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Abstract: This paper analyses the performance of a Genetic Algorithm (GA) in the
synthesis of digital circuits using a new approach. The novel concept extends the
classical fitness function by introducing a fractional-order dynamical evaluation.
The dynamic fitness function results from an analogy with control systems where
it is possible to benefit the proportional algorithm by including a differential
component. For this purpose the non integer derivative is approximated through
Padé fractions. The experiments reveal superior results when comparing with the
classical fitness method. Copyright c©2006 IFAC
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1. INTRODUCTION

In the last decade genetic algorithms (GAs) have
been applied in the design of electronic circuits,
leading to a novel area of research called Evolu-
tionary Electronics (EE) or Evolvable Hardware
(EH) Zebulum et al. (2001). EE considers the
concept for automatic design of electronic sys-
tems. Instead of using human conceived models,
abstractions and techniques, EE employs search
algorithms to develop good designs Thompson
and Layzell (1999).

One decade ago Louis and Rawlins (1991) applied
GAs to the combinational circuit design problem.
They combined knowledge-based systems with the
GA and defined a genetic operator called masked
crossover. This scheme leads to other kinds of
offspring that can not be achieved by classical
crossover operators.

John Koza (1992) adopted genetic programming
to design combinational circuits.

In the sequence of this work, Coello et al. (1996)
presented a computer program that automatically
generates high-quality circuit designs. They use
five possible types of gates (AND, NOT, OR,
XOR and WIRE) with the objective of finding a
functional design that minimizes the use of gates
other than WIRE.

Miller et al. (1997) applied evolutionary algo-
rithms for the design of arithmetic circuits. The
technique was based on evolving the functionality
and connectivity of a rectangular array of logic
cells, with a model of the resources available on
the Xilinx 6216 FPGA device.

Kalganova et al. (1998) proposed a new technique
for designing multiple-valued circuits.

In order to solve complex systems, Torresen
(1998) proposed the method of increased com-
plexity evolution. The idea is to evolve a sys-
tem gradually as a kind of divide-and-conquer
method. Evolution is first undertaken individually
on simple cells. The evolved functions are the
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basic blocks adopted in further evolution of more
complex systems.

A major bottleneck in the evolutionary design of
electronic circuits is the problem of scale. This
refers to the very fast growth of the number of
gates, used in the target circuit, as the number of
inputs of the evolved logic function increases. This
results in a huge search space that is difficult to ex-
plore even with evolutionary techniques. Another
related obstacle is the time required to calculate
the fitness value of a circuit Vassilev and Miller
(2000); Miller et al. (1997). A possible method to
solve this problem is to use building blocks either
than simple gates. Nevertheless, this technique
leads to another difficulty, which is how to define
building blocks that are suitable for evolution.

Gordon and Bentley (2002) suggest an approach
that allows evolution to search for good inductive
bases for solving large-scale complex problems.
This scheme generates, inherently, modular and
iterative structures, that exist in many real-world
circuit designs but, at the same time, allows
evolution to search innovative areas of space.

The idea of using memory to achieve better fit-
ness function performances was first introduced
by Sano and Kita (2000). Their goal was the
optimization of systems with randomly fluctuat-
ing fitness function and they developed a Genetic
Algorithm with Memory-based Fitness Evaluation
(MFEGA). The key ideas of the MFEGA are
based on storing the sampled fitness values into
memory as a search history, introducing a simple
stochastic model of fitness values to be able to
estimate fitness values of points of interest using
the history for selection operation of the GA.

Following this line of research, and looking for
better performance GAs, this paper proposes a
GA for the design of combinational logic circuits
using fractional-order dynamic fitness functions.

The area of Fractional Calculus (FC) deals with
the operators of integration and differentiation
to an arbitrary (including noninteger) order and
is as old as the theory of classical differential
calculus Oldham and Spanier (1974); Miller and
Ross (1993). The theory of FC is a well-adapted
tool to the modelling of many physical phenom-
ena, allowing the description to take into ac-
count some peculiarities that classical integer-
order models simply neglect. Nevertheless, the
application of FC has been scarce until recently,
but the advances on the theory of chaos mo-
tivated a renewed interest in this field. In the
last two decades we can mention research on vis-
coelasticity/damping, chaos/fractals, biology, sig-
nal processing, system identification, diffusion and
wave propagation, electromagnetism and auto-

Table 1. Gate sets

Gate set Logic gates

Gset a {AND,XOR,WIRE}
Gset b {AND,OR,XOR,NOT,WIRE}

matic control Oustaloup (1995); Méhauté (1991);
Machado (1997); Westerlund (2002).

Bearing these ideas in mind the article is orga-
nized as follows. Section 2 describes the adopted
GA as well as the fractional-order dynamic fit-
ness functions. Section 3 presents the simulation
results and finally, section 4 outlines the main
conclusions and addresses perspectives towards
future developments.

2. THE ADOPTED GENETIC ALGORITHM

In this section we present the GA in terms of
the circuit encoding as a chromosome, the genetic
operators and the static and dynamic fitness func-
tions.

2.1 Problem Definition

The circuits are specified by a truth table with
input bits ordered according with the Gray Code.
The goal is to implement a functional circuit with
the least possible complexity. Two sets of logic
gates have been defined, as shown in Table I, being
Gset a the simplest one (i.e., a RISC-like set) and
Gset b a more complex gate set (i.e., a CISC-like
set).

For each gate set the GA searches the solution
space, based on a simulated evolution aiming
the survival of the fittest strategy. In general,
the best individuals of any population tend to
reproduce and survive, thus improving successive
generations. However, inferior individuals can, by
chance, survive and also reproduce. In our case,
the individuals are digital circuits, which can
evolve until the solution is reached (in terms of
functionality and complexity).

2.2 Circuit Encoding

In the GA scheme the circuits are encoded as a
rectangular matrix A (row × column = r × c) of
logic cells as represented in figure 1, having inputs
X and outputs Y.

Each cell is represented by three genes: <input1>
<input2> <gate type>, where input1 and input2
are the circuit inputs, if they are in the first
column, or one of the previous outputs, if they
are in other columns. The gate type is one of the
elements adopted in the gate set. The chromosome446
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Fig. 1. A 3 × 3 matrix A representing a circuit
with input X and output Y
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Fig. 2. Chromosome for the 3 × 3 matrix of fig. 1

is formed by as many triplets of this kind as the
matrix size demands. For example, the chromo-
some that represents a 3 × 3 matrix is depicted
in figure 2.

2.3 The Genetic Operators

The initial population of circuits (strings) is gen-
erated at random. The search is then carried
out among this population. The three different
operators used are reproduction, crossover and
mutation, as described in the sequel.

In what concerns the reproduction operator, the
successive generations of new strings are repro-
duced on the basis of their fitness function. In this
case, a tournament selection is used to select the
strings from the old population, up to the new
population.

For the crossover operator, the strings in the
new population are grouped together into pairs
at random. Single point crossover is then per-
formed among pairs. The crossover point is only
allowed between cells to maintain the chromosome
integrity.

The mutation operator changes the characteristics
of a given cell in the matrix. Therefore, it modifies
the gate type and the two inputs, meaning that a
completely new cell can appear in the chromo-
some. Moreover, an elitist algorithm is applied
and, consequently, the best solutions are always
kept for the next generation.

To run the GA we have to define the number
of individuals to create the initial population P .
This population is always the same size across the
generations, until the solution is reached.

The crossover rate CR represents the percentage
of the population P that reproduces in each gen-
eration. Likewise the mutation rate MR is the
percentage of the population P circuits that can
mutates in each generation.

2.4 The Fitness Functions

The goal of this study is to find new ways of
evaluating the individuals of the population in
order to achieve GAs with superior performance.

The calculation of the Fs in (1) is divided in
two parts, f1 and f2, where f1 measures the
circuit functionality and f2 measures the circuit
simplicity. In a first phase, we compare the output
Y produced by the GA-generated circuit with
the required values YR, according with the truth
table, on a bit-per-bit basis. By other words, f1

is incremented by one for each correct bit of the
output until f1 reaches the maximum value f10,
that occurs when we have a functional circuit (eq.
1a and 1b).

Once the circuit is functional, in a second phase,
the GA tries to generate circuits with the least
number of gates. This means that the resulting
circuit must have as much genes <gate type>
≡ <wire> as possible. Therefore, the index f2,
that measures the simplicity (the number of null
operations), is increased by one (zero) for each
wire (gate) of the generated circuit (eq. 1d),
yielding:

• First phase, circuit functionality:

f10 = 2ni × no (1a)

f1 = f1 + 1,
if {bit i of Y} = {bit i of YR} ,

i = 1, ..., f10

(1b)

• Second phase, circuit simplicity:

f2 = f2 + 1, if gate type = wire (1c)

Fs =

{

f1, Fs < f10

f1 + f2, Fs ≥ f10

(1d)

where i = 1, . . . , f10, and ni and no represent the
number of inputs and outputs of the circuit.

The concept of dynamic fitness function Fd results
from an analogy with control systems, where we
have a variable to be controlled, similarly with the
GA case, where we master the population through
the fitness function. The simplest control system
is the proportional algorithm; nevertheless, there
can be other control algorithms, such as, for
example, the proportional and the differential
scheme.

In this line of thought, applying the static fit-
ness function corresponds to using a kind of pro-
portional algorithm. Therefore, to implement a
proportional-derivative evolution the fitness func-
tion needs a scheme of the type:447



Fd = Fs + K Dµ [Fs] (2)

where 0 ≤ µ ≤ 1 is the differential fractional-order
and K is the ‘gain’ of the dynamical term.

The generalization of the concept of derivative
Dµ[f(x)] to noninteger values of µ goes back to
the beginning of the theory of differential calcu-
lus. In fact, Leibniz, in his correspondence with
Bernoulli, L’Hôpital and Wallis, had several notes
about its calculation for µ = 1/2 Oldham and
Spanier (1974); Miller and Ross (1993). Neverthe-
less, the adoption of the FC in control algorithms
has been recently studied using the frequency and
discrete-time domains Oustaloup (1995); Méhauté
(1991); Machado (1997).

The mathematical definition of a derivative of
fractional order µ has been the subject of sev-
eral different approaches. For example, Eq. (3)
represent the Grünwald-Letnikov definition of the
fractional derivative of order µ of the signal x(t):

Dµ [x (t)] = lim
h→0

1

hµ

∞
∑

k=0

(−1)
k
Γ (µ + 1)

k!Γ (µ − k + 1)
x (t − kh)

(3)

where Γ is the gamma function and h is the time
increment. This Grünwald-Letnikov formulation
Machado (1997) inspired a discrete-time calcula-
tion algorithm, based on the approximation of the
time increment h through the sampling period T
and a r-term truncated series yielding the equa-
tion:

Dµ [x (t)] ≈
1

Tα

r
∑

k=0

(−1)
k
Γ (µ + 1)

k! Γ (µ − k + 1)
x (t − kT )

(4)

This technique was adopted in Reis et al. (2005)
with r = 50.

In this paper the fractional derivative is calculated
through a Padé fraction approximation of Euler
transformation:

Dµ(z) =

(

1

T

)µ

Padé
{

(1 − z−1)µ
}

m,n

=

(

1

T

)µ
Pm(z−1)

Qn(z−1)

=

(

1

T

)µ
p0 + p1z

−1 + · · · + pmz−m

q0 + q1z−1 + · · · + qmz−n

(5)

where m, n ∈ ℵ are the orders of the polynomials
and z−1 represents the discrete time sampling.

Table 2. Circuits truth tables

PC4

A3 A2 A1 A0 P

0 0 0 0 0

0 0 0 1 1

0 0 1 1 0

0 0 1 0 1

0 1 1 0 0

0 1 1 1 1

0 1 0 1 0

0 1 0 0 1

1 1 0 0 0

1 1 0 1 1

1 1 1 1 0

1 1 1 0 1

1 0 1 0 0

1 0 1 1 1

1 0 0 1 0

1 0 0 0 1

M2 − 1

S0 I1 I0 O

0 0 0 0

0 0 1 1

0 1 1 1

0 1 0 0

1 1 0 1

1 1 1 1

1 0 0 0

1 0 0 0

FA1

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 1 0 1

0 1 0 1 0

1 1 0 0 1

1 1 1 1 1

1 0 0 0 1

1 0 0 1 0

3. PERFORMANCE EVALUATION

A reliable execution and analysis of a GA usually
requires a large number of simulations to provide
that stochastic effects have been properly consid-
ered. Therefore, in this study n = 100 simulations
for each case are executed.

The experiments consist on running the GA in or-
der to generate a combinational logic circuit with
the gate sets presented in Table 1, CR = 95%,
MR = 20% and P = 100 circuits, using the fitness
scheme described previously.

In this article three case studies are adopted
corresponding to a 4-bit parity checker (PC4), a
2-to-1 multiplexer (M2−1) and a 1-bit full adder
(FA1) as follows:

• the PC4 circuit, has 4 inputs X = {A3, A2,
A1 A0} and 1 output YR = {P}. The matrix
A size is 4 × 4, and the length of each string
representing a circuit (i.e., the chromosome
length) is CL = 48,

• the M2−1 circuit, has 3 inputs X = {S0, I1,
I0} and 1 output YR = {O}. The matrix A

size is 3 × 3, and CL = 27,
• the FA1 circuit, has 3 inputs X = {A, B,

Cin} and 2 outputs YR = {S, Cout}. The
matrix A size is 3 × 3, and CL = 27.

Table 2 presents the Boolean truth Tables for the
circuits under study.

The implementation of the differential fractional
order operator adopts Eq. (5) with m = n = 4
and T = 1s.448



Having these ideas in mind, a superior GA perfor-
mance means achieving solutions with a smaller
number N of generations, in order to accelerate
convergence and a smaller variability, deviation
in order to reduce the stochastic nature of the
algorithm.

Due to the huge number of possible combinations
of the GA parameters, in the sequel we evaluate
only a limited set of cases. Therefore, a priori,
other values can lead to different results. Never-
theless, the authors developed an extensive num-
ber of numerical experiments and concluded that
the following cases are representative.

We analyze the GA performance when adopting
a dynamical scheme for the fitness function and
the simulations investigate the differential scheme
µ = {0.0, 0.25, 0.5, 0.75, 1.0} in Fd for gains in
the range K ∈ [0,1].

Figures 3-5 show the average AV (N) and the
standard deviation SD(N) of the required number
of generations to achieve a solution versus K with
Fd, for the PC4, M2− 1 and FA1 circuits, using
the Gsets {a, b}, respectively. For comparison the
charts include the case µ = 0, that corresponds to
the static function Fs. We verify that Fd produces
better results than the classical Fs.

In conclusion, the modification of the standard
fitness function concept, by introducing the dy-
namical effects improves significantly the GA per-
formance as it was presented in Reis et al. (2005)
when using Taylor Series. Applying the Padé ap-
proximation we have achieved similar results for
AV (N) and SD(N) with a faster computational
scheme.

4. CONCLUSIONS

The concept of fractional-order dynamical fitness
function is an important method to outperform
the classical static approach. The Padé approx-
imation, having the advantage of being a faster
implementation technique, leads to similar results
as the Taylor Series method in terms of AV (N)
and SD(N). The tuning of the ‘optimal’ parame-
ters (µ, K) was established through a numerical
evaluation. Therefore, future research will address
the problem of establishing a more systematic
design method. Furthermore, these conclusions
encourage further studies using other fractional
order dynamical schemes.
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