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Several kinematic techniques for the trajectory optimization of redundant manipulators 
control the gripper using the pseudoinverse of the Jacobian. Nevertheless, these 
algorithms lead to a kind of chaotic motion with unpredictable arm configurations. This 
paper presents a new technique for solving the inverse kinematics problem for redundant 
manipulators that combines the closed-loop pseudoinverse method with genetic 
algorithms. 

1.   Introduction 

Kinematic redundancy occurs when a manipulator possesses more degrees of 
freedom than the required to execute a given task. In this case the inverse 
kinematics admits an infinite number of solutions, and a criterion to select one 
of them is required. Most of the research on redundancy deals with the use of 
these extra degrees of freedom and is referred to in the literature as the 
resolution of redundancy. 

Several techniques for solving the kinematics of redundant manipulators, 
that have been suggested, control the end-effector, indirectly through the rates at 
which the joints are driven, using the pseudoinverse of the Jacobian [1]. The 
pseudoinverse of the Jacobian matrix guarantees an optimal reconstruction of 
the desired end-effector velocity – in the least-squares sense – with the 
minimum-norm joint velocity. However, even though the joint velocities are 
instantaneously minimized, there is no guarantee that the kinematic singularities 

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/195806428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

are avoided [2]. Moreover, this method has the generally undesirable property 
that repetitive end-effector motions do not necessarily yield repetitive joint 
motions. Klein and Huang [3] were the first to observe this phenomenon for the 
case of the pseudoinverse control of a planar three-link manipulator. 

Baillieul [4] proposed a modified Jacobian matrix called the extended 
jacobian matrix. The extended jacobian is a square matrix that contains the 
additional information necessary to optimize a certain function. The inverse 
kinematic solutions are obtained through the inverse of the extended jacobian. 
The algorithms based on the computation of the extended jacobian matrix have 
a major advantage over the pseudoinverse techniques because they are locally 
cyclic [5]. The disadvantage of this approach is that, while mechanical 
singularities may be avoided, typical algorithmic singularities arise from the 
way the constraint restricts the motion of the mechanism. 

Another class of methods resolves the motion through a direct mapping 
from the workspace to the joint space. The main advantage of the inverse 
kinematics method is that the solution yields directly in terms of the joint 
variables, while, when the pseudoinverse or the extended jacobian method are 
adopted, the joint velocities must be integrated in order to obtain the joint 
positions. Chang [6] developed a closed-form solution for the inverse 
kinematics of manipulators with redundancy using the Lagrangian multiplier 
method. Another approach is to find a numerical solution by a successive 
approximation algorithm. For example, Goldenberg et al. [7] introduced a 
generalized solution to the inverse kinematics of robots, that uses the modified 
Newton-Raphson technique, for solving the system of nonlinear kinematic 
equations. The solution can be obtained subject to specified constraints based 
performance criteria. Alternatively, the kinematic model of the manipulator can 
be divided into subsystems such that an iterative procedure determines some 
joint variables, while the rest of the variables are obtained through a closed-
form solution [8-9]. 

One optimization method that is gaining popularity for solving complex 
problems in robotics is the Genetic Algorithm (GA). GAs are population-based 
stochastic and global search methods. Their performance is superior to that 
revealed by classical techniques [10] and has been used successfully in robot 
path planning. 

Kubota et al. [11] studied a hierarchical trajectory planning method for a 
redundant manipulator using a virus-evolutionary GA. This method runs, 
simultaneously, two processes. One process calculates some manipulator 
collision-free positions and the other generates a collision-free trajectory by 
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combining these intermediate positions. Nishimura et al. [12] proposed a 
motion planning method using an artificial potential field and a GA for a hyper-
redundant manipulator whose workspace includes several obstacles. Peng and 
Wei [13] presented a trajectory planning method of redundant manipulators by 
combining a stochastic search algorithm (simulated annealing algorithm) and a 
GA. In this algorithm the selection, crossover and mutation operators are 
adjusted by using an adaptive mechanism based on the fitness value. 

Having these ideas in mind, the paper is organized as follows. Section 2 
introduces the fundamentals of the kinematics and dynamics of redundant 
manipulators. Based on these concepts, section 3 presents the proposed closed-
loop inverse kinematics algorithm with genetic algorithms (CLGA). The 
simulation results are presented in section 4 and, finally, in section 5 are drawn 
the main conclusions. 

2.   Kinematics and Dynamics of Redundant Manipulators 

We consider a manipulator with n degrees of freedom, whose joint variables are 
denoted by 1 2,  ,  ,  T

nq q q= ⎡ ⎤⎣ ⎦q … , and a class of tasks described by m 
variables, 1 2,  ,  ,  T

mx x x= ⎡ ⎤⎣ ⎦x … , m n< . The relation between q  and x  is 
given by:  

 ( )f=x q  (1) 

where f  is a function representing the direct kinematics. 
The inverse kinematics equation is given as the vector equation:  

 ( )1f −=q x  (2) 

Mapping from the world coordinates into the joint coordinates is not one to 
one, and there may exist an infinite number of joint solutions which result in a 
given end-effector configuration. Moreover, because of the complexity of (1), 
the inverse mapping (2) is hard to express in closed form and q  does not 
necessarily exists. 

Differential kinematics of robot manipulators was introduced by Whitney 
[14] that proposed the use of differential relationships to solve for the joint 
motion from the Cartesian trajectory of the end-effector. Whitney named this 
method resolved motion rate control.  Differentiating (1) with respect to time 
yields:  

 ( )=x J q q  (3) 
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where m∈ℜx , n∈ℜq  and ( ) ( ) m nf ×= ∂ ∂ ∈ℜJ q q q . Hence, it is possible to 
calculate a path ( )tq  in terms of a prescribed trajectory ( )tx  in the operational 
space. 

Equation (3) can be inverted to provide a solution in terms of the joint 
velocities: 

 ( ) #=q J q x  (4) 

where  #J  is the Moore-Penrose generalized inverse [1] of the Jacobian J . 
The dynamic equation of motion for a general n-link manipulator can be 

described by: 

 ( ) ( ) ( ),= + +T M q q c q q g q  (5) 

where T  is the 1n×  joint torque vector, ( )M q  is the n n×  inertia matrix, 
( ),c q q  is the 1n×  Coriolis/centripetal vector,  and ( )g q  is the 1n×  gravity 

vector. 

3.   Robot Trajectory Control  

The Jacobian of a 3-link planar manipulator (i.e., 3n = , 2m = ) has a simple 
recursive nature according with the expression:  

 
1 1 3 123 3 123

1 1 3 123 3 123

l S l S l S

l C l C l C

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

− − − −
=

+ +
J

…

…
 (6) 

where il  is the length of link 1, 2,3i = , i k i kq q q= + +… … , ( )i k i kS Sin q=… …  
and ( )i k i kC Cos q=… … . 

In the experiments the arms have identical link lengths, 1 2 3l l l= = . 
In the closed-loop pseudoinverse (CLP) method the joint positions can be 

computed through the time integration of the velocities according with the block 
diagram depicted in Figure 1. 

 
 

−
+ 

qΔxrefx  
Trajectory 
Planning ( ) #J q ∫

Direct 
Kinematics

x

Δq

 
 
Figure 1. Block diagram of the closed-loop inverse kinematics algorithm with the pseudoinverse. 
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In a previous study, addressing the CLP method [15], we concluded that 

this method leads to unpredictable arm configurations and reveals properties 
similar to those that occur in chaotic systems. 

Genetic algorithms (GAs) are a method for solving both constrained and 
unconstrained optimization problems, based on the mechanics of natural 
genetics and selection, that was first introduced by Holland [16]. A GA allows a 
population composed of many individuals to evolve under specified selection 
rules to a state that maximizes the fitness or the cost function. The GA modifies 
repeatedly the population of individual possible solutions. At each step, the 
genetic algorithm selects individuals at random, from the current population, to 
be parents, and uses them to produce the offspring for the next generation. Over 
successive generations, the population evolves towards an optimal solution. The 
GAs can be applied to solve a variety of optimization problems that are not well 
suited for standard optimization algorithms, including problems in which the 
objective function is discontinuous, not differentiable, stochastic, or highly 
nonlinear. 

Bearing these facts in mind, in this paper we propose a new method that 
combines the CLP with a GA, that we call closed-loop inverse kinematics 
algorithm with genetic algorithms (CLGA). 

3.1.   The CLGA Formulation 

The CLGA adopts the closed-loop structure without requiring the 
calculation of the pseudoinverse. The CLGA uses an extended Jacobian matrix 
∗J , with dimension n n× , and an extended vector ∗Δx , with dimension 1n× , 

as a way to limit the joint configurations for a given end-effector position. 
The definition of ∗J and ∗Δx  take the form: 

 

1 1 3 123 3 123

1 1 3 123 3 123

31 32 33

l S l S l S

l C l C l C

j j j

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

− − − −

+ +J

…

…             

1

2

3

x

x

x

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Δ

Δ Δ

Δ

x  (7) 

where the matrix elements 3ij , 1, 2,3i = , and 3xΔ  are values generated by the 
GA, satisfying the additional imposed constraints. 

The flowchart of the CLGA is depicted in Figure 2. 
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Figure 2. Flowchart of the CLGA algorithm. 

3.2.   Optimization Criteria 

The fitness function is designed according to the goal we want to achieve. Four 
criteria have been selected a priori. All constraints and criteria are translated 
into penalty functions to be minimized and are defined in the sequel.  
 
1. In order to minimize the largest joint displacement between two adjacent 

configurations the fitness function to be minimized is: 

 ( ) ( ) 2
1 max  1  j jf q k q k⎧ ⎫⎡ ⎤= + −⎨ ⎬⎣ ⎦⎩ ⎭

 , 1, 2,3j =  (8) 

where k  and 1k +  are two consecutive sampling instants. 
2. The total level of joint velocities must be minimized at each configuration 

leading to the fitness function: 

 
3 2

2
1

i
j

f q
=

= ∑  (9) 
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3. In order to minimize the total joint torque in each joint configuration the 
fitness function is: 

 
3 2

3
1

i
i

f T
=

= ∑  (10) 

4. To minimize the total joint power consumption the fitness function is: 

 
3 2

4
1

i
j

f P
=

= ∑  (11) 

where the power iP  at each joint i  is defined as i i iP T q=  and iT  is the 
generalized force/torque for joint i  ( )1, 2,3i = .  

4.   Simulation Results  

This section presents the results of several simulations. The experiments consist 
in the analysis of the kinematic performance of a planar manipulator with 3 
rotational joints (3R-robot) that is required to repeat a circular motion in the 
operational space with frequency 1

0 7.0 rad secω −= , center at ( )1 22 2
1 2r x x= + , 

radius 0.5ρ =  and  a step time increment of 310 sect −Δ = . The goal here is to 
position the end-effector of the 3R-robot at a target location while satisfying a 
given optimization criterion. Moreover, the simulations are divided into two 
groups: workspace without obstacles and workspace with obstacles. 

The CLGA algorithm adopts crossover and mutation probabilities of 
0.5cp =  and 0.2mp = , respectively, a 100Pn =  string population,  and the 

results are obtained for 100Gn =  consecutive generations. 
If the robot´s end-effector current position is ( ),  c c cP x y=  and the desired 

final position is ( ),  f f fP x y= , then the positional error, errorP , is defined as: 

 ( ) ( )2 2
error c f c fP x x y y= − + −  (12) 

and the average of the positional error, errorP , is defined as: 

 

0

2
errorerror

C

P
P

n
t

π
ω

∑=

Δ

 (13) 

where Cn  represents the number of cycles to be performed by the end-effector. 
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4.1.   The CLGA Performance in a Workspace without Obstacles 

The 3R-robot is firstly tested for the criteria 1f . Figure 3 show some successive 
robot configurations and positions of the end-effector when using the CLGA for 

{ }0.7,  2.0r = . The initial joint space configurations are assumed as 
( )0 0 ,14.9 ,154.3q =  and ( )0 0 ,24.5 ,65.3q =  for { }0.7,  2.0r = , 

respectively. 
 

 
Figure 3. Successive robot configurations in a workspace without obstacles for { }0.7,  2.0r = , 
respectively, and for the first cycle. 
 

The results are satisfactory because the robot approaches the desired 
position without trajectory errors. 

Next we test the CLGA, when considering all criteria, for 100Cn =  cycles 
and { }0.7,  2.0r = . The average of the positional error, errorP , is presented in 
Figure 4. 

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00
r = 0.7 r = 2.0

errorP  

1f  2f  3f  4f  

 
Figure 4. errorP  of the 3R-robot, under the action of the CLGA for 100Pn = , during 100Cn =  
cycles for { }0.7,  2.0r = . 
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We observe that:  
• a high precision is achieved when using the CLGA with { }1 2 4,  ,  f f f ; 
• the maximum value of errorP  occurs when the total joint torque in each 

joint configuration is minimized.  

The Fourier transform of the robot joint velocities are depicted in Figure 5 
revealing that: 
• we achieve repetitive joints positions when using 1f  as we can see in figure 

6. For 2.0r =  we verify the occurrence of a transient phase for 40 sect ≤ , 
from which the positions of the joints start to be repetitive; 

• the signal energy is concentrated in the fundamental and multiple higher 
harmonics when we minimize the largest joint displacement 1f ; 

• we get a signal energy distribution along all frequencies when minimizing 
the total joint torque 3f . 

We verify that the CLGA has a better performance than the CLP, because, for 
example, when minimizing the largest joint displacement 1f , we get not only a 
good positioning but also a repetitive trajectory. 
 

  

ωω  

2.0r =0.7r =  

( ){ }1F q t  

( ){ }2F q t  

( ){ }3F q t  

(a) 

  

ω  ω  

2.0r =0.7r =

( ){ }1F q t  

( ){ }2F q t  

( ){ }3F q t  

(b)  
  

ω  ω  

2.0r =0.7r =  

( ){ }1F q t  

( ){ }2F q t  

( ){ }3F q t  

(c) 

 

ωω

2.0r =0.7r =

( ){ }1F q t  

( ){ }2F q t  

( ){ }3F q t  

(d)  
Figure 5. ( ){ }iF q t  vs ω of the 3R-robot, under the action of the CLGA, during 100Cn =  cycles 
for { }0.7,  2.0r =  and the fitnesses (a) 1f  (b) 2f  (c) 3f  (d) 4f . 
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Figure 6. The 3R-robot joint positions vs time, under the action of the CLGA, for  the fitness 1f  and 

{ }0.7,  2.0r = . 

4.2.   The CLGA Performance in a Workspace with Obstacles 

This section presents the results of several simulations, for the criteria 1f , when 
considering two obstacles in the workspace. When, for a joint configuration, 
some part of the manipulator is inside an obstacle, the CLGA rejects this 
configuration and generates a new population element.  

For 0.7r = , the obstacles consist on one circle with center at ( )0.3,  1.3  
and radius 0.2 , and one rectangle, with the upper left corner and the lower right 
corner with coordinates ( )1.3,  0.9  and ( )1.8,  0.5 , respectively. For 2.0r = , the 
obstacles consist on one circle with center at ( )1.6,  0.6  and radius 0.2 , and one 
rectangle, with the upper left corner and the lower right corner with coordinates 
( )0.1,  1.5  and ( )0.6,  1.1 , respectively.  

Firstly, the 3R-robot is tested for a motion with two cycles. The initial joint 
configurations are identical to the previous ones without obstacles, namely 

( )0 0 ,14.9 ,154.3q =  and ( )0 0 ,24.5 ,65.3q =  for { }0.7,  2.0r = , 
respectively. Figures 7 and 8 show successive robot configurations, for 

{ }0.7,  2.0r = , during the first and second cycles, respectively.  
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Figure 7. Successive robot configurations in a workspace with obstacles for 0.7r = , for the first and 
second cycles, respectively. 
 
 

 
Figure 8. Successive robot configurations in a workspace with obstacles for 2.0r = , for the first and 
second cycles, respectively. 
 
We observe that:  
• for 0.7r =  the robot approaches the desired position while avoiding the 

obstacles, for the two cycles; 
• for 2.0r =  the robot can not reach some points in the circle for the first 

cycle but, for the second circle, there is no problem to reach the desired 
points. 

Secondly, we repeat the experiment for 2.0r = , with the initial joint 
configuration ( )0 16.5 ,90 , 25.8q = − − .  The results for the first cycle are 
shown in figure 9, revealing that the performance of the CLGA depends on the 
initial configuration of the manipulator. 
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Figure 9. Successive robot configurations in a workspace with obstacles for 2.0r = . The first and 
second cycles are identical. 
 
In a second set of experiments we tested the 3R-robot for 100Cn =  cycles and 

{ }0.7,  2.0r = . The average of the positional error is 
{ }6.55 06,  9.44 06errorP E E= − −  for { }0.7,  2.0r = , respectively. The Fourier 

spectra of the joint velocities is depicted in figure 10. 
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( ){ }1F q t  
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ωω  
Figure 10. ( ){ }iF q t  vs ω of the 3R-robot, under the action of the CLGA, during 100Cn =  cycles 
for { }0.7,  2.0r =  in a workspace with obstacles. 
 
The results reveal that the average of the positional error, errorP , and the 
Fourier transform of the robot joint velocities, are consistent with those of the 
previous section. 
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5.   Conclusions 

A CLGA scheme that combines the CLP with a GA scheme was presented. 
Several experiments were developed to study the performance of the CLGA 
when the manipulator is required to repeat a circular motion in the operational 
space while satisfying some different optimization criteria. 

The results show that, in general, the CLGA gives superior results in what 
concerns the repeatability and positioning than the CLP method. The better 
result occurs when the CLGA minimizes the largest joint displacement between 
two adjacent configurations since not only we get a good positioning, but also 
the joint motion is repetitive and the chaotic phenomena observed in the CLP 
disappear. Moreover, it is shown that the presence of obstacles does not present 
an additional complexity for the algorithm to reach the solution, when the 
CLGA minimizes the largest joint displacement between two adjacent 
configurations, as long as the selected initial joint configurations are adequate 
for the required task. 
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