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Abstract: This paper analyzes the performance of two cooperative robot manip-
ulators. It is studied the implementation of fractional-order algorithms in the
position/force control of two robots holding an object. The experiments reveal
that fractional algorithms lead to performances superior to classical integer-order
controllers.
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1. INTRODUCTION

Two robots carrying a common object are a logical
alternative for the case in which a single robot
is not able to handle the load. The choice of a
robotic mechanism depends on the task or the
type of work to be performed and, consequently,
is determined by the position of the robots and
by their dimensions and structure. In general,
the selection is done through experience and in-
tuition; nevertheless, it is important to measure
the manipulation capability of the robotic sys-
tem (Tsai and Soni, 1981), that can be useful
in the robot operation. In this perspective it was
proposed the concept of kinematic manipulabil-
ity (Yoshikawa, 1985) and its generalization by
including the dynamics (Asada, 1983) or, alter-
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natively, the statistical evaluation of manipula-
tion (Machado and Galhano, 1997). Other related
aspects such as the coordination of two robots
handling objects, collision avoidance and free path
planning have been also investigated (Nakamura
et al., 1989).

With two cooperative robots the resulting inter-
action forces have to be accommodated and con-
sequently, in addition to position feedback, force
control is also required to accomplish adequate
performances (Bejczy and Tarn, 2000; Raibert
and Craig, 1981). There are two basic meth-
ods for force control, namely the hybrid posi-
tion/force and the impedance schemes. The first
method (Ferreira et al., 2004) separates the task
into two orthogonal sub-spaces corresponding to
the force and the position controlled variables.
Once established the subspace decomposition two

Proceedings of the 2nd IFAC
Workshop on Fractional Differentiation and its Applications
Porto, Portugal, July 19-21, 2006

380



independent controllers are designed. The sec-
ond method (Hogan, 1985) requires the defi-
nition of the arm mechanical impedance. The
impedance accommodates the interaction forces
that can be controlled to obtain an adequate re-
sponse. This paper addresses the control of two
arm systems, through the dynamical analysis and
a statistical evaluation (Galhano and Machado,
2001) of the joint torques, using fractional-order
(FO) control algorithms (Ferreira and Machado,
2003; Oustaloup, 1995; Machado, 1997; Podlubny,
1999).

Bearing these facts in mind this article is orga-
nized as follows. Section two presents the con-
troller architecture for the position/force control
of two robotic arms. Based on these concepts,
section three develops several experiments for the
statistical analysis and the performance evalua-
tion of FO and the PID controllers, for robots
having several types of dynamic phenomena at
the joints. Finally, section four outlines the main
conclusions.

2. CONTROL OF TWO ARMS

The dynamics of a robot with n links interacting
with the environment is modeled as:

τ = C(q, q̇) + G(q) − JT(q)F + H(q)q̈ (1)

where τ is the n × 1 vector of actuator torques,
q is the n × 1 vector of joint coordinates, H(q)
is the n × n inertia matrix, C(q, q̇) is the n × 1
vector of centrifugal / Coriolis terms and G(q)
is the n × 1 vector of gravitational effects. The
matrix JT (q) is the transpose of the Jacobian
and F is the force that the load exerts in the
robot gripper. For a RR manipulator (n = 2) the
dynamics yields:

C (q, q̇) =

[

−m2r1r2S2q̇
2
2 − 2m2r1r2S2q̇1q̇2

m2r1r2S2q̇
2
1

]

(2)

G (q) =

[

g (m1r1C1 + m2r1C1 + m2r2C12)
gm2r2C12

]

(3)

JT (q) =

[

−r1S1 − r2S12 r1C11 + r2C12

−r2S12 r2C12

]

(4)

H(q)=





(m1+m2)r
2

1
−m2r2

2
m2r2

2
+m2r1r2C2

+2m2r1r2C2+J1m+J1g

−m2r2

2
+m2r1r2C2 m2r2

2
+J2m+J2g



 (5)

where Cij = cos(qi + qj) and Sij = sin(qi + qj).

We consider two robots with identical dimen-
sions (Fig. 1). The contact of the robot gripper

with the load is modeled through a linear system
with a mass M , a damping B and a stiffness
K. The numerical values adopted for the RR

robots and the object are m1 = m2 = 1.0 kg,
l1 = l2 = lb = l0 = 1.0 m, α0 = 0 deg,
B1 = B2 = 1 Ns.m−1 and K1 = K2 = 104 Nm−1.

θ0

lb(m)

l0(m)

Robot A
Robot B

l11

l12

l21

l22

y (m)

x (m)

{x1, y1}

{x2, y2}

Fig. 1. Two RR robots working in cooperation
for the manipulation of an object with length
l0, orientation θ0 and distance lb between the
shoulders.
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Fig. 2. The position/force cascade controller.

The controller architecture (Fig. 2), namely the
cascade controller, is inspired on the impedance
and compliance schemes. Therefore, we establish
a cascade of force and position algorithms as
internal an external feedback loops, respectively,
where x d and F d are the payload desired position
coordinates and contact forces.

In the position and force control loops we consider
FO controllers: of the type C(s) = Kp + Kα sα,
−1 < α < 1, that are approximated by 4th−
order discrete−time Pade expressions (ai,, bi,∈ R,
k = 4):

C (z) ≈ K
a0z

k + a1z
k−1 + .. + ak

b0zk + b1zk−1 + ... + bk

(6)

To analyze the system performance we consider
robots with ideal transmissions, and robots with
joint backlash and flexibility. Moreover, we com-
pare the response of FO and classical PD − PI
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Table 1. The parameters of the position
and force FO controllers

(a) Position controller

i Kp Kα α

1 0.1259 1.55 10−3 1
2

2 0.1259 1.55 10−3 1
2

(b) Force controller

i Kp Kα α

1 10.59 2 10−3
−

1
5

2 10.59 2 10−3
−

1
5

Table 2. The parameters of the position
and force PD − PI controllers

(a) Position controller

i Kp Kd

1 25 103 25 101

2 25 103 25 101

(b) Force controller

i Kp Ki

1 5 102 10 102

2 5 102 10 102

algorithms, in the position and force loops, respec-
tively.

C(s) = Kp + Kds (7)

C(s) = Kp + Ki

1

s
(8)

Both algorithms were tuned by trial and error,
having in mind getting a similar performance in
the two cases (Tables 1 and 2). In order to study
the system dynamics we apply a small amplitude
rectangular pulse δyd at the position reference and
we analyze the system response.

The experiments adopt a controller sampling fre-
quency fc = 10 kHz, contact forces of the grippers
{Fx j ,Fyj}≡{0.5,5} Nm, a operating point of the
center of the object A≡{x,y}≡{0,1} and θ = 0o.

In a first phase we consider robots with ideal
transmissions at the joints. Figure 3 depicts the
time response of robot A under the action of the
FO and PD − PI algorithms.

In a second phase (figure 4) we analyze the re-
sponse of robots with dynamic backlash at the
joints. For the ith joint gear (i= 1, 2), with clear-
ance hi, the backlash reveals impact phenomena
between the inertias, which obey the principle of
conservation of momentum and the Newton law:

q̇′i =
q̇i (Jii − εJim) + q̇imJim (1 + ε)

Jii + Jim

(9)

q̇′im =
q̇iJi (1 + ε) + q̇im (Jim − εJii)

Jii + Jim

(10)

where 0 ≤ ε ≤ 1 is a constant that defines the
type of impact (ε = 0 inelastic impact, ε = 1
elastic impact) and q̇i and q̇im (q̇′i and q̇′im) are

the velocities of the ith joint and motor before (af-
ter) the collision, respectively. The parameter Jii

(Jim) stands for the link (motor) inertias of joint
i. The numerical values adopted are hi = 1.8 10−4

rad and εi = 0.8.

In a third phase (figure 5) we study the RR robot
with compliant joints. For this case the dynamic
model corresponds to model (1) augmented by the
equations:

T = Jmq̈m + Bmq̇m + Km(qm − q) (11)

Km(qm − q) = J(q)q̈ + C(q, q̇) + G(q) (12)

where Jm, Bm and Km are the n × n diagonal
matrices of the motor and transmission inertias,
damping and stiffness, respectively. In the sim-
ulations we adopt Kmi = 2 106 Nm rad−1 and
Bmi = 104 Nms rad−1 (i = 1,2).

The low-pass characteristics of |y(jω)/yd(jω)| re-
veal the existence of some coupling between the
position and force loops due to the non-ideal per-
formance of both algorithms. Figure 6 show the
frequency responses for robots with ideal joints,
having backlash and transmissions flexibility, both
under the action of the FO and the PD − PI
controllers, for a pulse perturbation, at the robot
reference δyd. The charts reveal that the FO
algorithms have a superior performance, namely
a good robustness and larger bandwidth.

3. STATISTICAL EVALUATION

Usually system descriptions are based on a set
of differential equations which, in general, require
laborious computations and may be difficult to an-
alyze. These facts motivate the need of alternative
models based on different mathematical concepts.
The proposed statistical method give clear guide-
lines towards the robotic system evaluation.

A statistical sample for the variables is ob-
tained by driving the cooperating robots though
a large numbers of trajectories, having appropri-
ate time/space evolutions. All variables are calcu-
lated, sampled in the time domain, and the result-
ing numerical values are organized in histograms.

In order to illustrate the method, we specify dif-
ferent desired motions and planed N = 10000
distinct trajectories with different types of ac-
celerations. The performance of the controller,
using fractional order and classical integer order
control algorithms, is characterized by the torque
variations of the two robots. We can observe that
the PD − PI controller requires higher actuators
torques in the cases of backlash and flexible joints.
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Fig. 3. Time response for robots with ideal joints under the action of the FO and the PD−PI algorithms
for a reference position perturbation δyd = 0.1 m and a payload with M = 1 kg, Bi = 10 Ns/m and
Ki = 103 N/m.

0 0.05 0.1 0.15 0.2 0.25
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−3

PD−PI

FO

time[s]

δ
x

A
[m

]

0 0.05 0.1 0.15 0.2 0.25
0

0.005

0.01

0.015

Reference

PD−PI

FO

time[s]

δ
y

A
[m

]

0 0.05 0.1 0.15 0.2 0.25
−40

−30

−20

−10

0

10

20

30

40

PD−PI

FO

time[s]

δ
F

x
A

[N
]

0 0.05 0.1 0.15 0.2 0.25
−20

−10

0

10

20

30

40

50

60

70

PD−PI

FO

time[s]

δ
F

y
A

[N
]

Fig. 4. Time response for robots with joints having backlash under the action of the FO and the PD−PI
algorithms, for a pulse perturbation at the robot A position reference δyd = 10−3 m and a payload
M = 1 kg, Bi = 1 Ns/m and Ki = 103 N/m.
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Fig. 5. Time response for robots with joints having flexibility under the action of the FO and the PD−PI
algorithms, for a pulse perturbation at the robot A position reference δyd = 10−3 m and a payload
M = 1 kg, Bi = 1 Ns/m and Ki = 103 N/m.
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(a) Ideal joints.
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(b) Joints having backlash.
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(c) Joints having flexibility.

Fig. 6. The Bode diagram of the closed-loop transfer function G(jw)= F{δy(t)}
F{δyd(t)} for two cooperating RR

robots A with: a) ideal joints, b) joints having backlash and c) joints having flexibility.

The figure 7 shows the relative frequency of the
dynamics and required actuators torques for the
performance of the classical and fractional con-
trollers.

4. CONCLUSIONS

This paper studied the position/force control of
two robots working in cooperation using frac-
tional order and classical integer order control
algorithms. The system dynamics was analyzed
for manipulators having several types of dynami-
cal phenomena at the joints. The results demon-
strated that the fractional-order algorithm reveals

a good performance and a high robustness. The
transient response of the system, shows the qual-
ity of the performance of the fractional order
controllers.
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