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Abstract: This paper investigate the fractional-order dynamics during the evolution of a

Genetic Algorithm (GA). In order to study the phenomena involved in the GA population

evolution, the mutation is exposed to excitation perturbations during some generations and

the corresponding fitness variations are evaluated. Three similar functions are tested to

measure its influence in GA dynamics. The input and output signals are studied revealing

a fractional-order dynamic evolution.
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1. INTRODUCTION

In the last twenty years Genetic Algorithms (GAs)

have been applied in a plethora of fields such as in im-

age processing, pattern recognition, speech recogni-

tion, control, system identification, optimization, plan-

ning and scheduling (Bäck et al., 1997). While GAs

have proved to be a valuable optimization tool in solv-

ing a wide range of problems, its dynamic are not yet

fully studied, particulary in terms of the influence of

perturbation signals.

Fractional Calculus (FC) is a natural extension of the

classical mathematics. In fact, since the beginning of

theory of differential and integral calculus, several

mathematicians investigated the calculation of non-

integer order derivatives and integrals. Nevertheless,

the application of FC has been scarce until recently,

but the advances in the theory of chaos motivated a

renewed interest in this field.

Bearing these ideas in mind, this paper analyzes the

system signal evolution and the fractional-order dy-

namics in the population of a GA-based optimization.

The article is organized as follows. Section 2 intro-

duces the problem and the GA method for its reso-

lution. Based on this formulation, section 3 presents

the results for several simulations involving different

working conditions and studies the resultant dynamic

phenomena. Section 4 presents the results for other

functions. Finally, section 5 outlines the main conclu-

sions.

2. THE OPTIMIZATION GA

This section presents the optimization GA used in the

study of the dynamic system. The objective function

consists on minimizing the function (1). This function

has only one parameter and a binary Gray code, with

the string length of l = 24 bits, is used to represent

the solutions of the population (2). The parameter b
can vary in the interval [−50000, 50000].

fA(b) = 1 + |b − 41| (1)

b = {b1, b2, b3, . . . , bl} (2)

A 50–population GA is run during 200 generations

under rank selection with simple crossover and mu-
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tation with probabilities pc = 0.8 and pm = 0.05,

respectively. The best solution of each generations is

always passed to the next generation.

The influence of several factors can be analyzed in

order to study the dynamics of the GA, particulary the

probabilities. This influence can be distinct to the type

of selection, elitism, fitness function and string length

used in the GA. In this work, across each test function

experiment, it is changed only the initial seed of the

mutation probability noise that is added to pm.

3. EVOLUTION, SIGNAL PROPAGATION AND

FRACTIONAL-ORDER DYNAMICS

This section studies the dynamical phenomena in-

volved in the signal propagation in the GA population.

In this perspective, small amplitude perturbations are

superimposed over biasing signals of the GA system

and its influence on the population fitness is evaluated.

The experiments reveal a fractional-order dynamics

capable of being described by systems theory tools.

3.1 The GA dynamics

In this section the GA system is stimulated by per-

turbing the mutation probability, pm, through a white

noise signal, δpm, and the corresponding population

fitness modification δf is evaluated, see figure 1. The

crossover and other probability signals used, pc and

po, remain unchanged. Therefore, the variation of the

mutation probability and the resulting fitness modi-

fication on the GA population, during the evolution,

can be viewed as the system inputs and output signals

varying during the successive generations. This analy-

sis is evaluated using several experiments with differ-

ent seeds for a small amplitude white noise perturba-

tion signal. All the other seeds remain unchanged.

-

-

-

-

pm + δpm

po

pc

GA
f + δf

Fig. 1. System dynamics

In this perspective, a white noise signal δpm(T ) is

added to the mutation probability pm of the strings

during a time period Texc and the new mutation prob-

ability pm noise is calculated by:

pm noise =







0 if pm + η(∆p) < 0
1 if pm + η(∆p) > 1

pm + η(∆p) otherwise

(3)

where η is the white noise signal with maximum

amplitude ±∆p.

Consequently, the input signal, at generation T , is the

difference between the two cases, that is δpm(T ) =
pm noise(T ) − pm(T ). On the other hand, the output

signal is the difference in the population fitness with

and without noise, that is δf(T ) = fm noise(T ) −
f(T ).

Figure 2 shows the input signal δpm(T ), with seed

i = 1, in the generation domain and the corresponding

polar diagram, for ∆p = 0.04 and Texc = 2, where

F [δpm(T )] represents the Fourier transform of the

signal perturbation. Figure 3 show the corresponding

output signal variation δf(T ).
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Fig. 2. Input signal δpm perturbation over Texc = 2
generations with seed i = 1 (∆p = 0.04)

Once having de Fourier description of the input and

output signals it is possible to calculate the corre-

sponding transfer function (4) for seed i.

Hi(jw) =
F{δfi(T )}

F{δpm i(T )}
(4)

The transfer function H1(jw), with seed i = 1,

between the input and output signals, is depicted in

figure 4.

After repeating for all seeds a ‘representative’ transfer

function is obtained by using the median of the statis-

tical sample (Tenreiro Machado and Galhano, 1998)

of n experiments (see figure 5).
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Fig. 3. Output variation δf(T ) for the input excitation

over Texc = 2 generations with seed i = 1
(∆p = 0.04)
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Fig. 4. Transfer function H1(jw) using seed i = 1
(Texc = 2, ∆p = 0.04)
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Fig. 5. Median transfer function H(jw) (Texc = 2,

∆p = 0.04)

3.2 Transfer function identification

In this section the median of the numerical system

transfer functions, figure 6, is approximated by ana-

lytical expressions with gain κ ∈ R
+ and two poles

(a, b) ∈ R
+ of fractional orders (α, β) ∈ R

+, respec-

tively, given by equation (5):

GA(jw) =
κ

(

jw
a

+ 1
)α

[

(

− jw
b

)β

+ 1

] (5)

It is worth notice that the transfer function has a pole

in the right half plane. It is known that in fractional

systems, for a given root z of multiplicity β, the sta-

bility criterion is arg(z) > βπ/2. In the present case,

depending on the numerical values of the parameters,

it can occur that the identified transfer function corre-

sponds to an unstable system; however, such behavior

was not observed. Moreover, many other expressions

were attempted for the transfer function leading, in all

cases, to a clearly inferior identification. Therefore, it

remains to be further investigated either the physical

reason justifying this expression or, alternatively, the

construction of another expression leading to similar

good estimation while avoiding this intricate problem.

In order to estimate the transfer function parameters,

an identification GA adopting a real string is executed

with the representation {k, a, b, α, β}. The identifi-

cation GA is executed during Tide = 600 generations

with a 100 strings population. It is used the simulated

binary crossover (Deb, 2001) and, when one mutation

occurs, the corresponding value {x1,. . . ,x5} ≡{k, a,

b, α, β} is changed according with the equations:

xi+1 = 10uixi (6a)

ui ∼ U[−εi, +εi] (6b)

where ui is a random number generated through the

uniform probability distribution U and εi is fixed

according with the range of estimation.

The fitness function fide measures the distance be-

tween the median H(jwk) and G(jwk):

fide =

nf
∑

k=1

‖ H(jwk) − G(jwk) ‖ (7)

where H represents the median of the n transfer func-

tions resulting for each different seed, nf is the total

number of sampling points and wk, k = {1, ..., nf} is

the corresponding vector of frequencies.

Since the optimization GA has a stochastic dynamics,

every time the GA is executed with a different white

noise seed, leads to a different transfer function. Con-

sequently, in order to obtain a numerical convergence

(Tenreiro Machado and Galhano, 1998) are performed
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Fig. 6. Polar diagrams of H(jw) for ∆p =
{0.03, 0.04, 0.05}

n = 1701 perturbation experiments with different

seeds for the white noise signal, δpm(T ) (all the other

seeds for pm, pc and selection remains unchanged). So,

the transfer function of the optimization GA dynam-

ics is evaluated by computing the Fourier transform

(FT) for each pair of input and output signals. After

that, the medians of the transfer functions calculated

previously (i.e., for each real and imaginary part and

for each frequency) are taken as the final part of the

numerical transfer function H(jw) (see figure 6).

For evaluating the influence of the excitation period

Texc several simulations are performed ranging from

Texc = 2 up to Texc = 12 generations. Therefore, the

relation between the transfer function parameters and

Texc are shown in figures 7–8.

The charts of {κ, a, b, α, β} can be approximated

using equation (8) leading to the parameters of table 1.
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Fig. 7. Estimated gain κ vs. Texc

Table 1. Parameters of γi, i = {1, 2} ap-

proximation of fA optimization fuction

∆p 0.03 0.04 0.05

κ γ1(105) 10.0 10.0 9.7
γ2 −0.40 −0.44 −0.39

a γ1 2.90 2.12 2.50
γ2 −1.40 −1.26 −1.31

α γ1 10.86 7.42 7.23
γ2 −1.26 −1.11 −1.10

b γ1 0.93 1.14 1.16
γ2 −0.67 −0.76 −0.79

β γ1 0.83 0.75 0.75
γ2 0.04 0.09 0.10

{κ, a, α, b, β} ' γ1 (Texc)
γ2 (8)

These results reveal that the transfer function para-

meters {κ, a, α, b, β} vary with a power law versus

the excitation time Texc. The right half-plane pole b
has a low dependence with Texc and, consequently, the

adoption of a particular value for Texc is of no impor-

tance for the study under effect. On the other hand, the

left half-plane pole a has a much stronger influence on

the transfer function. Furthermore, κ varies with ∆p
while a, α, b, β have a low dependence with ∆p.

By enabling the zero/pole order to vary freely, we get

non-integer values for α and β, while the adoption

of an integer-order transfer function would lead to a

larger number of zero/poles to get the same quality

in the analytical fitting to the numerical values. The

‘requirement’ of fractional-order models in opposition

with the classical case of integer models is a well-

known discussion and even nowadays final conclu-

sions are not clear since it is always possible to ap-

proximate a fractional frequency response through an

integer one as long as we make use of a larger number

of zeros and poles. Nevertheless, in the present experi-

ments there is a complementary point of view towards

FC.

4. ADDITIONAL EXPERIMENTS

This section presents the results when using different

fitness functions (9) in the optimization GA, in order

to investigate its relation with the transfer function.
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Fig. 8. Estimated poles and fractional-orders vs. Texc

Table 2. Parameters of γi, i = {1, 2} ap-

proximation of fB optimization function

∆p 0.03 0.04 0.05

κ γ1(108) 6 5 4
γ2 −0.40 −0.38 −0.30

a γ1 6.39 4.66 6.83
γ2 −2.26 −2.03 −2.27

α γ1 6.87 5.65 7.39
γ2 −1.44 −1.25 −1.40

b γ1 2.02 1.93 1.42
γ2 −1.05 −1.09 −0.95

β γ1 0.70 0.66 0.70
γ2 0.11 0.15 0.12

Table 3. Parameters of γi, i = {1, 2} ap-

proximation of fC optimization function

∆p 0.03 0.04 0.05

κ γ1(1011) 4 3 3
γ2 −0.50 −0.39 −0.27

a γ1 6.83 6.00 4.14
γ2 −2.35 −2.33 −2.12

α γ1 6.91 5.78 3.89
γ2 −1.46 −1.35 −1.08

b γ1 1.49 1.60 1.51
γ2 −0.98 −1.06 −1.09

β γ1 0.74 0.70 0.70
γ2 0.09 0.10 0.11

The study follows an identical strategy to the one

adopted in the work of previous section.

fB(b) = 1 + |b − 41|2 (9a)

fC(b) = 1 + |b − 41|3 (9b)

The polar diagrams obtained and its estimated para-

meters {κ, a, α, b, β} for fB and fC are similar with

the previous obtained to fA. These parameters can be

approximated also through the power expressions (8)

leading to the results shown in tables 2-3.

To study the influence of the fitness function in the

optimization GA, the median of each parameter is

evaluated for all optimization functions and taken as

the representative parameter of that function. These

estimated parameters are compared in figures 9-10. As

can be seen the parameters have a similar behavior.

The κ gain varies with the power used in the optimiza-

tion function. On the other hand, the concavity of the

{a, α} parameters increases as the power used in the

function increases.

5. CONCLUSIONS

This paper analyzed the signal propagation and the

dynamic phenomena involved in the time evolution of

a population of individuals. The study was established

on the basis of a simple GA function optimization.

While the study of GA schemes has been extensively

studied, the influence of perturbation signals over the

operating conditions is not well known.
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Bearing these ideas in mind, the fractional calcu-

lus perspective calculus was introduced in order to

develop simple, but comprehensive, approximating

transfer functions of non-integer order. It was shown

that fractional models capture phenomena and proper-

ties that classical integer-order overlook.

.
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