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Abstract — In this paper we propose a modified version of the classical Van der Pol 
oscillator by introducing fractional-order time derivatives into the state-space 
model. The resulting fractional-order Van der Pol oscillator is analyzed in the time 
and frequency domains, by using phase portraits, spectral analysis and bifurcation 
diagrams. The fractional-order dynamics is illustrated through numerical          
simulations of the proposed schemes by using approximations to fractional-order 
operators. Finally, the analysis is extended to the forced Van der Pol oscillator.

1 Introduction 

The study of nonlinear oscillators has been important in the development of the theory of 

dynamical systems. The Van der Pol oscillator (VPO), described by a second-order 

nonlinear differential equation, can be regarded as describing a mass-spring-damper   

system with a nonlinear position-dependent damping coefficient or, equivalently, an RLC 

electrical circuit with a negative-nonlinear resistor, and has been used for developing 

models in many applications, such as electronics, biology or acoustics. It represents a 

nonlinear system with an interesting behavior that arises naturally in several applications. 

The VPO was used by Van der Pol in the twenties to study oscillations in vacuum tube 

circuits (part of the early radios). In the standard form, it is given by a second-order 

nonlinear differential equation of type: 

2 1 0x x x x (1)

where  is the control parameter that reflects the degree of nonlinearity of the system. 

The equation (1) possesses a periodic solution that attracts other solution except the    

trivial one at the unique equilibrium point 0.x x
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Figure 1: The Van der Pol oscillator: left) Phase portraits, right) Period of oscillation 

T = 2 / versus the parameter .

The state-space model of the system, with 1 ,x x 2x x  is: 

1 1
2
12 2

0 1

1 1

x x
xx x

(2)

Figure 1 (left) shows the phase portraits of the Van der Pol equation (2) for initial   

conditions x1(0) = 0, x2(0) = 2 as the control parameter  is varied. Clearly, the phase por-

traits are depending on , namely: 0,  harmonic oscillator; 0,  stable limit cycle; 

increasing, nonlinearity increasing. The amplitude of oscillations is nearly constant on the 

value A = 2, but the frequency of oscillation  (period T = 2 / ) depends on , as shown 

in Figure 1 (right). For lower values of  the frequency is approximately  = 1 (T = 2 ).

In this paper we investigate the influence of a fractional-order time derivative

introduced in the Van der Pol equation dynamics (2). The modified equation is called 

fractional Van der Pol oscillator (FrVPO). The system is analysed both in time and     

frequency domains and its dynamics illustrated through phase portraits, frequency spectra 

and bifurcation diagrams. The forced version of the system is also considered. 

Bearing these ideas in mind, the article is organized as follows. Section 2 reviews the 

fundamentals of fractional calculus. Section 3 presents a frequency approximation 

method of fractional-order integrators. The approximations are used in the simulation of 

the FrVPO system. In section 4 we propose several versions of the VPO containing    

fractional derivatives. It is also presented numerical simulations of the fractional Van der 

Pol system under study. In section 5 we consider the forced version of the fractional Van 

der Pol system. Finally, section 6 draws the main conclusions. 

2 Fundamentals of Fractional Calculus 

The fractional calculus concerns the study and applications of integrals and derivatives of 

arbitrary order (real or complex order). There are different approaches to the fractional 

calculus, not being all equivalent. The two most commonly used definitions are the   

Riemann-Liouville and the Grünwald-Letnikov definitions [1 4]. The Riemann-Liouville 

definition of the fractional-order derivative is (  > 0): 
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where (x) is the well-known Gamma function of x.

By other hand, the Grünwald-Letnikov definition is formulated as ( ): 

0
0

1
lim 1

t a
h

k
a t h

k

D f t f t kh
k

(4)

where h is the time increment and [x] means the integer part of x.

For a wide class of functions, important for applications, both definitions are equivalent 

[2]. This allows one to use the Riemann-Liouville definition during problem formulation, 

and then turn to the Grünwald-Letnikov definition for obtaining the numerical solution. 

An alternative definition, which reveals useful for the analysis and control design of 

dynamic systems, is given by the Laplace transform (L) method. Considering vanishing 

initial conditions, this definition is given by the expression ( ): 

a tL D f t s F s (5)

where F(s) = L{f(t)}. Expression (5) is a direct generalization of the integer-order scheme 

with the multiplication of the signal transform F(s) by the Laplace s-variable raised to a 

fractional value . The frequency response of (5) is represented in the magnitude Bode 

diagram by a straight line of slope 20  dB/dec and in the phase Bode diagram by a      

horizontal line positioned at /2 rad. 

3 Approximations of Fractional-Order Operators 

From expressions (3) (5) we note that the fractional-order operator has an unlimited 

memory, being the integer-order operators particular cases of this general case in which 

the memory is limited. These operators are characterized by having irrational continuous 

transfer functions in the Laplace domain or infinite dimensional discrete transfer       

functions in time domain. This fact poses evaluation problems when used in simulations. 

Then, the usual approach for analysing fractional-order systems is the development of 

continuous and discrete integer-order approximations of fractional-order operators [4 7].

In this paper we use the Charef’s approximation frequency method [8] to obtain         

rational-type approximations of the fractional-order integrator 1/s . The basic idea is to 

aproximate the slope of the magnitude Bode diagram of the transfer function of a        

single-fractional power pole of the form: 

1 1

1
T

s s
p

(6)

with and succession of zeros and poles with slopes of 0 dB/dec and 20 dB/dec,          

respectively, over the required range of frequency. Thus, the obtained approximation is: 
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where the coefficients are computed for obtaining a maximum deviation from the original 

magnitude response in the frequency domain of y dB. Defining: 

10 1 10 11010 , 10 , 10
y yya b ab (8)

the poles and zeros of the approximation (7) are obtained by applying the following    

formulae: 

0 0 0, ,
i i

T i ip p b p p ab z ap ab (9)

The number of poles and zeros is related to the desired bandwidth and the error criteria 

used by the expression: 

0

log

1
log

max
p

N
ab

(10)

4 The Unforced Van der Pol Oscillator with Fractional Derivatives 

The standard Van der Pol equation (1) is modelled by a differential equation for which 

the elastic restoring force is a linear function of the dependence variable. However, it may 

be of interest to consider modifications to this equation in which the dependent variable x
and/or its derivatives occur to some fractional power [9 14]. Such nonlinear differential 

equations are called fractional Van der Pol equations. 

Mickens (2002, 2003) have investigated the following two equations: 

2 1 31 0x x x x (11)

1 32 1 0x x x x (12)

More recently, Pereira, et al. (2004) considered a fractional version of the Van der Pol 

equation given by: 

2 1 0, 1 2x x x x (13)

1 1
2
1 22

0 1

1 1

x x
x xx

(14)
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which is obtained by substituting the capacitance by a fractance in the nonlinear RLC 

circuit model. Barbosa, et al. (2004) has also suggested the introduction of a fractional-

order time derivative in the state-space equations (2) of the standard VPO in the form: 

11
2
1 22

0 1

1 1

xx
x xx

(15)

where 0 <  < 1 and  > 0. A similar approach was performed for the Duffing [9] and 

Chua [10] systems. Note that the system (15) reduces to the classical VPO (2) when  = 1 

and that the total system order is changed to +1 < 2. The differential equation of system 

(15) is given by: 

1 2 1 0, 0 1x x x x (16)

In this article we investigate the equation (16). 

The block diagram representation of system (16) is illustrated in Figure 2. The        

fractional-order integrator 1/s  (0 <  < 1) was simulated by using approximations of type 

(7) with pT = 0.01, max = 100 rad/s and y = 2 dB. Figure 3 shows the phase portraits for 

initial conditions x1(0) = 0 and x2(0) = 1 as the fractional-order  (right plot) and the   

control parameter  (left plot) are varied, respectively. In both cases, we verify           

significant variations of the limit cycle, revealing a large impact of the -order derivative 

upon system dynamics. In order to clarify this point, Figure 4 illustrates the amplitude A
and the period T of the output oscillation. It is clearly seen the large variation of the limit 

cycle, particularly in the period of the oscillation. 

Figures 5 and 6 show the steady-state time responses and the Fourier spectra of the  

output x1(t) for several values of  and for  = 1 and  = 5, respectively. The frequency 

spectrum was evaluated by using the FFT over N = 2
15

 points after elapsing the initial 

transient up to T0 = 100 s of the signal output x1(t). Once more, we observe the variation 

of the limit cycle as function of , noting that the amplitude gets smaller as  is           

decreased. The system stops oscillating when  = 0.37 (  = 1). On the other hand,      

analysing the Fourier spectra, we verify that the multiplicity of peaks and the amplitude 

of these peaks varies with , which is in accordance with the time responses. Also note 

that the energy of the output signal, is not only concentrated in the peaks (fundamental 

and integer-odd harmonics), but distributed along all frequency domain, showing a    

long-term behaviour of type C( )
1
 indicating different amplitude decays depending on 

 [14]. 

1 x
1
2 1

s

y =x
1x

2

1

s

Figure 2: Block diagram of the unforced fractional Van der Pol system under study. 
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Figure 3: Phase portraits: left)  = {0.4, 0.6, 0.7, 0.8, 0.9, 1.0} and  = 1, right)  = 0.8 

and  = {0.5, 1, 2, 4, 8, 16}. 
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Figure 4: Limit cycle: period and amplitude of the output oscillation for 1  10 and 

0.5  1. 

5 The Forced Van der Pol Oscillator with Fractional Derivatives 

Let us now consider the forced FrVPO defined in state-space form as: 

21x x

2
2 1 1 21 cos fx x x x f t

(17)

where f and f are the amplitude and the frequency of the forcing sinusoidal input,      

respectively. The block diagram representation of equations (17) is depicted in Figure 7. 

It is well-known that for the parameters 5 , 2.46f  rad/s and 1 the classical 

forced VPO oscillator exhibits chaos. For the forced FrVPO, by modifying the order ,

the system will now reveals a different behavior. For example, Figure 8 shows the      

bifurcation diagram of the sampled output position 1x nT  as function of the forcing  

amplitude f  for a fractional-order of 0.85 . This graph was obtained by applying the 

method of Poincaré sections. 
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Figure 5: Time responses and Fourier spectra for  = {1, 0.8, 0.6, 0.4} and  = 1. 
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Figure 6: Time responses and Fourier spectra for  = {1, 0.8, 0.6, 0.4} and  = 5. 
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From the bifurcation plot we can distinguish different modes of the forced Van der Pol 

system, namely: periodic motion, quasiperiodic motion and period locked motion. These 

types of motion are illustrated through Figures 9-11 by phase portraits and Fourier     

spectra. In the periodic motion the phase-plane exhibits period doubling, as shown in  

Figure 9. Figure 10 depicts the quasiperiodic motion in which the system is oscillating at 

multiple or sub-multiple periods of the forcing frequency. In this case the frequency and 

amplitude varies with time. Finally, Figure 11 illustrates the period locked motion in 

which the system is oscillating at the forcing frequency. Note that all these modes       

correspond to a periodic behaviour of the system. The non-periodic behaviour is

characterized by the chaos (or sensitivity to initial conditions). It is well-kwon that the 

classical forced Van der Pol equation can display chaos for specific set of parameters, 

even not always easy to find. The same difficulty can be expected for the case of the 

forced fractional Van der Pol equation. This is a subject that will be investigated in future 

research. 

1 x
1
2 1

s

y =x
1x

2

1

s

f cos( ft)

Figure 7: Block diagram of the forced fractional Van der Pol system under study. 

Figure 8: Bifurcation diagram for  = 5, f = 2.46 rad/s and fractional-order  = 0.85

versus the forcing amplitude f.
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Figure 9: Phase plane (left) and Fourier spectrum (right) for  = 5, f = 2.46 rad/s, f = 2.0 

and fractional-order  = 0.85: periodic motion. 
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Figure 10: Phase plane (left) and Fourier spectrum (right) for  = 5, f = 2.46 rad/s, 

f = 1.5 and fractional-order  = 0.85: quasiperiodic motion. 
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Figure 11: Phase plane (left) and Fourier spectrum (right) for  = 5, f = 2.46 rad/s, 

f = 5.5 and fractional-order  = 0.85: period locked motion. 
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6 Conclusions 

In this paper we have proposed several versions of the modified Van der Pol equation. 

Such modifications consisted on the introduction of a fractional-order time derivative in 

the sate-space equations of the standard Van der Pol oscillator. The unforced and forced 

versions of the resulting fractional-order Van der Pol oscillators were studied in the time 

and frequency domains. The results reveal that the fractional-order systems can exhibit 

different behaviour from those obtained with the standard Van der Pol oscillator depend-

ing on order’s derivative (or system’s order). The fractional-order can act as a modulation 

parameter that may be useful for a better understanding and control of such systems. 
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