
ICCC 2003

IEEE International Conference on

Computational Cybernetics

Siófok, Hungary

August 29-31, 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/195806514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Evolutionary Approach to the Synthesis of Combinational Circuits

Cecília Reis J. A. Tenreiro Machado
Institute of Engineering of Porto Institute of Engineering of Porto

Polytechnic Institute of Porto Polytechnic Institute of Porto

Rua Dr. António Bernardino de Almeida, 4200-072 Porto Rua Dr. António Bernardino de Almeida, 4200-072 Porto

Portugal Portugal
cecilia@dee.isep.ipp.pt jtm@dee.isep.ipp.pt

Abstract – This paper proposes a genetic algorithm for

designing combinational logic circuits and studies four

different case examples: 2-to-1 multiplexer, one-bit full adder,

four-bit parity checker and a two-bit multiplier. The

objective of this work is to generate a functional circuit with

the minimum number of gates.

I.INTRODUCTION

In the last decade genetic algorithms (GAs) have been

applied in the design of electronic circuits, leading to a

novel area of research called Evolutionary Electronics (EE)

or Evolvable Hardware (EH) [1].

EE considers the concept for automatic design of

electronic systems. Instead of using human conceived

models, abstractions and techniques, EE employs search

algorithms to develop good designs [2].

One decade ago Sushil and Rawlins (1991) applied GAs

to the combinational circuit design problem. They

combined knowledge-based systems with the GA and

defined a genetic operator called masked crossover. This

scheme leads to other kinds of children that can not be

achieved by classical crossover operators [3].

John Koza (1992) adopted genetic programming to

design combinational circuits. His goal was the design of

functional circuits through AND, OR and NOT logic gates

[4].

In the sequence of this work, Coello, Christiansen and

Aguirre (1996) presented a computer program that

automatically generates high-quality circuit designs [5].

They use five possible types of gates (AND, NOT, OR,

XOR and WIRE) with the objective of finding a functional

design that minimizes the use of gates other than WIRE

(essentially a logical no-operation).

Miller, Thompson and Fogarty (1997) applied

evolutionary algorithms for the design of arithmetic

circuits. The technique was based on evolving the

functionality and connectivity of a rectangular array of

logic cells, with a model of the resources available on the

Xilinx 6216 FPGA device [6].

Kalganova, Miller and Lipnitskaya (1998) proposed

another technique for designing multiple-valued circuits.

The EH is easily adapted to the distinct types of multiple-

valued gates, associated with operations corresponding to

different types of algebra, and can include other logical

expressions [7]. This approach is an extension of EH

method for binary logic circuits proposed in [6].

In order to solve complex systems, Torresen (1998)

proposed the method of increased complexity evolution.

The idea is to evolve a system gradually as a kind of

divide-and-conquer method. Evolution is first undertaken

individually on a large number of simple cells. The

evolved functions are the basic blocks adopted in further

evolution or assembly of a larger and more complex

system [8].

More recently Hollingworth, Smith and Tyrrell (2000)

describe the first attempts to evolve circuits using the

Virtex Family of devices. They implemented a simple 2-bit

adder, where the inputs to the circuit are the two 2-bit

numbers and the expected output is the sum of the two

input values [9].

A major bottleneck in the evolutionary design of

electronic circuits is the problem of scale. This refers to the

very fast growth of the number of gates, used in the target

circuit, as the number of inputs of the evolved logic

function increases. This results in a huge search space that

is difficult to explore even with evolutionary techniques.

Another related obstacle is the time required to calculate

the fitness value of a circuit [10]. A possible method to

solve this problem is to use building blocks either than

simple gates. Nevertheless, this technique leads to another

difficulty, which is how to define building blocks that are

suitable for evolution.

Timothy Gordon (2002) suggests an approach that

allows evolution to search for good inductive bases for

solving large-scale complex problems. This scheme

generates, inherently, modular and iterative structures, that

exist in many real-world circuit designs but, at the same

time, allows evolution to search innovative areas of space

[11].

Following this line of research, this paper proposes a

GA for the design of combinational logic circuits. This

paper is organized as follows. Section 2 introduces the

problem and the adopted GA, as well as the encoding of

the circuit as a chromosome, the genetic operators and the

fitness function. Sections 3 and 4 present the simulation

results and their comparison, respectively. The scalability

problem is also analyzed. Finally, section 6 presents the

main conclusions.

II. PROBLEM AND ALGORITHM FORMULATION

A. Problem definition

In this work are considered combinational logic circuits

specified by a truth table. These circuits can have multiple

inputs and multiple outputs and the goal is to implement a

functional circuit with the least possible complexity. For

that purpose, it is defined a set of logic gates and are

generated circuits with components of that specific set.

In this study we define four gate sets, each one with

different types of logic gates, as presented in Table 1. Gset

6 is the most complex set, Gset 4 and Gset 3 are medium

complexity sets and Gset 2 is the simplest one.

Table 1 Gate sets

Gate Set Logic gates

Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE}

Gset 4 {AND,OR,XOR,NOT,WIRE}

Gset 3 {AND,OR,XOR,WIRE}

Gset 2 {AND,XOR,WIRE}

For each gate set the GA searches the solution space of a

function through a simulated evolution aiming the survival

of the fittest strategy. In general, the best individuals of

any population tend to reproduce and survive, thus

improving successive generations. However, inferior

individuals can, by chance, survive and also reproduce

[12]. In our case, the individuals are digital circuits, which

can evolve until the solution is reached (in terms of

functionality and complexity).

B. Circuit enconding

EH systems develop chromosomes that encode the

functional description of a given circuit. As with many GA

applications, the resulting circuit is the phenotype as it

comprises several smaller logic cells or genotypes. The

adopted terminology reflects the conceptual similarity

between EH, natural evolution and genetics [13].

In the GA scheme the circuits are encoded as a

rectangular matrix (row × column = r × c) of logic cells as

represented in figure.1

Fig. 1. Example of a matrix 3 × 3 to represent a circuit.

Each cell is represented by three genes:

<input1><input2><gate type>, where input1 and input2

are one of the circuit inputs, if they are in the first column,

or one of the previous outputs, if they are in other columns.

The gate type is one of the elements adopted in the gate

set. The chromosome is constituted by as many triplets of

this kind as the matrix size demands. For example, the

chromosome that represents a 3 × 3 matrix is depicted in

figure 2.

0 … 26

Input Input Gate … Input Input Gate

A … I

Fig. 2. Chromosome for the example of figure.

C. The genetic operators

The initial population of circuits (strings) is generated at

random. The search is then carried out among this

population. The three different operators used are

reproduction, crossover and mutation, as described in the

sequel.

In what concern the reproduction operator, the

successive generations of new strings are reproduced on

the basis of their fitness function. In this case, it is used a

tournament selection [12] to select the strings from the old

population, up to the new population.

For the crossover operator, the strings in the new

population are grouped together into pairs at random.

Single point crossover is then performed among pairs. The

crossover point is only allowed between cells to maintain

the chromosome integrity.

The mutation operator changes the characteristics of a

given cell in the matrix. Therefore, it modifies the gate

type and the two inputs, meaning that a completely new

cell can appear in the chromosome. Moreover, it is applied

an elitist algorithm and, consequently, the best solutions

are always kept for the next generation.

To run the GA we have to define the number of

individuals to create the initial population P. This

population is always the same size across the generations,

until the solution is reached.

The crossover rate CR represents the percentage of the

population P that reproduces in each generation. Likewise

MR is the percentage of the population P that mutates in

each generation.

Usually, in order to achieve the population evolution,

CR is high (e.g., 80%-95%) and, to prevent population

diversity, MR is low (e.g., 1%-5%). In our case, to evolve

the circuits, we adopt P = 3000 individuals, CR = 95% and

MR = 5%.

D. The fitness function

The calculation of the fitness function F is divided in

two parts f1 and f2 that measure the functionality and the

simplicity, respectively. Firstly, we compare the output

produced by the GA-generated circuit with the expected

values, according with the truth table, on a bit-per-bit basis

(i.e., f1). Once the circuit is functional, the GA tries to

generate circuits with the least number of gates. Therefore,

the index f2, that measures the simplicity, is increased by

one (zero) for each wire (gate) of the generated circuit,

yielding:

f10 = 2
ni × no (1)

f2 = f2 + 1 if gate type = wire (2)

1 10

1 2 10

,

,

f F f
F

f f F f

<
=

+ ≥
(3)

where ni and no represent the number of inputs and outputs

of the circuit.

III. SIMULATION RESULTS

This section shows the implementation of four different

combinational logic circuits, namely, a 2-to-1 multiplexer,

a one-bit full adder, a four-bit parity checker and a two-bit

multiplier.

A

B

C

D

E

F

G

H

I

Inputs Outputs

A. 2-to-1 multiplexer

The first case study is a 2-to-1 multiplexer circuit, with a

truth table with 3 inputs {S0, I1, I0} and 1 output {O}. In

this case, the matrix has a size of r × c = 3 × 3, and the

length of each string representing a circuit (i.e., the

chromosome length) is CL = 27.

Due to the stochastic nature of the GAs, for each gate set

we performed several simulations. Figure 3 shows the

fitness function F versus the number of generations N to

achieve the solution.

The best gate set is the one that presents the solution

after the least number of generations N with the higher

final fitness function F. Since the 2-to-1 multiplexer has

ni = 3 and no = 1, it results f10 = 8 and F ≥ 12.

9

10

11

12

13

10 100

Number of Generations (N)

F
it

n
es

s
F

u
n
ct

io
n
 (

F
)

Gset 6 Gset 4 Gset 3 Gset 2

Fig. 3. Fitness function F versus number of generations N

to achieve the solution.

Table 2 shows the average number of generation Nav and

the average fitness function Fav, after performing twenty

simulation experiments for each gate set.

We can see that, in this case, the best gate set is Gset 2,

because it leads to a smaller average number of generations

Nav and the best average final fitness function Fav. The best

resulting circuits have final fitness function F = 12 as

shown in figure 4.

Table 2 GA results for the 2-to-1 multiplexer

Gate Set Nav Fav

Gset 6 27.15 10.25

Gset 4 19.75 10.35

Gset 3 13.55 10.65

Gset 2 12.05 11.15

S
0

I
1

O

I
0

Fig. 4. GA generated 2-to-1 mulpiplexer

B. One-bit full adder

The second case study is a one-bit full adder circuit,

with a truth table with 3 inputs {A, B, Cin} and 2 outputs

{S, Cout}. In this case, the matrix has a size of r × c = 3 × 3,

and the length of each string representing a circuit (i.e., the

chromosome length) is CL = 27.

Due to the stochastic nature of the GAs, for each gate set

we performed several simulations. Figure 5 shows the

fitness function F versus the number of generations N to

achieve the solution.

The best gate set is the one that presents the solution

after the least number of generations N with the higher

final fitness function F. Since the one-bit full adder has

ni = 3 and no = 2, it results f10 = 16 and F ≥ 20.

17

18

19

20

10 100

Number of Generations (N)

F
it

n
es

s
F

u
n
ct

io
n
 (

F
)

Gset 6 Gset 4 Gset 3 Gset 2

Fig. 5. Fitness function F versus number of generations

N to achieve the solution.

Table 3 shows the average number of generation Nav and

the average fitness function Fav, after performing twenty

simulation experiments for each gate set.

We can see that, in this case, the best gate sets are Gsets

3 and 2, because they lead to a smaller average number of

generations Nav and the best average final fitness function

Fav. The best resulting circuits have final fitness function

F = 19 as shown in figure 6.

Table 3 GA results for the one-bit full adder

Gate Set Nav Fav

Gset 6 72.45 18.15

Gset 4 53.65 18.35

Gset 3 32.40 18.45

Gset 2 34.86 18.57

A

B
S

C
out

C
in

Fig. 6. GA generated One-bit Full Adder circuit

C. Four-bit parity checker

The third case study is a four-bit parity (even) checker

circuit, with a truth table having 4 inputs {A3, A2, A1, A0}
and 1 output {P}. The size of the matrix is r × c = 4 × 4

and the chromosome length is CL = 48.

Figure 7 shows the fitness function F versus the number

of generations N to achieve the solution.

In this case ni = 4 and no = 1, resulting f10 = 16 and

F ≥ 24.

20

21

22

23

24

25

26

10 100

Number of Generations (N)

F
it

n
es

s
F

u
n
ct

io
n
 (

F
)

Gset 6 Gset 4 Gset 3 Gset 2

Fig. 7. Fitness function F versus number of generations

N to achieve the solution.

Table 4 shows the average number of generation Nav and

the average fitness function Fav, after performing twenty

simulation experiments for each gate set.

Once again we conclude that Gset 2 is the best gate set

for generating the combinational logic circuits. Figure 8

illustrates the schematic of the best circuit with an F = 25.

Table 4 GA results for the four-bit parity checker

Gate Set Nav Fav

Gset 6 32.55 21.70

Gset 4 20.40 21.95

Gset 3 13.754 22.65

Gset 2 7.95 23.95

A
3

A
0

P

A
2

A
1

Fig. 8. GA generated Four-bit Parity Checker circuit

D. Two-bit multiplier

The fourth case study is a two-bit multiplier. Therefore

the truth table has 4 inputs {A1, A0, B1, B0} and 4 outputs

{C3, C2, C1, C0}. The matrix, for this example, is

r × c = 4 × 4 dimensional, and the chromosome as size

CL = 48.

Figure 9 shows the fitness function F versus the number

of generations N to achieve the solution.

For the two-bit multiplier we have ni = 4 and no = 4,

leading to f10 = 64 and F ≥ 72.

68

69

70

71

72

73

100 1000 10000

Number of Generations (N)

F
it

n
es

s
F

u
n
ct

io
n
 (

F
)

Gset 6 Gset 4 Gset 3 Gset 2

Fig. 9. Fitness function F versus number of generations

N to achieve the solution.

Table 5 shows the average number of generation Nav and

the average fitness function Fav, after performing twenty

simulation experiments for each gate set.

The best results are obtained with Gset 2 and the

schematic of the best resulting circuit, with F = 7, is

showed in figure 10.

Table 5 GA results for the two-bit multiplier

Gate Set Nav Fav

Gset 6 1699.00 69.15

Gset 4 1183.05 69.50

Gset 3 432.40 70.25

Gset 2 362.35 70.45

Fig. 10. GA generated Two-bit Multiplier circuit.

A
1

B
1

A
0

B
0

C
3

C
2

C
1

C
0

IV. COMPARISON OF THE RESULTS

In this section we compare the four case studies through

the required average number of generations Nav and the

resulting average fitness function Fav (figures 11 and 12).

1.00

10.00

100.00

1000.00

10000.00

Gset 6 Gset 4 Gset 3 Gset 2

Gate Sets

Aver

2-to-1 multiplexer One-bit adder

Four-bit parity checker Two-bit multiplier

Fig. 11. Average number of generations to achieve the

solution, for the Gsets under evaluation

10.00

100.00

Gset 6 Gset 4 Gset 3 Gset 2

Gate Sets

A
v
er

ag
e

F
it

n
es

s
fu

n
ct

io
n
 (

F
av

)

2-to1 multiplexer One-bit adder

Four-bit parity checker Two-bit multiplier

Fig. 12. Average fitness function for the Gsets under

evaluation

We conclude that, independently of the circuit

complexity, the best results occur for a reduced Gset. This

conclusion has similarities with the RISC vs CISC

processor dilemma but, before establishing a final

conclusion, more extensive experiments with other circuits

are required.

Another issue that emerges with the increasing number

of circuit inputs and outputs is the scalability problem.

Since the truth table grows exponentially, the GA

computational burden to achieve the solution increases

dramatically.

Figures 13 - 16 show the evolution of Nav and Fav for the

parity checker and the full adder circuits, as the number of

bits increases.

Gset 6 Gset 4 Gset 3 Gset 2

2-bit

4-bit

6-bit

1

10

100

Nav

Fig. 13. Average number of generations for the 2-bit, 4-bit

and 6-bit parity checker for the Gsets under evaluation.

Gset 6 Gset 4 Gset 3 Gset 2

2-bit

4-bit

6-bit

1

10

100

Fav

Fig. 14. Average final fitness function for the 2-bit, 4-bit

and 6-bit parity checker for the Gsets under evaluation.

Gset 6 Gset 4 Gset 3 Gset 2

1� b
� �

� � � � �
1

10

100

1000

10000

Nav

Fig. 15. Average number of generations for the 1-bit and 2-

bit full adder for the Gsets under evaluation.

Gset 6 Gset 4 Gset 3 Gset 2

� � � � 	

 � � � 	

1

10

100

Fav

Fig. 16. Average final fitness function for the 1-bit and 2-

bit full adder for the Gsets under evaluation.

The scalability problem lies on the gate-based strategy

for Boolean implementation. Consequently, more efficient

implementation alternatives (e.g., binary decision

diagrams) are currently under evaluation.

VI. CONCLUSIONS

This paper proposed a GA for designing combinational

logic circuits given a set of logic gates. The final circuit is

optimized in terms of complexity (with the minimum

number of gates).

For all the case studies the GA has proved to be

efficient, even when the number of outputs in the truth

table increases. It is also visible that the performance of the

GA increases as the complexity of the gate set decreases.

Experiments show that we have better results with Gset 2,

that is, the simplest set that we have adopted in this study.

Motivated by the results future investigation will address

the design of sequential logic circuits and the feasibility

versus complexity versus convergence of the resulting

circuits.

V. REFERENCES

[1] Zebulum, R. S., Pacheco, M. A. and Vellasco, M.

M., Evolutionary Electronics: Automatic Design of

Electronic Circuits and Systems by Genetic

Algorithms, CRC Press, 2001.

[2] Thompson, A. and Layzell, P. “Analysis of

unconventional evolved electronics,”

Communications of the ACM, Vol. 42, 1999, pp. 71-

79.

[3] Louis, S.J. and Rawlins, G. J., “Designer Genetic

Algorithms: Genetic Algorithms in Structure

Design,” in Proceedings of the Fourth International

Conference on Genetic Algorithms, 1991.

[4] Koza, J. R., Genetic Programming. On the

Programming of Computers by means of Natural

Selection, MIT Press, 1992.

[5] Coello, C. A., Christiansen, A. D. and Aguirre, A.

H., “Using Genetic Algorithms to Design

Combinational Logic Circuits”, Intelligent

Engineering through Artificial Neural Networks.

Vol. 6, 1996, pp. 391-396.

[6] Miller, J. F., Thompson, P. and Fogarty, T,

Algorithms and Evolution Strategies in Engineering

and Computer Science: Recent Advancements and

Industrial Applications. Chapter 6, 1997, Wiley.

[7] Kalganova, T., Miller, J. F. and Lipnitskaya, N.,

“Multiple_Valued Combinational Circuits

Synthesised using Evolvable Hardware,” in

Proceedings of the 7
th

 Workshop on Post-Binary

Ultra Large Scale Integration Systems, 1998.

[8] Torresen, J., “A Divide-and-Conquer Approach to

Evolvable Hardware,” in Proceedings of the Second

International Conference on Evolvable Hardware.

Vol. 1478, 1998, pp. 57-65.

[9] Hollingworth, G. S., Smith, S. L. and Tyrrell, A. M.,

“The Intrinsic Evolution of Virtex Devices Through

Internet Reconfigurable Logic,” in Proceedings of

the Third International Conference on Evolvable

Systems. Vol. 1801, 2000, pp. 72-79.

[10] Vassilev, V. K. and Miller, J. F., “Scalability

Problems of Digital Circuit Evolution,” in

Proceedings of the Second NASA/DOD Workshop

on Evolvable Hardware, 2000, pp. 55-64.

[11] Gordon, T. G. and Bentley, P., “Towards

Development in Evolvable Hardware,” in

Proceedings of the 2002 NASA/DOD Conference on

Evolvable Hardware, 2002. pp. 241-250.

[12] Goldberg, D. E., Genetic Algorithms in Search

Optimization and Machine Learning, 1989,

Addison-Wesley.

[13] Hounsell, B. and Arslan, T., “A Novel Evolvable

Hardware Framework for the Evolution of High

Performance Digital Circuits,” in Proceedings of the

Genetic and Evolutionary Computation Conference,

2000, pp. 525-532.

