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Abstract: Redundant manipulators are superior to classical arms because they allow the 

trajectory optimization, the obstacle avoidance, and the resolution of singularities. For 

this type of manipulators, the kinematic control algorithms adopt generalized inverse 

matrices that may lead to unpredictable responses. Motivated by these problems this 

paper studies the complexity revealed by the trajectory planning scheme when controlling 

redundant manipulators. The result reveals a chaotic phenomenon and the existence of 

fractional order sub-harmonics in the robot signals. Copyright © 2006 IFAC

Keywords: Redundant Manipulators, Kinematics, Fractional-Order Harmonics, Fourier 

Transform, Windowed Fourier Transform. 

1. INTRODUCTION 

A kinematically redundant manipulator is a robotic 

arm possessing more degrees of freedom (dof) than 

those required to establish an arbitrary position and 

orientation of the gripper. Redundant manipulators 

offer several potential advantages over non-redundant 

arms. In a workspace with obstacles, the extra degrees 

of freedom can be used to move around or between 

obstacles and thereby to manipulate in situations that 

otherwise would be inaccessible (Klein, et al., 1983; 

Yoshikawa, 1988). 

When a manipulator is redundant, it is anticipated that 

the inverse kinematics admits an infinite number of 

solutions. This implies that, for a given location of the 

manipulator’s gripper, it is possible to induce a self-

motion of the structure without changing the location 

of the end effecter. Therefore, the arm can be 

reconfigured to find better postures for an assigned set 

of task requirements. 

Several kinematic techniques for redundant 

manipulators control the gripper through the rates at 

which the joints are driven, using the pseudoinverse of 

the Jacobian (Klein, et al., 1983). Nevertheless, these 

algorithms lead to a kind of chaotic motion with 

unpredictable arm configurations. 

Having these ideas in mind, the paper is organized as 

follows. Section 2 introduces the fundamental issues 

for the kinematics of redundant manipulators. Based 

on these concepts, section 3 presents the trajectory 

control of the 3R-robot. The results reveal a chaotic 

behavior that is further analyzed in section 4. Finally, 

section 5 draws the main conclusions. 

2. KINEMATICS OF REDUNDANT 

MANIPULATORS 

A kinematically redundant manipulator is a robotic 

arm possessing more dof than those required to 

establish an arbitrary position and orientation of the 

gripper. 

When a manipulator is redundant it is anticipated that 

the inverse kinematics admits an infinite number of 

solutions. This implies that, for a given location of the 

manipulator’s gripper, it is possible to induce a self-

motion of the structure without changing the location 
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of the gripper. Therefore, redundant manipulators can 

be reconfigured to find better postures for an assigned 

set of task requirements but, on the other hand, have a 

more complex structure requiring adequate control 

algorithms. 

We consider a manipulator with n degrees of freedom 

whose joint variables are denoted by 

q = [q1, q2, ..., qn]
T. We assume that a class of tasks we 

are interested in can be described by m variables, 

x = [x1, x2, ..., xm]T (m < n) and that the relation 

between q and x is given by: 

qx f (1)

where f  is a function representing the direct 

kinematics. Differentiating (1) with respect to time 

yields: 

qqJx (2)

where m
x , n

q  and nmf qqqJ .

Hence, it is possible to calculate a path q(t) in terms of 

a prescribed trajectory x(t) in the operational space. 

We assume that the following condition is satisfied: 

max rank J(q)  = m (3)

Failing to satisfy this condition usually means that the 

selection of manipulation variables is redundant and 

the number of these variables m can be reduced. When 

condition (3) is satisfied, we say that the degree of 

redundancy of the manipulator is n m. If, for some q

rank J(q)  < m (4)

then the manipulator is in a singular state. This state is 

not desirable because, in this region of the trajectory, 

the manipulating ability is very limited. Based on these 

concepts, in order to analyze and quantify the problem 

of object manipulation, it was proposed in 

(Yoshikawa, 1988) the expression 
21Tdet JJ  as 

a measure of the manipulability. 

Most of the approaches for solving redundancy that 

have been proposed (Doty, et al., 1993) are based on 

the inversion of equation (2). A solution in terms of 

the joint velocities is sought as: 

xqJq
# (5)

where #
J  is one of the generalized inverses of the J

(Doty, et al., 1993;  Siciliano, 1990). 

It can be easily shown that a more general solution to 

equation (2) is given by: 

0qqJqJIxqJq (6)

where I is the n n identity matrix and n
0q  is a 

m  1 arbitrary joint velocity vector and J  is the 

pseudoinverse of the J . The solution (6) is composed 

of two terms. The first term is relative to minimum 

norm joint velocities. The second term, the 

homogeneous solution, attempts to satisfy the 

additional constraints specified by 0q . Moreover, the 

matrix qJqJI  allows the projection of 0q  in 

the null space of J. A direct consequence is that it is 

possible to generate internal motions that reconfigure 

the manipulator structure without changing the gripper 

position and orientation (Nakamura, 1991; Doty, et al.,

1993; Siciliano, 1990). Another aspect revealed by the 

solution of (5) is that repetitive trajectories in the 

operational space do not lead to periodic trajectories in 

the joint space. This is an obstacle for the solution of 

many tasks because the resultant robot configurations 

have similarities with those of a chaotic system. 

3. ROBOT TRAJECTORY CONTROL 

The direct kinematics and the Jacobian of a 3-link 

planar manipulator has a simple recursive nature 

according with the expressions: 
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where li is the length of link i, kii...k q...qq ,

i...kqSinSi...k  and i...kqosCCi...k .

During all the experiments it is considered 

sec,10 3t 3321 lllLTOT , 321 lll .

In the closed-loop pseudoinverse’s method the joint 

positions can be computed through the time integration 

of the velocities according with the block diagram of 

the inverse kinematics algorithm depicted in Figure 1. 

Fig. 1: Block diagram of the closed-loop inverse 

kinematics algorithm with the pseudoinverse. 

Based on equation (7) we analyze the kinematic 

performances of the 3R-robot when repeating a 

circular motion in the operational space with 

frequency 0 = 7.0 rad 1sec , centre at r = [x2+y2]1/2

and radius .
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Figure 2 show the joint positions and the 

manipulability  for the inverse kinematic algorithm 

(5) for  = 0.5, when r = {0.6, 2.0}, respectively. 
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Fig. 2: The 3R-robot joint positions and manipulability 

versus time using the pseudoinverse method for 

= 0.5 and r = {0.6, 2.0}. 

We observe that: 

- For r = 0.6 occur unpredictable motions with severe 

variations that lead to high joint transients (Duarte 

and Machado, 2002). Moreover, we verify a low 

frequency signal modulation that depends on the 

circle being executed. The different fractional order 

harmonics (foh) are visible in the time response but, 

in order to capture each foh, it is required to adopt a 

specific time window. 

- For r = 2.0 the motion is periodic with frequency 

identical to 0 = 7.0 rad 1sec .

In what concerns the index of manipulability we 

conclude that, for r = 0.6 it is, during some instants, 

very close to 0 , while for r = 2.0 is always 

2 .

4. ANALYZING THE CHAOTIC-LIKE 

RESPONSES OF THE PSEUDOINVERSE 

ALGORITHM 

In the previous section we verified that the 

pseudoinverse based algorithm leads to unpredictable 

arm configurations. Bearing these facts in mind, we 

analyze more deeply the robot joint signals. 
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Fig. 3: Phase plane trajectory for the 3R-robot joint 2 

during 300 cycles for  = 0.5 and r = {0.6, 2.0}. 

Figure 3 depicts the phase-plane of the joint 2 

trajectories when repeating a circular motion in the 

operational space with frequency 0 = 7.0 rad 1sec ,

for and  = 0.5 and r = {0.6, 2.0}. 

From the figures we verify that: 

- For r = 0.6, besides the position and velocity drifts, 

leading to different trajectory loops, we have points 

that are ‘avoided’. Such points correspond to arm 

configurations where several links are aligned; 

- For r = 2.0 the trajectories are repetitive. 

In order to gain further insight into the pseudoinverse 

nature several distinct experiments are devised in the 

sequel during a time window of 300 cycles. Therefore, 

in a first set of experiments we calculate the Fourier 

transform F  of the 3R-robot joints velocities for a 

circular repetitive motion with frequency 

0 = 7.0 rad 1sec , radius  = {0.5, 0.7} and radial 

distances TOTLr 0, .

Figures 4-5 show tqF 2 versus 0/ and r.

Induced by the gripper repetitive motion 0 an 

interesting phenomenon is verified, because a large 

part of the energy is distributed along several sub-

harmonics. These foh depend on r and  making a 

complex pattern with similarities with those revealed 

by chaotic systems. Furthermore, we observe the 

existence of several distinct regions depending on r.
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Fig. 4: tqF 2  of the 3R-robot during 300 cycles, 

vs r and frequency ratio / 0, for  = 0.5, 

0 = 7.0 rad 1sec .

For example, selecting in Fig. 5 several distinct cases, 

namely for r = 0.08, r = 0.30, r = 0.53, r = 1.10, 

r = 1.30 and r = 2.00, we have the different signal 

Fourier spectra clearly visible in Fig. 6. 

For joints velocities 1 and 3 the results are similar to 

the verified ones for joint velocity 2. 
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Fig. 6: tqF 2  of the 3R-robot during 300 cycles, 

vs the frequency ratio / 0, for 

r = {0.08, 0.30, 0.53, 1.10, 1.30, 2.00},  = 0.7, 

0 = 7.0 rad 1sec .

In order to capture the time evolution of the joint 

variables we develop a second set of experiments. 
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Fig. 5: tqF 2  of the 3R-robot during 300 cycles, 

vs r and frequency ratio / 0, for  = 0.7, 

0 = 7.0 rad 1sec .

One way of obtaining the time-dependent frequency 

content of a signal is to take the Fourier transform of a 

function over an interval around an instant , where 

 is a variable parameter (Mallat, 1999). This 

mathematical tool is called the short-time or windowed 

Fourier transform (WFT) and may be defined as 

follows:

dtitetgtffgF , (8)

where tg  is the window function and , . The 

multiplication by tg  localizes the Fourier 

integral in the neighborhood of t .

The slice of information provided by ,F fg  is 

represented in a time-frequency plane t,  by a 

region whose location and width depends on the time-

frequency spread of tgetg it
, . If g

and g  are the centre and the radius, respectively, 

of the window function tg , then ,F fg  gives 

information about f  and F , essentially in the region 

II t  of the time-frequency plane where gFĝ ,

gg,ggI t  and 

ĝĝ,ĝĝI .

The Heisenberg uncertainty proves that the area of 

this region is: 
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21ĝg (9)

and this principle states that precise localizations both, 

on time and frequency, are mutually exclusive. Thus 

this trade-off between temporal and frequency 

resolution always exist (Ozaktas, et al., 2001). 

Moreover, the size of this region is independent of 

, , which means that the WFT has the same 

resolution across the time-frequency plane. 

In the experiments we adopt two window functions, 
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Fig. 7: 2Rw
F q t  of the 3R-robot during 300 

cycles, vs time and frequency ratio / 0, for 

 = 0.5, r = 0.6, 0 = 7.0 rad 1sec  and 

5 , 50Rw
W  cycles. 
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Fig. 9: 2Rw
F q t  of the 3R-robot during 300 

cycles, vs time and frequency ratio / 0, for 

 = 0.5, r = 1.289, 0 = 7.0 rad 1sec  and 

5 , 50Rw
W  cycles. 

ww GR ,: , namely rectangle and Gaussian 

windows 1tRw , and 22ta
w etG ,

18a , Wt . Moreover, we choose two that 

leads to non-overlapping time windows. In the sequel 

the corresponding WFTs are represented by 
wRF  and 

wGF , respectively. 

Figures 7-12 show tqF 2 , with window width 

5, 50W  cycles, ww GR ,: , for  = 0.5,

r = {0.6, 1.289, 2.0}.  
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Fig. 8: 2Gw
F q t  of the 3R-robot during 300 

cycles, vs time and frequency ratio / 0, for 

 = 0.5, r = 0.6, 0 = 7.0 rad 1sec  and 

5 , 50Gw
W  cycles. 

dB2qF

0

t

5W
wG

dB2
qF

0

t

50W
wG

Fig. 10: 2Gw
F q t  of the 3R-robot during 300 

cycles, vs time and frequency ratio / 0, for 

 = 0.5, r = 1.289, 0 = 7.0 rad 1sec  and 

5 , 50Gw
W  cycles. 
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Fig. 11: 2Rw
F q t  of the 3R-robot during 300 

cycles, vs time and frequency ratio / 0, for 

 = 0.5, r = 2.0, 0 = 7.0 rad 1sec  and 

5 , 50Rw
W  cycles. 

We verify that choosing a shorter (larger) time 

window W  increases (decreases) the temporal 

resolution but, on the other hand, decreases (increases) 

the frequency resolution. 

In Fig. 7-8 (r = 0.6) we observe that the distribution 

of the signal energy dependents on the time 

evolution. 

In fact, the signal energy of the fundamental 

harmonic oscillates periodically and we verify that a 

large amount of the signal energy concentrates at 

several foh.

In Fig. 9-10 (r = 1.289) we verify that we have two 

distinct regions: a first one for the leading 60 cycles 

and a second for the remaining 240 cycles. In the first 

region we have a signal energy distribution along all 

frequencies, while in the second the energy is 

concentrated in the fundamental and multiple higher 

harmonics. 

Finally, in Fig. 11-12 (r = 2.0) we get a regular 

behavior and the WFTs are invariant with time. 

In all figures 7-12, the phenomena occur 

independently of the shape ww GR ,: or the 

width W  of the time window. 

5. CONCLUSIONS 

This paper discussed several aspects of the phenomena 

generated by the pseudoinverse-based trajectory 

control of the 3R redundant manipulators. 

The closed-loop pseudoinverse’s method leads to 

non-optimal responses, both for the manipulability 

and the repeatability. Bearing these facts in mind the 

chaotic responses were analyzed from different point 

of views, namely phase plane and Fourier Transform.

The results revealed the appearance of radial 
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Fig. 12: 2Gw
F q t  of the 3R-robot during 300 

cycles, vs time and frequency ratio / 0, for 

 = 0.5, r = 2.0, 0 = 7.0 rad 1sec  and 

5 , 50Gw
W  cycles. 

The results revealed the appearance of radial 

distances for which a large part of the energy is 

distributed in fractional order harmonics. In order to 

capture the time evolution of the joint variables we 

develop a set of experiments based on the WFT. The 

results showed that the frequencies of the joint 

velocity depend on the time evolution. 
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