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This paper analyses the dynamical properties of systems with backlash and impact

phenomena based on the describing function method. It is shown that this type of nonlinearity

can be analysed in the perspective of the fractional calculus theory. 

1 Introduction 

Fractional calculus (FC) is a branch of mathematics that deals with the

generalization of the operation of differentiation and integration to an arbitrary

order. The theory of FC revealed a well adapted tool to the modeling of many

physical phenomena, allowing the description to take into account some

particularities that classical integer-order models simply neglect. Besides the

intensive research carried out in the area of pure and applied mathematics, FC has 

found applications in various fields such as physics and chemistry, viscoelasticity,

chaos, biology, signal processing, diffusion and wave propagation,

electromagnetism and automatic control [1 10]. Nevertheless, in spite of the work 

that has been done in the area, many aspects remain to be investigated.

The phenomenon of vibration with impacts occurs in many branches of 

technology where plays a very useful role. On the other hand, its occurrence is often

undesirable, because it causes additional dynamic loads, as well as faulty operation 

of machines and devices. Despite many investigations that have been carried out so

far, this phenomenon is not fully understood yet, mainly due to the considerable

randomness and diversity of reasons underlying the energy dissipation involving the

dynamic effects. 

In this paper we investigate the dynamics of systems with backlash and impacts

and it is shown that FC is an appropriate tool for its analysis. Bearing these ideas in

mind, the article is organized as follows. Section 2 studies the describing function of

systems with backlash phenomena and section 3 draws the main conclusions.

2 Analysis of Systems with Backlash and Impact Phenomena 

The standard approach to the backlash study is based on the adoption of a geometric

model that neglects the dynamic phenomena involved during the impact process.

Due to this reason often real results differ significantly from those predicted by that



model. In this section we use the DF method to analyze systems with backlash and

impact phenomena, usually called dynamic backlash.

The proposed mechanical model consists on two masses (M1 and M2) subjected 

to backlash and impact phenomenon as shown in Fig. 1. 
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Fig. 1. System with two masses subjected to dynamic backlash.

A collision between the masses M1 and M2 occurs when x1 = x2 or x2 = x1+h.

We can compute the velocities of masses M1 and M2 after the impact (  and )

by relating them to the previous values (  and ) through the Newton’s law:
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where  is the coefficient of restitution that represents the dynamic phenomenon

occurring in the masses during  the impact. In the case of a fully plastic (inelastic)

collision  = 0, while in the ideally elastic cases  = 1.

The principle of conservation of momentum requires that the momentum,

immediately before and immediately after the impact, must be equal:
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From (8) (9), we can find the velocities of both masses after an impact:
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The validity of the proposed model is restricted to frequencies of the exciting 

input force f(t) higher than a cut-off frequency C. This frequency was determined

numerically arriving to the approximate expression:
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Fig. 2 illustrates the energy and power losses (i.e. WL and PL) vs the exciting 

frequency and the coefficient of restitution . As expected, the energy (and the 

power) loss decreases as  increases. Moreover, as 1 it yields C 0, which is

in accordance with (5). 
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Fig. 2. Contour plot of energy and power losses (i.e. WL and PL) vs the exciting frequency  and the 

coefficient of restitution , for an input force F = 50 N, M1 = M2 = 1 Kg and h = 10 1 m.

On the other hand, there is also an limiting frequency L determined by

application of Newton’s law to mass M2, that is  Considering an 

input signal f(t) = F cos( t) and solving for x
).()( 22 txMtf

2(t) we arrive to a expression for L
when the amplitude of the displacement is within the clearance h/2, yielding:
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For the system model of Fig. 1 we can calculate numerically the Nyquist

diagram of 1/N(F, ) for a sinusoidal input force f(t) = F cos( t) applied to mass

M2 while considering as output position x1(t) of mass M1.

The values of the parameters adopted in the subsequent simulations are 

M1 = M2 = 1 Kg, and h = 10 1 m. Fig. 3 shows the Nyquist plot for a constant input

force F = 50 N and = {0.1,…,0.9}. The Nyquist plot of Fig. 4 is depicted for 

F = {10, 20, 30, 40, 50} N and a restitution coefficient of  = {0.2, 0.8}. 

The Nyquist charts of Fig. 3 and 4 reveal some interesting features. The most

obvious is the occurrence of a jumping phenomena, which is a characteristic of

nonlinear systems. This phenomenon is more visible around 0.5, while for the

limiting cases,  0 and  1 it disappears.
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Fig. 3. Nyquist plot of 1/N(F, ) for a system with dynamic backlash, F = 50 N and  = {0.1,…,0.9}.
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Fig. 4. Nyquist plot of 1/N(F, ) for a system with dynamic backlash, F = {10, 20, 30, 40, 50} N and

= {0.2, 0.8}.

The frequency for which the jumping phenomena occurs ( J) has the relation:
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Moreover, Fig. 4 shows also that for a fixed value of  the charts are 

proportional to the input amplitude F.

Fig. 5 presents the harmonic content of x1(t) for an input force f(t) = 50 cos( t),
C <  < L, and  = {0.2, 0.8}. 



Fig. 5. Fourier transform of the output displacement x1(t), over 500 cycles, vs the exciting frequency

and the harmonic frequency o, for  = {0.2, 0.8}.

The charts demonstrate that the fundamental harmonic of the output has a much

higher magnitude than the other higher-harmonic components. This fact supports

the application of the DF method in the prediction of limit cycles for this system.

Fig. 6 illustrates the variation of the slope  of the tangent to the curve of the

Nyquist plots of 1/N(F, ) as function of the exciting frequency , for a constant

input force F = 50 N and = {0.1, 0.3, 0.5, 0.7, 0.9}. The curves reveal a fractional

slope (unlike classical systems where we have integer values) which illustrates

the fractional-order dynamics of this system.
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Fig. 6. Plots of slope  vs the exciting frequency , for F = 50 N and = {0.1, 0.3, 0.5, 0.7, 0.9} for

Re{ 1/N}, Im{ 1/N}.

3 Conclusions 

This paper addressed the modeling of systems with backlash and impact phenomena

through the describing function method. It was shown that these systems may lead



to a fractional-order dynamics. This results encourages further studies of nonlinear

systems in the perspective of the fractional calculus. 
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