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This paper studies the describing function (DF) of

systems composed of a mass subjected to nonlinear

friction. The friction force is decomposed in three

components namely, the viscous, the Coulomb and

the static forces. The system dynamics is analyzed in 

the DF perspective and the reliability of the DF 

method is evaluated through the signal harmonic

content.

1. INTRODUCTION

The phenomenon of vibration due to friction occurs

in many branches of technology where it plays a very 

useful role. On the other hand, its occurrence is often

undesirable, because it causes additional dynamic

loads, as well as faulty operation of machines and

devices. Despite many investigations that have been

carried out so far, this phenomenon is not yet fully

understood, mainly due to the considerable

randomness and diversity of reasons underlying the

energy dissipation involving the dynamic effects [1],

[6], [7]. These nonlinear dynamic phenomena have

been an active area of research but well established

conclusions are still lacking.

In this paper we investigate the dynamics of systems

that contain nonlinear friction namely the Coulomb

and the static forces in addition to the linear viscous,

component. Bearing these ideas in mind, the article is

organized as follows. Section 2 introduces the

fundamental aspects of the describing function

method. Section 3 studies the describing function of

mechanical systems with nonlinear friction. Finally,

section 4 draws the main conclusions and addresses

perspectives towards future developments.

2. FUNDAMENTAL CONCEPTS

In this section we present a summary of the DF

method and its application on the prediction of limit

cycles. The purpose is to analyse the controller

performance in the presence of systems with 

nonlinear friction. Due to the nonlinear nature of the

problem a possible approach would be the simulation

of all possible systems which, obviously, is a time

consuming and fastidious task. Therefore, the

strategy taken here is to study the DF evolution in the

Nyquist diagram of each controller and plant. By this

way, we can study the stability and we can predict

approximately the occurrence and the characteristics

of limit cycles.

It is a well-known fact that many relationships among

physical quantities are not linear, although they are 

often approximated by linear equations, mainly for

mathematical simplicity. This simplification may be

satisfactory as long as the resulting solutions are in 

agreement with experimental results. In fact, Cox [4]

demonstrated that this is the case with the

approximation of nonlinear systems by a DF where

limit cycles can be predicted with reasonable

accuracy. The DF method is not the only one

tractable to limit cycle prediction; nevertheless, in the

condition of limit cycle occurrence all of the methods

are equivalent to the DF method [4].

Let us consider the feedback system of Figure 1 with

one nonlinear element N and a linear system G(s).

Figure 1. Nonlinear control system

Suppose that the input to a nonlinear element is 

sinusoidal )sin()( tXtx . In general the output of

the nonlinear element is not sinusoidal, but it is

periodic, with the same period as the input,

containing higher harmonics in addition to the

fundamental harmonic component.

If we assume that the nonlinearity is symmetric with 

respect to the variation around zero, the Fourier series

become:
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where  and kY k  are the amplitude and the phase

shift of the kth harmonic component of the output

y(t), respectively.

In the DF analysis, we assume that only the

fundamental harmonic component of the output is

significant. Such assumption is often valid since the

higher harmonics in the output of a nonlinear element

are usually of smaller amplitude than the fundamental

component. Moreover, most control systems are 

“low-pass filters” with the result that the higher

harmonics are further attenuated. 



The DF, or sinusoidal DF, of a nonlinear element,

, is defined as the complex ratio of the

fundamental harmonic component of the output y(t)

and the input x(t) , that is: 
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where the symbol N represents the DF, X is the

amplitude of the input sinusoid and  and 1Y 1  are

the amplitude and the phase shift of the fundamental

harmonic component of the output, respectively.

Several DFs of standard nonlinear system elements

can be found in the references [2], [3], [5].

For nonlinear systems that do not involve energy

storage, the DF is merely amplitude-dependent, that

is N = N(X). When dealing with nonlinear elements

that store energy, the DF method is both amplitude

and frequency dependent, that is, N = N(X, ). In this

case, to determine the DF usually we have a

numerical approach rather than a symbolic one

because, in general, it is impossible to find a closed-

form solution for the differential equations that model

the nonlinear element. Nevertheless, it is possible to

calculate the approximate analytical expressions for 

such DFs, namely with the aid of computer algebra

packages. Once calculated, the DF can be used for

the approximate stability analysis of a nonlinear

control system.

Let us consider the standard control system shown in

Figure 1 where the block N denotes the DF of the

nonlinear element. If the higher harmonics are

sufficiently attenuated, N can be treated as a real or 

complex variable gain and the closed-loop frequency

response becomes:
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The characteristic equation is:
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If (4) can be satisfied for some value of X and , a 

limit cycle is predicted for the nonlinear system.

Moreover, since (4) applies only if the nonlinear

system is in a steady-state limit cycle, the DF analysis

predicts only the presence or the absence of a limit

cycle and cannot be applied to the analysis of other

types of time responses.

3. SYSTEMS WITH NONLINEAR FRICTION

In this section we calculate the DF of a dynamical 

system with nonlinear friction and we study its 

properties. In sub-section 3.1 we start by a 

combination of the viscous and Coulomb

components. In sub-section 3.2 we complement the

study by including also the static friction.

3.1. Coulomb and Viscous Friction

Let us consider a system (Fig. 2) with a mass M,

moving on a horizontal plane under the action of a

force f, with a friction effect composed of two 

components: a non-linear Coulomb K part and a

linear viscous B part (CV model).
The equation of motion in this system is as follows:

tftFtxM f (5)

where M is the system mass,  is the friction

force and

tF f

tf  the applied input force.
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Figure 2. a) Elemental mass system subjected to

nonlinear friction and b) Non-linear friction with

Coulomb, Viscous (CV model) and Static

components (CVS model).

For the simple system of Figure 2.a) we can

calculate, numerically, the polar plot of ,1 FN

considering as input a sinusoidal force

tFtf cos  applied to mass M and as output the

position x(t).

Figure 3 shows the function ),(1 FN  for several

values of F when M = 9 Kg, B = 0.5 Ns/m, K = 5 N. 

Figure 4 illustrates the log-log plots of Re{ 1/N} and

Im{ 1/N} vs. the exciting frequency , for different

values of the input force F = {10, 50, 100} N. The

charts reveal that we have different results according

to the excitation force F, being it more visible for the 

imaginary component.
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Figure 3. Polar plot of ),(1 FN  for the system

subjected to nonlinear friction (CV model) and input

forces F = {10, 20, 30, 40, 50} N.
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Figure 4. Log-log plots of Re{ 1/N} and Im{ 1/N}

vs. the exciting frequency  for F = {10, 50, 100} N,

with de CV model.

In Figure 5 it is depicted the harmonic content of the

output signal x(t) for input forces of F = 10 N and

F = 50 N. From this charts we conclude that the

output signal has a half - wave symmetry, because the

harmonics of even order are negligible. Moreover,

the fundamental component of the output signal is the

most important one, while the amplitude of the high

order harmonics decays significantly. Therefore, we

can conclude that, for the friction CV model, the DF

method leads to a good approximation.

In order to gain further insight into the system nature,

we repeat the experiment for different mass values

M = {0.10, 0.25, 0.50, 1.0, 2.0, 3.0, 5.0, 7.0} Kg.

The results shows that the value of Re{ 1/N} and 

Im{ 1/N} fluctuate for different M values.

To study the relation between Re{ 1/N} and 

Im{ 1/N} versus F and M, we approximate the 

numerical results through power functions:

Figure 5. Fourier transform of the output position

x(t), over 50 cycles for the CV model, vs. the exciting

frequency  and the harmonic frequency index k for

input forces F = 10 N and F = 50 N. 

db cNaN 1Im,1Re (6)

Figure 6 illustrates the variation of the {a, b, c, d}

parameters with F and M.

The {a, b, c, d} parameters can also be approximated

by heuristic analytical expressions, namely:

FFa

b  2.0

FFc

Fd ln

(7)

where F is the input force and ,,,,,,  are

parameters that depend on the mass M. We conclude

that the parameters  and  seems similar to K.

Moreover, Re{ 1/N} and Im{ 1/N} have distinct

relationships with , namely integer and fractional

order dependences. The second case is of utmost

importance because it establishes a link towards the

area of fractional calculus [8] and it properties of

dynamical memory.
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Figure 6. Variation of the {a, b, c, d} parameters

versus F and M = {0.1, 0.25, 0.5, 1, 2, 3, 5, 7, 9} Kg,

in the CV model

3.2. Coulomb, Viscous and Static Friction

In this sub-section we incorporate the static friction

(D, h) in the CV model leading to the so-called CVS

model. In this line of thought, we develop a study

similar to the one adopted previously, with M = 9 Kg, 

B = 0.5 Ns/m, K = 5 N, D=7 N, h=0.5 ms-1 (Figures

7-10).

Comparing the results of the VC and VCS models we 

conclude that Re{ 1/N} and Im{ 1/N} are, in the

two cases, of the same type, following power law

according with (6).

Figure 7. Polar plot of ,1 FN  for the system

subjected to nonlinear friction (CVS model) and

input forces F = {10, 20, 30, 40, 50} N.
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Figure 8. Log-log plots of Re{ 1/N} and Im{ 1/N}

vs. the exciting frequency , for F = {10, 50, 100} N,

with the CVS model.

Furthermore, once again we obtain integer-order and

fractional-order dynamics for Re{ 1/N} and the

Im{ 1/N}, respectively.

On the other hand, the CVS model is very sensitive to 

small input forces F (stimulation mainly the static 

component) leading to large values of 1/N and to a

higher harmonic content.

4. CONCLUSIONS

This paper addressed several aspects of the

phenomena involved in systems with nonlinear

friction. The dynamics of elemental mechanical

system was analysed through the describing function

method and compared with standard models. The

results encourage further studies of nonlinear systems

in a similar perspective and the analysis of limit cycle

prediction. The conclusion may lead to the

development of compensation schemes capable of

improving control system performance.



Figure 9. Fourier transform of the output position

x(t), over 50 cycles for the CV model, vs. the exciting

frequency  and the harmonic frequency index k for

input forces F = 10 N and F = 50 N. 
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