
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/195806499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PARTICLE SWARM OPTIMIZATION VERSUS
GENETIC ALGORITHM IN MANIPULATOR

TRAJECTORY PLANNING

E. J. Solteiro Pires ∗ P. B. Moura Oliveira ∗

J. A. Tenreiro Machado ∗∗ J. Boaventura Cunha ∗

∗ Dep. Eng. Electrotécnica, UTAD University,
5000-911 Vila Real, Portugal

∗∗ Dep. Eng. Electrotécnica, Inst. Sup. de Eng. do Porto, R. Dr
Ant. Bernadino Almeida, 4200-072 Porto, Portugal

Abstract: The aim of this study is the reduction of the computational burden associ-
ated with the evolutionary optimization of manipulator trajectory planning. This paper
proposes the use of a particle swarm optimization algorithm to generate trajectories
for robotic planar manipulators, based on direct kinematics. The design objective is
to minimize the ripple in the trajectory time evolution. Several redundant and hyper-
redundant manipulators are considered. The particle swarm optimization algorithm is
compared with genetic algorithm in solving the manipulator trajectory planning problem.
Preliminary simulation results are presented.

Keywords: Particle Swarm Optimization, Genetic Algorithms, Robotics, Trajectory
Planning, Optimization.

1. INTRODUCTION

Evolutionary inspired algorithms, particulary genetic
algorithms (GAs) have proved to be a good optimiza-
tion tool in robotic applications including manipulator
trajectory planning (Davidor (1991); Rana and Za-
lzala (1996); Kubota et al. (1996); Chen and Zalzala
(1997)). This problem can be tackled by using the dif-
ferential inverse kinematics for generating the manip-
ulator trajectory (Chen and Zalzala (1997); Davidor
(1991)). However, the former approach must take into
account the problem of kinematics singularities which
can be a serious drawback. To avoid this problem other
techniques were proposed (Rana and Zalzala (1996);
Kubota et al. (1996)) which are based on the use of
direct kinematics.

The type of manipulator trajectory planning problem
addressed in this study (described in detail in section
2) was solved successfully by using GAs considering
both a single objective (Solteiro Pires et al. (2001))

and multi-objective (Solteiro Pires et al. (2004)) for-
mulation. The problem associated with the use of
evolutionary based algorithms to solve manipulator
trajectory planning problems is that they still are
very time consuming. The reduction of the computa-
tional load involved with the use of GAs can be cru-
cial within practical industrial applications. Thus, the
study of alternative evolutionary inspired algorithms
which are conceptually simpler than GAs and less
demanding in terms of computational load is of great
interest. Among the most successfully natural inspired
algorithms proposed recently is the particle swarm
optimization (PSO) (Kennedy and Eberhart (1995)).
Indeed, some robotics applications wich incorporates
the use of PSO have been proposed. Tan et al. (Tang
et al. (2005)) presents a path planning approach based
on a neural network model and PSO in order to evolve
smooth motion paths quickly. The workspace was
modeled using actual point coordinates (x, y). These
points were fixed at equally spaced x-coordinates and

CONTROLO 2006
7th Portuguese Conference on Automatic Control
Instituto Superior Técnico, Lisboa, Portugal
September 11-13, 2006

the y-coordinates served as the control values to be op-
timized. PSO was used to evolve these values hoping
to find a better path. The (x, y) coordinates of the path
points were then fed into a neuronal network.

Wu et al. (Wu et al. (2004)) used a PSO to optimize
a trajectory for a dual-arm space robot. The motion-
planning problem was treated as a constrained con-
tinuous optimization problem. The path was modeled
using Bspline curves and the control points are the
parameters to be optimized. The function to be mini-
mized is the vibrations caused by the robot movement.
Constraints were applied to limit the values of the joint
angles and the velocities and accelerations of the robot
joints.

This paper reports the use of a standard PSO algorithm
to solve the manipulator trajectory planning problem.
Following this introduction the proposed trajectory
planning scheme is described in section 2, simulation
results are presented in section 3. Finally, in section 4
some conclusion are drawn.

2. THE TRAJECTORY PLANNING SCHEME

The proposed trajectory planning strategy using a
stochastic optimization technique is explained in this
section. The optimized trajectory is required to have
a reduced ripple in the space/time evolution. Two,
three and four link manipulators are considered, which
are required to move between two points in the
workspace. Two stochastic algorithms: the particle
swarm optimization (PSO) and the genetic algorithm
(GA) are used as optimization tools. Direct kinematics
are deployed to avoid singularity problems.

2.1 Trajectory Representation

The manipulator can move between two points of the
workspace. Therefore, the initial and final configura-
tions are given by the inverse kinematic equations.
The path is encoded directly, using real codification,
as strings in the joint space to be used by the algorithm
as:

{(q11, . . . , ql1), . . . , (q1n, . . . , qln)} (1)

The ith joint variable for a robot intermediate jth
position is qij , the vector is constituted by l con-
figurations and each configuration has n joint arm
values. The joint variables qij are initialized in the
range]−180o,+180o]. It is important to note that the
initial and final configurations have not been encoded
into the string because this configuration remains un-
changed throughout the trajectory search. The time
between two consecutive configurations is Δt = 0.1s.

In order to apply the PSO to solve this manipulator
optimization problem n = 8 parameters (1) are en-
coded as a swarm particle (or GA population element)
represented as a vector of real values.

2.2 Optimization criteria

Four indices are used to qualify the evolving robotic
manipulators trajectories. All indices are translated
into penalty functions to be minimized. Each index is
computed individually and is integrated in the fitness
function evaluation.

The fitness function f adopted for evaluating the can-
didate trajectories is defined as:

f = β1fq + β2fq̇ + β3fp + β4fṗ (2)

where the indices fq, fq̇, fp, fṗ are defined in the
sequel. The optimization goal consists in finding a
set of design parameters that minimize f according
to the priorities given by the weighting factors βi

(i = 1, .., 4).

The fq function is used to minimize the manipulator
traveling distance yielding the criteria:

fq =

n∑

j=1

l∑

i=1

q̇2
ij (3)

This equation is used to optimize the traveling dis-
tance because, if the curve length is minimized, the
ripple in the space trajectory is indirectly reduced.
For a function y = g(x) the distance curve length is
∫ [1 + (dg/dt)2] dx and, consequently, to minimize the
distance curve length it is adopted the simplified ex-
pression ∫ (dg/dt)2 dx. The fitness function maintains
the quadratic terms so that the robot configurations
are uniformly distributed between the initial and final
configurations.

The fq̇ function are used to minimize the ripple in
the time evolution of the robot trajectory through the
criteria:

fq̇ =

n∑

j=1

l∑

i=1

q̈2
ij (4)

The cartesian distances are introduced in the fitness
function f to minimize the total trajectory length, from
the initial point up to the final point. This criterion is
defined as:

fp =

n∑

j=2

d (pj , pj−1)
2 (5)

where pj is the robot j intermediate arm cartesian
position and d(·,·) is a function that gives the distance
between the two arguments.

The fṗ function in the fitness functions is responsible
for reducing the ripple in time evolution of the arm
velocities. This index is formulated as:

fṗ =

n∑

j=3

|d (pj, pj−1) − d (pj−1, pj−2)|
2 (6)

2.3 The Particle Swarm Optimization

The particle swarm optimization algorithm was pro-
posed originally by Kennedy and Eberhart (Kennedy
and Eberhart (1995)). This optimization technique is
inspired in the way swarms (flocks of birds, schools
of fishes, herds, etc.) elements move in a synchronized
way as a defensive tactic. An analogy is established
between a particle and an element of swarm. The par-
ticle movement is characterized by two vectors repre-
senting its current position x and velocity v.

Since 1985 many techniques have been proposed to
refine and/or complement the original PSO algorithm,
namely regarding tuning parameters (?) and by con-
sidering hybridization with other evolutionary tech-
niques (?).

In this study a standard elementary PSO is considered
(see algorithm 1). The basic algorithm begins by ini-
tializing the swarm randomly in the search space. As
it can be seen in algorithm 1, each particle position
is changed in every iteration by adding a new velocity.
This velocity is evaluated by summing an increment to
the old velocity value. The increment is a function of
two components representing the cognitive knowledge
and the social knowledge.

The cognitive knowledge of each particle is incorpo-
rated by evaluated the difference between the current
position x and its best position so far b. The social
knowledge of each particle is incorporated by evalu-
ated the difference between its current position x and
the best swarm global position achieved so far g. The
cognitive and social knowledge factors are multiplied
by a randomly generated constant φ1 and φ2, respec-
tively. The velocity of particles are restricted in order
to keep velocities from exploding.

Initialize Swarm;
repeat

forall particles do
calculate fitness f

end
forall particles do

vt+1 = vt + φ1(b − x) + φ2(g − x)
vt+1 ∈ [−vmin, +vmin]
xt+1 = xt + vt+1

end
until stopping criteria ;

Algorithm 1: Particle swarm optimization

2.4 Genetic Algorithm

Standard genetic algorithm (GA) is another optimiza-
tion technique. Initially, the GA initializes randomly
the population P(t). Each population element is rep-
resented computationally by a data structure which
incorporates problem dependent parameters. In one
generation these data structures are crossed between

t = 0
random (P (t))
fitness(P (t))
repeat

select P (t + 1) from P (t)
crossover(P (t + 1))
mutate(P (t + 1))
fitness(P (t + 1))
t = t + 1

until conclusion condition ;
Algorithm 2: Genetic Algorithm

them and are subjected to a mutation process in order
to produce better offsprings.

The selection operator used implemented uses a linear
ranking scheme. A binary crossover simulated opera-
tor (?) and a uniform base mutation are used.

3. SIMULATION RESULTS

The experiments consist on moving a robotic arm
from the starting point A ≡ {−0.5, 1.4} up to the
final point B ≡ {1.2,−0.3}. The simulations re-
sults were achieved by using the following settings,
with n = 8 configurations, T = 8000 iterations.
The swarm/population size is popsize = 100. Pa-
rameters φ1 and φ2 are uniformly generated in the
interval [−0.8, 0.8]. The weights values used in the
aggregated function (2) are βi = {1, 1, 0.5, 0.5} for
i = {1, 2, 3, 4}.

This section presents the results of several simulations
for two optimization types, that is, using the PSO and
the GA. Figures 1 to 3 shows the two-link manipulator
results: the successive configurations, the angular joint
positions and the velocity joints, respectively.

−1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

x [m]

y
[m

]

B

A

Fig. 1. 2-dof robotic manipulator successive configu-
rations

The results obtained with PSO in terms of minimal
joint/cartesian distance and joint/cartesian ripple, for
the weighings settings used, are of good quality and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1.5

−1

−0.5

0

0.5

1

1.5

2

t[s]

q
(t

)

q2

q1

Fig. 2. 2-dof robotic manipulator successive configu-
rations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1

0

1

2

3

4

t[s]

q̇
(t

)

q̇2

q̇1

Fig. 3. Angular velocity versus time of 2-dof robotic
manipulator

similar to the ones achieved with a GA (Solteiro Pires
et al. (2004)).

Figure 4 shows the successive configurations obtained
for the three-link manipulator.

Tables 1 and 2 present the results obtained with the
PSO and GA, respectively. In these tables the fitness
represents the best result achieved for the aggregated
cost function (2), and the term time refers to the dura-
tion of the simulation. While the best fitness obtained
is identical with both algorithms the time elapsed in
the runs is smaller in the PSO simulations. The sim-
ulation time improvement achieved with the PSO is
partly justified because this algorithm is simpler than
the GA.

Figure 5 shows the best fitness values versus number
of generations using PSO and GA for all the manip-

−1 0 1 2

−1

−0.5

0

0.5

1

1.5

2

x [m]

y
[m

]

B

A

Fig. 4. 3-dof robotic manipulator successive configu-
rations

Table 1. Fitness of the best particle found in
the algorithm and the time required by the

algorithm for the 2, 3 and 4-dof robot.

PSO 2-dof 3-dof 4-dof
fitness 1.07 1.42 1.95

time [s] 12 16 21

Table 2. Fitness of the best individual found
in the genetic algorithm and the time re-

quired for the 2, 3 and 4-dof robot.

AG 2-dof 3-dof 4-dof
fitness 1.07 1.42 1.94

time [s] 20 25 31

fPSO2R

T

Fi
tn

es
s

fPSO3R

fPSO4R

fGA4R
fGA3R

fGA2R

100 101 102 103 104
100

101

102

103

104

Fig. 5. Log fitness versus log generations

ulators studied. As can be seen for two out of three
simulations the PSO is faster to converge than the GA.

4. CONCLUSIONS

This paper proposed a particle swarm algorithm to
generate trajectories for robotic planar manipulators,
based on direct kinematics. The objective is to min-
imize distance and the ripple in the trajectory time

evolution. Some results was presented for several re-
dundant and hyper-redundant manipulators. The par-
ticle swarm optimization algorithm is compared with
genetic algorithm in solving the manipulator trajectory
planning problem. The preliminary simulation results
obtained have a good performance and indicate that
the PSO is faster than the GA with a lower computa-
tional load.

5. FUTURE WORK

Further work is undergoing to re-enforce these prelim-
inary results achieved by PSO which will allow to con-
clude about its effectiveness in manipulator trajectory
optimization both for a single and multiple criteria
optimizations.

REFERENCES

Chen, Mingwu and Ali M. S. Zalzala (1997). A ge-
netic approach to motion planning of redundant
mobile manipulator systems considering safety and
configuration. Journal Robotic Systems 14(7), 529–
544.

Davidor, Yaval (1991). Genetic Algorithms and
Robotics, a Heuristic Strategy for Optimization.
number 1 In: Series in Robotics and Automated
Systems. World Scientific Publishing Co. Pte Ltd.

Kennedy, James and Russell C. Eberhart (1995). Par-
ticle swarm optimization. In: Proceedings of the
1995 IEEE International Conference on Neural
Networks. Vol. 4. Perth, Australia, IEEE Service
Center, Piscataway, NJ. pp. 1942–1948.

Kubota, Naoyuki, Toshio Fukuda and Koji Shimojima
(1996). Trajectory planning of cellular manipulator
system using virus-evolutionary genetic algorithm.
Robotics and Autonomous systems 19, 85–94.

Rana, A. and A. Zalzala (1996). An evolutionary plan-
ner for near time-optimal collision-free motion of
multi-arm robotic manipulators. In: UKACC Inter-
national Conference on Control. Vol. 1. pp. 29–35.

Solteiro Pires, E. J., J. A. Tenreiro Machado and
P. B. de Moura Oliveira (2001). An evolutionary
approach to robot structure and trajectory optimiza-
tion. ICAR’01-10th International Conference on
Advanced Robotics. Budapest, Hungary. pp. 333–
338.

Solteiro Pires, E. J., P. B. de Moura Oliveira and J. A.
Tenreiro Machado (2004). Multi-objective genetic
manipulator trajectory planner. In: Applications
of Evolutionary Computing, EvoWorkshops2004:
EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, Evo-
MUSART, EvoSTOC.

Tang, J., J. Zhu and Z. Sun (2005). A novel path pan-
ning approach based on appart and particle swarm
optimization. In: Proceedings of the 2nd Inter-
national Symposium on Neural Networks (LNCS,
Ed.). Vol. 3498.

Wu, H., F. Sun, Z. Sun and L. Wu (2004). Optimzal
trajectory planning of a flexible dual-arm space
robot with vibration reduction. Journal of Intelli-
gent Robotic Systems 40, 147–163.

