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Abstract — In the paper a simple nonlinear, adaptive approach inspired by the
CRONE method is presented for vibration control. It replaces the fractional
derivatives with time-invariant Green functions. Being completed by a nonlinear
feedback term it makes the positive definite weighted moving average of the square
of the error converge to zero in the kinematic design of the desired damping the
realization of which is guaranteed by the controller’s adaptive nature. The burden
of designing a sophisticated linear controller is evaded. The applicability of the
approach is illustrated via simulations for a damped linear oscillator under
external excitation at its resonance frequency. The adaptive loop simply
successively maps the observed system behavior to the desired one without exerting
any effort to identify the reasons of the differences. It is expected to be useful for
solving even more complicated vibration damping problems with unmodeled and
uncontrolled internal degrees of freedom.

1 Introduction

Normally vibration is undesired, externally excited phenomenon that occurs in various
physical systems therefore its efficient damping is of great practical significance. In a
wider context this phenomenon can be modeled as linear or nonlinear interaction
between various coupled subsystems having their own internal degrees of freedom.
Normally the vibration of certain subsystems has to be reduced only while the other
subsystems’ vibration is not critical. For instance, in the case of a car the task is to
minimize the vibration of the chassis while the wheels and other components of the
suspension system may have even drastic vibration.

From the point of control technology the task has the ,,delicate” nature that the most
of the internal degrees of freedom cannot be controlled directly, even the controller
cannot be provided with their model or with information on their actual physical state.
A novel branch of soft computing has recently been developed on the basis of the
simultaneous using of the Modified Renormalization Transformation and simple
ancillary methods [1] that is flexible enough to incorporate various algebraic blocks like
Lorentz Transformations [2], special Symplectic Transformations [3] etc. It was shown



that in the case of a wide class of physical systems with the aid of this method quite
robust adaptive controllers can be developed for the control of very inaccurately and
partially modeled physical systems which can have even unmodeled internal degrees of
freedom [4]. As an input the method requires the desired trajectory of the generalized
coordinates of the system which are to directly be controlled.

This approach should be very efficient for vibration control if the desired trajectory of
the generalized coordinates of the susbsystems to be controlled could be prescribed.
Unfortunately in the most cases juts this information is missing. For instance, in the
case of a car, as it proceeds along an uneven, bumpy road crossing hills and valleys the
absolute height of the chassis (that is its height with respect to the sea level) cannot be
prescribed because the car’s control system cannot be in the possession of such
information. Instead of that some average distance between the chassis and the wheel
can be prescribed because it is locally measurable quantity. The prescription of fixed
rigid distance would result in pushing all the consequences of the bumps of the road to
the chassis, that is in this way no any vibration caused by the uneven nature of the road
could be suppressed. A feasible compromise is the application of some ,.forgetting
integral” that does not allow abrupt changes with respect to the former values of this
distance but allows the slow variation of this distance along a desired, prescribed mean
value. Therefore the desired behavior of this distance can practically be prescribed to
some extent by the terms used in the traditional linear controllers as frequency filters
etc. The most plausible means would be the application of a simple PID type controller
to keep a finite error at bay. However, the integrating term of this controller does not
,forget” the past, and for an even small but constant error it generates infinite signal for
feedback.

As the generalization of the concept of the derivative —remaining strictly within the
frames of linear physics— the concept of fractional order integrals and derivatives
found more and more phyisical applications to describe the ,,longer term memory” of
various physical systems like in the case of visco-elastic phenomena [5, 6], seismic
analysis [7], robotics [8], etc. In general the problem of designing fractional control
systems remaining mainly within the frames of linear systems obtained considerable
attention recently, e.g. [9, 10]. The French expression invented by Oustaloup ,,CRONE:
Commande Robuste d’Ordre Non Entier” [11] almost became a ,trademark”
hallmarking a well elaborated design methodology that obtained application in vibration
control, too [12]. Uderstanding and using this method requires deep engineering
konwledge in the realm of linear systems, frequency spectrum analysis, the use of
Laplace transforms and complex integrals, various typical diagrams as e.g. the Nichols
plot, etc.

The aim of the present paper is to propose an alternative approach not strictly
restricted to the way of thinking traditional in the case of linear systems. Tackling the
problem from a more general nonlinear basis requires less amount of deep and specific
engineering knowledge, the application of which can be evaded by the controller’s
adaptive nature or learning abilities. For this purpose the ,Jong term memory” or slowly
forgetting nature of the fractional order systems is considered in a more general view.

2 Fractional order derivatives and Green functions

In the case of a normal PID-type controller the desired trajectory reproduction can be
prescribed in a purely kinematics based manner. For the second time-derivative of the
actual coordinate errors the desired relation can be prescribed:

@) =rla a0l )1 [l -0



which may be apt to result in too big desired joint coordinate acceleration ‘. The main
idea of this paper is based on the observation that the integrating term in (9) corresponds
to a special form of the time-invarint causal Green functions that generally can be
expressed as

W)= [Gle—2)f (M o)

If G(0) is considerable and G(&{)—0 as &—oo (2) describes a long term memory of
slowly forgetting nature. If G(&)=0 for £&D>0, than this function can also model the
effect of delay.

It can clearly be observed that the Griinwald-Letnikov form of the fractional
derivative of order a [13] also is similar to a finite element approximation of an integral
with some Green-function if the ~—0 limit is not exactly executed and some numerical
approximation using finite elements for the variable of time time is used:

d'f(t) _ lim {(h)”li(—l)j( Lax) jf(t—jh)h} 3)

dt " h—>0 T(j+D(a—j+1)

J=0
Though the form invented by Caputo as
d”’ 1 du(r)} "
—ult)= - d 1 4
—ult) r(l—ﬁ)ﬂ - [e=7)"dz. e )

applies an integer order (more exactly 1st order) derivative re-integrated by some
Green-function-like core function the finite element approximation of the derivative in
it may result in similar expression. Egs. (3) and (4) have the common property that they
results are not rigorously restricted to the ,,zero distance” vicintity of the variable ,,f”:
these operations have a more or less slowly forgetting ,,memory”.

However, besides this forgetting nature that seems to be the most important fact from
,physical point of view” (3) and (4) contain complicated restrictions which stem from
the requirement that the fractional order derivatives somehow must be related to the
integer order ones in limit cases. In (3) the calculation of the values of the /" functions
means a numerical burden, while in (4) the numerically singular integrand, wihle a
simple functon G in (2) may be exempt of such difficulties. These difficultes made the
authors to consider a more general, less restricted problem-formulation as follows.

Considering the control problem in purely kinematic terms only, due to the laws of
Classical Mechanics just the desired second order time-derivative of the error signal can
be prescribed somehow, because it is this quantity that can directly be influenced by the
control agent, which in its physical capacity can be torque or force. So let v, x>0, and
let the function A(?) be the solution of the initial value problem

h(r)=—vi(r)+ u ]h(r)G(r —1)d7 + S(t)for t > 0,h(0) = hy, h(0)= h, ©)
in which G(&) has the following properties:
G(£)=0if £20,G(&)=0if <0, [G(£)dg =1 (©)

and let G(&) be continuously differentiable with the exception of certain discrete points
of finite number. It is expedient to introduce a “supplementary” term S(¢) that is
expected to be necessary for maintaining the decreasing nature of the quadratic error
integrated in the “moving window” in (7).

V()= [ ()6 —1)dr s



The function G(&) in (5, 7) can be interpreted as a weight function of a weighted
moving average within a ,,window” that picks up samples from /() and 4*(¢) in certain
vicinity of t. Since h(f) represents some error signal then its convergence to zero is
desired as r—o0. For =0 and S=0 (5) evidently describes exponential error-relaxation.
For small positive u the 2nd term at the right hand side seems to decrease the speed of
this relaxation. In comparison with the common integrating term, G(&) represents some
short-term memory because from (6) it can evidently be inferred that G(&)—0 as &—>-oo,
that is the long past’s effects are forgotten. Furthermore, in G(7-f) no any time instant is
in ,,distinguished position”. Its behavior is governed exclusively by the difference of the
various time-instants.

To verify the desired ,;relaxing” nature of A(f) consider the time-derivative of the
,sample” of the square of the error. Because the upper limit of the integral explicitly
depends on ¢, according to the Leibniz rule the derivative of V(¢) yields two terms:

V()= 1(0)6(0)+ ];f(r)%df ®)
Utilizing that 0
G(r—t)  0G(r—1)

o ot ©)

and that G(0)=0 partial integration can be executed in (8):

jh d = f [h (r)G(z —1) r+I2h h(r)G(r—1)dr  (10)

In more details

V(z):{hz(z)G(o)— ] jzh h(z)G(r —t)dr (11)
—
It is evident that near =0 the first term causes increasing error but its significance
decreases with the elapse of time since G(-f)—0 as t—o. To utilize (5) we have to
calculate the second derivative of V in its most convenient form in (11) by using again
the Leibniz rule and the properties of G as given in (6) and in (9). Due to partial
integration certain terms belonging to the upper limit cancel and the 2" derivative of the
error h appear as

V()=h +2jh (r)G(z —t)dr+2jh h(z)G(r —1)dz (12)

Now (5) can be substituted into (12) resultmg in

V(t):_zvv(t)+zu}]h(r)a(f_t)h(f')a(r'_t)dfdf+
T RG(-1)+2 j[ (2)G(r - 1)z

In this way a double 1ntegra1 is obtained in which between the variables of integration
the following relations hold: 0<7’<z<t. Using the rectangular system of coordinates
(7, 7’) this domain of integration corresponds to the lower triangular half of the square
shaped area [0,t]x [0,f]. Introducing the operator of time ordering T in the integrand in

(13) with the definition
. fo)f@)if c>7¢
1)) { e .

(13).



the upper limit of integration according to 7’ can be extended to the whole [0,?] interval.
This exactly corresponds to extending the integration to the upper triangular half of the
square shaped area [0,t]x [0,¢] with symmetric integrands. That is this extension of the
upper limit of integration with time-ordering exactly doubles the original integral. Since
the integrands are common numbers satisfying a commutative algebra the operation of
time-ordering can simply be omitted. Therefore by transforming the 2" term in the right
hand side of (13) it can be written that

V(t)=—-2w(t 7”;[6[ NG(c'—t)d7'dT +
. (15).
0)+2 [l Smlofole e

It is reasonable to define the function F(¢) as

= () (e 1)z (16)

+ hOG

By the use of which we obtain that
V()= -2 (1) + uF>(0)+ RG(=1)+2 j[hz +S(n@)G(c-dr  (7)

To estimate the significance of the function F(¢) c0n51der the following non-negative
expression

< [Ine)- FOF Gle 1)z =

= [l () -21)F () + (R Jo(e 1) = (18)
=V(t)+[g(e)-2]F (e}

in which

0<g(t):= [Glr—t)dr— 1 (19)
0
1S a non-negative monotone increasing function approaching its upper limit 1. Therefore
the inequality in (18) can be written as

0<V(t)+[g(t)-2]F() <Vv(e)-F(t) =

V()= F(e)
Taking into account (17) it would be a reasonable choice to so determine the
supplementary term that it yields
S(r)h(r) = —h(f)2 - ph(r)h(r) 21D
with a constant p>0 because its results in the appearance of the first time-derivative of
V() accoring to (11):

V(1) =-20(0)- pV(0)+ uF (¢ + 1[G(=1)+ pG(~1) (22)

(20)
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Figure 1: Typical behavior of the solution of (5) using (23) and (24) for hy=1, fzo =1,

D =2ms, v=100s? u=405s> p=0.5v[s'], e=10° m, and exp(fx10~ 5)20.99 (upper
row), and for hg=-1, h,=-1, D =2 ms, v= 100 57, y= 40 s,
p:0.5v[s'1], e=10° m, and exp(ﬂx10'3 $)=20.80 (lower row).

Eq. (22) has a simple and lucid interpretation. Since G can be so constructed that both
its value and and its derivative converges to zero as —>oo the last term in it converges to
zero and can be omitted following some transient phase. Regarding the terms remained,
if the positive constant x is small enough, in the phase space determined by v and dV/dt
the location of the points in which the 2™ derivative of V can take the value 0 must be
within a wedge shaped region in the V>0 half plane determined by the origin and the
two straight loines of the equations V =-2wW/p,V =(-2v+ u)/ p. For a given V outside of
the wedge to the dV/dt values bigger than that of the upper limit of the wedge d*V/dr<0
belongs, while for the dV/dt values smaller than than the lower limit of the wedge
dZV/dt2>0, and the solution cannot enter the 0>V half plane. This means that in the
region outside of this wedge the wedge attracts the phase trajectories of V, and
asymptotically leads them to the V=0, dV/dt=0 point. Therefore the moving average of
the square of the error h(f) approaches zero. This means that apart from an initial
transient phase the error decreases in a longer time-interval. Since in the #=0 points (21)
may yield infinite S via introducing a small positive value ¢ instead of its application
that of the following approximation sems to be more expdient:

S(e)= _s,-gn(h@))ﬂ)_ph(,) 3)

g+|h(r
which for |h|>)5 well approximates (21) and only for small £ differs from it

significantly. In choosing G(&) we have a great extent of freedom. For instance, G(&)
can be the member of the set of the basic functions of fast decrease © on which the
generalized functions (distributions) are defined as linear functionals [15]. These
infinitely many times continuously differentiable functions have arbitrary but finite
support guaranteeing exactly zero G(-7) if ¢ is greater than the upper limit of the support
of this function.



For practical control applications further possibilites are offered by functions of
simple parametric forms in which the parameters have lucid physical interpretation.
Within the frames of the chosen form these parameters can be tuned in order to achieve
“optimal” behavior. For instance, in the following choice with D>0, >0

pD L pE - _
G(¢)= {ﬂe ¢ yes-b (24)
0 otherwise

satisfies the general restrictions imposed in (6). Parameter D can be interpreted as the
delay time of the moderation of the originally prescribed error relaxation. This function
takes the value f at &=-D, it cannot be differentiated only in in &=-D. For illustrative
purposes the behavior of the function x;(¢) is described in Figure 1 for an appropriate
parameter settings:

The figures well illustrate the expectation that over the wedge the 2" derivative of V is
negative while the error is great. The calculations reveal that the small error
approximately exponentially approaches zero and that this exponent can be estimated as
the slope of the wegde’s lines. In the forthcoming part the method is used for active
vibration damping. The application of the practically proposed (23) instead of the
“theoretically desirable” (21) reveals itself in the “underestimation” of the coefficient of
the term quadratic in dh/dt. Therefore in this example the phase curve of V cannot reach
the wedge and d*V/dr’ becomes positive “over the wedge”.

Furthermore, in (5) the presence of - vA(f) near the “moderating integral” proportional
to 10 can also suggest a “physical interpretation”, i.e. the application of a special case
of the linear functionals, of some singular distribution in which the core function is
similar to a Dirac delta. (From mathematical point of view this statement is not
rigorously correct because all the theory of the distributions is based on the use of the
functions belonging to D as the domain of definition, and strongly utilizes their zero
value at the limits of their supports while operating with partial integration. Our error
function A(f) does not belong to 2 in a rigorous sense.) However, it can be expected that

good results can be achieved if v=0 and u<0 are applied. This means a kind of
elimination of the term belonging to the “singular” functional, and the direct use of a
regular one for control purposes instead of moderating the action of the singular one.
Appropriate counterparts of the results displayed in the 1% row of Figure 1 are given in
Figure 2. In this case the upper side of the wedge on the phase diagram of V becomes a
horizontal line and essentially an error-relaxation similar to that of Figure 1 is obtained.
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Figure 2: Typical behavior of the solution of (5) using (23) and (24) for h¢=1, fzo =1,
D=2ms, v=05s7, =-10052, p=100s", &=10° m, and exp(x10~ 5)=0.99
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Figure 3: Vibration at the resonance frequency without active damping (upper row),
with active damping with the parameters D = 2 ms, v=960 s?, 1= 384 s, p=1.5v[s "],
£=10" m, and exp(Ax10™ $)~0.99 (middle row), and active damping with adaptivity
(lower row). In this latter case instead of the phase trajectory of the error the abstract
rotation angles applied by the adaptive controller are described in the figure.

3 Application to vibration control

For this purpose a simple paradigm, a damped linear oscillator consisting of a point-
shaped body of mass m and a spring of spring constant (stiffness) k is considered. The
spring’s one end is fixed on the ceiling, and another spring is attached to it below, the
end of which externally is moved along a prescribed height vs. time function (external
excitation). This paradigm does contain some viscous damping, therefore it is expected
that at its eigenfrequency the amplitude of its vibration is bounded. The results are given
in Figure 3.

It can be seen that even the non-adaptive active vibration control designed on simple kinematic
prescriptions shrinks the amplitude of the vibration decrease from the [3.67 mm, 14.69 mm]
interval to the [~5 mm, ~6.5 mm] region. From purely mathematical point of view the adaptive
control can be formulated as follows. There is given some imperfect model of the system on the
basis of which some excitation is calculated to obtain a desired system response i’ as e:(o(id).
The system has its inverse dynamics described by the unknown function ir=|//(¢(id))=f(id) and
resulting in a realized response il instead of the desired one, i’. Normally one can obtain
information via observation only on the function f() considerably varying in time, and no any
possibility exists to directly "manipulate” the nature of this function: only i’ as the input of f()
can be “deformed” to i’ to achieve and maintain the i'=f(i"") state. [Only the model function ¢)



can directly be manipulated.] On the basis of the modification of the method of renormalization
widely applied in Physics the following "scaling iteration" was suggested for finding the proper
deformation:
i;S F(iy)=ip;d, =Siigi...:S,F(0, ) =i,;
in+1 = Sn+1in;sn m—)l

in which the S, matrices denote some linear transformations that map the observed response to
the desired one, and the construction of each matrix corresponds to a step in the adaptive
control. It is evident that if this series converges to the identity operator just the proper
deformation is approached therefore the controller ,,learns” the behavior of the observed system
by step-by-step amendment and maintenance of the initial model. Since (25) does not
unambiguously determine the possible applicable quadratic matrices, we have additional
freedom in choosing appropriate ones. At the present application a simple rotation was applied
that turns the observed vector to the direction of the desired one in (25). Following that an
appropriate shrink/dilatation is applied in only in the direction of the rotated vector to make the
two vectors exactly equal to each other. This shrink/dilatation leaves the orthogonal subspace of
the rotataed vector invariant. The appropriate rotational angles are described in Figure 3. All the
other algebraic and convergence aspects are detailed in the papers cited in the introduction.
Returning back to the simulation examples due to the external disturbances the active controller
designed on purely kinematic basis cannot realize this design. The adaptive law helps the active
controller to approach the original “kinematic design” in a far more accurate manner. This
shrinks the range of the vibration to the +1.6x10™ m, which is a further drastic improvement.

(25

4 Conclusions

In this paper a simple control design was proposed for vibration control purposes. The
approach is inspired by the CRONE method and tackles the problem from the basis of
linear control. Replacing the numerical approximation of the fractional derivatives with
a more general concept of time-invariant Green functions, and via the application of a
nonlinear feedback term it keeps the design of the desired damping within the simple
realm of kinematic considerations. Following that the controller’s adaptive nature
guarantees the realization of this kinematic design. In this manner the burden of
designing a controller based on more sophisticated linear considerations can be evaded
and pushed to the controller. The applicability of the approach was illustrated via
simulations based on the behavior of a simple paradigm, a passively damped linear
oscillator near its resonance frequency. Since the operation of the adaptive controller
simlpy consists of mapping the observed behavior to the desired one, and no any effort
is invested into identifying the physical reasons that could explain these differences
(e.g. inaccurate modeling and simultaneous external disturbances not modeled by the
controller) it is also applicable when the observed system has internal degrees of
freedom neither modeled nor controlled. On this basis it is expected that this approach
can be useful for solving even more complicated vibration damping problems.
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