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Abstract – This paper proposes a genetic algorithm for 

designing combinational logic circuits and studies four 

different case examples: 2-to-1 multiplexer, one-bit full adder, 

four-bit parity checker and a two-bit multiplier. The 

objective of this work is to generate a functional circuit with 

the minimum number of gates. 

I.INTRODUCTION 

In the last decade genetic algorithms (GAs) have been 

applied in the design of electronic circuits, leading to a 

novel area of research called Evolutionary Electronics (EE) 

or Evolvable Hardware (EH) [1]. 

EE considers the concept for automatic design of 

electronic systems. Instead of using human conceived 

models, abstractions and techniques, EE employs search 

algorithms to develop good designs [2]. 

One decade ago Sushil and Rawlins (1991) applied GAs 

to the combinational circuit design problem. They 

combined knowledge-based systems with the GA and 

defined a genetic operator called masked crossover. This 

scheme leads to other kinds of children that can not be 

achieved by classical crossover operators [3].

John Koza (1992) adopted genetic programming to 

design combinational circuits. His goal was the design of 

functional circuits through AND, OR and NOT logic gates 

[4].

In the sequence of this work, Coello, Christiansen and 

Aguirre (1996) presented a computer program that 

automatically generates high-quality circuit designs [5]. 

They use five possible types of gates (AND, NOT, OR, 

XOR and WIRE) with the objective of finding a functional 

design that minimizes the use of gates other than WIRE 

(essentially a logical no-operation). 

Miller, Thompson and Fogarty (1997) applied 

evolutionary algorithms for the design of arithmetic 

circuits. The technique was based on evolving the 

functionality and connectivity of a rectangular array of 

logic cells, with a model of the resources available on the 

Xilinx 6216 FPGA device [6]. 

Kalganova, Miller and Lipnitskaya (1998) proposed 

another technique for designing multiple-valued circuits. 

The EH is easily adapted to the distinct types of multiple-

valued gates, associated with operations corresponding to 

different types of algebra, and can include other logical 

expressions [7]. This approach is an extension of EH 

method for binary logic circuits proposed in [6]. 

In order to solve complex systems, Torresen (1998) 

proposed the method of increased complexity evolution. 

The idea is to evolve a system gradually as a kind of 

divide-and-conquer method. Evolution is first undertaken 

individually on a large number of simple cells. The 

evolved functions are the basic blocks adopted in further 

evolution or assembly of a larger and more complex 

system [8]. 

More recently Hollingworth, Smith and Tyrrell (2000) 

describe the first attempts to evolve circuits using the 

Virtex Family of devices. They implemented a simple 2-bit 

adder, where the inputs to the circuit are the two 2-bit 

numbers and the expected output is the sum of the two 

input values [9]. 

A major bottleneck in the evolutionary design of 

electronic circuits is the problem of scale. This refers to the 

very fast growth of the number of gates, used in the target 

circuit, as the number of inputs of the evolved logic 

function increases. This results in a huge search space that 

is difficult to explore even with evolutionary techniques. 

Another related obstacle is the time required to calculate 

the fitness value of a circuit [10]. A possible method to 

solve this problem is to use building blocks either than 

simple gates. Nevertheless, this technique leads to another 

difficulty, which is how to define building blocks that are 

suitable for evolution.  

Timothy Gordon (2002) suggests an approach that 

allows evolution to search for good inductive bases for 

solving large-scale complex problems. This scheme 

generates, inherently, modular and iterative structures, that 

exist in many real-world circuit designs but, at the same 

time, allows evolution to search innovative areas of space 

[11].

Following this line of research, this paper proposes a 

GA for the design of combinational logic circuits. This 

paper is organized as follows. Section 2 introduces the 

problem and the adopted GA, as well as the encoding of 

the circuit as a chromosome, the genetic operators and the 

fitness function. Sections 3 and 4 present the simulation 

results and their comparison, respectively. The scalability 

problem is also analyzed. Finally, section 6 presents the 

main conclusions.   

II. PROBLEM AND ALGORITHM FORMULATION 

A. Problem definition  

In this work are considered combinational logic circuits 

specified by a truth table. These circuits can have multiple 

inputs and multiple outputs and the goal is to implement a 

functional circuit with the least possible complexity. For 

that purpose, it is defined a set of logic gates and are 

generated circuits with components of that specific set. 

In this study we define four gate sets, each one with 

different types of logic gates, as presented in Table 1. Gset 

6 is the most complex set, Gset 4 and Gset 3 are medium 

complexity sets and Gset 2 is the simplest one. 



     

Table 1 Gate sets

Gate Set Logic gates 

Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE}

Gset 4 {AND,OR,XOR,NOT,WIRE}

Gset 3 {AND,OR,XOR,WIRE}

Gset 2 {AND,XOR,WIRE}

For each gate set the GA searches the solution space of a 

function through a simulated evolution aiming the survival 

of the fittest strategy. In general, the best individuals of 

any population tend to reproduce and survive, thus 

improving successive generations. However, inferior 

individuals can, by chance, survive and also reproduce 

[12]. In our case, the individuals are digital circuits, which 

can evolve until the solution is reached (in terms of 

functionality and complexity). 

B. Circuit enconding

EH systems develop chromosomes that encode the 

functional description of a given circuit. As with many GA 

applications, the resulting circuit is the phenotype as it 

comprises several smaller logic cells or genotypes. The 

adopted terminology reflects the conceptual similarity 

between EH, natural evolution and genetics [13]. 

In the GA scheme the circuits are encoded as a 

rectangular matrix (row × column = r × c) of logic cells as 

represented in figure.1  

Fig. 1. Example of a matrix 3 × 3 to represent a circuit. 

Each cell is represented by three genes: 

<input1><input2><gate type>, where input1 and input2 

are one of the circuit inputs, if they are in the first column, 

or one of the previous outputs, if they are in other columns. 

The gate type is one of the elements adopted in the gate 

set. The chromosome is constituted by as many triplets of 

this kind as the matrix size demands. For example, the 

chromosome that represents a 3 × 3 matrix is depicted in 

figure 2. 

0   …   26 

Input Input Gate … Input Input Gate 

A … I 

Fig. 2. Chromosome for the example of figure. 

C. The genetic operators 

The initial population of circuits (strings) is generated at 

random. The search is then carried out among this 

population. The three different operators used are 

reproduction, crossover and mutation, as described in the 

sequel. 

In what concern the reproduction operator, the 

successive generations of new strings are reproduced on 

the basis of their fitness function. In this case, it is used a 

tournament selection [12] to select the strings from the old 

population, up to the new population. 

For the crossover operator, the strings in the new 

population are grouped together into pairs at random. 

Single point crossover is then performed among pairs. The 

crossover point is only allowed between cells to maintain 

the chromosome integrity. 

The mutation operator changes the characteristics of a 

given cell in the matrix. Therefore, it modifies the gate 

type and the two inputs, meaning that a completely new 

cell can appear in the chromosome. Moreover, it is applied 

an elitist algorithm and, consequently, the best solutions 

are always kept for the next generation. 

To run the GA we have to define the number of 

individuals to create the initial population P. This 

population is always the same size across the generations, 

until the solution is reached. 

The crossover rate CR represents the percentage of the 

population P that reproduces in each generation. Likewise 

MR is the percentage of the population P that mutates in 

each generation. 

Usually, in order to achieve the population evolution, 

CR is high (e.g., 80%-95%) and, to prevent population 

diversity, MR is low (e.g., 1%-5%). In our case, to evolve 

the circuits, we adopt P = 3000 individuals, CR = 95% and 

MR = 5%. 

D. The fitness function

The calculation of the fitness function F is divided in 

two parts f1 and f2 that measure the functionality and the 

simplicity, respectively. Firstly, we compare the output 

produced by the GA-generated circuit with the expected 

values, according with the truth table, on a bit-per-bit basis 

(i.e., f1). Once the circuit is functional, the GA tries to 

generate circuits with the least number of gates. Therefore, 

the index f2, that measures the simplicity, is increased by 

one (zero) for each wire (gate) of the generated circuit, 

yielding: 

f10 = 2
ni × no (1)

f2 = f2 + 1 if gate type = wire (2)
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where ni and no represent the number of inputs and outputs 

of the circuit. 

III. SIMULATION RESULTS 

This section shows the implementation of four different 

combinational logic circuits, namely, a 2-to-1 multiplexer, 

a one-bit full adder, a four-bit parity checker and a two-bit 

multiplier. 
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A. 2-to-1 multiplexer  

The first case study is a 2-to-1 multiplexer circuit, with a 

truth table with 3 inputs {S0, I1, I0} and 1 output {O}. In 

this case, the matrix has a size of r × c = 3 × 3, and the 

length of each string representing a circuit (i.e., the 

chromosome length) is CL = 27. 

Due to the stochastic nature of the GAs, for each gate set 

we performed several simulations. Figure 3 shows the 

fitness function F versus the number of generations N to 

achieve the solution.  

The best gate set is the one that presents the solution 

after the least number of generations N with the higher 

final fitness function F. Since the 2-to-1 multiplexer has 

ni = 3 and no = 1, it results f10 = 8 and F ≥ 12. 
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Fig. 3. Fitness function F versus number of generations N

to achieve the solution. 

Table 2 shows the average number of generation Nav and 

the average fitness function Fav, after performing twenty 

simulation experiments for each gate set. 

We can see that, in this case, the best gate set is Gset 2, 

because it leads to a smaller average number of generations 

Nav and the best average final fitness function Fav. The best 

resulting circuits have final fitness function F = 12 as 

shown in figure 4. 

Table 2 GA results for the 2-to-1 multiplexer

Gate Set Nav Fav

Gset 6 27.15 10.25 

Gset 4 19.75 10.35 

Gset 3 13.55 10.65 

Gset 2 12.05 11.15 

S
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I
1

O

I
0

Fig. 4. GA generated 2-to-1 mulpiplexer 

B. One-bit full adder  

The second case study is a one-bit full adder circuit, 

with a truth table with 3 inputs {A, B, Cin} and 2 outputs 

{S, Cout}. In this case, the matrix has a size of r × c = 3 × 3, 

and the length of each string representing a circuit (i.e., the 

chromosome length) is CL = 27. 

Due to the stochastic nature of the GAs, for each gate set 

we performed several simulations. Figure 5 shows the 

fitness function F versus the number of generations N to 

achieve the solution.  

The best gate set is the one that presents the solution 

after the least number of generations N with the higher 

final fitness function F. Since the one-bit full adder has 

ni = 3 and no = 2, it results f10 = 16 and F ≥ 20. 
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Fig. 5. Fitness function F versus number of generations 

N to achieve the solution. 

Table 3 shows the average number of generation Nav and 

the average fitness function Fav, after performing twenty 

simulation experiments for each gate set. 

We can see that, in this case, the best gate sets are Gsets 

3 and 2, because they lead to a smaller average number of 

generations Nav and the best average final fitness function 

Fav. The best resulting circuits have final fitness function 

F = 19 as shown in figure 6. 

Table 3 GA results for the one-bit full adder

Gate Set Nav Fav

Gset 6 72.45 18.15 

Gset 4 53.65 18.35 

Gset 3 32.40 18.45 

Gset 2 34.86 18.57 
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B
S

C
out

C
in

Fig. 6. GA generated One-bit Full Adder circuit 



     

C. Four-bit parity checker  

The third case study is a four-bit parity (even) checker 

circuit, with a truth table having 4 inputs {A3, A2, A1, A0}
and 1 output {P}. The size of the matrix is r × c = 4 × 4 

and the chromosome length is CL = 48. 

Figure 7 shows the fitness function F versus the number 

of generations N to achieve the solution. 

In this case ni = 4 and no = 1, resulting f10 = 16 and 

F ≥ 24.
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Fig. 7. Fitness function F versus number of generations 

N to achieve the solution. 

Table 4 shows the average number of generation Nav and 

the average fitness function Fav, after performing twenty 

simulation experiments for each gate set.  

Once again we conclude that Gset 2 is the best gate set 

for generating the combinational logic circuits. Figure 8 

illustrates the schematic of the best circuit with an F = 25. 

Table 4 GA results for the four-bit parity checker

Gate Set Nav Fav

Gset 6 32.55 21.70 

Gset 4 20.40 21.95 

Gset 3 13.754 22.65 

Gset 2 7.95 23.95 
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Fig. 8. GA generated Four-bit Parity Checker circuit 

D. Two-bit multiplier  

The fourth case study is a two-bit multiplier. Therefore 

the truth table has 4 inputs {A1, A0, B1, B0} and 4 outputs 

{C3, C2, C1, C0}. The matrix, for this example, is 

r × c = 4 × 4 dimensional, and the chromosome as size 

CL = 48. 

Figure 9 shows the fitness function F versus the number 

of generations N to achieve the solution. 

For the two-bit multiplier we have ni = 4 and no = 4, 

leading to f10 = 64 and F ≥ 72. 
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Fig. 9. Fitness function F versus number of generations 

N to achieve the solution. 

Table 5 shows the average number of generation Nav and 

the average fitness function Fav, after performing twenty 

simulation experiments for each gate set.  

The best results are obtained with Gset 2 and the 

schematic of the best resulting circuit, with F = 7, is 

showed in figure 10. 

Table 5 GA results for the two-bit multiplier

Gate Set Nav Fav

Gset 6 1699.00 69.15 

Gset 4 1183.05 69.50 

Gset 3 432.40 70.25 

Gset 2 362.35 70.45 

Fig. 10. GA generated Two-bit Multiplier circuit. 
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IV. COMPARISON OF THE RESULTS 

In this section we compare the four case studies through 

the required average number of generations Nav and the 

resulting average fitness function Fav (figures 11 and 12). 
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Fig. 11. Average number of generations to achieve the 

solution, for the Gsets under evaluation 
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Fig. 12. Average fitness function for the Gsets under 

evaluation 

We conclude that, independently of the circuit 

complexity, the best results occur for a reduced Gset. This 

conclusion has similarities with the RISC vs CISC 

processor dilemma but, before establishing a final 

conclusion, more extensive experiments with other circuits 

are required. 

Another issue that emerges with the increasing number 

of circuit inputs and outputs is the scalability problem. 

Since the truth table grows exponentially, the GA 

computational burden to achieve the solution increases 

dramatically.  

Figures 13 - 16 show the evolution of Nav and Fav for the 

parity checker and the full adder circuits, as the number of 

bits increases.

Gset 6 Gset 4 Gset 3 Gset 2

2-bit

4-bit

6-bit

1

10

100

Nav

Fig. 13. Average number of generations for the 2-bit, 4-bit 

and 6-bit parity checker for the Gsets under evaluation. 
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Fig. 14. Average final fitness function for the 2-bit, 4-bit 

and 6-bit parity checker for the Gsets under evaluation. 
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Fig. 15. Average number of generations for the 1-bit and 2-

bit full adder for the Gsets under evaluation. 



     

Gset 6 Gset 4 Gset 3 Gset 2
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Fig. 16. Average final fitness function for the 1-bit and 2-

bit full adder for the Gsets under evaluation. 

The scalability problem lies on the gate-based strategy 

for Boolean implementation. Consequently, more efficient 

implementation alternatives (e.g., binary decision 

diagrams) are currently under evaluation. 

VI. CONCLUSIONS 

This paper proposed a GA for designing combinational 

logic circuits given a set of logic gates. The final circuit is 

optimized in terms of complexity (with the minimum 

number of gates).  

For all the case studies the GA has proved to be 

efficient, even when the number of outputs in the truth 

table increases. It is also visible that the performance of the 

GA increases as the complexity of the gate set decreases. 

Experiments show that we have better results with Gset 2, 

that is, the simplest set that we have adopted in this study. 

Motivated by the results future investigation will address 

the design of sequential logic circuits and the feasibility 

versus complexity versus convergence of the resulting 

circuits. 

V. REFERENCES 

[1] Zebulum, R. S., Pacheco, M. A. and Vellasco, M. 

M., Evolutionary Electronics: Automatic Design of 

Electronic Circuits and Systems by Genetic 

Algorithms, CRC Press, 2001.

[2] Thompson, A. and Layzell, P. “Analysis of 

unconventional evolved electronics,” 

Communications of the ACM, Vol. 42, 1999, pp. 71-

79.

[3] Louis, S.J. and Rawlins, G. J., “Designer Genetic 

Algorithms: Genetic Algorithms in Structure 

Design,” in Proceedings of the Fourth International 

Conference on Genetic Algorithms, 1991.

[4] Koza, J. R., Genetic Programming. On the 

Programming of Computers by means of Natural 

Selection, MIT Press, 1992. 

[5] Coello, C. A., Christiansen, A. D. and Aguirre, A. 

H., “Using Genetic Algorithms to Design 

Combinational Logic Circuits”, Intelligent 

Engineering through Artificial Neural Networks.

Vol. 6, 1996, pp. 391-396.

[6] Miller, J. F., Thompson, P. and Fogarty, T, 

Algorithms and Evolution Strategies in Engineering 

and Computer Science: Recent Advancements and 

Industrial Applications. Chapter 6, 1997, Wiley.

[7] Kalganova, T., Miller, J. F. and Lipnitskaya, N., 

“Multiple_Valued Combinational Circuits 

Synthesised using Evolvable Hardware,” in 

Proceedings of the 7
th

 Workshop on Post-Binary 

Ultra Large Scale Integration Systems, 1998. 

[8] Torresen, J., “A Divide-and-Conquer Approach to 

Evolvable Hardware,” in Proceedings of the Second 

International Conference on Evolvable Hardware.

Vol. 1478, 1998, pp. 57-65. 

[9] Hollingworth, G. S., Smith, S. L. and Tyrrell, A. M., 

“The Intrinsic Evolution of Virtex Devices Through 

Internet Reconfigurable Logic,” in Proceedings of 

the Third International Conference on Evolvable 

Systems. Vol. 1801, 2000, pp. 72-79.

[10] Vassilev, V. K. and Miller, J. F., “Scalability 

Problems of Digital Circuit Evolution,” in 

Proceedings of the Second NASA/DOD Workshop 

on Evolvable Hardware, 2000, pp. 55-64. 

[11] Gordon, T. G. and Bentley, P., “Towards 

Development in Evolvable Hardware,” in 

Proceedings of the 2002 NASA/DOD Conference on 

Evolvable Hardware, 2002. pp. 241-250. 

[12] Goldberg, D. E., Genetic Algorithms in Search 

Optimization and Machine Learning, 1989, 

Addison-Wesley. 

[13] Hounsell, B. and Arslan, T., “A Novel Evolvable 

Hardware Framework for the Evolution of High 

Performance Digital Circuits,” in Proceedings of the 

Genetic and Evolutionary Computation Conference, 

2000, pp. 525-532. 


