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Abstract: This paper analyses the dynamical properties of systems with nonlinear friction 
and backlash phenomena based on the describing function method. The dynamics is 
illustrated using the Nyquist and Bode plots and the results are compared with those of 
standard models. Copyright © 2003 IFAC 
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1. INTRODUCTION 

 
The phenomenon of vibration due to friction and 
impacts occurs in many branches of technology where 
it plays a very useful role. On the other hand, its 
occurrence is often undesirable, because it causes 
additional dynamic loads, as well as faulty operation 
of machines and devices. Despite many investigations 
that have been carried out so far, this phenomenon is 
not yet fully understood, mainly due to the 
considerable randomness and diversity of reasons 
underlying the energy dissipation involving the 
dynamic effects (Barbosa and Machado, 2002a, b). 
 
In this paper we investigate the dynamics of systems 
that contain nonlinear friction and backlash with 
impacts. Bearing these ideas in mind, the article is 
organized as follows. Section 2 introduces the 
fundamental aspects of the describing function 
method. Sections 3 and 4 studies the describing 
function of mechanical systems with nonlinear friction 
and backlash phenomena, respectively. Finally, section 
5 draws the main conclusions and addresses 
perspectives towards future developments. 
 
 

2. DESCRIBING FUNCTION ANALYSIS 
 
The describing function (DF) is one of the possible 
methods that can be adopted for the analysis of 
nonlinear systems (Slotine, and Li, 1991; Armstrong, 
and Amin, 1996; Armstrong, et al., 1994). 

Let us consider the feedback control system of Fig. 1 
with one nonlinear element N and a linear system G(s). 
 

r(t) = 0
N G(s)

z(t)+

−

y(t)

Nonlinearity

x(t)

Linear system

 
Fig. 1. Basic nonlinear feedback system for 

describing function analysis. 
 
We start by applying a sinusoid x(t) = X sin(ωt) to the 
nonlinearity input. At steady-state the output of the 
nonlinear characteristic, y(t), is periodic and, in 
general, it is nonsinusoidal. If we assume that the 
nonlinearity is symmetric with respect to the variation 
around zero, the Fourier series becomes: 
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where Yk and φk are the amplitude and the phase shift 
of the kth-harmonic component of the output y(t), 
respectively. 
 
In the DF analysis, we assume that only Y1, the 
fundamental harmonic component of y(t), is 
significant. Such assumption is often valid since the 
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higher-harmonics in y(t), Yk for k = 2, 3, …, are usually 
of smaller amplitude than the amplitude of the 
fundamental component Y1. Moreover, most systems 
are “low-pass filters” with the result that the higher-
harmonics are further attenuated. 
 
Thus the DF of a nonlinear element, N(X,ω), is defined 
as the complex ratio of the fundamental harmonic 
component of output y(t) with the input x(t): 
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where X is the amplitude of the input sinusoid x(t) and 
Y1 and φ1 are the amplitude and the phase shift of the 
fundamental harmonic component of the output y(t), 
respectively. 
 
In general, N(X,ω) is a function of both the amplitude 
X and the frequency ω of the input sinusoid. For 
nonlinear systems that do not involve energy storage, 
the DF is merely amplitude-dependent, that is 
N = N(X). If it is not the case, we may have to adopt a 
numerical approach because, usually, it is impossible 
to find a closed-form solution. 
 
For the nonlinear control system of Fig. 1, we have a 
limit cycle if the sinusoid at the nonlinearity input 
regenerates itself in the loop, that is: 
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Note that (3) can be viewed as the characteristic 
equation of the nonlinear feedback system of Fig. 1. If 
(3) can be satisfied for some value of X and ω, a limit 
cycle is predicted for the nonlinear system. Moreover, 
since (3) applies only if the nonlinear system is in a 
steady-state limit cycle, the DF analysis predicts only 
the presence or the absence of a limit cycle and cannot 
be applied to analysis for other types of time 
responses. 
 
 

3. SYSTEMS WITH NONLINEAR FRICTION 
 
This section analyses the DF of a dynamical system 
with nonlinear friction (Haessig, and Friedland, 1991; 
Armstrong, et al., 1994; Azenha, and Machado, 1998). 
 
The system under consideration is a simple mass 
system with Coulomb plus Viscous plus Static friction 
(CVS model) as represented in Fig. 2. 
 
The equation of motion in this system is as follows: 
 

)()()( tftFtxM f =+&&  (4)
 
where M is the system mass, Ff(t) is the friction force 
and f(t) the applied input force. 
 
 
 
 
 

M
Friction force Ff

xx &,

Input force F

 

a) 
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Fig. 2. a) Elemental mass system subjected to 

nonlinear friction and b) Coulomb plus viscous 
plus static friction (CVS) model. 

 
The discontinuity at zero velocity of the CVS model 
may lead to numerical problems in the simulations. To 
overcome the zero crossing detection and to get a 
reasonable numerical robustness we adopt the Karnopp 
model (Karnopp, 1985). The advantage of this model 
is that can produce sufficiently accurate results while 
reducing the algorithm complexity and simulation 
time. This model is described as: 
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where Dv specifies a small neighbourhood of the zero 
velocity (Karnopp, 1985).The parameters Fc, Fs and B 
are respectively the Coulomb, Static and Viscous 
friction level. 
 
For the simple system of Fig. 2a we can calculate, 
numerically, the Nyquist plot of −1/N(F,ω) 
considering as input an sinusoidal force 
f(t) = F cos(ωt) applied to mass M and as output the 
position x(t). Fig. 3 shows the function −1/N(F,ω) for 
several values of F. 
 
The values of the parameters used in the simulations 
are: M = 1 Kg, B = 0.5 Ns/m, Fc = 5 N and Fs = 7 N. In 
the subsequent results the linear system case is also 
plotted for comparison purposes. 
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Fig. 3. Nyquist plot of −1/N(F,ω) for the system 

subjected to nonlinear friction and for an input 
force F = {10, 20, 30, 40, 50} N. 

 
Fig. 4 illustrates the variation of the Nyquist plots of 
−1/N(F,ω) for the cases of the linear system and 
nonlinear friction. The log-log plots of Re{−1/N} and 
Im{−1/N} vs. the exciting frequency ω, for different 
values of the input force F = {10, 20, 30, 40, 50} N, 
reveal that we get results closer to the linear case the 
higher the excitation force F, particularly for the real 
component. 
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Fig. 4. Log-log plots of Re{−1/N} and Im{−1/N} vs. 

the exciting frequency ω, for F = {10, 20, 30, 40, 
50} N. 
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Fig. 5. Time response of the output position x(t) of 

the system with nonlinear friction with ω = 0.5 
rad/s, for F = 10 N (solid line) and F = 50 N 
(dashed line, scaled down by a factor of 10). 
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Fig. 6. Fourier transform of the output position x(t), 

F{x(t)}, over 20 cycles, vs. (ω, k), the exciting 
frequency ω and the harmonic frequency index k 
for: a) An input force F = 10 N and b) An input 
force F = 50 N. 

 
Fig. 5 compares the time response for an input force 
of F = 10 N and F = 50 N. We conclude that for low 
forces the nonlinear effects of the static and Coulomb 
frictions are more significant, which is in accordance 
with the signal harmonic content F{x(t)} depicted in 
Fig.6. 
 



     

4. SYSTEMS WITH BACKLASH AND IMPACTS 
 
In this section, we use the DF method to analyse the 
phenomena of clearance without and with the effect of 
the impacts, usually called static backlash and 
dynamic backlash, respectively (Barbosa, and 
Machado, 2002b; Nordin, and Gutman, 2002; 
Stepanenko, and Sankar, 1986; Dubowsky, et al., 
1987; Choi, and Noah, 1989; Tao, and Kokotovic, 
1995). 
 
The standard approach to the backlash study is based 
on the adoption of a geometric model that neglects the 
dynamic phenomena involved during the impact 
process. Due to this reason often real results differ 
significantly from those predicted by that model. 
 
The static backlash model leads to a DF of a linear 
system of a single mass M1+M2 followed by the 
geometric backlash having as input and as output the 
position variables x(t) and y(t), respectively, as 
depicted in Fig. 7a. 
 
The describing function for X > h/2 is given by 
(Phillips and Harbour, 2000): 
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For the dynamic backlash, the proposed mechanical 
model consists on two masses (M1 and M2) subjected 
not only to backlash but also to impact phenomena as 
shown in Fig. 7b. 
 

( ) 2
21

1
sMM +

f(t) x(t) y(t)

BacklashLinear system

G(s) N(X)

-h/2

y

slope k

h/2 x

 
a) 

M2

h

f(t)

M1

22 , xx &

11, xx &

Side
A

Side
B

 
b) 

 
Fig. 7. a) Classic backlash model and b) System with 

two masses subjected to dynamic backlash. 

A collision between the masses M1 and M2 occurs 
when x1 = x2 or x2 = h + x1. In this case, we can 
compute the velocities of masses M1 and M2 after the 
impact ( 1x ′&  and 2x ′& ) by relating them to the previous 
values ( 1x&  and 2x& ) through Newton’s law: 
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where ε is the coefficient of restitution. In the case of 
a fully plastic (inelastic) collision ε = 0, while in the 
ideal elastic case ε = 1. 
 
By application of the principle of conservation of 
momentum 22112211 xMxMxMxM &&&& +=′+′  and of 
expression (8), we can find the sought velocities of 
both masses after an impact: 
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For the system of Fig. 7b we calculate numerically 
the Nyquist diagram of −1/N(F,ω) for an input force 
f(t) = F cos(ωt) applied to mass M2 and considering 
the output position x1(t) of mass M1. 
 
The values of the parameters adopted in the 
subsequent simulations are: M1 = M2 = 1 Kg and 
h = 10−1 m. Figs. 8 and 9 show the Nyquist plots for 
F = 50 N and ε = {0.1, …, 0.9} and for F = {10, 20, 
30, 40, 50} N and ε = {0.2, 0.8}, respectively. 
 
The Nyquist charts of Figs. 8−9 reveal the occurrence 
of a jumping phenomenon, which is a characteristic 
of nonlinear systems. This phenomenon is more 
visible around ε ≈ 0.5, while for the limiting cases 
(ε → 0 and ε → 1) the singularity disappears. 
Moreover, Fig. 8 shows also that for a fixed value of 
ε the charts are proportional to the input amplitude F. 
 
The validity of the model is restricted to an input 
force f(t) with frequency higher than a lower-limit 
ωC ≈ [(2F / M2h)2(1−ε)5]1/4 and lower than an upper-
limit ωL = 2(F / M2h)1/2, corresponding to an 
amplitude of x1(t) within the clearance h/2. In the 
middle-range, ωC < ω < ωL, occurs a jumping 
phenomena at frequency ωJ ~ (F / M2h)1/2. 
 
Fig. 10 illustrates the variation of the Nyquist plots of 
−1/N(F,ω) for the cases of the static and dynamic 
backlash and shows the log-log plots of Re{−1/N} 
and Im{−1/N} vs. ω for an input force F = 50 N and 
ε = {0.1, 0.3, 0.5, 0.7, 0.9}. 
 
Comparing the results for the static and the dynamic 
backlash models we conclude that: 
 

•  The charts of Re{−1/N} are similar for low 
frequencies (where they reveal a slope of +40 



     

dB/dec) but differ significantly for high 
frequencies; 

•  The charts of Im{−1/N} are different in all 
range of frequencies. Moreover, for low 
frequencies, the dynamic backlash has a 
fractional slope inferior to +80 dB/dec of the 
static model. 
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Fig. 8. Nyquist plot of −1/N(F,ω) for the dynamic 

backlash, F = 50 N and ε = {0.1, …, 0.9}. 
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Fig. 9. Nyquist plots of −1/N(F,ω) for a system with 
dynamic backlash, F = {10, 20, 30, 40, 50} N and 
ε = {0.2, 0.8}. 
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Fig. 10. Log-log plots of Re{−1/N} and Im{−1/N} vs. 
the exciting frequency ω, for F = 50 N and 
ε = {0.1, 0.3, 0.5, 0.7, 0.9}. 

 
Fig. 11 shows the time response of the output 
velocity )(1 tx&  of a system with dynamic backlash for 
ω = {20, 40} rad/s and ε = {0.2, 0.8} revealing that 
we can have either chaotic or periodic responses 
depending on the values of ω and ε. 
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Fig. 11. Time response of the output velocity )(1 tx& of 

the system with dynamic backlash, F = 50 N for 
ω = 20 rad/s, ε = 0.8 (solid line) and ω = 40 rad/s, 
ε = 0.2 (dotted line). 

 
Fig. 12 presents the Fourier transform of the output 
displacement of mass M1, F{x1(t)}, namely the 
amplitude of the harmonic content of x1(t) for an input 
force f(t) = 50 cos(ωt), ωC < ω < ωL, and ε = {0.2, 0.8}. 
The charts reveal that the fundamental harmonic of the 



     

output has a much higher magnitude than the other 
higher-harmonic components. This fact enables the 
application of the describing function in the prediction 
of limit cycles for this system. Nevertheless, for high 
values of ε, there is a significant high-order harmonic 
content, and by consequence, a lower precision of the 
limit cycle prediction. 
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Fig. 12. Fourier transform of the output displacement 

x1(t), F{x1(t)}, over 20 cycles, vs. the exciting 
frequency ω and the harmonic index k for: a) An 
restitution coefficient ε = 0.2 and b) An 
restitution coefficient ε = 0.8. 

 
 

5. CONCLUSIONS  
 
This paper addressed several aspects of the phenomena 
involved in systems with nonlinear friction and 
backlash. The dynamics of elemental mechanical 
system was analysed through the describing function 
method and compared with standard models. The 
results encourage further studies of nonlinear systems 
in a similar perspective and the analysis of limit cycle 
prediction. The conclusion may lead to the 
development of compensation schemes capable of 
improving control system performance. 
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