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Abstract

  The Maxwell equations play a fundamental role in 

the well established formulation of the 

electromagnetic theory. These equations lead to the 

derivation of precise mathematical models useful in 

many applications in physics and engineering. The 

Maxwell equations involve only the integer-order 

calculus and, therefore, it is natural that the resulting 

classical models adopted in electrical engineering 

reflect this perspective. 

  Recently, a closer look of some phenomena present 

in electrical systems, such as motors, transformers 

and lines, and the motivation towards the 

development of comprehensive models, seem to 

point out the requirement for a fractional calculus 

approach.

  Bearing these ideas in mind, in this study we shall 

address the well-known ‘skin effect’ and we re-

evaluate the results demonstrating its fractional-order 

dynamics.  
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1  Introduction 

  Some experimentation with magnets was beginning 

in the late 19th century. By then reliable batteries had 

been developed and the electric current was 

recognized as a stream of charge particles. Maxwell 

developed a set of equations expressing the basic 

laws of electricity and magnetism, and he 

demonstrated that these two phenomena are 

complementary aspects of electromagnetism. He 

showed that electric and magnetic fields travel 

through space, in the form of waves, at a constant 

velocity. Maxwell is generally regarded as the 

nineteenth century scientist who had the greatest 

influence on twentieth century physics, making 

contributions to the fundamental models of nature. 

  The Skin Effect (SE) is one subject who can be 

explained by the Maxwell’s equations. The SE is the 

tendency of a high-frequency electric current to 

distribute itself in a conductor so that the current 

density near the surface is greater than that at its core. 

This phenomenon increases the effective resistance 

of the conductor with the frequency of the current. 

The effect is most pronounced in radio-frequency 

systems, especially antennas and transmission lines, 

but it can also affect the performance of high-fidelity 

sound equipment, by causing attenuation in the treble 

range. The first study of SE was explained by Lord 

Kelvin in 1887, but many other scientists contributed 

to improve the comprehension of this theme, namely 

Nikola Tesla. 

  The SE can be reduced by using stranded rather than 

solid wire. This increases the effective surface area of 

the wire for a given wire gauge. It is simple to see 

that the spatial variation of the fields in vacuum is 

much smaller than the spatial variation in the metal. 

Therefore, in usual study, for the purposes of 

evaluating the fields in the conductor, the spatial 

variation from the wave length outside the conductor 

can be ignored. For the usual case the radii of 

curvature of the surface should be much larger than a 

skin depth, the solution is straightforward. To 

analyze this phenomenon, we apply the Maxwell’s 

equations that relate the solutions for these fields. 

More often, however, some of the parameters that 

tend to be considered are the capacitance per length, 

inductance per length, and their relationship with the 

signals, the nominal propagation velocity and the 

characteristic impedance of the system. 

  In our study we apply the Bessel functions to 

compute values of cable impedance Z. For the sake 

of clarity we plot some values of the low and high 

frequency approximations of impedance. We verify 

the fractional order of these systems, namely the half-

order nature of dynamic phenomenon. 



                                                   

  Having these ideas in mind this paper is organized 

as follows. Section 2 summarizes the mathematical 

description of the SE and section 3 re-evaluates the 

results demonstrating its fractional-order dynamics. 

After clarifying the fundamental concepts it is 

addressed the case of Eddy (or Foucault) currents 

that occur in electrical machines. Finally, section 4 

draws the main conclusions. 

2  The Skin Effect 

  The internal impedance of a wire is function of the 

frequency. In a conductor, where the conductivity is 

sufficiently high, the displacement current density 

can be neglected. In this case, the conduction current 

density is given by the product of the electric field 

and the conductance. When we apply these 

simplifications, we get the Maxwell’s equations. 

  One of the aspects of the high frequency effects is 

the SE. The fundamental problem with SE is the 

attenuation the higher frequency components of a 

signal. 

  In order to analyze the SE we start by recalling the 

classical model development for this electromagnetic 

phenomenon. 

  In the differential form the Maxwell equations are 

[Feynman, et al., 1964]: 
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where E, D, H, B,  are the vectors of electric field 

intensity, electric flux density (or electric 

displacement), magnetic field intensity, magnetic 

flux density and the current density, respectively, and 

 and t are the charge density and time. Moreover, 

for a homogeneous, linear and isotropic media, we 

can establish the relationships: 
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where ,  and  are the electrical permittivity, the 

magnetic permeability and the conductivity, 

respectively.

  In order to study the SE we start by considering a 

cylindrical conductor with radius 0r  conducting a 

current I along its longitudinal axis. In a conductor, 

even for high frequencies, the term tD is 

negligible in comparison with the conduction term 

or, by other words, the displacement current is much 

lower than the conduction current. Therefore, for a 

radial distance 0rr  the application of the 

Maxwell’s equations with the simplification of (1b) 

leads to the expression [Küpfmüller and Einführung, 

1939]-[Bessonov, 1968]: 
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 For a sinusoidal field we can adopt the complex 

notation tjeEE
~

2 , where 1j , yielding: 
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with jq 2 .

  Equation (4) is a particular case of the Bessel 

equation that, for the case under study, has solution 

of the type: 
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where 0J  and 1J are complex valued Bessel 

functions of the first kind of orders 0 and 1, 

respectively.

  Equation (5) establishes the so-called SE, a 

phenomenon that yields a non-uniform current 

density along the conductor cross section. We have a 

low density near the conductor axis and an high 

density on the surface, being the larger the 

phenomenon the higher the frequency . Therefore, 

the total voltage drop is IEIZ
~~~~

 that, for a 

conductor of length 0l , results: 
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where Z
~

 is the equivalent electrical complex 

impedance. 

  Knowing [Abramowitz and Stegun, 1965] the 

Taylor series: 
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and, for large values of x, the asymptotic expansion: 
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we can obtain the low and high frequency 

approximations of Z
~

:
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3  A Fractional  Calculus Approximation 

  In order to avoid the complexity of the 

transcendental equation (6) the standard approach in 

electrical engineering is to assign a resistance R and 

inductance L given by ZLjR
~

. Nevertheless, 

although widely used, this method is clearly 

inadequate because the model parameter values 

{L,R} vary with the frequency. Moreover, (9b) points 

out the half-order nature of the dynamic 

phenomenon, at high frequencies (i.e., ),~
~ 21Z

which is not captured by and integer-order approach. 

A possible approach that eliminates those problems is 

to adopt the fractional calculus [Aubourg and 

Mengue, 1998]-[Canat and Faucher, 2003]-[Machado 

and Jesus]-[Malpica, et al., 2004], [Benchellal A, et
al., 2004]. Joining the two asymptotic expressions (9) 

we can establish several types of approximations, 

namely the zero and one parameter fractions: 
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where 
2

0raii , i = 1,2, and 221 aa  is a 

numerical value to be adjusted. 

  In order to analyze the feasibility of (10a) and (10b) 

with define the errors in the amplitude and phase as: 

,
~~

appkk ZModZModMax (11a) 

,
~~

appkk ZPhaseZPhaseMax (11b) 

for the k = 0,1 parameter approximations. 
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Figure 1 Amplitude and phase Bode diagrams of Z
~

for the theoretical and the approximate expressions 

with ,m10,m107.5 3
0

17 l
163

0 Hm10257.1,m100.2r .

  Figure 1 compares the Bode diagrams of amplitude 

and phase for expressions (6) and (10) (eq. 10b with 

a numerical non-linear regression lead a1 = 0.3647) 

revealing a very good fit. On the other hand, Fig. 2 

depicts the approximation errors that lead to 

%3.8%,5.6, 00  and %6.9%,2.4, 11

in the frequency charts of amplitude and phases, 

respectively.

  These physical concepts and mathematical tools can 

be adopted in more complex systems. In fact, the 

‘Eddy Currents’ phenomenon, usual in electrical 

machines such as transformers and motors, can be 

modeled using identical guidelines. 

  For example, let us consider the magnetic circuit of 

an electrical machine constituted by a laminated iron 

core. 
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Figure 2 Amplitude and phase errors 1,0,, iii ,

for the two approximate expressions. 

  Each ferromagnetic metal sheet with permeability 

has thickness d and width b (b >> d) making a closed 

magnetic circuit with an average length 0l . The total 

pack of ferromagnetic metal sheet make a height a
while embracing a coil having n turns with current I.
  The contribution of the magnetic core to the coil 

impedance is (for details see [Küpfmüller, 1939]): 
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  Alternatively, expression (12) can be re-written as: 
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  We can obtain the low and high frequency 

approximations of Z
~

:
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  Once more we have a clear half-order dependence 

of Z
~

 (i.e., 21~
~
Z ) while the standard approach is 

to assign frequency-dependent ‘equivalent’ resistance 

R and inductance L given by ZLjR
~

.

  A possible approach that eliminates those problems 

is to joint the two asymptotic expressions (14).  
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Figure 3 Amplitude and phase Bode diagrams of Z
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for the two approximate expressions. 

  Therefore, we can establish several types of 

approximations, namely the zero and one parameter 

fractions:
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where 
2

2daii , i = 1,2, and 21 aa  is a 

numerical value to be adjusted. 

  Figure 3 compares the Bode diagrams of amplitude 

and phase for expressions (12) and (15) (eq. 15b with 

a numerical non-linear regression lead a1 = 0.1860) 

revealing a very good fit. Figure 4 depicts the errors 

%7.11%,6.15, 00 , %8.2%,6.2, 11  in 

the frequency charts of amplitude and phases, 

respectively.

4  Conclusions 

  In conclusion, we have that the classical 

electromagnetism and the Maxwell equation, with 

integer order derivatives, lead to models requiring a 

fractional calculus perspective to be fully interpreted. 

Another aspect of interest is that in all cases we get 

only half-order models. Therefore, the meaning of 

the D  for the particular case of 21 and its 

relationship with integer-order calculus remains to be 

investigated.
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