type H (z 1) can be 
formally expressed as: 
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where P and Q are the polynomials of degree m and n,
respectively.

In this paper we consider digital rational 
approximations of type (4) to fractional-order 
operators. In a first phase, we discretize the fractional-
order operator s , through the Euler/Tustin generating 
functions, yielding the irrational functions H (z 1), 
listed in Table 1, and we determine their impulse 
responses h (k). Then, in a second phase, we apply the 
least-squares (LS) minimization method to the impulse 
responses, h (k) and h(k), of the digital fractional 
operator H (z 1) and of the digital rational 
approximation Hm,n(z

1), respectively. We show that 
these new rational transfer functions of the z variable 
give better approximations, both in time and frequency 
domains, than other approaches, namely the Padé or  
continued fraction expansion (CFE) methods. 

Bearing these ideas in mind, the paper is organized as 
follows. Section 2 derives the impulse responses of the 
fractional Euler/Tustin operators and section 3 gives 
an introduction to the problem. Based on the previous 
results, section 4 develops the Padé approximations to 

fractional-order operators and compares it with the 
CFE method. It is shown that the Padé approximations 
lead to the same rational functions as the CFE method. 
Section 5 develops the least-squares (LS) method for 
the identification of the rational approximation 
parameters. Section 6 presents an illustrative example 
showing the effectiveness of the proposed method both 
in the time and frequency domains. Finally, section 7 
draws the main conclusions and addresses perspectives 
towards future developments. 

2. IMPULSE RESPONSE OF DIGITAL 
FRACTIONAL-ORDER OPERATORS 

In this section, we derive the impulse responses of the 
fractional Euler/Tustin operators, h (k). In obtaining 
the impulse responses we assume that h (k) = 0 for 
k < 0 (i.e., a causal system). 

Expanding the fractional Euler function HE (z 1) into a 
power series in z 1, we have: 
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where the impulse sequence hL (k) is given by: 
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Performing a power series expansion, over the 
fractional Tustin function HT (z), we get: 
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where the impulse sequence )(khT  is given by: 
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Notice that if  in (5), then we have the standard 
integer-order integrators ( ) and differentiators 
( 0

+). In this case, the impulse sequence is of finite 
duration and we obtain a finite impulse response (FIR)
filter.

3. PROBLEM FORMULATION 

Consider that the impulsional response h (k) of the 
fractional-order operator is specified for k  0. The 
rational function Hm,n(z

1) that approximates the 
irrational transfer function H (z 1) has the form: 



     

1 0
,

0

1

( ) ( )

1

m

k
k

kk
m n n

k k
k

k

b z

H z h k z

a z

(9)

where h(k) is its impulse response. The rational 
approximation has L = m + n + 1 parameters, namely, 

the coefficients n

kka 1  and m

kkb 0 , which are 

selected to minimize the sum of the squared errors: 
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where U is some preselected upper limit in the 
summation. In general, h(k) is a nonlinear function of 
the rational model parameters and, consequently, the 
minimization of J involves the solution of a set of 
nonlinear equations. 

4. PADÉ APPROXIMATION METHOD 

In this section we present briefly the Padé 
approximation method in order to compare it with the 
proposed LS method. 

If we select the upper limit in (10) as U = L  1, then it 
is possible to match h(k) perfectly in the fractional 
impulse response h (k) for 0 k m+n. For that, we 
consider the impulse response h(k) of the desired 
rational approximation Hm,n(z

1), which is given by: 
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This gives a set of m + n + 1 linear equations, which 
can be used to solve for the coefficients {ak} and {bk}. 
First, we set h(k) = h (k) for 0 k m+n and we use 
the system of linear equations (11b) to calculate the 
coefficients {ak}. Then we use the values of {ak} in 
equations (11a) and solve them for the coefficients 
{bk}. Thus, we obtain a perfect match between h(k)
and the desired response h (k) for the first L values of 
the impulse response.

The success of this method depends strongly on the 
number of selected model coefficients. Since the 
design method matches h (k) only up to the number of 
model parameters, the more complex the model, the 
better the approximation to h (k) for 0 k m+n.
However, in practical applications, this introduces a 
major limitation of the Padé approximation method 
because the resulting approximation must contain a 
large number of poles and zeros. 

It can be shown that rational approximations obtained 
by the CFE method are the same as those resulting by 

application of the Padé approximation to power series 
expansion (Lorentzen, 1992). Nevertheless, the CFE 
approach is computationally less expensive than the 
Padé technique. 

5. LEAST SQUARES APPROXIMATION METHOD 

In this section we adopt a new approach to the 
problem. The proposed method is based on the 
standard least squares identification algorithm 
(Franklin, et al., 1990). 

The impulse response h(k) of Hm,n(z
1) to a unit sample 

input (k) corresponds to the expression:
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where (k l) = 1 (for k = l) and (k l) = 0 (for k l)
and k = 0, 1, …, N 1 corresponding to a collect of N
values from the input and output sequences.

Expression (12) can be written in matrix form as: 
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where x(k) is the (m + n + 1)  1 state vector and   the 
(m + n + 1)  1 parameter vector defined as: 
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Let us introduce the matrix variables: 
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If the system can be represented by equation (13) for 

some * , then the vector of systems outputs 
becomes: 

*
h X (18)

where X is an N  (m + n + 1) matrix and h is an N  1 
vector. For the construction of X we assume that the 
initial conditions of the system are zero, that is, 
h(k) = 0 for k < 0. 

Usually, N m + n + 1 and we define the error vector

e = h X , where  is a general parameter vector. 
Hence, the objective is to find an estimate  that 

minimizes 
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Solving J/   = 0 we obtain the following system of 
normal equations:
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If the matrix XT
X is nonsingular, a unique solution of 

(20) exists and the optimum   is given by: 

hXXXhX
TT 1)( (21)

where TT
XXXX

1)( is the pseudoinverse of X.

It is clear from (21) that if N = m+n+1, the system 
reduces to an N N square matrix and, consequently, 
the parameter vector  can be calculated simply by 

 = X 1
h. We verify that, in this case, we get the same 

rational approximation as those obtained by the 
application of the Padé or CFE methods. 

6. ILLUSTRATIVE EXAMPLE 

In this section we obtain rational approximation 
models Hm,n(z

1) for the fractional-order operator s ,
with  = 1/2, using the LS method described in the 
previous section. We consider the fractional 
Euler/Tustin operators, sampled at T = 0.01 s, 
m = n = {1, 3, 5, 7}, and N = 1000. The 
approximations are given next. 
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1

1
1

1,1 8749.01

008843.007071.0
)(

z

z
zH

32

1

32

1

1
3,3

2596.03218.0

925.01

001747.005281.0

005302.007071.0

)(

zz

z

zz

z

zH

54

321

5

43

21

1
5,5

08461.01144.0

8007.08957.0933.01

0005193.0

02656.0004356.0

09396.0004728.007071.0

)(

zz

zzz

z

zz

zz

zH

7

654

321

76

543

21

1
7,7

02785.0

04154.04936.05753.0

348.1483.1933.01

0001729.00118.0

00279.00771.0007165.0

1355.0004737.007071.0

)(

z

zzz

zzz

zz

zzz

zz

zH

For comparison purposes, we also plot the rational 
approximation obtained by the Padé method for 
m = n = 5, G5,5(z

1), for the Euler and Tustin operators, 
which are given next. 

Padé approach for the Euler operator:
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Padé approach for the Tustin operator:
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We note that the sum of the coefficients of the 
numerator and denominator of the rational 
approximations Hm,n(z

1) and G5,5(z) are 

approximately zero, that is 0
00

n

k

k

m

k

k ab .

Figures 1 and 2 depict the Bode diagrams and the step 
responses of the approximations Hm,n(z), with 
m = n = {1, 3, 5, 7} and N = 1000, for the Euler and 
the Tustin operators, respectively. Figures 4 and 5 
show the results when we vary the length of the 
impulsional sequence N = {11, 100, 200, 500, 1000} 
for a fixed order of the approximations, namely for 
m = n = 5. 

It is clear that the higher the order m = n (or the 
impulse sequence N) of the approximations the better 
the fitting, in a least-squares sense, both in the 
frequency and the step responses, of the fractional-
order integrator s 0.5. Furthermore, with the LS method 
we can tune the approximations for achieving better 
accuracy on a prescribed range of time t (or frequency 

) in contrast with other approximations that matches 
only the initial-time transient corresponding to the high 
frequency range. 
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Fig. 1. Bode diagrams (left) and step responses (right) of the LS approximation Hm,n(z), m = n = {1, 3, 5, 7}, vs.
the Padé approximation G5,5(z

1) for the Euler operator with  = 1/2 and N = 1000. 
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Fig. 2. Bode diagrams (left) and step responses (right) of the LS approximation Hm,n(z
1), m = n = {1, 3, 5, 7}, vs.

the Padé approximation G5,5(z
1) for the Tustin operator with  = 1/2 and N = 1000. 
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Fig. 3. Pole-zero map of the LS approximation Hm,n(z
1), m = n = {1 , 3, 5, 7} for the Euler (left) and Tustin 

(right) operators with  = 1/2 and N = 1000. 

Figure 3 shows the pole-zero map of the 
approximations Hm,n(z), with m = n = {1, 3, 5, 7}, for 
the Euler and Tustin operators. We observe that the 
distribution of the zeros and poles satisfies two 
desired properties: (i) all the poles and zeros lie 
inside the unit circle and (ii) they are interlaced along 
the segment of the real axis, corresponding to z  ]0, 
1[ and z  ] 1, 1[ for the Euler and Tustin operators, 
respectively.

In conclusion, the proposed LS method provides 
causal, stable and minimum-phase rational 
approximations as imposed for a digital realization. 
Its superior nature, in comparison with the Padé and 
the CFE approximation methods, is illustrated in the 
case of typical paradigms. The results presented here 
seem to indicate that the LS method is a suitable 
technique for obtaining discrete approximations of 
the fractional-order operators. 
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Fig. 4. Bode diagrams (left) and step responses (right) of the LS approximation H5,5(z) vs. the Padé 
approximation G5,5(z

1) for the Euler operator with  = 1/2 and N = {11, 100, 200, 500, 1000}. 
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Fig. 5. Bode diagrams (left) and step responses (right) of the LS approximation H5,5(z) vs. the Padé 
approximation G5,5(z

1) for the Tustin operator with  = 1/2 and N = {11, 100, 200, 500, 1000}. 

7. CONCLUSIONS 

We have described the adoption of the LS method in 
the design of digital rational transfer functions that 
approximates fractional-order operators of type s ,

. The method was illustrated for a fractional 
integrator of order  = 1/2, but it can be generalized 
to others real noninteger values. It was shown that the 
new discrete rational functions give better results, both 
in time and frequency domains, than other approaches 
used for the same purpose, namely the Padé or the 
CFE approximations. Furthemore, the LS method 
yields causal, stable and minimum-phase rational 
transfer functions suitable for real-time 
implementation. 

However, further research on this topic is needed. One 
may point out several lines of investigation on this 
subject. For instance, the use of interpolation 
techniques between discretization schemes based on 
the Euler, Tustin or Simpson operators and to apply 
the proposed LS method in the resulting new schemes. 
This matter is under study and will be the subject of 
future publications. In this line of thought, this paper 
represents a step towards the implementation of 
practical digital fractional-order differentiators and 
integrators. 
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