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Abstract: This paper deals with the discretization of integrals and derivatives (i.e.,

differintegrals) of complex order. Several methods for the discretization of the operator s ,

where  = u+jv is a complex value, are proposed. The concept of conjugated-order 

differintegral is also presented. The conjugated-order operator allows the use of complex-

order differintegrals while still resulting in real time responses and real transfer functions. 

The performance of the resulting approximations is evaluated both in the time and 

frequency domains. Copyright © 2006 IFAC
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1. INTRODUCTION 

The fractional calculus (FC) theory refers to the 

study and application of the integrals and derivatives 

to an arbitrary order (real, rational, irrational or 

complex order). Nowadays, the FC theory is applied 

in almost all the areas of science and engineering, 

being recognized its ability to yield a superior 

modelling and control in many dynamical systems 

(Oldham and Spanier, 1974; Podlubny, 1999). 

However, the majority of the studies in this area deal 

with integrals and derivatives of real order. 

Furthermore, in these studies, the complex-order 

differintegrals are treated mainly from a 

mathematical point of view (Love, 1971; Samko, et

al., 1993). 

Nevertheless, only in the last years we can find some 

works that deal with the applications of the integrals 

and derivatives of complex order (Oustaloup, et al., 

2000; Lanusse, et al., 2005; Nigmatulin and Trujillo, 

2005; Nigmatulin and Le Méhaute, 2005; 

Nigmatulin, 2005). The complex-order 

differintegrals has the “disadvantage” of yielding 

complex time responses (with real and imaginary 

parts) and are thus of an apparent limited application. 

To overcome this difficulty, Hartley, et al. (2005a) 

proposed the use of the concept of conjugated-order 

differintegrals, that is, fractional derivatives whose 

orders are complex conjugates. These conjugated-

order differintegrals allow the use of complex-order 

differintegrals while still resulting in real time 

responses and real transfer functions. 

This paper deals with the discretization of the two 

complex differintegrals: the complex-order and the 

conjugated-order differintegral. Their performance 

are evaluated both in the time and frequency 

domains. This work has also the objective to 

widespread the use of the complex operators, 

particularly in the areas of modelling, identification 

and control of dynamical systems, where we can 

foresee significant advantages. Although some work 

was already been made in this domain (Hartley, et

al., 2005b; Silva, et al., 2006), much more 

investigation is needed to allow an effective use and 

a deep understanding of the complex-order operators. 

In this study, the approach for obtaining rational 

transfer functions approximations of complex 

differintegrals adopts the well-known continued 

fraction expansion (CFE) method. It must be 

mentioned that other techniques could be also 

employed as, for example, the least-squares based 
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methods (Barbosa, et al., 2005). It is well known that 

rational approximations (IIR filters) frequently 

converge faster than polynomial approximations 

(FIR filters) and have a wider domain of 

convergence in the complex domain. Therefore, here 

we only develop z-variable rational transfer functions 

approximations of the complex differintegrals 

operators. The determination process can be outlined 

by the following steps: 

1. Discretize the complex differintegral using a 

suitable generating function s = w(z 1);

2. Apply the CFE method in order to obtain the 

desired IIR-type approximation. 

Bearing these ideas in mind, the paper is organized 

as follows. Section 2 studies the discretization of the 

complex-order differintegral and evaluates its 

performance in the time and frequency domains. 

Section 3 deals with the discretization of the 

conjugated-order differintegrals and presents some 

results that demonstrate its utility in control design. 

Finally, section 4 draws the main conclusions. 

2. DISCRETIZATION OF COMPLEX-ORDER 

DIFFERINTEGRALS 

In this section we present some fundamentals of the 

complex-order differintegrals, both in the frequency 

and time domains. Evaluation of the performance of 

the resulting IIR-type approximations is also 

performed. 

2.1 Notion of Complex-Order Differintegrals

The complex-order differintegral operator of a 

function f(t) is given by: 

u jvD f t y t (1)

where u and v are the real and imaginary orders of 

the complex operator, respectively. 

The s-domain equation of time definition (1) is 

obtained by applying the Laplace transform: 

u jv u jvL D f t s F s Y s (2)

which gives the transfer function: 

u jvY s
H s s

F s
(3)

Using the Euler identity, equation (3) can be 

rewritten as (Hartley, et al., 2005a): 

cos ln sin lnuH s s v s j v s (4)

Substituting s = j  in (3), it yields the frequency 

response of the complex-order operator: 

ln
22

j u vv
uH e e

(5)

2.2 Time-Domain Simulation of Complex-Order 

Differintegrals

The discretization of the complex-order differintegral 

s  (  C) will be expressed by using a generating 

function s = w(z 1) (Machado, 2001; Chen, et al.,

2004; Barbosa, et al., 2005). For that purpose, we use 

the Euler and Tustin operators, yielding, respectively, 

the discretization generating functions: 

1
1 1

u jv

E

z
H z

T
(6)

1
1

1

2 1

1

u jv

T

z
H z

T z
(7)

By performing a power series expansion (PSE) over 

the irrational functions (6) or (7), we obtain an 

approximation of the complex-order operators in the 

form of a polynomial: 

1 1 2
0 1 2

N
NH z c c z c z c z (8)

where the coefficients ( 0, 1, ..., )ic i N C  are 

complex coefficients (with real and imaginary parts): 

, 0, 1, ,l rl ilc c jc l N (9)

and the indices r and i indicate the real and imaginary 

parts of the corresponding coefficients. The PSE 

scheme leads to approximations in the form of a 

complex FIR filter. Also, the coefficients of the FIR 

filter correspond to the impulse response of the 

discrete complex-order operator. 

Taking a continuous fraction expansion (CFE), we 

get a rational transfer function of type: 

1 2
1 0 1 2

1 2
1 21

m
m

n
n

a a z a z a z
H z

b z b z b z
(10)

where m n and the coefficients ,l la b C , that is: 

, 0, 1, ,l rl ila a ja l m

, 1, 2, ,l rl ilb b jb l n
(11)

In this case, we obtain an IIR-type approximation 

which is a complex rational transfer function (i.e., of 

complex coefficients). Such kind of complex transfer 

functions are not unusual and can be used, for 

example, to model induction motors (Aguiar and 

Cad, 2000). 

Table 1 lists the CFE (4, 4)-order approximations to 

the complex-order differintegral obtained with the 

Euler and Tustin operators, for u = 0.5, v = 0.5 and 

T = 1 s. Figure 1 depicts the Bode diagrams of the 

resulting CFE approximations in comparison with the 

continuous complex-order differintegral s 0.5 j0.5. The 

curves reveal that the approximations are well fitted 

into the ideal responses, particularly in the range of 

high frequencies, both in the magnitude and phase. 
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Figure 2 shows the pole-zero maps of the obtained 

approximations. As can be seen, the complex poles 

and complex zeros are distributed in an alternated 

fashion along the complex plane corresponding to 

the right semi-circle and to the entire circle, for the 

Euler and Tustin operators, respectively. 

Furthermore, all the complex poles and zeros lie 

inside the unit circle. Thus, the resulting 

approximations are simultaneously stable and 

minimum phase, as desired for a real time 

implementation. 

In order to illustrate the effectiveness of the 

approximations in the time domain, we used them in 

the complex-order differintegration of the causal sine 

function f(t) = sin( t) (t > 0). Then, applying the 

complex-order operator, the analytical solution is 

obtained as (considering only the steady-state 

behaviour): 

sinu jvy t D t

sin
2 2

u jv t u jv (12)

Table 1 Coefficients of the CFE (4, 4)-order 

approximations obtained with the Euler and 

Tustin operators, for u = 0.5, v = 0.5 and 

T = 1 s

Coef. Euler Tustin 

0a 1.0000+j0.0000 0.6651 j0.2402 

1a 1.7500+j0.2500 0.4526+j0.2124 

2a 0.9107 j0.3214 0.5186+j0.3484 

3a 0.1339+j0.1042 0.2472 j0.0897 

4a 0.0007 j0.0060 0.0440 j0.0517 

0b 1.0000+j0.0000 1.0000+j0.0000 

1b 2.2500 j0.2500 0.5000 j0.5000 

2b 1.6607+j0.4286 0.8571+j0.2143 

3b 0.4375 j0.2113 0.2857+j0.2381 

4b 0.0275+j0.0268 0.0833 j0.0476 
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Fig. 1. Bode plots of the CFE (4, 4)-order 

approximations to complex-order differintegral 

with the Euler and Tustin operators. 
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Fig. 2. Pole-zero maps of the CFE (4, 4)-order 

approximations to complex-order differintegral 

with the Euler and Tustin operators. 

After some trigonometric manipulation of equation 

(12), we get the final analytical expression as: 

sinu jvy t D t

sin cosh cos ln
2 2

u t u v v

cos sinh sin ln
2 2

t u v v

sin cosh sin ln
2 2

j t u v v

cos sinh cos ln
2 2

t u v v (13)

Note that the complex-order differintegral yields a 

complex time response (i.e., with real and imaginary 

parts). Figure 3 shows the time responses of the 

approximations to a sinusoidal input (real and 

imaginary parts) with the Euler and Tustin operators 

for u = 0.5, v = 0.5 and  = 0.2 rad s 1. The 

analytical solution (13) is also plotted. Clearly, the 

curves show a good accordance with the analytical 

solution (in stationary regime) demonstrating, once 

more, the effectiveness of the generated 

approximations. 
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Fig. 3. Time responses to a sinusoidal input of the 

CFE (4, 4)-order approximations to complex-

order differintegral with the Euler and Tustin 

operators. The analytical solution is also plotted. 

3. DISCRETIZATION OF CONJUGATED-ORDER 

DIFFERINTEGRALS 

In this section we develop complex-order 

differintegrals that yield purely real time responses. 

For that purpose it is adopted the concept of the 

conjugated differintegral, recently introduced by 

Hartley, et al. (2005a). The discretization of this type 

of differintegral operator is pursued and its 

performance is evaluated both in the time and 

frequency domains. 

3.1 Notion of Conjugated-Order Differintegrals

The conjugated-order differintegral will be defined 

as (K is a real scale factor): 

,u v
D f t K D f t D f t y t

u jv u jvK D f t D f t (14)

Hartley, et al. (2005a) defines several other types of 

conjugated-order differintegrals, with real or 

complex weights. In the subsequent calculations we 

use only operator (14), but the procedure adopted 

will be identical if we use other alternative 

conjugated-order operators. 

The corresponding transfer function of equation (14) 

is given by: 

,u v u jv u jvY s
H s K s s

F s
(15)

Using the Euler identity, equation (15) can be 

rewritten as (Hartley, et al., 2005a): 

,
2 cos ln

u v uH s Ks v s (16)

The frequency response of the conjugated-order 

operator (15) can be given in the form: 

, 22 cosh ln
2

juu v uH K e v j (17)

3.2 Time-Domain Simulation of Conjugated-Order 

Differintegrals

The discretization of the conjugated-order 

differintegral will be performed by using the Tustin 

operator (7) and an interpolation scheme of the Euler 

and Tustin operators called the Al-Alaoui generating 

function (Al-Alaoui, 1993): 

1
1

1

8 1

7 1 7
A

z
H z

T z
(18)

For example, using the Al-Alaoui operator (18) we 

get the discretized conjugated operator as (K = 1): 

, ,1 1u v u vY z
D z H z

F z

1 1

1 1

8 1 8 1

7 71 7 1 7

u jv u jv

z z

T Tz z
(19)

Its impulse response sequence can be obtained by 

taking the PSE, yielding: 

, 1 1 2
0 1 2

u v N
NH z c c z c z c z (20)

where the series coefficients ci (i = 0, 1, ..., N) are 

now real values. The resulting approximation comes 

in the form of a real FIR filter. On the other hand, 

applying the CFE method, we obtain a rational 

transfer function of type: 

1 2
1 0 1 2

1 2
1 21

m
m

n
n

a a z a z a z
H z

b z b z b z
(21)

where m n and the coefficients ai (i = 0, 1, ..., m)

and bi (i = 1, 2, …, n) are equally real values. 

Table 2 lists the CFE (4, 4)-order approximations of 

the conjugated-order differintegral obtained with the 

Al-Alaoui and Tustin operators for u = 0.5, v = 0.5, 

K = 1 and T =1 s. Figure 4 shows the Bode diagrams 

that exhibit a good agreement with the continuous 

conjugated-order differintegral. Note the better 
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performance of the Al-Alaoui scheme in the high 

frequency range. In Figure 5 we plot the pole-zero 

maps of the approximations. First, we observe that 

there are no complex poles or zeros. We can further 

observe that the distribution of the poles and zeros 

are interlaced along the segment of the real axis. 

However, we note that this scheme may lead to zeros 

outside of the unit circle, that is, the resulting       

IIR-type approximation is stable and nonminimum 

phase. 

To illustrate the effectiveness of the approximations 

in the time domain, we use them to calculate the 

conjugated differintegral of the causal sine function 

f(t) = sin( t) (t > 0). The analytical solution y(t) is 

obtained as (considering only the steady-state 

behaviour): 

sin sinu jv u jvy t K D t D t

sin
2 2

u jvK t u jv

sin
2 2

u jv t u jv (22)

After some trigonometric manipulation of equation 

(22), we obtain the final analytical solution as: 

2 sin cosh cos ln
2 2

y t K t u v v

cos sinh sin ln
2 2

t u v v (23)

It should be noted that the conjugated-order 

differintegral yields a purely real time response. 

Figure 6 shows the time responses of the 

approximations to a sinusoidal input with the Al-

Alaoui and Tustin operators for u = 0.5, v = 0.5, 

K = 1 and  = 0.2 rad s 1. The analytical solution 

(23) is also plotted. As can be seen, the curves are 

almost coincident (in stationary regime) 

demonstrating its effectiveness. 

The impulse response h(t) of the conjugated operator 

can be easily obtained as (Hartley, et al., 2005a): 

1 2 cos lnuh t L Ks v s

1 1
2 Re cos lnuKt v t

u jv

1
Im sin lnv t

u jv
(24)

Figure 7 shows the impulse responses of the 

approximations with the Al-Alaoui and Tustin 

operators for u = 0.5, v = 0.5, K = 1 and T = 1 s. 

As can be seen, the curves show a good accordance 

with the ideal impulse response, particularly the Al-

Alaoui operator (note that this operator is better at 

higher frequencies) while the Tustin scheme presents 

a limited oscillatory behaviour. 

Table 2 Coefficients of the CFE (4, 4)-order 

approximations with the Al-Alaoui and Tustin 

operators, for u = 0.5, v = 0.5, K = 1 and T = 1 s

Coef. Al-Alaoui Tustin 

a0 2.1333 2.6603 

a1 3.8238 0.3190 

a2 1.6366 3.7027 

a3 0.1136 0.8480 

a4 0.0872 0.3655 

b0 1.0000 1.0000 

b1 1.2592 0.5189 

b2 0.3461 0.6992 

b3 0.0309 0.1813 

b4 0.0083 0.0516 
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Fig. 4. Bode plots of the CFE (4, 4)-order 

approximations to conjugated-order differintegral 

with the Al-Alaoui and Tustin operators. The 

continuous solution is also plotted. 
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with the Al-Alaoui and Tustin operators. 

344



     

0 50 100 150
1.5

1

0.5

0

0.5

1

1.5

t (s)

S
in

u
s
o

id
a

l 
re

s
p

o
n

s
e

, 
y
(t

)

Analytical Al Alaoui, Tustin 
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CFE (4, 4)-order approximations to conjugated-

order differintegral with the Al-Alaoui and Tustin 

operators. The analytical solution is also plotted. 
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4. CONCLUSIONS 

In this paper we have introduced the discretization of 

complex-order operators. Also, we obtained discrete 

approximations of the complex-order differintegral. 

This complex operator generates complex time 

responses which, consequently, are of limited 

application. In order to ensure real time responses 

and real transfer functions we used the concept of 

conjugated-order differintegral. In both cases, the 

linear invariant time (LTI) transfer functions (CFE-

type IIR filters) produce good approximations both 

in the frequency and time domains. If such a LTI 

representation of these complex differential 

operators, in time domain, is the most effective, is 

yet an open question. In conclusion, it will be 

necessary more exhaustive research of these 

operators in order to clarify all its implications and, 

particularly, when used for the modelling, control 

and identification of dynamical systems.
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