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ABSTRACT 
The performance of electrical devices, depending on the 
processes of the electrolytes, have been fully described 
and the physical origin of each parameter is well 
established. However, the influence of the irregularity of 
the electrodes was not a subject of study and only 
recently, this problem became relevant in the viewpoint of 
fractional calculus. This paper describes an electrolytic 
process in the perspective of fractional order capacitors. 
In this line of thought, are developed several experiments 
for measuring the electrical impedance of the devices. 
The results are analyzed through the frequency response, 
revealing capacitances of fractional order that can 
constitute an alternative to the classical integer order 
elements. 
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1. Introduction 
 
Fractional calculus (FC) is a generalization of the 
integration and differentiation to a non-integer order. The 
fundamental operator is  where the order α is a real 
or, even, complex number, and the subscripts a and t 
represent the two limits of the operation, cf. [1], [2], [3].  

,α
ta D

Recent studies brought FC into attention revealing that 
many physical phenomena can be modeled by fractional 
differential equations [4], [5], [6], [7]. The importance of 
fractional order models is that they yield a more accurate 
description and give a deeper insight into the physical 
processes underlying a long range memory behavior. 
Capacitors are one of the crucial elements in integrated 
circuits and are used extensively in many electronic 
systems [8]. However, Jonscher [9] demonstrated that the 
ideal capacitor cannot exist in nature, because an 
impedance of the form 1/(jωC) would violate causality 
[10], [11]. In fact, the dielectric materials exhibit a 
fractional behavior yielding electrical impedances of the 
form 1/[(jωCF)α], with α ∈ℜ+.  
Bearing these ideas in mind, this paper analyzes the 
fractional modelling of several electrical devices and is 

organized as follows. Section 2 introduces the fundamental 
concepts of electrical impedances. Section 3 describes the 
fractal geometries and fractional capacitors. Sections 4 and 
corresponding subsections present the experiments results 
and the impedance model for the study of the fractional 
order capacitors. Finally, section 5 draws the main 
conclusions. 
 
 
2. On the Electrical Impedance 
 
In an electrical circuit the voltage u(t) and the current i(t) 
can be expressed as a function of time t:  

u(t) = U0 cos(ωt), (1) 
i(t) = I0 cos(ωt+φ) (2) 

where U0 and I0 are the amplitudes of the signals, ω is the 
angular frequency and φ is the current phase shift. The 
voltage and current can be expressed in complex form as: 

{ },eRe)( )(
0

tjUtu ω=  (3) 

{ })(
0eRe)( φ+ω= tjIti  (4) 

where Re{ } represents the real part and 1−=j . 
Consequently, in complex form the electrical impedance 
Z(jω) is given by the expression: 

.Z
)j(I
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ω
ω

=ω e0  (5) 

Fractional order elements occur in several fields of 
engineering [8], [9], [11].  
A brief reference about the Constant Phase Element 
(CPE) and the Warburg impedance is presented here due 
to their application in the work. In fact, to model an 
electrochemical phenomenon it is often used a CPE due to 
the fact that the surface is not homogeneous [12].  
With a CPE we have the expression:  

( )αω
=ω
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(6) 
 

where CF is a fractional order capacitance and the 
fractional order 0 < α ≤ 1 is a parameter, occurring the 
classical  ideal capacitor  when α = 1.  
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Table 1 
Impedance Z (jω) and admittance Y (jω)  loci of RC 

circuits of integer and fractional order 
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It should be noted that the SI base units of the CF element 
are [m−2/αkg−1/αs(α+3)/αA2/α] [13], [14]. 
Table I shows the polar plots of the impedance Z(jω) and 
the admittance Y(jω) = Z−1(jω) for simple series and 
parallel RC associations of integer and fractional order, 
where G = Re{Y} is the conductance and B = Im{Y} is the 
susceptance. 
It is well known that, in electrochemical systems with 
diffusion, the impedance is modelled by the so-called 
Warburg element [12], [14]. The Warburg element arises 
from one-dimensional diffusion of an ionic species to the 
electrode. If the impedance is under an infinite diffusion 
layer, the Warburg impedance is given by: 

( ) 5.0)(
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RjZ
ω

=ω  (7) 

where R is the diffusion resistance. If the diffusion process 
has finite length, the Warburg element becomes: 
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with D2δ=τ , where R is the diffusion resistance, τ is 
the diffusion time constant, δ is the diffusion layer 
thickness and D is the diffusion coefficient [14].  
Based on these concepts, in the following sections some 
fractional order electric impedances are presented. 
 
 
3. Fractals and Fractional Capacitors 
 
Fractals can be found both in nature and abstract objects. 
The impact of the fractal structures and geometries, is  

presently recognized in engineering, physics, chemistry, 
economy, mathematics, art and medicine.   
The concept of fractal is associated with Benoit 
Mandelbrot, that lead to a new perception of the geometry 
of the nature [15]. However, the concept was initially 
proposed by several well known mathematicians, such as 
George Cantor (1872), Giuseppe Peano (1890), David 
Hilbert (1891), Helge von Koch (1904), Waclaw 
Sierpinski (1916), Gaston Julia (1918) and Felix Hausdorff 
(1919) [15], [16].  
An geometric important index consists in the fractal 
dimension (FDim) that represents the occupation degree in 
the space and that is related with its irregularity. The FDim 
is given by:      
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z 11
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where N represents the number of boxes, with size η(N) 
resulting from the z subdivisions of the original structure.  
This is not the only description for the fractal geometry, 
but  it is enough for the identification of groups with 
similar geometries.  
Some of the classical fractals adopted in this work are the 
curve of Koch, triangle of Sierpinski, carpet of Sierpinski, 
curves of Hilbert and Peano, depicted in the Table II.    
The dielectric absorption in the capacitors is difficult to 
characterize accurately, due to the high value of the 
involved time constant, and the necessity of high 
precision measuring equipment.    
The simplest capacitors are constituted by two parallel 
electrodes separated by a layer of insulating dielectric. 
There are several factors susceptive of influencing the 
characteristics of a capacitor. However, three of them 
have a special importance, namely the surface of the 
electrodes, the distance among them and the material that 
constitutes the dielectric. 
In this work it is studied another aspect that can also 
influence the capacity of a capacitor, namely the 
wrinkling of theirs electrodes, and a non-homogenous 
dielectric structure. The electrodes are implemented 
through one-side cooper-based printed circuit boards with 
the fractal geometries presented in Table II. The choice of 
these fractals is due to the value of FDim that it is 
intended to evaluate cases with dimension from 1 up to 2. 
 
 
4. Experimental Results 
 
In this section, we consider four types of electrolytes, five 
different fractal structures and a fractional order model of 
an electrical circuit. In the first subsection, we analyze the 
system of Figure 1 by adopting two electrodes with the 
carpet of Sierpinski fractal and four different electrolytes.  
In the second subsection we adopt the approximation 
electrical model for analyzing several fractal electrodes 
and dielectric structures. 
 
 

 



 

Table 2 
Fractals structures 

Fractal  
Name 

Fractal 
Dimension Structure 

Curve 
of 

Koch 
1.262 

 

Triangle 
of 

Sierpinski 
1.585 

 

Carpet 
of 

Sierpinski 
1.893 

 

Curve 
of 

Hilbert 
2.000 

 

Curve 
of 

Peano 
2.000 

 
 
4.1 Experiments with the Carpet of  Sierpinski    
 
In the experiments (Figure 1) we apply sinusoidal 
excitation signals v(t) to the apparatus, for several distinct 
frequencies ω, and the impedance Z(jω) between the 
electrodes is measured based on the resulting voltage u(t) 
and current i(t).  
We study the influence of several factors such as FDim, 
different chloride of sodium (NaCl) solution 
concentrations (Ψ) and the introduction of fractal 
materials in the solution, namely gravel and sand. 
Moreover, we test also the linearity and the variation of 
the impedance Z(jω) with the amplitude V0  of the input 
signal. 
In each experiment we use two identical single face 
electrodes. The voltage, the adaptation resistance Ra and 
the distance between electrodes delec are kept identical 
during the different experiments namely, V0 = 10 V, Ra = 
1.2 kΩ and delec = 0.13 m.  
This methodology help us to understand the influence of 
the relevant factors in the impedance Z(jω) and, 
consequently, the behavior of the fractal capacitor.  
In a first experiment, the electrolyte process consists in a 
aqueous solution of NaCl with Ψ = 5 gl−1 (AS5) and two 
copper electrodes with the carpet of Sierpinski printout 
with area S = 0.423 m2.   
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CathodeAnode

v(t)=V0cos(ωt+ϕ)
+-

variable V0 , ω Ra

i(t)=I0cos(ωt+φ)
ui

Measurement
device FLUKE
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Adaptation
Resistance
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Porous material:
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Electrolyte
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Figure 1 Electrolyte process 

 
 
We apply the R and CPE (6) series circuit of Table I, to 
model the fractional electrical impedance yielding: 

( )
.1ω)(app αω

+=
FCj

RjZ  (10) 

Figure 2 presents the polar diagrams of Z(jω) and Y(jω), 
and the corresponding model approximation, Zapp, Yapp. 
The electric element reveals fractional order impedance 
leading to the parameters (R, CF , α) = (19.10, 1.02×10−4, 
0.589). 
In a second case, with the purpose of studying the effect 
of the dielectric, we introduce gravel into the aqueous 
solution of Ψ = 5 gl−1 (AS5G). We use the same 
electrodes and the gravel covers completely the 
electrodes. In this case, we obtain a dielectric having also 
fractal characteristics. The values of the voltage and of the 
adaptation resistance are identical to the previous 
experiment (i. e., V0 = 10 V, Ra = 1.2 kΩ) leading to the 
approximation parameters (R, CF, α) = (58.00, 1.40×10−5, 
0.500). 
In a third experiment the gravel is replaced by sand 
(AS5S) leading to (R, CF, α) = (90.90, 3.9×10−5, 0.540). 
In all three experiments was varied the amplitude V0 and 
it was verified that the device has linear characteristics. 
Figure 3 illustrates the polar diagrams of Z(jω), Y(jω), 
 and the corresponding approximations. The results reveal 
a good fit between the experimental data and the 
approximation model. 
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Figure 2 Polar diagrams of the impedance and admittance 

for electrodes with the carpet of Sierpinski fractal 
 
The fourth experiment studies the influence of the fractal 
surface by using two electrodes printed with the carpet of 
Sierpinski having an area of S / 3. In this case the values 
of the voltage, the resistance of adaptation and the 
solution remain unchanged, namely V0 = 10 V, 
Ra = 1.2 kΩ and Ψ = 5 gl−1, without introducing neither 
gravel or sand in the dielectric. The approximation model 
leads to (R, CF, α) = (27.10, 5.30×10−17, 0.175).  
In a fifth case, Z(jω) is evaluated for electrodes with the 
carpet of Sierpinski and the initial electrode (S = 0. 423 
m2) but with a aqueous solution concentration of the 
Ψ = 10 gl−1 (AS10). The voltage and the resistance of 
adaptation remain the same. The approximation leads to 
the parameters (R, CF, α) = (13.00, 2.66×10−4, 0.690).  
Table III presents the values of the parameters (R, CF, α) 
for the five experiments described previously. Comparing, 
experiments 1, 2 and 3, we conclude that the introduction 
of the gravel or sand in the solution increases R, and 
diminishes CF while α remains almost invariant. 
The comparison of the experiments 1 and 4 reveals that R 
increases and that CF and α decrease. Moreover, we 
verify that the fractional order α decreases approximately 
by a factor of 1/3.  
Finally, comparing experiments 1 and 5, we verify that R 
decreases and that CF and α increase.  
Based on these initial results, in the next subsection, we 
organize similar experiments for the other fractals 
presented in Table II, in order to analyze their influence in 
the electrical impedance.  
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Figure 3 Polar diagrams of the impedance and admittance 
for electrodes with the carpet of Sierpinski fractal, and the 

AS5G and AS5S dielectrics 
 

Table 3 
Numerical values of the parameters for the circuit with R 
and CPE series association, with the carpet of Sierpinski 

Case Sur-
face Ψ 

R 
[Ω] 

CF 

[m−2/αkg−1/α 

s(α+3)/αA2/α] 
α 

1 S AS5 19.10 1.02×10−4 0.589 

2 S AS5G 58.00 1.40×10−5 0.500 
3 S AS5S 90.90 3.90×10−5 0.540 
4 S/3 AS5 27.10 5.30×10−17 0.175 

5 S AS10 13.00 2.66×10−4 0.690 
 
4.2 Experiments with Other Fractals 
 
In this subsection are analyzed the curve of Koch, triangle 
of Sierpinski, curve of Hilbert and curve of Peano. 
The values of the voltage amplitude V0, the resistance of 
adaptation Ra and the dielectric solution (AS5) are 
identical to those used in the previous experiments.  
The size of the fractals was adjusted so that their surface 
yields identical values, namely S = 0.423 m2. 
Table IV shows the values of the approximation 
parameters (R, CF, α) and figures 4 and 5 depict the polar 
diagrams of Z(jω) and Y(jω). The results reveal again a 
good fit between the experimental data and the electrical 
model. 

 



 

These figures reveal also similarities with the results 
presented in the Table I. Moreover, it is clear that adopting 
more complex circuit models we can have better 
approximations. Nevertheless, models with a larger 
number of components make difficult to compare 
different cases and to assign a physical meaning to each 
parameter.  

 
Table 4 

Numerical values of the parameters of the circuit with R 
and CPE series association for several fractal electrodes 

Fractal Sur-
face Ψ 

R 
[Ω] 

CF 
[m−2/αkg−1/α 

s(α+3)/αA2/α] 
α 

Curve of 
Koch S AS5 20.87 7.03×10−5 0.602 

Triangle of 
Sierpinski S AS5 8.00 4.00×10−6 0.480 

Curve of 
Hilbert S AS5 19.30 1.40×10−4 0.640 

Curve of 
Peano S AS5 19.50 3.00×10−5 0.550 

 
 
5. Conclusion 
 
During several centuries the FC was developed mainly in 
a mathematical viewpoint, but presently it addresses a 
considerable range of applications.  
In this paper the FC concepts were applied to the 
electrical fractional impedances. Therefore, fractal 
structures were adopted in an electrolyte process. This 
system is a possible prototype for the development of 
fractional electrical devices, and an alternative to the 
classical integer order capacitors. 
It was verified that is possible to get fractional order 
elements by adopting non classical electrodes and 
dielectrics.  
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Figure 4 Polar diagrams of the impedance and for the 

fractal electrodes {Koch, Triangle Sierpinski, Hilbert and 
Peano} 

Figure 5 Polar diagrams of the admittance for the fractal 
electrodes {Koch, Triangle Sierpinski, Hilbert and Peano} 
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