
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/195806554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ENOC-2005, Eindhoven, Netherlands, 7-12 August 2005

EVOLUTIONARY DESIGN OF COMBINATIONAL CIRCUITS USING

FRACTIONAL-ORDER FITNESS FUNCTIONS

Cecília Reis
1
, J. A. Tenreiro Machado

1
J. Boaventura Cunha

2

1Institute of Engineering of Porto 2 Engineering Department

Polytechnic Institute of Porto University of Trás-os-Montes and Alto Douro

Portugal Portugal

{cecilia, jtm}@dee.isep.ipp.pt jboavent@utad.pt

Abstract

 This paper analyses the performance of a genetic

algorithm using the new concept of fractional-order

dynamic fitness function, for the synthesis of

combinational logic circuits. The experiments reveal

superior results in terms of speed and convergence to

achieve a solution.

Key words

 Circuit Design, Fractional-Order Systems, Genetic

Algorithms, Logic Circuits.

1 Introduction

 In the last decade genetic algorithms (GAs) have

been applied in the design of electronic circuits,

leading to a novel area of research called

Evolutionary Electronics (EE) or Evolvable

Hardware (EH) [Zebulum et al., 2001]. EE considers

the concept for automatic design of electronic

systems. Instead of using human conceived models,

abstractions and techniques, EE employs search

algorithms to develop good designs [Thompson and

Layzell, 1999].

 One decade ago Sushil and Rawlins [Louis and

Rawlins, 1991] applied GAs to the combinational

circuit design problem. They combined knowledge-

based systems with the GA and defined a genetic

operator called masked crossover. This scheme leads

to other kinds of offspring that can not be achieved

by classical crossover operators.

 John Koza [Koza, 1992] adopted genetic

programming to design combinational circuits.

 In the sequence of this work, Coello, Christiansen

and Aguirre [Coello et al., 1996] presented a

computer program that automatically generates high-

quality circuit designs. They use five possible types

of gates (AND, NOT, OR, XOR and WIRE) with the

objective of finding a functional design that

minimizes the use of gates other than WIRE.

 Miller, Thompson and Fogarty [Miller et al., 1997]

applied evolutionary algorithms for the design of

arithmetic circuits. The technique was based on

evolving the functionality and connectivity of a

rectangular array of logic cells, with a model of the

resources available on the Xilinx 6216 FPGA device.

 Kalganova, Miller and Lipnitskaya [Kalganova et

al., 1998] proposed a new technique for designing

multiple-valued circuits.

 In order to solve complex systems, Torresen

[Torresen, 1998] proposed the method of increased

complexity evolution. The idea is to evolve a system

gradually as a kind of divide-and-conquer method.

Evolution is first undertaken individually on simple

cells. The evolved functions are the basic blocks

adopted in further evolution of more complex

systems.

 A major bottleneck in the evolutionary design of

electronic circuits is the problem of scale. This refers

to the very fast growth of the number of gates, used

in the target circuit, as the number of inputs of the

evolved logic function increases. This results in a

huge search space that is difficult to explore even

with evolutionary techniques. Another related

obstacle is the time required to calculate the fitness

value of a circuit [Vassilev and Miller, 2000]. A

possible method to solve this problem is to use

building blocks either than simple gates.

Nevertheless, this technique leads to another

difficulty, which is how to define building blocks that

are suitable for evolution.

 Timothy Gordon [Gordon and Bentley, 2002]

suggests an approach that allows evolution to search

for good inductive bases for solving large-scale

complex problems. This scheme generates,

inherently, modular and iterative structures, that exist

in many real-world circuit designs but, at the same

time, allows evolution to search innovative areas of

space.

 The idea of using memory to achieve better fitness

function performances was first introduced by Sano

and Kita [Sano and Kita, 2000]. Their goal was the

optimization of systems with randomly fluctuating

fitness function and they developed a Genetic

Algorithm with Memory-based Fitness Evaluation

(MFEGA). The key ideas of the MFEGA are based

on storing the sampled fitness values into memory as

a search history, introducing a simple stochastic

model of fitness values to be able to estimate fitness

values of points of interest using the history for

selection operation of the GA.

 Following this line of research, and looking for

better performance GAs, this paper proposes a GA

for the design of combinational logic circuits using

fractional-order dynamic fitness functions.

 The area of Fractional Calculus (FC) deals with the

operators of integration and differentiation to an

arbitrary (including noninteger) order and is as old as

the theory of classical differential calculus [Oldham

and Spanier, 1974, Miller and Ross, 1993]. The

theory of FC is a well-adapted tool to the modelling

of many physical phenomena, allowing the

description to take into account some peculiarities

that classical integer-order models simply neglect.

Nevertheless, the application of FC has been scarce

until recently, but the advances on the theory of

chaos motivated a renewed interest in this field. In

the last two decades we can mention research on

viscoelasticity/damping, chaos/fractals, biology,

signal processing, system identification, diffusion

and wave propagation, electromagnetism and

automatic control [Oustaloup, 1995, Méhauté, 1991,

Machado, 1997, Westerlund, 2002].

 Bearing these ideas in mind the article is organized

as follows. Section 2 describes the adopted GA as

well as the fractional-order dynamic fitness

functions. Section 3 presents the simulation results

and finally, section 4 outlines the main conclusions

and addresses perspectives towards future

developments.

2 The Adopted Genetic Algorithm

 In this section we present the developed GA, in

terms of the circuit encoding as a chromosome, the

genetic operators and the static and dynamic fitness

functions.

2.1 Problem Definition

 To design combinational logic circuits it is adopted

a GA strategy. The circuits are specified by a truth

table and the goal is to implement a functional

circuit with the least possible complexity. Two sets

of logic gates have been defined, as shown in Table

I, being Gset a the simplest one (i.e., a RISC-like

set) and Gset b a more complex gate set (i.e., a

CISC-like set).

 For each gate set the GA searches the solution

space, based on a simulated evolution aiming the

survival of the fittest strategy. In general, the best

individuals of any population tend to reproduce and

survive, thus improving successive generations.

However, inferior individuals can, by chance,

survive and also reproduce. In our case, the

individuals are digital circuits, which can evolve

until the solution is reached (in terms of

functionality and complexity).

Table I Gate sets

Gate Set Logic gates

Gset a {AND,XOR,WIRE}

Gset b {AND,OR,XOR,NOT,WIRE}

2.2 Circuit enconding

 In the GA scheme the circuits are encoded as a

rectangular matrix A (row column r c) of

logic cells as represented in figure 1.

 Each cell is represented by three genes:

<input1><input2><gate type>, where input1 and

input2 are one of the circuit inputs, if they are in the

first column, or, one of the previous outputs, if they

are in other columns. The gate type is one of the

elements adopted in the gate set. The chromosome

is formed by as many triplets of this kind as the

matrix size demands. For example, the chromosome

that represents a 3 3 matrix is depicted in figure 2.

Figure 1: A 3 3 matrix A representing a circuit

with input X and output Y.

0 1 2 … 24 25 26 genes
Input Input Gate … Input Input Gate

a11 a33 matrix

element

Figure 2: Chromosome for the 3 3 matrix of fig. 1.

2.3 The genetic operators

 The initial population of circuits (strings) is

generated at random. The search is then carried out

among this population. The three different operators

used are reproduction, crossover and mutation, as

described in the sequel.

 In what concern the reproduction operator, the

successive generations of new strings are

reproduced on the basis of their fitness function. In

this case, it is used a tournament selection to select

the strings from the old population, up to the new

population.

 For the crossover operator, the strings in the new

population are grouped together into pairs at

random. Single point crossover is then performed

among pairs. The crossover point is only allowed

between cells to maintain the chromosome integrity.

 The mutation operator changes the characteristics

of a given cell in the matrix. Therefore, it modifies

X Y

a11

a21

a31

a12

a22

a32

a13

a23

a33

Inputs Outputs

the gate type and the two inputs, meaning that a

completely new cell can appear in the chromosome.

Moreover, it is applied an elitist algorithm and,

consequently, the best solutions are always kept for

the next generation.

 To run the GA we have to define the number of

individuals to create the initial population P. This

population is always the same size across the

generations, until the solution is reached.

 The crossover rate CR represents the percentage of

the population P that reproduces in each generation.

Likewise the mutation rate MR is the percentage of

the population P that can mutates in each

generation.

2.4 The Static and the Dynamic Fitness Functions

 The goal of this study is to find new ways of

evaluating the individuals of the population in order

to achieve better performance GAs.

 In this paper we propose two concepts for the

fitness functions, namely the static fitness function

Fs and the dynamic fitness function Fd.

 The calculation of Fs in (1) is divided in two parts,

f1 and f2, where f1 measures the functionality and the

error discontinuity and f2 measures the simplicity. In

a first phase, we compare the output Y produced by

the GA-generated circuit with the required values

YR, according with the truth table, on a bit-per-bit

basis. By other words, f11 is incremented by one for

each correct bit of the output until f11 reaches the

maximum value f10, that occurs, when we have a

functional circuit. After this, f11 is decremented by

for each YR – Y error discontinuity, where

discontinuity means passing from YR – Y = 0 to

YR – Y = 1 or vice-versa when comparing two

consecutive levels of the truth table. Once the

circuit is functional, in a second phase, the GA tries

to generate circuits with the least number of gates.

This means that the resulting circuit must have as

much genes <gate type> <wire> as possible.

Therefore, the index f2, that measures the simplicity

(the number of null operations), is increased by one

(zero) for each wire (gate) of the generated circuit,

yielding:

f10 = 2ni no (1a)

f11 = f11 + 1 if {bit i of Y} = {bit i of YR} (1b)

f1 = f11 – if errori errori-1 (1c)

f2 = f2 + 1 if gate type = wire (1d)

1 10

1 2 10

,

,

s

s

s

f F f
F

f f F f
(1e)

Where i = 1, …, f10, ni and no represent the number

of inputs and outputs of the circuit.

 The concept of dynamic fitness function Fd results

from an analogy with control systems where we

have a variable to be controlled similarly with the

GA case where we master the population through

the fitness function. The simplest control system is

the proportional algorithm; nevertheless, there can

be other control algorithms, like the differential and

the integral schemes. Therefore, applying the static

fitness function corresponds to using a kind of

proportional algorithm. If we want to implement a

proportional-integral-derivative evolution the

fitness function needs a scheme of the type:

d s I s D sF F K I F K D F (2)

where 0.0 1.0 is the integral fractional-order,

0.0 1.0 is the differential fractional-order and

KI, KD are the integral and the differential ‘gains’ of

the dynamical term, respectively.

 The generalization of the concept of derivative

D [f(x)] to noninteger values of goes back to the

beginning of the theory of differential calculus. In

fact, Leibniz, in his correspondence with Bernoulli,

L’Hôpital and Wallis, had several notes about its

calculation for = [Oldham and Spanier, 1974,

Miller and Ross, 1993]. Nevertheless, the adoption

of the FC in control algorithms has been recently

studied using the frequency and discrete-time

domains [Oustaloup, 1995, Méhauté, 1991,

Machado, 1997].

 The mathematical definition of a derivative of

fractional order has been the subject of several

different approaches. For example, Eq. (3) and Eq.

(4), represent the Laplace (for zero initial

conditions) and the Grünwald-Letnikov definitions

of the fractional derivative of order of the signal

x(t)

1D x t L s X s (3)

0
0

1 11
lim

! 1

k

k
h

D x t x t kh
k kh

(4)

where is the gamma function and h is the time

increment. This formulation [Machado, 1997]

inspired a discrete-time calculation algorithm, based

on the approximation of the time increment h through

the sampling period T and a r-term truncated series

yielding the equation:

0

1 11

! 1

kr

k

D x t x t kT
k kT

(5)

3 Experiments and Simulation Results

 Reliable execution and analysis of a GA usually

requires a large number of simulations to provide a

reasonable assurance that stochastic effects have

been properly considered. Therefore, in this study

are developed n = 1000 simulations for each case.

 The experiments consist on running the GA to

generate a typical combinational logic circuit,

namely a 2-to-1 multiplexer (M2-1) and a 4-bit

parity checker (PC4), using the fitness scheme

described previously. The circuits are generated with

the gate sets presented in Table 1 for CR = 95%,

MR = 20%. P = 100 and the implementation of the

differential/integral fractional order operator adopts

Eq. (5) with a series truncation of r = 50 terms.

 Having these ideas in mind, a superior GA

performance means achieving solutions with a

smaller number N of generations and a smaller

standard deviation in order to reduce the stochastic

nature of the algorithm.

Gset a

35

40

45

50

0.00 0.25 0.50 0.75 1.00

A
V

(N
)

M2-1

Gset a

50

70

90

110

130

0.00 0.25 0.50 0.75 1.00

S
D

(N
)

M2-1

Gset b

115

125

135

145

155

0.00 0.25 0.50 0.75 1.00

A
V

(N
)

M2-1

Gset b

250

300

350

400

0.00 0.25 0.50 0.75 1.00

S
D

(N
)

M2-1

Figure 3: M2-1 average number of generations to

achieve a solution AV(N) and standard deviation

SD(N) versus = {0.0, 0.25, 0.5, 0.75, 1.0} with
Gsets a and b and Fs.

 Due to the huge number of possible combinations

of the GA parameters, in the sequel we evaluate

only a limited set of cases. Therefore, a priori, other

values can lead to different results. Nevertheless,

the authors developed an extensive number of

numerical experiments and concluded that the

following cases are representative.

3.1 Using the static fitness function

 In this sub-section we analyze the GA

improvement when adopting a static fitness function

including the discontinuity measure error.

Gset a

11

12

13

14

0.00 0.25 0.50 0.75 1.00

A
V

(N
)

PC4

Gset a

5

6

7

8

9

0.00 0.25 0.50 0.75 1.00

S
D

(N
)

PC4

Gset b

31

33

35

37

39

41

0.00 0.25 0.50 0.75 1.00

A
V

(N
)

PC4

Gset b

30

34

38

42

46

50

54

58

0.00 0.25 0.50 0.75 1.00

S
D

(N
)

PC4

Figure 4: PC4 average number of generations to

achieve a solution AV(N) and standard deviation

SD(N) versus = {0.0, 0.25, 0.5, 0.75, 1.0} with

Gsets a and b and Fs.

 Figures 3 and 4 show the average number of

generations to achieve the solution AV(N) and the

corresponding standard deviation SD(N) versus the

discontinuity factor = {0.0, 0.25, 0.5, 0.75, 1.0},

using Gset a and Gset b, for the M2-1 and the PC4

circuits, respectively.

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

4.0 4.5 5.0 5.5 6.0

AV (F s)

D
[A

V
(F

s
)]

M2-1

Gset a

-2

-1.5

-1

-0.5

0

0.5

1

4.0 5.0 6.0 7.0 8.0 9.0

AV (F s)

D
[A

V
(F

s)
]

M2-1

Gset b

-0.2

0.0

0.2

0.4

0.6

7.5 8.0 8.5 9.0 9.5 10.0

AV (F s)

D
[A

V
(F

s
)]

PC4

Gset a

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

7.5 8.5 9.5 10.5 11.5 12.5 13.5

AV (F s)

D
[A

V
(F

s)
]

PC4

Gset b

 Figure 5: Phase plane of one GA run for the M2-1

and the PC4 circuits using Gsets a and b (= 0), with

Fs.

 The results reveal that, as expected from previous

studies [Reis et al., 2004], the RISC-like set Gset a

presents better performance than the CISC-like gate

set Gset b for all values of . On the other hand,

analysing the influence of we conclude that the

GA response is best mostly in the region around

 = 0.5 for the two circuits and for the two gate sets.

 Figure 5 depict the phase plane charts of the

average of the static fitness function with = 0 for

the two circuits and the two gate sets.

 Due to the stochastic nature of the GA evolution,

the phase plane varies between experiments and

generalization is not possible. Nevertheless, the

charts indicate the global dynamics in each case.

3.2 Experiments using dynamic fitness function

 In this sub-section, we analyze the GA

performance when we adopt a dynamic scheme for

the fitness function.

 The first set of simulations investigate separately

the differential scheme ({0.0, 0.25, 0.5, 0.75,

1.0}) and the integral scheme ({0.0, 0.25, 0.5,

0.75, 1.0}) in Fd for gains 10 3 KD 102 and

10 3 KI 102, respectively.

 Figures 6-9 show the average number of

generations to achieve a solution AV(N) and the

standard deviation SD(N) for the differential PD

(i.e., KI = 0.0) and the integral schemes PI (i.e.,

KD = 0.0), for the M2-1 and PC4 circuits, using the

Gset a and the Gset b, respectively. The charts

include the plots for = 0.0 and = 0.0, that is

without dynamic fitness, in order to ease the

comparison.

 Since we achieved better results for = 0.25 and

 = 0.25, we decided to investigate the combination

of these parameters. Therefore, the second set of

simulations evaluates the proportional-integral-

differential PI D scheme. Due to the large number

of possible combinations of { , , KI, KD} we

establish = = 0.25 and 10 3 KD = KI 102.

 Figures 10-11 show the average number of

generations to achieve a solution AV(N) and the

standard deviation SD(N) for the proportional-

integral-differential PI D scheme, for the M2-1 and

the PC4 circuits, using Gset a and Gset b (= 0),

respectively.

 Comparing the previous PD and PI schemes

with the PI D case, we verify that the inclusion

of both actions improves slightly the results.

 We conclude that the Fd concept produces better

results than the classical Fs. Moreover, the results

reveal that, the RISC-like Gset a presents a superior

performance for all values of (, , KI, KD).

40

45

50

55

60

65

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K D

A
V

(N
)

M2-1

45

70

95

120

145

170

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K D

S
D

(N
)

M2-1

40

45

50

55

60

65

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K I

A
V

(N
)

M2-1

45

70

95

120

145

170

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K I

S
D

(N
)

M2-1

Figure 6: M2-1 average number of generations to

achieve a solution AV(N) and standard deviation

SD(N) for the PD and PI schemes (= 0) with

Gset a.

 In a third set of simulations, we include the error

discontinuity measure in the PI D scheme

(figures 12 and 13).

9.5

10.0

10.5

11.0

11.5

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K D

A
V

(N
)

PC4

6

7

8

9

10

11

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K D

S
D

(N
)

PC4

9.0

9.5

10.0

10.5

11.0

11.5

12.0

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K I

A
V

(N
)

PC4

6

7

8

9

10

11

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K I

S
D

(N
)

PC4

Figure 7: PC4 average number of generations to

achieve a solution AV(N) and standard deviation

SD(N) for the PD and PI schemes (= 0) with

Gset a.

 Figure 14 shows several phase plane charts that

occur for the PI D with K = KD = KI = 1 and

 = 0.50.

75

85

95

105

115

125

135

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K D

A
V

(N
)

M2-1

90

115

140

165

190

215

240

265

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K D

S
D

(N
)

M2-1

75

85

95

105

115

125

135

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K I

A
V

(N
)

M2-1

90

115

140

165

190

215

240

265

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K I

S
D

(N
)

M2-1

Figure 8: M2-1 average number of generations to

achieve a solution AV(N) and standard deviation

SD(N) for the PD and PI schemes (= 0) with

Gset b.

 In conclusion, the introduction of discontinuity

and dynamic effects improves significantly the GA

performance.

30.0

32.5

35.0

37.5

40.0

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K D

A
V

(N
)

PC4

10

20

30

40

50

60

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K D

S
D

(N
)

PC4

30

35

40

45

50

55

60

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K I

A
V

(N
)

PC4

25

30

35

40

45

50

55

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K I

S
D

(N
)

PC4

Figure 9: PC4 average number of generations to

achieve a solution AV(N) and standard deviation

SD(N) for the PD and PI schemes (= 0) with

Gset b.

4 Conclusions

 This paper presented two techniques for improving

the GA performance. Firstly, we concluded that we

get superior results by measuring the error

discontinuity.

40

45

50

55

60

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K

A
V

(N
)

M2-1

50

65

80

95

110

125

140

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

S
D

(N
)

M2-1

9.5

10.0

10.5

11.0

11.5

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K

A
V

(N
)

PC4

6.0

6.5

7.0

7.5

8.0

8.5

9.0

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

S
D

(N
)

PC4

Figure 10: M2-1 and PC4 average number of

generations to achieve a solution AV(N) and standard

deviation SD(N) for the PI D scheme, for

K = KD = KI, (= 0) with Gset a.

 Secondly, we verified that, the new concept of

fractional-order dynamic fitness function constitutes

an important method to outperform the classical

static fitness function approach. The tuning of the

‘optimal’ parameters (, , KI, KD) was established by

numerical evaluation.

70

80

90

100

110

120

130

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K

A
V

(N
)

M2-1

90

120

150

180

210

240

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

S
D

(N
)

M2-1

31

32

33

34

35

36

37

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K

A
V

(N
)

PC4

18

21

24

27

30

33

36

39

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

S
D

(N
)

PC4

Figure 11: M2-1 and PC4 average number of

generations to achieve a solution AV(N) and standard

deviation SD(N) for the PI D scheme, for

K = KD = KI, (= 0) with Gset b.

 Therefore, future research will address the problem

of having a more systematic design method.

Furthermore, these conclusions encourage further

studies using fractional order dynamical schemes.

30

35

40

45

50

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K

A
V

(N
)

M2-1

35

55

75

95

115

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

S
D

(N
)

M2-1

5.5

6.5

7.5

8.5

9.5

10.5

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K

A
V

(N
)

PC4

3.5

5.5

7.5

9.5

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

S
D

(N
)

PC4

Figure 12: M2-1 and PC4 average number of

generations to achieve a solution AV(N) and standard

deviation SD(N) for the PI D versus K = KD = KI

for = {0.0, 0.25, 0.5, 0.75, 1.0} with Gset a.

60

85

110

135

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K

A
V

(N
)

M2-1

65

115

165

215

265

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

S
D

(N
)

M2-1

30

32

34

36

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

K

A
V

(N
)

PC4

25

30

35

40

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
K

S
D

(N
)

PC4

Figure 13: M2-1 and PC4 average number of

generations to achieve a solution AV(N) and standard

deviation SD(N) for the PI D versus K = KD = KI

for = {0.0, 0.25, 0.5, 0.75, 1.0} with Gset b.

-0.1

0.0

0.1

0.2

0.3

0.4

2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1

AV (F d)

D
[A

V
(F

d
)]

M2-1

Gset a

-0.4

0.0

0.4

0.8

0.0 0.5 1.0 1.5 2.0

AV (F d)

D
[A

V
(F

d
)]

M2-1

Gset b

0.0

0.2

0.4

0.6

0.8

1.5 2.0 2.5 3.0 3.5

AV (F d)

D
[A

V
(F

d
)]

PC4

Gset a

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

-4.0 -2.0 0.0 2.0 4.0 6.0

AV (F d)

D
[A

V
(F

d
)]

PC4

Gset b

Figure 14: Phase plane for one GA run for the M2-1

and the PC4 circuits for the PI D with

K = KD = KI = 1 and = 0.50 using Gsets a and b.

References

Coello, C., Christiansen, A. and Aguirre, A. (1996).

Using Genetic Algorithms to Design

Combinational Logic Circuits. Intelligent

Engineering through Artificial Neural Networks.

Vol. 6, pp. 391-396.

Gordon, T. and Bentley, P. (2002). Towards

Development in Evolvable Hardware. In Proc. of

the 2002 NASA/DOD Conference on Evolvable
Hardware. pp. 241-250.

Kalganova, T., Miller, J. and Lipnitskaya, N.

(1998). Multiple_Valued Combinational Circuits

Synthesised using Evolvable Hardware. In Proc.

of the 7th Workshop on Post-Binary Ultra Large
Scale Integration Systems.

Koza, J. (1992). Genetic Programming. On the

Programming of Computers by means of Natural
Selection. MIT Press.

Louis, S. and Rawlins, G. (1991). Designer Genetic

Algorithms: Genetic Algorithms in Structure

Design. In Proc. of the Fourth Int. Conference on

Genetic Algorithms.

Machado, J., (1997). Analysis and Design of

Fractional-Order Digital Control Systems. SAMS

Journal Systems Analysis, Modelling, Simulation,

vol. 27: 107 122.

Méhauté, A. (1991). Fractal Geometries: Theory
and Applications. Penton Press, London.

Miller, J., Thompson, P. and Fogarty, T. (1997).

Algorithms and Evolution Strategies in
Engineering and Computer Science: Recent

Advancements and Industrial Applications.

Wiley.

Miller, K. and Ross B., (1993). An Introduction to

the Fractional Calculus and Fractional

Differential Equations. John Wiley & Sons, New

York.

Oldham, K. and Spanier, J. (1974). The Fractional

Calculus: Theory and Application of
Differentiation and Integration to Arbitrary

Order. Academic Press, New York.

Oustaloup, A., (1995). La Dérivation Non Entier:
Théorie, Synthèse et Applications. Ed. Hermes.

Reis, C., Machado, J. and Cunha, J., (2004).

Evolutionary Design of Combinational Logic

Circuits. Journal of Advanced Computational

Intelligence and Intelligent Informatics. Fuji

Technology Press, vol. 8, No. 5, pp. 507-513.

Sano, Y and Kita, H. (2000). Optimization of Noisy

Fitness Functions by means of Genetic

Algorithms using History of Search. In Proc. of

PPSN VI, pp. 571-581.

Thompson, A. and Layzell, P. (1999). Analysis of

unconventional evolved electronics.

Communications of the ACM, vol. 42, pp. 71-79.

Torresen, J. (1998). A Divide-and-Conquer

Approach to Evolvable Hardware. In Proc. of the

Second International Conference on Evolvable

Hardware. Vol. 1478, pp. 57-65.

Vassilev, V. K. and Miller, J. F. (2000). Scalability

Problems of Digital Circuit Evolution. In Proc. of

the Second NASA/DOD Workshop on Evolvable
Hardware. pp. 55-64.

Westerlund, S., (2002). Dead Matter Has Memory!
Causual Consulting. Sweden: Kalmar.

Zebulum, R. S., Pacheco, M. A. and Vellasco, M. M.

(2001). Evolutionary Electronics: Automatic
Design of Electronic Circuits and Systems by

Genetic Algorithms. CRC Press.

