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Abstract 
The theory of fractional calculus goes back to 

the beginning of the theory of differential calculus, 
but its application received attention only recently. 
In the area of automatic control some work was 
developed but the proposed algorithms are still in a 
research stage. This paper discusses a novel 
method, with two degrees of freedom, for the 
design of fractional discrete-time derivatives. The 
performance of several approximations of 
fractional derivatives is investigated in the 
perspective of nonlinear system control. 
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1    Introduction 

Fractional calculus (FC) is a natural extension of 
the classical mathematics. The fundamental 
aspects of the fractional calculus theory and the 
study of its properties can be addressed in 
references [Miller and Ross, 1993; Oldham and 
Spanier, 1974; Samko, et al. 1993]. In what 
concerns the application of FC concepts we can 
mention a large volume of research about 
viscoelasticity and damping, biology, signal 
processing, diffusion and wave propagation, 
modeling, identification and control [Anastasio, 
1994; Bagley and Torvik, 1983; Machado, 1997; 
Mainardi, 1996; Méhauté, 1991; Miller and Ross, 
1993; Nigmatullin, 1986; Oldham and Spanier, 
1974; Oustaloup, 1991; Oustaloup, 1995; 
Podlubny. 1999a; Samko, et al., 1993]. 

Several researchers on automatic control 
proposed algorithms based on the frequency 
[Oustaloup, 1991; Oustaloup, 1995] and the 
discrete-time [Machado, 1997; Podlubny. 1999a; 
Podlubny. 1999b] domains. This article introduces 
a novel method to implement fractional derivatives 
(FDs) in the discrete-time domain. The 
performance of the resulting algorithms is 
analyzed when adopted in the control of nonlinear 
systems. In this line of thought, the paper is 

organized as follows. Sections two and three 
develop the novel method of FD discrete-time 
approximation and investigate its performance in 
the control of a nonlinear system, respectively. 
Finally, section four draws the main conclusions. 
 
 
2    On the Generalization of Fractional 
Discrete-Time Control Algorithms 

The Grünwald-Letnikov definition of a FD of 
order α of the signal x(t), ( )txDα , is given by the 
expression: 
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where Γ is the gamma function and h is the time 
increment. This formulation inspired the discrete-
time FD calculation, by approximating the time 
increment h through the sampling period T, 
yielding the equation in the z domain: 
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where X(z) = Z{x(t)}. 

The expression (2) represents the Euler (or first 
backward difference) approximation in the so-
called s → z conversion schemes, being other 
possibilities the Tustin (or bilinear) and Simpson 
rules. The generalization to non-integer exponents 
of these conversion methods lead to the non-
rational z-formulae: 
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where H0 and H1 are often called generating 
approximants of zero and first order, respectively. 
In order to get rational expressions the 
approximants need to be expanded into Taylor 
series and the final algorithm corresponds to a 
truncated series or to a rational Pade fraction. 
We can obtain a family of fractional differentiators 
by the generating functions H0 and H1 weighted by 
the factors p and 1−p, yielding: 
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For example, the Al-Alaoui operator 

corresponds to a weighted interpolation of the 
Euler and Tustin integration rules with 43=p  
[Al-Alaoui, 1993; Al-Alaoui, 1997; Smith, 1987]. 
These approximation methods have been studied 
by several researchers [Barbosa, et al., 2004; 
Barbosa, et al., 2006; Chen, and Moore, 2002; 
Chen, et al., 2004; Chen and Vinagre, 2003; 
Tseng, 2001; Vinagre, et al., 2003] and motivated 
a novel averaging method based on the generalized 
formula of averages, or average of order ℜ∈q : 
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where (p,q) are two tuning degrees of freedom. 
For example, when { }1,0,1−=q  we get the wel-
known {harmonic, geometric, arithmetic} 
averages, respectively. 

Bearing these ideas in mind we decided to 
examine the expression resulting from (5), for 
distinct values of (q,p). Tables 1 and 2 depict the 
coefficients of a second order Pade approximation 
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to αD , 21=α , for { }2,23,1,21,0,21,1 −−=q , 
43=p , and { }2,1,0,1−=q , 21=p , 

respectively. 
 
 
3    Performance Evaluation in the Control of a 
Nonlinear System 

In order to test the performance of the 
expressions the usual method is to examine either 
the frequency domain, by comparing the Bode 
plots, or the time domain, by comparing the step 
response. Nevertheless, often the differences are 
negligible and, furthermore, do not have a direct 
translation to control system performance. 
Therefore, in our study we decided to test the 
approximations by analyzing the step response 

when the FD represents the control algorithm. In 
this perspective, we consider the closed loop 
represented in Fig. 1. The inclusion of the on-off 
non-linearity in the forward loop leads to the 
simplification of the analysis because the 
controller gain is not relevant and is not necessary 
to tune, but, on the other hand, we have a stringent 
dynamic test that stimulates both the transient and 
steady-state behavior. 

Figure 2 depicts the closed-loop step response 
for { }2,23,1,21,0,21,1 −−=q  and 43=p . 
Figure 2 presents the response for { }2,1,0,1−=q  
and 21=p . In both cases, we consider three 
controller high sampling periods, namely T = {0.1, 
0.2, 0.3} in order to test also the robustness for fast 
versus slow sampling controllers. 

In all cases we verify that: 
● In general the order 1=q  is the one that 

produces the best results; 
● The sampling period T = 0.1 leads to a 

good performance, while the results degrade 
considerably for larger values of T; 
● The difference between 43=p  and 

21=p  seems to be negligible, particularly in 
the case of 1=q . 

While these results seem clear the authors 
believe that further test, namely with other systems 
and other values of α, q and p are still required to 
establish a definitive conclusion. 
 
 
4    Conclusions 

In this paper a novel method for the discrete-
time FD approximation was presented and 
evaluated. The new algorithm adopts the time 
domain and generates a family of possible 
approximations, having two distinct degrees of 
freedom, namely the order of the averaging and the 
weight of the generating functions. The properties 
of several expressions were studied for a simple 
non-linear system. The time response of the closed 
loop system was analyzed and the robustness for 
different sampling periods was tested. The 
conclusions are consistent and motivate an 
extensive test of all possibilities opened by the 
extra degrees of freedom. 
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Table 1. Coefficients of the Pade fraction approximation for p = 3/4 
 

q a0 a1 a2 b0 b1 b2 
−1 0.76597491 6.026479067 −7.984934523 1 1.054474431 −7.609965244 

−1/2 1.324947376 3.621337338 −6.248676637 1 −0.000172433 −5.761497326 
0 1.465218175 2.188544252 −4.788397277 1 −0.804204046 −4.788397277 

1/2 1.734358402 1.669224885 −4.589703269 1 −1.164316112 −4.184478992 
1 1.787304546 1.2339426 −4.155138823 1 −1.36761081 −3.765228028 

3/2 1.779700183 0.975910656 −3.828827863 1 −1.464217163 −3.447457027 
2 1.723916925 0.840452121 −3.56477439 1 −1.480178572 −3.188431144 

 
Table 2. Coefficients of the Pade fraction approximation for p = 1/2 

 
q a0 a1 a2 b0 b1 b2 

−1 0.218192312 2.932612925 −3.758174112 1 1.815189846 −8.845101094 
0 1.645896792 2.146868296 −5.087608366 1 −1.403319874 −4.278151638 
1 1.667798875 1.603885503 −4.470002812 1 −1.607438339 −3.703075415 
2 1.488976016 1.498893033 −4.035502783 1 −1.52197687 −3.29498733 
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Figure 1. The D1/2 controller for a system with a nonlinear actuator. 
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Figure 2. Closed loop step response for a D1/2 controller with q = {−1, −1/2, 0, 1/2, 1, 3/2, 2} and p = 3/4. 
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Figure 3. Closed loop step response for a D1/2 controller with q = {−1, 0, 1, 2} and p = 1/2. 
 

 


