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Abstract

  This paper analyses the performance of a genetic 

algorithm using the new concept of fractional-order 

dynamic fitness function, for the synthesis of 

combinational logic circuits. The experiments reveal 

superior results in terms of speed and convergence to 

achieve a solution. 
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1  Introduction 

  In the last decade genetic algorithms (GAs) have 

been applied in the design of electronic circuits, 

leading to a novel area of research called 

Evolutionary Electronics (EE) or Evolvable 

Hardware (EH) [Zebulum et al., 2001]. EE considers 

the concept for automatic design of electronic 

systems. Instead of using human conceived models, 

abstractions and techniques, EE employs search 

algorithms to develop good designs [Thompson and 

Layzell, 1999]. 

  One decade ago Sushil and Rawlins [Louis and 

Rawlins, 1991] applied GAs to the combinational 

circuit design problem. They combined knowledge-

based systems with the GA and defined a genetic 

operator called masked crossover. This scheme leads 

to other kinds of offspring that can not be achieved 

by classical crossover operators. 

  John Koza [Koza, 1992] adopted genetic 

programming to design combinational circuits. 

  In the sequence of this work, Coello, Christiansen 

and Aguirre [Coello et al., 1996] presented a 

computer program that automatically generates high-

quality circuit designs. They use five possible types 

of gates (AND, NOT, OR, XOR and WIRE) with the 

objective of finding a functional design that 

minimizes the use of gates other than WIRE. 

  Miller, Thompson and Fogarty [Miller et al., 1997] 

applied evolutionary algorithms for the design of 

arithmetic circuits. The technique was based on 

evolving the functionality and connectivity of a 

rectangular array of logic cells, with a model of the 

resources available on the Xilinx 6216 FPGA device. 

  Kalganova, Miller and Lipnitskaya [Kalganova et 

al., 1998] proposed a new technique for designing 

multiple-valued circuits.  

  In order to solve complex systems, Torresen 

[Torresen, 1998] proposed the method of increased 

complexity evolution. The idea is to evolve a system 

gradually as a kind of divide-and-conquer method. 

Evolution is first undertaken individually on simple 

cells. The evolved functions are the basic blocks 

adopted in further evolution of more complex 

systems. 

  A major bottleneck in the evolutionary design of 

electronic circuits is the problem of scale. This refers 

to the very fast growth of the number of gates, used 

in the target circuit, as the number of inputs of the 

evolved logic function increases. This results in a 

huge search space that is difficult to explore even 

with evolutionary techniques. Another related 

obstacle is the time required to calculate the fitness 

value of a circuit [Vassilev and Miller, 2000]. A 

possible method to solve this problem is to use 

building blocks either than simple gates. 

Nevertheless, this technique leads to another 

difficulty, which is how to define building blocks that 

are suitable for evolution.  

  Timothy Gordon [Gordon and Bentley, 2002] 

suggests an approach that allows evolution to search 

for good inductive bases for solving large-scale 

complex problems. This scheme generates, 

inherently, modular and iterative structures, that exist 

in many real-world circuit designs but, at the same 

time, allows evolution to search innovative areas of 

space.

  The idea of using memory to achieve better fitness 

function performances was first introduced by Sano 

and Kita [Sano and Kita, 2000]. Their goal was the 

optimization of systems with randomly fluctuating 

fitness function and they developed a Genetic 

Algorithm with Memory-based Fitness Evaluation 

(MFEGA). The key ideas of the MFEGA are based 

on storing the sampled fitness values into memory as 

a search history, introducing a simple stochastic 

model of fitness values to be able to estimate fitness 



                                                   

values of points of interest using the history for 

selection operation of the GA. 

  Following this line of research, and looking for 

better performance GAs, this paper proposes a GA 

for the design of combinational logic circuits using 

fractional-order dynamic fitness functions. 

  The area of Fractional Calculus (FC) deals with the 

operators of integration and differentiation to an 

arbitrary (including noninteger) order and is as old as 

the theory of classical differential calculus [Oldham 

and Spanier, 1974, Miller and Ross, 1993]. The 

theory of FC is a well-adapted tool to the modelling 

of many physical phenomena, allowing the 

description to take into account some peculiarities 

that classical integer-order models simply neglect. 

Nevertheless, the application of FC has been scarce 

until recently, but the advances on the theory of 

chaos motivated a renewed interest in this field. In 

the last two decades we can mention research on 

viscoelasticity/damping, chaos/fractals, biology, 

signal processing, system identification, diffusion 

and wave propagation, electromagnetism and 

automatic control [Oustaloup, 1995, Méhauté, 1991, 

Machado, 1997, Westerlund, 2002]. 

  Bearing these ideas in mind the article is organized 

as follows. Section 2 describes the adopted GA as 

well as the fractional-order dynamic fitness 

functions. Section 3 presents the simulation results 

and finally, section 4 outlines the main conclusions 

and addresses perspectives towards future 

developments. 

2  The Adopted Genetic Algorithm 

  In this section we present the developed GA, in 

terms of the circuit encoding as a chromosome, the 

genetic operators and the static and dynamic fitness 

functions. 

2.1  Problem Definition 

  To design combinational logic circuits it is adopted 

a GA strategy. The circuits are specified by a truth 

table and the goal is to implement a functional 

circuit with the least possible complexity. Two sets 

of logic gates have been defined, as shown in Table 

I, being Gset a the simplest one (i.e., a RISC-like 

set) and Gset b a more complex gate set (i.e., a 

CISC-like set). 

  For each gate set the GA searches the solution 

space, based on a simulated evolution aiming the 

survival of the fittest strategy. In general, the best 

individuals of any population tend to reproduce and 

survive, thus improving successive generations. 

However, inferior individuals can, by chance, 

survive and also reproduce. In our case, the 

individuals are digital circuits, which can evolve 

until the solution is reached (in terms of 

functionality and complexity). 

Table I Gate sets 

Gate Set Logic gates 

Gset a {AND,XOR,WIRE} 

Gset b {AND,OR,XOR,NOT,WIRE} 

2.2  Circuit enconding 

  In the GA scheme the circuits are encoded as a 

rectangular matrix A (row  column r c) of 

logic cells as represented in figure 1. 

  Each cell is represented by three genes: 

<input1><input2><gate type>, where input1 and 

input2 are one of the circuit inputs, if they are in the 

first column, or, one of the previous outputs, if they 

are in other columns. The gate type is one of the 

elements adopted in the gate set. The chromosome 

is formed by as many triplets of this kind as the 

matrix size demands. For example, the chromosome 

that represents a 3  3 matrix is depicted in figure 2. 

Figure 1: A 3  3 matrix A representing a circuit 

with input X and output Y.

0 1 2 … 24 25 26 genes 
Input Input Gate … Input Input Gate  

a11 a33 matrix 

element 

Figure 2: Chromosome for the 3  3 matrix of fig. 1. 

2.3  The genetic operators 

  The initial population of circuits (strings) is 

generated at random. The search is then carried out 

among this population. The three different operators 

used are reproduction, crossover and mutation, as 

described in the sequel. 

  In what concern the reproduction operator, the 

successive generations of new strings are 

reproduced on the basis of their fitness function. In 

this case, it is used a tournament selection to select 

the strings from the old population, up to the new 

population. 

  For the crossover operator, the strings in the new 

population are grouped together into pairs at 

random. Single point crossover is then performed 

among pairs. The crossover point is only allowed 

between cells to maintain the chromosome integrity. 

  The mutation operator changes the characteristics 

of a given cell in the matrix. Therefore, it modifies 
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the gate type and the two inputs, meaning that a 

completely new cell can appear in the chromosome. 

Moreover, it is applied an elitist algorithm and, 

consequently, the best solutions are always kept for 

the next generation. 

  To run the GA we have to define the number of 

individuals to create the initial population P. This 

population is always the same size across the 

generations, until the solution is reached. 

  The crossover rate CR represents the percentage of 

the population P that reproduces in each generation. 

Likewise the mutation rate MR is the percentage of 

the population P that can mutates in each 

generation. 

2.4  The Static and the Dynamic Fitness Functions 

  The goal of this study is to find new ways of 

evaluating the individuals of the population in order 

to achieve better performance GAs. 

  In this paper we propose two concepts for the 

fitness functions, namely the static fitness function 

Fs and the dynamic fitness function Fd.

  The calculation of Fs in (1) is divided in two parts, 

f1 and f2, where f1 measures the functionality and the 

error discontinuity and f2 measures the simplicity. In 

a first phase, we compare the output Y produced by 

the GA-generated circuit with the required values 

YR, according with the truth table, on a bit-per-bit 

basis. By other words, f11 is incremented by one for 

each correct bit of the output until f11 reaches the 

maximum value f10, that occurs, when we have a 

functional circuit. After this, f11 is decremented by 

for each YR – Y error discontinuity, where 

discontinuity means passing from YR – Y = 0 to 

YR – Y = 1 or vice-versa when comparing two 

consecutive levels of the truth table. Once the 

circuit is functional, in a second phase, the GA tries 

to generate circuits with the least number of gates. 

This means that the resulting circuit must have as 

much genes <gate type>  <wire> as possible. 

Therefore, the index f2, that measures the simplicity 

(the number of null operations), is increased by one

(zero) for each wire (gate) of the generated circuit, 

yielding: 

f10 = 2ni no (1a) 

f11 = f11 + 1 if {bit i of Y} = {bit i of YR} (1b) 

f1 = f11 –  if errori  errori-1 (1c) 

f2 = f2 + 1 if gate type = wire (1d) 

1 10

1 2 10

,

,

s

s

s

f F f
F

f f F f
(1e) 

Where i = 1, …, f10, ni and no represent the number 

of inputs and outputs of the circuit. 

  The concept of dynamic fitness function Fd results 

from an analogy with control systems where we 

have a variable to be controlled similarly with the 

GA case where we master the population through 

the fitness function. The simplest control system is 

the proportional algorithm; nevertheless, there can 

be other control algorithms, like the differential and 

the integral schemes. Therefore, applying the static 

fitness function corresponds to using a kind of 

proportional algorithm. If we want to implement a 

proportional-integral-derivative evolution the 

fitness function needs a scheme of the type: 

d s I s D sF F K I F K D F (2) 

where 0.0  1.0 is the integral fractional-order,

0.0  1.0 is the differential fractional-order and 

KI, KD are the integral and the differential ‘gains’ of 

the dynamical term, respectively. 

  The generalization of the concept of derivative 

D [f(x)] to noninteger values of  goes back to the 

beginning of the theory of differential calculus. In 

fact, Leibniz, in his correspondence with Bernoulli, 

L’Hôpital and Wallis, had several notes about its 

calculation for  = [ Oldham and Spanier, 1974, 

Miller and Ross, 1993]. Nevertheless, the adoption 

of the FC in control algorithms has been recently 

studied using the frequency and discrete-time 

domains [Oustaloup, 1995, Méhauté, 1991, 

Machado, 1997]. 

  The mathematical definition of a derivative of 

fractional order  has been the subject of several 

different approaches. For example, Eq. (3) and Eq. 

(4), represent the Laplace (for zero initial 

conditions) and the Grünwald-Letnikov definitions 

of the fractional derivative of order  of the signal 

x(t)

1D x t L s X s (3) 

0
0

1 11
lim

! 1

k

k
h

D x t x t kh
k kh

(4) 

where  is the gamma function and h is the time 

increment. This formulation [Machado, 1997] 

inspired a discrete-time calculation algorithm, based 

on the approximation of the time increment h through 

the sampling period T and a r-term truncated series 

yielding the equation: 

0

1 11

! 1

kr

k

D x t x t kT
k kT

(5) 

3  Experiments and Simulation Results

  Reliable execution and analysis of a GA usually 

requires a large number of simulations to provide a 

reasonable assurance that stochastic effects have 

been properly considered. Therefore, in this study 

are developed n = 1000 simulations for each case. 

  The experiments consist on running the GA to 



                                                   

generate a typical combinational logic circuit, 

namely a 2-to-1 multiplexer (M2-1) and a 4-bit 

parity checker (PC4), using the fitness scheme 

described previously. The circuits are generated with 

the gate sets presented in Table 1 for CR = 95%, 

MR = 20%. P = 100 and the implementation of the 

differential/integral fractional order operator adopts 

Eq. (5) with a series truncation of r = 50 terms. 

  Having these ideas in mind, a superior GA 

performance means achieving solutions with a 

smaller number N of generations and a smaller 

standard deviation in order to reduce the stochastic 

nature of the algorithm. 
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Figure 3: M2-1 average number of generations to 

achieve a solution AV(N) and standard deviation 

SD(N) versus  = {0.0, 0.25, 0.5, 0.75, 1.0} with 
Gsets a and b and Fs.

  Due to the huge number of possible combinations 

of the GA parameters, in the sequel we evaluate 

only a limited set of cases. Therefore, a priori, other 

values can lead to different results. Nevertheless, 

the authors developed an extensive number of 

numerical experiments and concluded that the 

following cases are representative. 

3.1  Using the static fitness function 

  In this sub-section we analyze the GA 

improvement when adopting a static fitness function 

including the discontinuity measure  error. 
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Figure 4: PC4 average number of generations to 

achieve a solution AV(N) and standard deviation 

SD(N) versus  = {0.0, 0.25, 0.5, 0.75, 1.0} with 

Gsets a and b and Fs.



                                                   

  Figures 3 and 4 show the average number of 

generations to achieve the solution AV(N) and the 

corresponding standard deviation SD(N) versus the 

discontinuity factor  = {0.0, 0.25, 0.5, 0.75, 1.0}, 

using Gset a and Gset b, for the M2-1 and the PC4

circuits, respectively. 
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 Figure 5: Phase plane of one GA run for the M2-1

and the PC4 circuits using Gsets a and b (  = 0), with 

Fs.

  The results reveal that, as expected from previous 

studies [Reis et al., 2004], the RISC-like set Gset a 

presents better performance than the CISC-like gate 

set Gset b for all values of . On the other hand, 

analysing the influence of  we conclude that the 

GA response is best mostly in the region around 

 = 0.5 for the two circuits and for the two gate sets. 

  Figure 5 depict the phase plane charts of the 

average of the static fitness function with  = 0 for 

the two circuits and the two gate sets. 

  Due to the stochastic nature of the GA evolution, 

the phase plane varies between experiments and 

generalization is not possible. Nevertheless, the 

charts indicate the global dynamics in each case.  

3.2  Experiments using dynamic fitness function 

  In this sub-section, we analyze the GA 

performance when we adopt a dynamic scheme for 

the fitness function. 

  The first set of simulations investigate separately 

the differential scheme ( {0.0, 0.25, 0.5, 0.75, 

1.0}) and the integral scheme ( {0.0, 0.25, 0.5, 

0.75, 1.0}) in Fd for gains 10 3 KD 102 and 

10 3 KI 102, respectively. 

  Figures 6-9 show the average number of 

generations to achieve a solution AV(N) and the 

standard deviation SD(N) for the differential PD

(i.e., KI = 0.0) and the integral schemes PI (i.e.,

KD = 0.0), for the M2-1 and PC4 circuits, using the 

Gset a and the Gset b, respectively. The charts 

include the plots for  = 0.0 and  = 0.0, that is 

without dynamic fitness, in order to ease the 

comparison. 

  Since we achieved better results for  = 0.25 and 

 = 0.25, we decided to investigate the combination 

of these parameters. Therefore, the second set of 

simulations evaluates the proportional-integral-

differential PI D  scheme. Due to the large number 

of possible combinations of { , , KI, KD} we 

establish  =  = 0.25 and 10 3 KD = KI 102.

  Figures 10-11 show the average number of 

generations to achieve a solution AV(N) and the 

standard deviation SD(N) for the proportional-

integral-differential PI D  scheme, for the M2-1 and 

the PC4 circuits, using Gset a and Gset b (  = 0), 

respectively.  

  Comparing the previous PD  and PI  schemes 

with the PI D  case, we verify that the inclusion 

of both actions improves slightly the results. 

  We conclude that the Fd concept produces better 

results than the classical Fs. Moreover, the results 

reveal that, the RISC-like Gset a presents a superior 

performance for all values of ( , , KI, KD ). 
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Figure 6: M2-1 average number of generations to 

achieve a solution AV(N) and standard deviation 

SD(N) for the PD  and PI   schemes (  = 0) with 

Gset a. 

  In a third set of simulations, we include the error 

discontinuity measure in the PI D  scheme 

(figures 12 and 13). 
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achieve a solution AV(N) and standard deviation 

SD(N) for the PD  and PI   schemes (  = 0) with 

Gset a. 

  Figure 14 shows several phase plane charts that 

occur for the PI D  with K = KD = KI = 1 and

 = 0.50. 
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achieve a solution AV(N) and standard deviation 

SD(N) for the PD  and PI   schemes (  = 0) with 

Gset b. 

  In conclusion, the introduction of discontinuity 

and dynamic effects improves significantly the GA 

performance. 
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Figure 9: PC4 average number of generations to 

achieve a solution AV(N) and standard deviation 

SD(N) for the PD  and PI   schemes (  = 0) with 

Gset b. 

4  Conclusions 

  This paper presented two techniques for improving 

the GA performance. Firstly, we concluded that we 

get superior results by measuring the error 

discontinuity. 
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Figure 10: M2-1 and PC4 average number of 

generations to achieve a solution AV(N) and standard 

deviation SD(N) for the PI D  scheme, for 

K = KD = KI, (  = 0) with Gset a. 

  Secondly, we verified that, the new concept of 

fractional-order dynamic fitness function constitutes 

an important method to outperform the classical 

static fitness function approach. The tuning of the 

‘optimal’ parameters ( , , KI, KD) was established by 

numerical evaluation.
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Figure 11: M2-1 and PC4 average number of 

generations to achieve a solution AV(N) and standard 

deviation SD(N) for the PI D   scheme, for 

K = KD = KI, (  = 0) with Gset b. 

  Therefore, future research will address the problem 

of having a more systematic design method. 

Furthermore, these conclusions encourage further 

studies using fractional order dynamical schemes. 
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Figure 12: M2-1 and PC4 average number of 

generations to achieve a solution AV(N) and standard 

deviation SD(N) for the PI D versus K = KD = KI

for  = {0.0, 0.25, 0.5, 0.75, 1.0} with Gset a. 
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Figure 13: M2-1 and PC4 average number of 

generations to achieve a solution AV(N) and standard 

deviation SD(N) for the PI D versus K = KD = KI

for  = {0.0, 0.25, 0.5, 0.75, 1.0} with Gset b. 
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Figure 14: Phase plane for one GA run for the M2-1

and the PC4 circuits for the PI D  with 

K = KD = KI = 1 and  = 0.50 using Gsets a and b. 
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