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Abstract — Presently, the development of fractional-order controllers is one of the 
most promising fields of research. However, most of the work in this area addresses 
the case of linear systems. In this paper we consider the analysis of fractional-order 
control of nonlinear systems. The performance of discrete fractional-order           
controllers in the presence of several nonlinearities is discussed. Some results are 
provided that assesses the superior robustness of such algorithms. 

1 Introduction 

The concepts involved with fractional calculus (FC) theory – the area of mathematics that 

handles the derivatives and integrals to an arbitrary order (real or complex order) – are, 

nowadays, applied in almost all the areas of science and engineering, being recognized its 

ability to yield a superior modelling and control in many dynamical systems [1 3].

In what concerns the area of control systems, we can report only a few works that     

addresses the study of fractional-order systems in the presence of nonlinear phenomena 

[4 6]. Nevertheless, it is common to find different types of nonlinearities in real systems 

(such as the saturation at the actuator or the backlash in gear systems). Therefore, the 

analysis and performance of the fractional-order controllers under their presence is of 

great practical interest. 

Nowadays, the widespread use of the fractional-order controllers has been justified by 

its superior performance over the classical control techniques, particularly when used for 

the control of fractional-order systems. One example is the generalization of the        

well-known PID controller by introducing an integrator of order 0 <  1 and a          

differentiator of order 0 <  1 (where the orders  and  may assume real noninteger 

values). The transfer function of such a PI D -controller is given by: 

1
1p d

i
C s K T s

T s
(1)

where  and  are positive real numbers; Kp, Ti and Td are correspondingly the propor-

tional gain, the integral time constant and the derivative time constant. Clearly, taking 
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( , ) = {(1, 1), (1, 0), (0, 1), (0, 0)} we get the classical {PID, PI, PD, P}-controllers, 

respectively. Moreover, the PI D -controller is more flexible and gives the possibility of 

adjusting more carefully the dynamical properties of a fractional-order control system [1]. 

In this paper we use fractional-order PID (FrPID) controllers of type (1) for the analysis 

and control of a double integrator system in the presence of two nonlinearities (actuator 

saturation and output backlash). This study adopts the describing function method for the 

analysis of the fractional-order nonlinear control system, namely for the prediction of 

limit cycles. Several results are presented assessing the performance of the FrPID       

controllers in nonlinear systems. 

Bearing these ideas in mind, the article is organized as follows. Section 2 reviews the 

fundamentals of fractional-order systems. Section 3 obtains the discretized form of the 

FrPID controller, while section 4 presents the basics of the describing function method of 

analysis. In section 5 we assess the performance of the FrPID controllers in the presence 

of two nonlinearities. Finally, section 6 draws the main conclusions. 

2 Fundamentals of Fractional-Order Systems 

The fractional-order systems deal with integrals and derivatives of arbitrary order (real or 

even complex order) (see [1]). There are different approaches to the definition of        

fractional-order integrals and derivatives, not being all equivalent. The           

Riemann-Liouville and the Grünwald-Letnikov definitions are the two most commonly 

used for this purpose. The Riemann-Liouville definition of the fractional-order derivative 

is (  > 0): 

1

1
, 1

n t
a t n na

fdD f t d n n
n dt t

(2)

where (x) is the Gamma function of x. By other hand, the Grünwald-Letnikov (GL)  

definition is formulated as ( ):

0
0

1
lim 1

t a
h

k
a t h

k

D f t f t kh
k

(3)

where h is the time increment and [x] means the integer part of x. Note that the definitions 

(2) and (3) highlight the global character (i.e., unlimited memory) of the fractional-order 

operators.

An alternative definition, which reveals useful for the analysis and control design of 

dynamic systems, is given through the Laplace transform (L) method. Considering      

vanishing initial conditions, this definition is given through the expected form: 

,a tL D f t s F s (4)

where F(s) = L{f(t)}. Expression (4) is a direct generalization of the integer-order scheme 

with the multiplication of the signal transform F(s) by the Laplace s-variable raised to a 

fractional value . The Bode diagrams of amplitude and phase of (4) have a slope of 

20  dB/dec and a constant phase of /2 rad, respectively. 
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3 Discrete-Time Approximations of Fractional-Order Operators 

The discrete-time implementation of the continuous PI D -controller (1) can be obtained 

by adopting a generating function s = w(z 1
) [2, 3, 9], yielding: 

1 1

1

1
1p d

i

C z K T w z
T w z

(5)

The discretization schemes most often used are the Al-Alaoui, Euler and Tustin         

operators. The Al-Alaoui scheme is a weighted interpolation of Tustin (1/4) and Euler 

(3/4) operators [7]. These s z conversion schemes are special cases of the so-called             

T-integrator introduced by Smith [8]. This new type of integration formula is closely  

related to the mean value theorem. Thus, by adopting this operator, the discretization of 

s  ( ) is obtained by using the following generating function [9]: 

1
1

1

1 1

1

zw z
T z

(6)

where  and  are denoted the gain and phase tuning parameters, respectively. It is      

interesting to note that for  = 1 and varying  from 0 to 2 in ratios of integers results in 

most of the useful classical discretization schemes. In fact, when  = 1 and 

 = {1/2, 7/8, 1}, we obtain the Tustin, the Al-Alaoui and the Euler generating functions, 

respectively.

In order to get rational expressions to irrational function (6) (and, consequently, to the 

digital FrPID controller (5)) we can perform a continued fraction expansion (CFE) and 

the final approximation corresponds to a discrete rational transfer function (IIR filter) of 

the form [3, 9]: 

1
1

1 1

,

,1 1 1
CFE

1 ,

m

n
m n

P zY z zD z
X z T Tz Q z

(7)

where m and n are the orders of the approximation, and P and Q are polynomials in the 

variable z 1
 of degree m and n, respectively.  

For example, by adopting a fractional-order derivative controller, D  (0 <  < 1), and 

using the Tustin operator as generating function (  = 1 and  = 1/2 in (6)), we get the  

following IIR-type approximation for m = n = 4: 

1 2 3 41
1 1 2 3 4

1 1 2 3 4
1 2 3 4

12 1 2

1 1

p z p z p z p zzC z KD K K
T Tz q z q z q z q z

(8)

where K is the derivative gain constant and the coefficients (pi, qi), i = 1, …, 4, are    

function of order . A table with formulae for the calculation of the numerator and     

denominator coefficients of (8) can be found in [3]. Figure 1 shows the Bode diagrams of 

the approximation (8) for several values of order  and sampling period T (with K = 1). 
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Figure 1: Bode diagrams for several values of order  (left) and sampling period T
(right), with K = 1 and m = n = 4. 

The Bode plots demonstrate the effectiveness of the approximations in fitting the ideal 

responses over a wide frequency range, in both magnitude and phase. It is also noted that 

the width of the approximation effectiveness’ is not dependent on the sampling period, 

and that can be placed anywhere in the frequency domain by only varying the sampling 

period T.

4 Describing Function Analysis and Limit Cycle Prediction 

In the analysis of nonlinear control systems by using the describing function (DF) method 

the nonlinearities of the system are grouped in only one block, N(A, ), and the linear part 

grouped in another block, L(s), as shown in Figure 2. Since the input is taken to be zero, 

the existence of (any) limit cycle is predicted if the following relationship holds: 

, 1N A L j (9)

or, in the more convenient form: 

1

,
L j

N A (10)

where N(A, ) is the complex quantity given the phase-shift of the nonlinearity as function 

of frequency and amplitude. To graphically describe the occurrence of a possible limit 

cycle the Nyquist curve of L(j ) is plotted together with 1/N(A, ). Any intersection  

between these curves predicts a limit cycle and, consequently, their approximately      

amplitude A and frequency .

L(s)

0 x(t)
N(A, )

y(t)

Figure 2: Nonlinear control system. 
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The describing function of the nonlinearity, N(A, ), is determined by applying a         

sinusoid to the input of the nonlinear element, x(t) = Asin( t), and then considering only 

the fundamental component of the output signal, y(t). Thus, the DF (or the    

sinusoidal-input describing function) is defined as the complex ratio of the fundamental 

component of the output y(t) = Y1sin( t+ 1) and the input x(t): 

11, jYN A e
A

(11)

Such assumption of the DF is often valid since the higher-harmonics of y(t) are usually 

of smaller amplitude than the amplitude of the fundamental component. Moreover, most 

systems are low-pass filters with the result that the higher-harmonics are further attenu-

ated. For a meaningfulness use of the DF it is assumed that these conditions are fulfilled. 

5 Performance of Fractional-Order Controllers in Nonlinear Systems 

In order to study the performance of the fractional-order controllers in nonlinear control 

systems we adopt a simple prototype system with transfer function: 

2

kG s
s

(12)

with k = 1. Also, a fractional-order derivative controller, D , is used as fractional-order 

control algorithm for the case under study. The continuous transfer function of D  is: 

C s Ks (13)

where K is the derivation constant. 

The linear part of the nonlinear control system, L(s), is then given by: 

2

KL s C s G s
s

(14)

The transfer function (14) is a fractional integral of order  = 2 , 0 <  < 1. The      

robustness of this system is illustrated through the root-locus depicted in Figure 3. In fact, 

when 1 <  < 2, the root-locus follows the relation /  = cos
1

 , where  is the   

damping ratio, independently of the gain K.

j

K=0

cos 1 = /

/

K

K

Figure 3: Root-locus of linear part L(s),  = 2  (0 <  < 1). 
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Figure 4: Nonlinear control system with saturation nonlinearity. 

In a first phase, we consider the analysis of a nonlinear system with a saturation        

element at the actuator, as depicted in Figure 4. 

The describing function of the saturation nonlinearity is computed as [10, 11]: 

2
1

, 0

2
sin 1 ,

m A d

N A m d d d A d
A A A

(15)

Figures 5 and 6 illustrate the Nyquist diagrams of L(s) and of 1/N(A) as well the     

corresponding step responses when varying the gain K and the fractional-order ,

respectively. The fractional-order controller D  was implemented by using a 4
th

–order

CFE approximation of type (8), with the Tustin operator, discretized at T = 0.01 s. For the 

saturation parameters we use d = 1 and m = 1. Note that the describing function of the 

saturation is a non-shifting phase (i.e., Im[N(A)] = 0) and, consequently, the Nyquist plot 

of 1/N(A) is placed over the negative real axis starting at point ( 1, 0). As can be seen 

from the Nyquist plots, the curves L(s) and 1/N(A) never intersect and, therefore, no 

limit cycle occurs. In this case, the system will be always stable. However, more can be 

said about the effect of the saturation on the control system’s performance, by looking 

now at both graphs, the Nyquist plots and the step responses. The root-locus of this     

system (with the saturation removed) is depicted in Figure 3. We verify that, as the gain K
is reduced, the locus shows that the roots move toward the origin of the s-plane while 

maintaining the same damping but different natural frequencies of oscillation. Figure 5 

shows that the shape of the step responses remains almost unchanged (maintaining the 

same overshoot and natural frequency) independently of the system gain K, with         

exception for small values of K where the response becomes more oscillatory. This can be 

explained by noting that to large input signals corresponds a smaller equivalent gain of 

the saturation element. Therefore, as K increases, the (decreasing) gain of saturation will 

counteract with the larger input signal, maintaining the same location of the closed-loop 

poles in the root-locus. This results in the almost constant overshoot and natural          

frequency of the system. The variation of the order  of the fractional controller defines 

essentially the overshoot of the output response, as illustrated in Figure 6. However, for a 

strong derivative control action the system displays a large time delay. Figure 7 illustrates 

the influence of amplitude d of the saturation nonlinearity in the step responses for two 

values of order  = {0.5, 0.8}, K = 50 and m = 1. As expected, the responses show the 

large influence of this parameter on system’s performance, even for the case of nonlinear 

fractional-order systems. 
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Figure 5: Nyquist diagrams (left) and step responses (right) for  = 0.5, 

K = {1, 5, 25, 50, 100, 200}, m = 1, d = 1 and T = 0.01 s. 
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Figure 6: Nyquist diagrams (left) and step responses (right) for  = {0.2, 0.4, 0.6, 0.8}, 

K = 25, m = 1, d = 1 and T = 0.01 s. 
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Figure 7: Step responses with K = 50, m = 1, d = {0.25, 0.5, 1, 2} and T = 0.01 s for: 

left)  = 0.5 and right)  = 0.8. 
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Figure 8: Nonlinear control system with backlash nonlinearity. 

Let us now consider a nonlinear control system with a fractional-order D  controller, a 

double integrator prototype system G(s) and a backlash nonlinearity N(A) in the output, as 

illustrated in Figure 8. The linear part of the system, L(s) = C(s)G(s), is identical to the 

one adopted in the previous example and is given by the transfer function (14). 

The describing function of the backlash nonlinearity is defined by the following        

expression [11]: 

2

41
1 ,

2 2
s

h A hA hN A N j A h
A h A

(16)

where

1 12 1 1 1
sin cos sinsN x

x x x
(17)

Figures 9 and 10 illustrate the Nyquist diagrams of L(s) and of 1/N(A) as well the   

corresponding step responses for variation of the gain K and of fractional-order ,

respectively. In this example, the fractional-order controller D  is implemented through a      

4
th

–order CFE approximation of type (8), with the Tustin operator, discretized at 

T = 0.01 s. In the backlash nonlinearity is adopted h = 0.1. Note that the describing    

function of the backlash is now phase shifting (with nonzero real and imaginary parts) 

and, consequently, the Nyquist plot of 1/N(A) belongs to the third quadrant finishing 

into the point ( 1, 0), as shown by the Nyquist diagrams of Figures 9 and 10. In this case, 

the curves L(s) and 1/N(A) intersect always and, therefore, it is always predicted a limit 

cycle. We verify that the nature of this limit cycle is stable. Table 1 lists the approximated 

amplitudes and frequencies of the limit cycles, (A0, 0), corresponding to Figures 9 and 

10. Two methods are used for the limit cycle determination: i) describing function 

method and ii) time   response simulation. As illustrated in Table 1, the calculated values 

of the limit cycles are very close in both cases showing the effectiveness of the describing 

function method in the prediction of limit cycles. This fact indicates the describing    

function method as useful tool in the analysis of nonlinear fractional-order systems. 

In the first case (Figure 9), the step responses of the system exhibit an overshoot almost 

constant to large gain variations while varying the system natural frequency. These     

observations lead us to the conclusion that this system is somewhat robust against gain 

variations possessing an iso-damping property [12]. In the second case (Figure 10), we 
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verify that the order  establishes the response overshoot. These results are confirmed by 

the corresponding Nyquist plots. 

Therefore, it is possible the system to yield a desired response by a suitable tuning of 

the gain K and order . The approximations order (m = n) is also one of the knob        

parameters that must be kept on consideration since it affects directly the results obtained. 

In conclusion, the robustness of the fractional-order controllers is highlighted in the 

presence of nonlinearities. Nevertheless, from the perspective of controller performance, 

the tuning of K,  and of the order’s approximation of the fractional-order operator     

require an optimization which will depend on the system dynamics. A systematic        

procedure for the controller design in the presence of nonlinear phenomena needs still 

further research. 

A good starting point, as demonstrated in this study, is the application of the describing 

function method for the analysis of fractional-order nonlinear systems, which can be   

extended to the design of good generalized nonlinear controllers.

-5 -4 -3 -2 -1 0 1
-5

-4

-3

-2

-1

0

1

Real axis

Im
ag

in
ar

y 
ax

is K=25 

K=50 

K=100 

K=200 -1 
N(A)

L(j )

 K 

s1.5

0 0.5 1 1.5 2
0

0.5

1

1.5

2

t [s]

y(
t)

K=25 

K=50 

K=200 

K=100 

Figure 9: Nyquist diagrams (left) and step responses (right) for  = 0.5 and 

K = {25, 50, 100, 200}, h = 0.1, T = 0.01 s. 
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Figure 10: Nyquist diagrams (left) and step responses (right) for  = {0.2, 0.4, 0.6, 0.8} 

and K = 100, h = 0.1, T = 0.01 s. 
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Table 1: Amplitudes and frequencies of the limit cycles corresponding to Figure 9 (left) 

and Figure 10 (right). 

Predicted Simulated Gain 

K A0 0 A0 0

25 0.1973 5.4871 0.1915 5.3515 

50 0.1670 7.6237 0.1626 7.4290 

100 0.1494 10.9515 0.1492 11.0537 

200 0.1421 16.9224 0.1512 18.8640 

Predicted Simulated Order 

A0 0 A0 0

0.2 0.3781 11.2628 0.4534 11.5346 

0.4 0.1832 11.4531 0.1891 11.7447 

0.6 0.1294 9.9578 0.1266 9.6258 

0.8 0.1093 6.5282 0.1057 4.7600 

6 Conclusions 

In this paper we have assessed the performance of fractional-order controllers in the  

presence of two nonlinear elements: actuator saturation and output backlash. We have 

also found the describing function method of analysis a very useful tool for the study of 

fractional-order nonlinear systems. For a double integrator prototype system the control 

algorithms based on the fractional-order concepts are simple to implement and reveal 

good robustness. However, a more systematic procedure for the controller design in the 

presence of nonlinear phenomena needs still further research. 
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