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ABSTRACT

Evolutionary computation (EC) is a growing research field
of Artificial Intelligence (AI) and is divided in two main ar-
eas: the Evolutionary Algorithms (EA) and the Swarm In-
telligence (SI). This paper presents an algorithm that com-
bines an EA algorithm - the Genetic Algorithm (GA) with a
SI algorithm - the Particle Swarm Optimization Algorithm
(PSO). The new algorithm is applied to the synthesis of
combinational logic circuits. With this combination is pos-
sible to take advantage of the best features of each particular
algorithm.

1. INTRODUCTION

In recent decades Evolutionary Computation techniques have
been applied to the design of electronic circuits and sys-
tems, leading to a novel area of research called Evolution-
ary Electronics (EE) or Evolvable Hardware [3]. EE con-
siders the concept for automatic design of electronic sys-
tems. Instead of using human conceived models, abstrac-
tions and techniques, EE employs search algorithms to de-
velop implementations not achievable with the traditional
design schemes, such as the Boolean methods: Karnaugh or
the Quine-McCluskey.

Several papers proposed designing combinational logic
circuits using evolutionary algorithms and, in particular, ge-
netic algorithms (GAs) [2, 1, 4, 8] and hybrid schemes such
as the memetic algorithms (MAs) [11]

Another emerging area of research of Artificial Intel-
ligence is the Swarm Intelligence. Swarm Intelligence is
a new computational and behavioral paradigm for solving
distributed problems based on self-organization. While its
main principles are similar to those underlying the behav-
ior of natural systems consisting of many individuals, such
as ant colonies and flocks of birds, SI is continuously in-
corporating new ideas, algorithms, and principles from the
engineering and basic science communities.

The authors thank the GECAD Unit for the financial support.

Particle swarm optimization (PSO) is a population based
stochastic optimization technique developed by Dr. Eber-
hart and Dr. Kennedy in 1995, inspired by social behavior
of bird flocking or fish schooling.

PSO shares many similarities with evolutionary com-
putation techniques such as Genetic Algorithms (GA). The
system is initialized with a population of random solutions
and searches for optima by updating generations. However
the PSO has no evolution operators such as crossover and
mutation. In PSO, the potential solutions, called particles,
fly through the problem space by following the current op-
timum particles. The detailed information will be given in
following sections.

The advantages of the PSO, relatively to the GA, is that
the PSO is easier to implement and involving fewer param-
eters to adjust.

This paper studies the combination of these two tech-
niques applied to combinational logic circuit synthesis. Bear-
ing these ideas in mind, the organization of this article is as
follows. Section 2 presents a brief overview of the GA. Sec-
tion 3 presents the PSO, while section 4 exhibits the simula-
tion results. Finally, section 5 outlines the main conclusions
and addresses perspectives towards future developments.

2. THE GENETIC ALGORITHM

In this section we present the GA developed in the study, in
terms of the circuit encoding as a chromosome, the genetic
operators and fitness functions.

2.1. Problem Definition

A GA strategy is adopted to design combinational logic cir-
cuits. The circuits are specified by a truth table and the goal
is to implement a functional circuit with the least possible
complexity. Two sets of logic gates have been defined, as
shown in Table 1, Gset 6, with six logic gates and Gset 4,
with four logic gates. The WIRE means a direct connection
(i. e. without any logic gate).
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Gate Set Logic gates
Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE}
Gset 4 {AND,OR,XOR,NOT,WIRE}

Table 1. Gate sets

For each gate set the GA searches the solution space,
based on a simulated evolution aiming the survival of the
fittest strategy. In general, the best individuals of any pop-
ulation tend to reproduce and survive, thus improving suc-
cessive generations. However, inferior individuals can, by
chance, survive and also reproduce [5]. In our case, the
individuals are digital circuits, which can evolve until the
solution is reached (in terms of functionality and complex-
ity).

2.2. Circuit encoding

In the GA scheme the each circuit is encoded as a rectangu-
lar matrix A of logic cells as represented in figure 1.
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Fig. 1. A 3 × 3 matrix A representing a circuit with input X
and output Y

The three genes: <input1> <input2> <gate type> rep-
resent each cell, where input1 and input2 are one of the cir-
cuit inputs, if the cell is in the first column of the matrix,
or, one of the outputs of a previous cell, if the cell is not
in the first column of the matrix. The gate type is one of
the elements adopted in the gate set. The chromosome is
formed by as many triplets of this kind as the matrix size
demands. For example, the chromosome that represents a
3 × 3 matrix is depicted in figure 2.
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Fig. 2. Chromosome for the 3 × 3 matrix of figure 1

2.3. The genetic operators

The initial population of circuits (strings) is generated at
random. The search is then carried out among this popu-
lation. The three different operators used are reproduction,
crossover and mutation, as described in the sequel.

In what concern the reproduction operator, the succes-
sive generations of new strings are reproduced on the basis
of their fitness function. In this case, it is used a tournament
selection to select the strings from the old population, up to
the new population.

For the crossover operator, the strings in the new popula-
tion are grouped together into pairs at random. Single point
crossover is then performed among pairs. The crossover
point is only allowed between cells to maintain the chromo-
some integrity.

The mutation operator changes the characteristics of a
given cell in the matrix. Therefore, it modifies the gate type
and the two inputs, meaning that a completely new cell can
appear in the chromosome. Moreover, it is applied an elitist
algorithm and, consequently, the best solutions are always
kept for the next generation.

To run the GA we have to define the number of individ-
uals to create the initial population P . This population is
always the same size across the generations, until the solu-
tion is reached.

The crossover rate CR represents the percentage of the
population P that reproduces in each generation. Likewise,
the mutation rate MR is the percentage of the population P
that can mutate in each generation.

2.4. The Fitness Function

The initial population of circuits (strings) is generated at
random. The search is then carried out among this popu-
lation. The three different operators used are reproduction,
crossover and mutation, as described in the sequel.

The calculation of F in (1) is divided in two parts, f1

and f2, where f1 measures the functionality and f2 mea-
sures the simplicity. In a first phase, we compare the output
Y produced by the GA-generated circuit with the required
values YR, according to the truth table, on a bit-per-bit ba-
sis. By other words, f11 is incremented by one for each cor-
rect bit of the output until f11 reaches the maximum value
f10, that occurs, when we have a functional circuit. Once
the circuit is functional, in a second phase, the GA tries to
generate circuits with the least number of gates. This means
that the resulting circuit must have as much genes <gate
type> ≡ <wire> as possible. Therefore, the index f2, that
measures the simplicity (the number of null operations), is
increased by one (zero) for each wire (gate) of the generated
circuit, yielding:

f10 = 2ni × no (1a)
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f11 = f11 + 1 if bit i of Y = bit i of YR,
i = 1, ..., f10

(1b)

f2 = f2 + 1 if gate type = wire (1c)

F =
{

f1, F < f10

f1 + f2, F ≥ f10
(1d)

where ni and no represent the number of inputs and outputs
of the circuit.

3. PARTICLE SWARM OPTIMIZATION

In the literature about PSO the term ‘swarm intelligence’
appears rather often and, therefore, we begin by explaining
why this is so.

Non-computer scientists (ornithologists, biologists and
psychologists) did early research, which led into the theory
of particle swarms. In these areas, the term ‘swarm intel-
ligence’ is well known and characterizes the case when a
large number of individuals are able of accomplish complex
tasks. Motivated by these facts, some basic simulations of
swarms were abstracted into the mathematical field. The us-
age of swarms for solving simple tasks in nature became an
intriguing idea in algorithmic and function optimization.

Eberhart and Kennedy were the first to introduce the
PSO algorithm [6], which is an optimization method in-
spired in the collective intelligence of swarms of biologi-
cal populations, and was discovered through simplified so-
cial model simulation of bird flocking, fishing schooling and
swarm theory.

3.1. Parameters

In the PSO, instead of using genetic operators, as in the case
of GAs, each particle (individual) adjusts its flying accord-
ing with its own and its companions experiences. Each par-
ticle is treated as a point in a D-dimensional space and is
manipulated as described below in the original PSO algo-
rithm:

vid = vid+c1 rand()(pid−xid)+c2 rand()(pgd−xid) (2)

xid = xid + vid (3)

where c1 and c2 are positive constants and rand() is a ran-
dom function in the range [0,1], Xi = (xi1, xi2,. . . , xiD)
represents the ith particle, Pi = (pi1, pi2,. . . , piD) is the best
previous position (the position giving the best fitness value)
of the particle, the symbol g represents the index of the best
particle among all particles in the population, and Vi = (vi1,

vi2,. . . , viD) is the rate of the position change (velocity) for
particle i.

Expression (1) represents the flying trajectory of a pop-
ulation of particles. Equation (2) describes how the velocity
is dynamically updated and equation (3) the position up-
date of the “flying” particles. Equation (2) is divided in
three parts, namely the momentum, the cognitive and the
social parts. In the first part the velocity cannot be changed
abruptly: it is adjusted based on the current velocity. The
second part represents the learning from its own flying ex-
perience. The third part consists on the learning group fly-
ing experience [7, 9].

The first new parameter added into the original PSO al-
gorithm is the inertia weight. The dynamic equation of PSO
with inertia weight is modified to be:

vid = wvid + c1 rand()(pid − xid)+
c2 rand()(pgd − xid)

(4)

xid = xid + vid (5)

where w constitutes the inertia weight that introduces a bal-
ance between the global and the local search abilities. A
large inertia facilitates a global search while a small inertia
weight facilitates the local search.

Another parameter, called constriction coefficient k, is
introduced with the hope that it can insure a PSO to con-
verge. A simplified method of incorporating it appears in
equation (3), where k is function of c1 and c2 as presented
in equation (8).

vid = k[vid + c1randpid − xid+
c2randpgd − xid]

(6)

xid = xid + vid (7)

k = 2
(
2 − φ −

√
φ2 − 4φ

)−1

, Φ = c1 + c2,Φ > 4 (8)

3.2. Topologies

There are two different PSO topologies, namely the global
version and the local version. In the global version of PSO,
each particle flies through the search space with a velocity
that is dynamically adjusted according to the particle’s per-
sonal best performance achieved so far and the best perfor-
mance achieved so far by all particles. On the other hand,
in the local version of PSO, each particle’s velocity is ad-
justed according to its personal best and the best perfor-
mance achieved so far within its neighborhood. The neigh-
borhood of each particle is generally defined as topologi-
cally nearest particles to the particle at each side.
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3.3. Algorithm

PSO is an evolutionary algorithm simple in concept, easy to
implement and computationally efficient. Figures 3 and 4
present the generic genetic algorithm and the original pro-
cedure for implementing the PSO algorithm, respectively.

1. Initialize the population
2. Calculate the fitness of each individual in the
population
3. Reproduce selected individuals to form a new
population
4. Perform evolutionary operations such as
crossover and mutation on the population
5. Loop to step 2 until some condition is met

Fig. 3. Generic genetic algorithm

1. Initialize population in hyperspace
2. Evaluate fitness of individual particles
3. Modify velocities based on previous best and
global (or neighborhood) best
4. Terminate on some condition
5. Go to step 2

Fig. 4. PSO algorithm

The different versions of the PSO algorithms are: the
real-valued PSO, which is the original version of PSO and
is well suited for solving real-value problems; the binary
version of PSO, which is designed to solve binary problems;
and the discrete version of PSO, which is good for solving
the event-based problems. To extend the real-valued version
of PSO to binary/discrete space, the most critical part is to
understand the meaning of concepts such as trajectory and
velocity in the binary/discrete space.

Kennedy and Eberhart [4] use velocity as a probability
to determine whether xid (a bit) will be in one state or an-
other (zero or one). The particle swarm formula of equation
(2) remains unchanged, except that now pid and xid are in-
tegers in [0.0,1.0] and a logistic transformation S(vid) is
used to accomplish this modification. The resulting change
in position is defined by the following rule:

if [rand() < S(vid)] then xid = 1; else xid = 0
(9)

where the function S(v) is a sigmoid limiting transforma-
tion.

4. COMBINATION OF THE GA AND THE PSO
ALGORITHMS

The algorithm developed in the present work combines a
GA with a PSO. The GA is executed in first place and is
followed by the PSO. The interlacing of the algorithms is

repeated until the solution is found. The number of genera-
tions of each algorithm (n1 for the GA and n2 for the PSO)
is initially defined at the moment of running the simulations.

4.1. Experiments and Simulation Results

Reliable execution and analysis of a EA usually requires a
large number of simulations to provide a reasonable assur-
ance that stochastic effects have been properly considered.
Therefore, in this study are developed n = 20 simulations
for each case under analysis.

The experiments consist on running the combination of
algorithms to generate a typical combinational logic circuit,
namely a 2-to-1 multiplexer (M2 − 1) and a 4-bit parity
checker (PC4), using the fitness function described previ-
ously and the two gate sets presented in table 1.

• the M2− 1 circuit, has 3 inputs X = {S0, I1, I0} and
1 output YR = {O}. The matrix A size is 3 × 3, and
CL = 27. Since the 2-to-1 multiplexer has ni = 3 and
no = 1, it results f10 = 8 and F ≥ 12,

• the PC4 circuit, has 4 inputs X = {A3, A2, A1 A0}
and 1 output YR = {P}. The matrix A size is 4 × 4,
and the length of each string representing a circuit
(i.e., the chromosome length) is CL = 48. In this case
ni = 4 and no = 1, resulting f10 = 16 and F ≥ 24.

Having a superior performance means achieving solu-
tions with a smaller average number of generations Av(N)
and a smaller standard deviation of the number of genera-
tions S(N) to achieve the solution in order to reduce the
stochastic nature of the algorithm.

Figures 5 - 8 depict the average number of generations
Av(N) and the standard deviation of the number of genera-
tions to achieve the solution S(N) with 0 ≤ n1, n2 ≤ 6 for
the M2 − 1 circuit, using the Gsets 6 and 4, respectively.
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Fig. 5. Average number of generations for solution
Av(N) for the M2 − 1 circuit using Gset 6
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Fig. 6. Standard deviation of the number of generations for
solution S(N) for the M2 − 1 circuit using Gset 6
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Fig. 7. Average number of generations for solution Av(N)
for the M2 − 1 circuit using Gset 4

Figures 9 - 12 show the average number of generations
Av(N) and the standard deviation of the number of genera-
tions to achieve the solution S(N) with 0 ≤ n1, n2 ≤ 6 for
the PC4 circuit, using Gsets 6 and 4, respectively.

Analyzing the charts is possible to see the advantage of
combining the two algorithms particularly in respect to the
average number of generations Av(N).

We verify the existence of an optimal locus from (n1, n2)
= (2,4) up to (n1, n2) = (4,2).

5. CONCLUSIONS

The main conclusion of this study is that the combination
of the evolutionary algorithm with the swarm intelligence
algorithm leads to superior results than the execution of the
same algorithms individually. With this hybrid algorithm it
is possible to take advantage of the benefits of each algo-
rithm.
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Fig. 8. Standard deviation of the number of generations for
solution S(N) for the M2 − 1 circuit using Gset 4
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Fig. 9. Average number of generations for solution Av(N)
for the PC4 circuit using Gset 6

Future research will address the automatic adjust, during
the execution, of the number of iterations n1 and n2 of each
evolutionary algorithm.
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