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Abstract: This paper addresses the robotic manipulator synthesis problem considering multi-
ple design criteria simultaneously. This is a complex problem suitable for the application of
multi-objective genetic algorithms. Thus, an hierarchical multi-objective genetic algorithm
is proposed to generate a robot structure and correspondingmanipulating trajectories. The
design aim is to minimize the trajectory space ripple, the initial and final torques while
optimizing the mechanical structure. Simulation results are presented concerning the solution
of a structure synthesis problem with the optimization of three objectives.
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1. INTRODUCTION

Genetic Algorithms (Gas) have been successfully ap-
plied to solve a wide range of engineering problems
(Chambers, 2000) since the pioneering work from
(Holland, 1992). This article addresses two optimiza-
tions problems: the design of a robotic manipulator
structure and the trajectory planning. The latter aims
to obtain a continuous motion which allows the ma-
nipulator to move from a pre-defined starting point to
a desired end-point within the workspace.

Several single-objective based techniques have been
proposed to solve these and related robotic prob-
lems such as: trajectory planning, manipulator struc-
ture and collision avoidance (Chocron and Bidaud,
1997), (Hanet al., 1997), (Kim and Khosla, 1992)
and (Gallant and Boudreau, 2000). However, some
of these problems are multi-objective in nature and
would benefit greatly to be solved with multi-objective
optimization techniques.

Multi-objective techniques using GAs have been in-
creasing in relevance as a research area. Goldberg
(Goldberg, 1989) suggested the use of a GA to solve
multi-objective problems and since then other inves-
tigators have been developing new methods, such as:
multi-objective genetic algorithm (MOGA) (Fonseca
and Fleming, 1995), non-dominated sorted genetic al-
gorithm (NSGA) (Deb, 2001) and niched Pareto ge-
netic algorithm (NPGA) (Hornet al., 1994), among
many other variants (Coello and Carlos, 1999; Coello
et al., 2005). This paper proposes the use of a multi-
objective method to optimize a manipulator trajectory.
The proposed method is based on a GA adopting di-
rect kinematics. The optimal structure front is the one
that minimizes the objectives.

The paper outline is as follows: section 2 formulates
the problem and the GA based method for its reso-
lution. Section 3 presents several simulations results
involving different robots, objectives and workspace
settings. Finally, section 4 outlines the main conclu-
sions.
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2. PROBLEM AND ALGORITHM
FORMULATION

This study considers robotic manipulators that are re-
quired to move from an initial point up to a given final
position. In the experiments 1 up to 4 dof planar ma-
nipulators were adopted with rotational and prismatic
joints. The arm link length are in the range[0.1, 1] m
with increments of0.1 m, and the robot rotational
joints are free to rotate2π rad. Therefore, the ma-
nipulator workspace is a circle with a4 m maximum
radius. In what concerns thestructuregenerator, it is
adopted a hierarchical GA, with 3 GAs to perform the
search.

The hierarchical EA is adopted in this work with four
EAs, (see figure 1). A MOEA is used to evaluate
the robot’s structure,structure generator. For each
structure population element three single GAs are
executed. Two GAs are used to calculate the initial
and final configurations of the trajectory. The third GA
determines the intermediate configurations between
the two points calculated previously, calledtrajectory
generator, in order to find an optimal robot path.
Therefore, for each structure three GAs are executed
and the best fitness for each GA are used to form the
three objective values of the structure solution.

2.1 Representation

The robotic structure string is represented in (1) where
Ji represents the type of theith joint (this variable can
take two values: R for rotational and P for prismatic
joints) andli is theith link length, in the range[0, 1] m
with allowed increments of0.1 m. In order to limit
the computational time the number ofdof is limited
to k ≤ 4. All values used in this work are encoded
through real values except the type of the robotic link.

S{J:l} = {(J
(T )
1 , l

(T )
1 ), . . . , (J

(T )
k , l

(T )
k )} (1)

On the other hand, the initial and final configuration
are encoded as (2).

{q
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Finally, the path is encoded, directly, as strings in the
joint space to be used by the GA as:
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In the generationT , the ith joint variable for a robot
intermediatejth position isq

(j,T )
i , the chromosome

is constituted byn − 2 genes (configurations) and
each gene is formed byk values. The values ofq(j,0)

i

are initialized in the range] − 2π, 2π] for R-joints
and [0.1, 1] m for the case of P-joints. It should be

noted that the initial and final configurations have not
been encoded into the string because this configu-
ration remains unchanged throughout the trajectory
search. Without losing generality, for simplicity, it is
adopted a normalized time of∆t = 0.1 s between
two consecutive configurations, because it is always
possible to perform a time re-scaling.

2.2 Operators in the multi-objective genetic algorithm

Initial populations are generated at random. The
search is then carried out among these populations.
The different operators used in thetrajectoryplanning
are reproduction, crossover and mutation, as described
in the sequel. Successive generations of new strings
are reproduced on the basis of their fitness function.
In this case, it is used a rank selection to select the
strings from the old population, up to the new pop-
ulation with σshare = 0.01 andα = 2. To promote
population diversity a metric count is used. This met-
ric uses all solutions in the population independently
of their rank to evaluate every fitness function. For
the crossover operator it is used the simulated binary
crossover (SBX)(Deb, 2001). After crossover, the best
solutions (among both parents and children) are cho-
sen to form the next population. The mutation operator
consists on several actions namely, changing the type
of the joint, modifying the link length and changing
the joint variable. The mutation operator replaces one
gene value with a given probability using equation (4)
at generationT , whereN(µ, σ) is the normal distri-
bution function with averageµ and standard deviation
σ.

q
(j,T+1)
i = q

(j,T )
i + N(0, 1/

√
2π) (4)

The operators used for thestructureoptimization are:
duplication operator,pd, that divide one link in two
links with same length; the fusion operator,pr, that
join two links; and the mutation operator that changes
the length link following equation (5). In all operators
the link length restrictions are kept. At the end of each
structure GA iteration, the next structure population
is selected based on the maximin scheme structure
(Solteiro Pireset al., 2005).

l
(T+1)
i = l

(T )
i + N(0, 1/

√
2π) (5)

2.3 Evolution criteria

Three indices{fτi
, fτf

, fq} (6) are used to qualify
the evolving trajectory robotic manipulators. These
criteria are minimized by the planner to find the op-
timal Pareto front. Before evaluating any solution all
the values such that|q((j+1)∆t,T )

i − q
(j∆t,T )
i | > π are
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Fig. 1. Hierarchical Genetic Algorithm

readjusted, adding or removing a multiple value of2π,
in the strings.
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The gravitational torque (6a) of extreme positions is
used in order to minimize the energy required particu-
larly when the manipulator has long stops points.

The joint distancefq (6c) is used to minimize the
manipulator joints travelling distance. For a function
y = g(x) the curve length is defined by:

∫ [1 + (dg/dx)2]dx (7)

and, consequently, to minimize the curve length dis-
tance the following simplified expression is adopted:

∫(dg/dx)2dx = ∫ ġ
2dx. (8)

3. SIMULATION RESULTS

The experiments consist on moving a robotic arm
from the starting pointA ≡ {1.0, 0.8} up to the final
point B ≡ {−0.4, 1.2}. The simulations results were
achieved by using the following GA settings, with
n = 9 configurations,T (c,t,s) = {200, 15000, 1200}
for configuration, trajectory and structure genera-
tions, respectively. The population size ispop

(c,t,s)
size =

{200, 100, 100}, duplication probabilitypd = 0.1,

fusion probabilitypr = 0.1, crossover probability
pc = 0.8 and mutation probabilitypm = 0.1.
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Fig. 2. Pareto optimal front{fτ1
, fτ2

, fq} and Pareto
optimal front plane projections:{fτ1

, fτ2
},

{fτ1
, fq} and{fτ2

, fq}

The algorithm determines the non-dominated front
maintaining a good distribution of solutions along the
Pareto front (figure 2) since the spacing index (Schott,
1995) is SP = 0.072 and the Minimal Distance
Graph index (Solteiro Pireset al., 2005) is MDG=
0.122. However, solutions alongfq objective are few
relatively to the others objectives because the maximin
sorting scheme is used without a scale normalization
in all objectives.

The extreme performance solutions of the front are
different due to the objectives considered. Between
these extreme optimal solutions several others were
found, that have a intermediate behavior, and which
can be selected according with the importance of each
objective. The achieved front structures obtained in
the simulation are depicted in table 1, in which P and
R means prismatic and rotational joint, respectively.
Table 2 presents for each objective, the best structur
obtained. In figure 3 to 5 are shown same different
structures of the front. In (a) figures are illustrated
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Fig. 2. Pareto optimal front{fτ1
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, fq} and Pareto
optimal front plane projections:{fτ1
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},

{fτ1
, fq} and{fτ2

, fq} (cont.)

Table 1. Number of non-dominated solu-
tions for structs

Structure Number of solutions

PRRP 93
PRPP 6
PPRP 1

Table 2. Best Structurs for each Objective

Objective Structure l1 cm l2 cm l3 cm l4 cm

fτ1
PRPP 18 12 36 99

fτ2
PRPP 10 10 38 96

fq PRRP 11 14 39 97

the successive configurations of the structures where
a circle means a rotational joint and a star represents
a prismatic joint. In (b) figures it can be seen the joint
position of trajectoryvs.time whereJi represents the
joint typeJ = {R, P} for the link i = {1, . . . , 4}. The
rotational and prismatic scales are in the left and right
side of the graphs.
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Fig. 3. Best PRPP robot manipulator forfτ2
Objective
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Fig. 4. Best PRPP robot manipulator forfτ2
Objective

Analyzing the final number of axis, we conclude that
the larger the number of dof the better the robot
ability to maneuver and to reach the desired points.
The structure have a rotational joint near of the robot
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Fig. 5. Best PRRP robot manipulator forfτ2
Objective

base. From (b) figures can be seen that the joint cross
distance are very near of the optimal.

4. SUMMARY AND CONCLUSIONS

A multi-objective genetic algorithm robot structure
and trajectory planner, based on the kinematics ap-
proach, was proposed. The multi-objective genetic al-
gorithm is able to reach optimal solutions regarding
the optimization of multiple objectives. The algorithm
is able to reach Pareto front and the solutions presents
a low gravitational binary at the start and end positions
and a reduced ripple in the space trajectory evolution
according to objective selected. Furthermore, the algo-
rithm determines the robot structure more adaptable to
a given number and type of tasks, maintaining good
manipulating performances. Simulation results were
presented considering the optimization of three simul-
taneous objectives.
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