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Abstract 

This article illustrates several applications of fractional calculus (FC). This paper 

investigates the use of FC in circuit synthesis, traffic systems and robot control. 
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1. Introduction 

In recent years fractional calculus (FC) has been a fruitful field of research in science and 

engineering. In fact, many scientific areas are currently paying attention to the FC concepts. 

This article presents novel results on the dynamics and control of several distinct systems. 

Bearing these ideas in mind, sections two to four present three case studies about the 

implementation of FC-based models and control algorithms. 

2. Circuit synthesis using particle swarm optimization 

The Particle Swarm Optimization (PSO) algorithm is a method inspired in the collective 

intelligence of swarms of biological populations, and was discovered through social model 

simulation of bird flocking, fishing schooling and swarm theory [1]. In this section we 

adopt a PSO algorithm to design combinational logic circuits. A truth table specifies the 

circuits and the goal is to implement a functional circuit with the least complexity. Four sets 

of logic gates have been defined, as Gset 2  {AND,XOR,WIRE}, Gset 3  {AND,OR, 

XOR,WIRE}, Gset 4  {AND,OR,XOR,NOT,WIRE}, Gset 6  {AND,OR,XOR,NOT, 

NAND,NOR,WIRE}. The logic gate named WIRE means a logical no-operation. 

In the PSO scheme the circuits are encoded as a rectangular matrix A (row column r
c) of logic cells. Three genes represent each cell: <input1><input2><gate type>, where 

input1 and input2 are one of the circuit inputs, if they are in the first column, or one of the 

previous outputs, if they are in other columns. The gate type is one of the elements adopted 

in the gate set. The chromosome is formed with as many triplets as the matrix size demands 

(e.g., triplets = 3 r c). 

The initial population of circuits (particles) has a random generation and the initial velocity 

of each particle is initialized with zero. The velocities and positions of the following 

generations are obtained applying the PSO equations [1]. Therefore, the new positions are 



as many as the number of genes in the chromosome. If the new values of the input genes 

result out of range, then a re-insertion function is used. If the calculated gate gene is not 

allowed a new valid one is generated at random. The particles have memory and each one 

keeps information of its previous best position (pbest) and its corresponding fitness. The 

swarm has the pbest of all the particles and the particle with the greatest fitness is called the 

global best (gbest).
The basic concept of the PSO technique lies in accelerating each particle towards its pbest
and gbest locations with a random weighted acceleration. However, in our case we also use 

a kind of mutation operator that introduces a new cell in 10% of the population. This 

mutation operator changes the characteristics of a given cell in the matrix. Therefore, the 

mutation modifies the gate type and the two inputs, meaning that a completely new cell can 

appear in the chromosome. 

The calculation of the fitness function Fs in (2) has two parts, f1 and f2, where f1 measures 

the functionality and f2 measures the simplicity. In a first phase, we compare the output Y

produced by the PSO-generated circuit with the required values YR, according with the 

truth table, in a bit-per-bit basis. By other words, f1 is incremented by one for each correct 

bit of the output until f1 reaches the maximum value f10, that occurs when we have a 

functional circuit. Once the circuit is functional, in a second phase, the algorithm tries to 

generate circuits with the least number of gates. Therefore, the index f2, that measures the 

simplicity (the number of null operations), is increased by one (zero) for each wire (gate) of 

the generated circuit, yielding (f10 = 2
ni no):

f1 = f1 + 1 if {bit i of Y} = {bit i of YR} , i = 1, …, f10 (1a)

f2 = f2 + 1 if gate type = wire (1b)
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where ni and no represent the number of inputs and outputs of the circuit. 

The concept of dynamic fitness function Fd results from an analogy between control 

systems and the GA case, where we master the population through the fitness function. The 

simplest control system is the proportional algorithm; nevertheless, other control algorithms 

can be adopted, such as, for example, the proportional and the differential scheme. In this 

line of thought expression (1c) is a static fitness function Fs and corresponds to using a 

simple proportional algorithm. Therefore, to implement a proportional-derivative evolution 

the fitness function needs a scheme of the type: 

d s sF F KD F (2)

where 0  1 is the differential fractional-order and K  is the weight of the 

dynamical term. The fractional derivative is calculated through a discrete-time 4
th

-order 

Padé fraction approximation of Euler transformation. 

In this study are developed n = 20 simulations for each case under analysis. The 

experiments consist on running the PSO algorithm to generate a typical combinational logic 

circuit, namely a 2-to-1 multiplexer (M2-1), a 1-bit full adder (FA1), a 4-bit parity checker 

(PC4) and a 2-bit multiplier (MUL2).
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Fig. 1 – Average Av(N) and standard deviation S(N) of the number of generations N to achieve the 

solution for the PSO algorithm, P = 3000 using Fs and Fd

The circuits are generated with a population P = 3000. Figure 1 presents a comparison 

between Fs and Fd. Applying the Fd concept the results obtained are improved in all gate 

sets and in particular for the more complex circuits. 

3. Simulation and dynamical analysis of freeway traffic systems 

In order to study the dynamics of traffic systems it was developed the Simulator of 

Intelligent Transportation Systems (SITS). SITS is a software tool based on a microscopic 

simulation approach, which reproduces real traffic conditions in an urban or non-urban 

network. The program provides a detailed modelling of the traffic network, distinguishing 

between different types of vehicles and drivers and considering a wide range of network 

geometries. SITS uses a flexible structure that allows the integration of simulation facilities 

for any of the ITS related areas. 

A set of simulation experiments are developed in order to estimate the influence of the 

vehicle speed v(t;x), the road length l and the number of lanes nl in the traffic flow (t;x) at 

time t and road coordinate x. For a road with nl lanes the Transfer Function (TF) between 

the flow measured by two sensors is calculated by the expression 

Gr,k (s; xj,xi) = r(s;xj)/ k(s;xi) where k, r = 1,2,…, nl define the lane number and, xi and xj
represent the road coordinates (0 xi xj l), respectively. 

The first group of experiments considers a one-lane road (i.e., k = r = 1) with length 

l = 1000 m. Across the road are placed ns sensors equally spaced. The first sensor is placed 

at the beginning of the road (i.e., at xi = 0) and the last sensor at the end (i.e., at xj = l).
Therefore, we calculate the TF between two traffic flows at the beginning and the end of 

the road such that, 1(t;0)  [1, 8] vehicles s  for a vehicle speed v1(t;0)  [30, 70] km h ,

that is, for v1(t;0)  [vav v, vav v], where vav = 50 km h  is the average vehicle speed 

and v = 20 km h  is the maximum speed variation. These values are generated according 

to a uniform probability distribution function. 

The results obtained of the polar plot for the TF G1,1(s;1000,0) = 1(s;1000)/ (s;0) 

between the traffic flow at the beginning and end of the one-lane road is distinct from those 

usual in systems theory revealing a large variability. Moreover, due to the stochastic nature 

of the phenomena involved different experiments using the same input range parameters 

result in different TFs. In fact traffic flow is a complex system but it was shown [4] that, by 
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Fig. 2 – The STF T1,1(s;1000,0) for n = 2000 experiments with 1(t;0)  [1, 8] vehicles s  and 

v1(t;0)  [30, 70] km h (vav = 50 km h , v = 20 km h , l = 1000 m and nl = 1) (left) and Time
delay , pole p and fractional order versus v for an average vehicle speed vav = 50 km h , nl = 1, 

l = 1000 m and 1(t;0)  [1, 8] vehicles s  (right). 

embedding statistics and Fourier transform (leading to the concept of Statistical Transfer 

Function (STF)), we could analyse the system dynamics in the perspective of systems 

theory. 

To illustrate the proposed modelling concept (STF), the simulation was repeated for a 

sample of n = 2000 and it was observed the existence of a convergence of the STF, 

T1,1(s;1000,0), as show in Fig. 2 (left), for a one-lane road with length l = 1000 m 

1(t;0)  [1, 8] vehicles s  and v1(t;0)  [30, 70] km h

Based on this result we can approximate numerically the STF to a fractional order system 

with time delay yielding the approximate expression: 

1,1( ;1000,0) 1s
BT s k e s p (3)

For the numerical parameters of Fig. 2 (left) we get kB = 1.0,  = 96.0 sec, p = 0.07 and 

 = 1.5. 

The parameters ( , p, ) vary with the average speed vav and its range of variation v, the 

road length l and the input vehicle flow 1. For example, Fig. 2 (right) shows ( , p,
versus v for vav = 50 km h .

It is interesting to note that ( , p)  ( , 0), when v vav, and ( , p)  (l vav
1
, ), when 

v  0. These results are consistent with our experience that suggests a pure transport 

delay T(s) e s
 ( = l vav

1
), v  0 and T(s)  0, when v vav (because of the existence 

of a blocking cars, with zero speed, on the road). 

4. Fractional PD  control of an hexapod robot 

Walking machines allow locomotion in terrain inaccessible to other type of vehicles, since 

they do not need a continuous support surface. For these robots, the control of the leg joints 

is usually implemented through a PID like scheme with position feedback. Recently, the 



application of the theory of FC to robotics revealed promising aspects for future 

developments. With these facts in mind, this section compares different Fractional Order 

(FO) robot controller tuning, applied to the joint control of a walking system. 

The robot model has n = 6 legs, equally distributed along both sides of the robot body, 

having each three rotational joints (i.e., j = {1, 2, 3}  {hip, knee, ankle}) [3]. It is 

considered robot body compliance because walking animals have a spine that allows 

supporting the locomotion with improved stability. The robot body is divided in n identical 

segments and a linear spring-damper system is adopted to implement the intra-body 

compliance [3]. The contact of the robot feet with the ground is modeled through a non-

linear system [3], being the values for the parameters based on the studies of soil mechanics 

[4]. 

The general control architecture of the hexapod robot is presented in Fig. 3 (left) [4]. In this 

study we evaluate the effect of different PD , , controller implementations for Gc1(s),

while Gc2 is a P controller. For the PD  algorithm, implemented through a discrete-time 4
th

-

order Padé approximation (aij, bij , j  1, 2, 3), we have: 

1

0 0

i u i u
i i

c j j j ij ij
i i

G z Kp K a z b z (4)

where Kpj and K j are the proportional and derivative gains, respectively, and j is the 

fractional order, for joint j.
It is analyzed the system performance of the different PD  tuning, during a periodic wave 

gait at a constant forward velocity. The analysis is based on the formulation of two indices 

measuring the mean absolute density of energy per traveled distance (Eav) and the hip 

trajectory errors ( xyH) during walking, according to: 
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To tune the different controller implementations we adopt a systematic method, testing and 

evaluating several possible combinations of parameters, for all controller implementations. 

Therefore, we adopt the Gc1(s) parameters that establish a compromise in what concerns the 

simultaneous minimisation of Eav and xyH, and a proportional controller Gc2 with gain 

Kpj = 0.9 (j = 1, 2, 3). Moreover, it is assumed high performance joint actuators, with a 

maximum actuator torque of ijMax = 400 Nm, and the desired angle between the foot and 

the ground (assumed horizontal) is made i3hd = 5º. We tune the PD  joint controllers for 

different values of the fractional order j while making 1 = 2 = 3.

Figure 3 (right) presents the best controller tuning for different values of j. The 

experiments reveal the superior performance of the PD  controller for j  0.5, with 

Kp1 = 15000, K 1 = 7200, Kp2 = 1000, K 2 = 800 and Kp3 = 150, K 3 = 240. 
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Fig. 4. Hexapod robot control architecture (left) and locus of Eav vs. xyH for the different values of 

in the Gc1(s) tuning, when establishing a compromise between the minimisation of Eav and xyH, with 

Gc2 = 0.9 (right). 

4. Conclusions 

Recently FC has been a fruitful field of research in science and engineering and many 

scientific areas are currently paying wider attention to the FC concepts. This article 

presented several case studies on the implementation of FC-based models and control 

systems, namely in circuit synthesis, intelligent transportation systems and legged robot 

control. 
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