
1

COMPUTATIONAL INTELLIGENCE TECHNIQUES IN

ENGINEERING

VIRIATO M. MARQUES

Institute of Engineering of Coimbra
Computer Science Department, Coimbra, Portugal

viriato@isec.pt

CECÍLIA REIS

Institute of Engineering of Porto
Electrical Engineering Department, Porto, Portugal

cmr@isep.ipp.pt

LUIS ROSEIRO

Institute of Engineering of Coimbra
Mechanical Engineering Department, Coimbra, Portugal

lroseiro@isec.pt

J. TENREIRO MACHADO

Institute of Engineering of Porto
Electrical Engineering Department, Porto, Portugal

jtm@isep.ipp.pt

Computational Intelligence (CI), as defined by the IEEE Computational Intelligence
Society, includes four main areas: Evolutionary Computation (genetic algorithms and
genetic programming), Swarm Intelligence, Fuzzy Systems and Neural Networks.

This article shows how CI techniques overpass the strict limits of Artificial Intelligence
(AI) field and can help solving real problems from distinct engineering areas:
Mechanical, Computer Science and Electrical Engineering.

An introduction to each of the CI main areas is made and three systems are briefly
described. The results are, in each case, very promising.

1. Introduction

Webster's New Collegiate Dictionary defines intelligence as " the ability to learn
or understand or to deal with new or trying situations, the skilled use of reason

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/195806427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

and the ability to apply knowledge to manipulate one's environment or to think
abstractly as measured by objective criteria (or tests)"[1].

Artificial Intelligence (AI) is the area of computer science focusing on
creating machines that can engage on behaviors that humans consider intelligent.
The ability to create intelligent machines has intrigued humans since ancient
times and today, with the advent of the computer and 50 years of research into
AI programming techniques, the dream of smart machines is becoming a reality.

Researchers are creating systems which can mimic human thought,
understand speech, beat the best human chess player, and countless other feats
never before possible.

Artificial Intelligence has come a long way from its early roots, driven by
dedicated researchers. The beginnings of AI reach back before electronics, to
philosophers and mathematicians such as George Boole and other theorists on
principles that were used as the foundation of AI logic. AI really began to
intrigue researchers with the invention of the computer in 1943. The technology
was finally available, or so it seemed, to simulate intelligent behavior.

Alan Mathison Turing was one of the great pioneers of the computer field.
He inspired the now common terms of "The Turing Machine" and "Turing's
Test." As a mathematician he applied the concept of the algorithm to digital
computers. His research into the relationships between machines and nature
created the field of artificial intelligence.

Computational Intelligence is a successor of Artificial Intelligence. Eberhart
defines computational intelligence as "a methodology involving computing
(whether with a computer or wetware) that exhibits an ability to learn and/or to
deal with new situations, such that the system is perceived to possess one or
more attributes of reason such as generalization, discovery, association and
abstraction".

Computational Intelligence (CI) as defined by the IEEE Computational
Intelligence Society includes four main areas: Evolutionary Computation
(genetic algorithms and genetic programming), Swarm Intelligence, Fuzzy
Systems and Neural Networks. Furthermore CI is closely related to Fractals and
Chaos Theory.

This article presents a brief introduction to CI main areas and describes their
application to three engineering problems: 1) Neural Networks for identification
of material constants 2) Fuzzy Logic for equipment fault diagnosis 3)
Evolutionary Computation for digital circuit synthesis.

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008

3

2. Neural Networks

It has been recognized since early that neural networks offer a number of
potential benefits for application in the field of engineering, particularly for
pattern recognition problems. Some appealing features of neural networks are
their ability for learning through examples because, they do not require any a
priori knowledge and they can approximate arbitrary well any non-linear
continuous function [1].

Among the several architectures used in practice, the feedforward type
neural networks, shown in Fig. 1, have been considered more suitable for the
purposes of the signature analysis, the problem under investigation in this work

Figure 1. Feedforward neural network

A feedforward neural network consists on several layers; each one with some

processing elements, called neurons, linked each other by weights. The weights
determine the nature and the strength of the connection between the neurons.
The number of nodes considered in the input and output layers depend on the
specifications of the problem. The appropriate selection of hidden layers and its
neurons is problem dependent and the optimum layout can be obtained only
after extensive computational experimentation in the application domain. In fact,
a too small number of the hidden units may not be sufficient to develop the
required internal representation of the problem and, therefore, the neural
network may not be able to perform the necessary recognition task. One the
other hand, if the number of the hidden units is too large, then the network can
learn to give the correct classification for all the data in the training set but with
a low performance.

The choice of the activation function depends on the application to be used.
Several different functions can be applied. One of the most common used is
hyperbolic tangent function, represented by:

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008

4

 2
2() 1
1 xf x

e-
= - +

+
 (1)

The application of an artificial neural network consists of two stages, namely
training and testing. During the training stage an input-to-output mapping, using
a set of available sample data is present to the network. The learning stage stops
when the maximum number of training epochs is reached. In this work a
variation of the common training method, called cross validation is used. That is,
a group of data, chosen in a random way among the training values, is used in
each training epoch to evaluate an error function. When this error function goes
different from the error with the training samples, the training process is early
stopped and the node weights and bias are frozen at this point.

During the testing stage, data that has not been presented to the network in
the learning stage are provided as input, and the corresponding output is
calculated using the fixed node weights and bias. The evaluation of the network
response to the test samples gives a measure of the correct definition and
training that was performed.

In this application, feed forward type neural networks with four layers was
considered. The training of the neural networks was performed with a second
order type algorithm, the Levenberg Marquardt [2]. As it was pointed out by
these authors, this algorithm is more efficient than other techniques when the
network contains no more than a few hundred of parameters, the present
situation. Cross validation is also used in the training process.

2.1. Problem Definition

Consider a laminated plate, made with 12 glass/epoxy equal thickness layers and
with stacking sequence [0/+45/-45/90/-45/+45]s. The plate have 200´ 200´ 5
mm and is considered simply supported on all sides. A finite element
discretization with 36 equal elements is considered. Six piezoelectric sensors are
placed on the plate surfaces. A schematic representation of the plate is depicted
in fig. 2.

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008

5

Piezoelect ric
sensor readings

Laminated
plate

1

36

4

2

5 1

2

3

4

5

6

f

f

f

f

f

f

Figure 2. Laminated plate with piezoelectric sensors.

The plate is loaded with a force of 5 N applied in its center, and the sensor

readings are obtained with a finite element numerical model, programmed in
Matlab, and based on a displacement field with nine independent variables,
given by the expressions:

0 3
1 1 3 1 3 1

0 3
2 2 3 2 3 2

0 2
3 3 3 3 3 3

(,) (,) (,) (,)

(,) (,) (,) (,)

(,) (,) (,) (,)

i

i

i

u x t u x t x x t x x t

u x t u x t x x t x x t

u x t u x t x x t x x t

α α α

α α α

α α α

φ θ

φ θ

φ ψ

 = + +

= + +
 = + +

 (1)

where
0
iu and αφ are the displacements and the rotations in the middle plane

of the plate and 3 3, ,αφ θ ψ are higher order terms [3]. It is considered the PZT

5H Morgan Matroc Piezoelectric, with the following elastic and piezoelectric
properties:

1 2 3

12 13 23 12 13 23

12 12
311 322 333

08
33

69 106

26.3 0.31

171 10 / 280 10 /

1.505 /

E E GPa E GPa

G G G GPa

d d m V d m V

p F m

n n n

- -

-

= = =

= = = = = =

= = - ´ = - ´

=

 (2)

The main objective is to determine the mechanical properties: 1E , 2E ,

12G and 12n of a target plate, designated as “experimental” properties. The
“experimental” properties and the search space to be considered are shown on
table 1.

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008

6

Table 1. Search space and “experimental” properties.

Properties 1 []E GPa 2 []E GPa

12 []G GPa

12n

“experimental” 38.48 9.38 3.41 0.292

Search space [9.00, 58.00] [4.00, 14.00] [1.00, 6.00] [0.100, 0.481]

2.2. Neural Network Model

The idea with this model is to use neural networks to interpret the relationship
among the potential differences in the sensor and the mechanical properties
associated to the laminate plate. Thus, we define four neural networks
establishing a mapping between the potential differences and each property. The
Fig. 3 shows an illustrative outline of the model

Search Space

1 2 12 12E E G n

Net

1E
Net

2E
Net

12G
Net

12n

Finite Elements

Training the Net s

Net 12n

Net

Net

Net

12G

2E

1E P's 'sf
1

2

3

4

5

6

f

f

f

f

f

f

 1E

 2E

 12G

 12n

Operat ional

Figure 3. Neural Networks Model

In order to obtain a correct training for the neural networks and a good

compromise between the number of training patterns (evaluations by the finite
method) and the performance of the networks, an iterative methodology
described below is used.

For the definition of the problem, the neural networks were considered with
6 neurons in the input layer, corresponding to the potential differences, and 1
neuron in the output layer, corresponding to the value of the property. The
number of neurons in the internal layers (X) is adjusted iteratively during the
process. Then, for each property, a network with dimension 6-X-X-1 is defined.
The hyperbolic tangent function is chosen for all neurons.

An amount N, corresponding to the number of additional data for training of
the nets, is defined. This amount can be seeing as a step for the methodology
proposed. The maximum number of new patterns to be added to the neural
networks training data, as well as the maximum number of training epochs, is

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008

7

also defined. A constant J , to be used as a stop criterion for this methodology,

is also preset.
Inside the search space 2N combinations of properties are randomly

generated. For each combination of properties it is obtained the corresponding
answer of the sensors, being obtained 2N combinations of data (potential
differences - properties).

Half of this data (N) is used in the training of the nets and the remaining half
(N) is fixed, to be used as test data in each net. A percentage of 10% of the
training data is randomly chosen for the crossed validation of each net. Then the
training process of the 4 neural networks begins with these first N patterns. After
this training, the outputs for the N fixed test data are request for each network
and the mean relative errors between the output of each net and the fixed targets
are evaluated and compared with the constant J . If the mean error value for the
network is smaller than J , the training process for the corresponding network
stops and the net is fixed. Otherwise, new data (N) must be added to the
network.

The new data to be added are generated randomly, but guarantying that is
different from the previous one. These new data is added to the other and 10%
of these values are chosen for crossed validation of the nets. The dimension (X)
for the number of hidden neurons is modified according to a specific criterion
and a retraining step of the nets begins. After this new training, the nets are
tested again with the fixed test data and an evaluation of the mean error is
computed and compared with J .

This process is repeated until the mean error for all the nets is less than J . If
this approach is not attained, the process stops when the maximum number for
new patterns is reached.

It is important to notice that the training of the 4 nets is performed in
parallel, that is, whenever new data is generated for training the nets, these are
used simultaneously for all the properties where the iterative methodology still
elapses. In this work, a maximum number of 90 new added data and a fixed

0.3J = is defined. The maximum number of epochs is fixed as 100.
After the training of the networks, considering the values of the

“experimental” properties for the plate, the corresponding potential differences
in the sensors are obtained with the finite element model. Then, the output of
each neural network for these “experimental” potential differences gives the
properties of the plate.

2.3. Results

The programming of the neural networks was made in Matlab, being used a
computer Pentium IV @ 2.4 MHz, 1024 Mb of RAM.

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008

8

The obtained results are compared with those proposed by Liu et al. [4].
These authors used a SGI Origin Computer having needed 33 hours to obtain the
suitable results, corresponding to 3001 evaluations of the fitness function
defined for the adopted genetic algorithm. The training of the networks was
stopped at fourth and sixth iteration of the methodology, respectively for the
properties 1E and 2E . For the others the 90 new patterns for training show to be

necessary.
The total time of computation and the number of finite elements calculations

is shown in table 2.

Table 2. Time and Number of Finite Elements Calculations.

Model Time
Number of

Finite Elements
 [s] Calculations
Neural Networks
Model

1458 110

Liu et al. (2002) 120040 3001

The obtained values for the properties and the mean relative error for each

property, calculated in relation to the correspondent “experimental” one, are
shown in table 3.

Table 3. Results Obtained.

Model 1E 2E 12G 12n
 (38.48) (9.38) (3.41) (0.292)
Neural Networks
Model

Value 38.486 9.389 3.409 0.291
Error 0.017 0.101 0.021 0.362

Liu et al. (2002)
Value 38.340 9.240 3.480 0.293
Error 0.364 1.493 2.053 0.342

2.4. Conclusions

Identification of the material constants of a glass-epoxy plate has been carried
out with satisfactory results. The neural network iterative model reveals to be
very accurate and fast. The numerical experiments show that the iterative
approach leads to small identification errors.

The obtained results are encouraging and demonstrate the effectiveness of
the proposed technique to the characterization of material constants of
composite structures.

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008

9

3. Fuzzy Systems

 A Fuzzy Set [5] is a set to which each element belongs in a degree between 0
and 1, as given by the value of its membership function, µ(x). This concept
allows the translation of linguistic terms like cold, hot, sometimes or almost
always, for instance, as shown in Fig. 4, giving rise to Computing with Words
[6]. Fuzzy Logic, derived from fuzzy sets, is nowadays widely used in very
distinct fields, from control systems to expert systems. The Mamdani and
Sugeno inferences are, perhaps, one of its more divulgated results.

Possibility Theory [5, 6] is based on Fuzzy Set Theory. The distinction
between probability and possibility may seem not evident: basically probability
is related to occurrence frequencies while possibility expresses a (subjective)
experience or judgement about something such as how much someone is older
or young or how much a given quantity is high or low, for instance.

Figure 4. Examples of linguistic terms represented by fuzzy sets: “cold”, “warm” and “hot” water.
Frequency Qualifiers “rarely”, “sometimes”, “almost always”.

Mathematically, possibility is represented by possibility distribution
functions (see eq.3). A possibility distribution function πx(u), that characterizes a
possibility distribution πX associated with a linguistic term, is numerically equal
to the value of the membership function ()u

F
~µ that defines the linguistic term.

 ()uFX ~ˆ µπ = (3)

(That is why in expression 3 the symbol =̂ stands for is defined as.)
A possibility distribution πX is induced whenever the Relational Assignment

Equation (RAE) [6] is used to associate a linguistic term F
~
with the value of the

attribute A of an object X (see eq.4). In this context R
~
acts as a fuzzy restriction,

an elastic limit of the values that A may assume. An example of using expression

 0 50 100 ºC

µ=1

 0 0.5 1 Relative
frequency

µ=1

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008

10

4 could be ()() HovenetemperaturR
~~

= where H
~
stands for the linguistic term

High.

 ()() FXAR

~~
= (4)

Given a fuzzy set A

~
 and a possibility distribution function πX, the

possibility measure ()A~π is given by [6, 7]:

 { } () (){ }uuX is Ã XÃ

Uu
πµ ,min sup ˆ poss

∈
= (5)

The importance of eq. 5 resides on the fact that given a definition such as,

A
~
=high_temperature, in the presence of another fact to which corresponds

another possibility distribution function, ()u
FX ~ˆ µπ = , it is possible to calculate

de possibility of X being A
~
. For example, the possibility of hot water being

water at high temperature can be computed.
Necessity measure, N, is related with possibility measure. The most

important relation is, perhaps, the following one [6]:

)
~

(1)
~
(ANA ⊄−=π (6)

Necessity is a more demanding and restrictive measure than possibility in

the sense that it measures how much necessarily a fact is true. The case N=1
means that a fact is necessarily true.

Equations 5 and 6 are used in the following forms (see eq. 7, 8 and 9) in
Fuzzy CLIPS [8]:

 P(Fβ|Fα) = max(min(µFβ(u), µFα(u)) (7)

 N(Fβ|Fα) = 1-P(Fβ|F⊄α) (8)

 µ⊄Fα = 1- µFα (9)

where Fα e Fβ are fuzzy sets. The format of these equations, by using the symbol
“|”, shows clearly that possibility and necessity of fact Fβ are computed
according to a previously known fact Fα.

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008

11

3.1. Problem Definition

The principles exposed in the previous section were used in SADEX, a Case-
Based-Reasoning (CBR) Fuzzy System for equipment fault diagnosis. SADEX
makes use of a conceptual model of attribute values, relevance factors based on
document retrieval techniques, combines information value and cost, and can
perform some case adaptation tasks based on taxonomic similarities. Here we
will focus on the fuzzy attribute model.

 The operation cycle of a CBR system is well described by the Aamodt and
Plaza diagram [9]. Basically it is composed of four phases named Retrieve,
Revise, Reuse and Retain. If one relates these terms with the name Case Based
Reasoning, they become almost self-explanatory: “Retrieve” involves the search
and selection of past cases, more or less similar to the present case. “Reuse” may
imply some kind of adaptation, so that a past solution may be applied to the
present case. “Revise” makes the presentation of the (reused) solution and deals
with its correctness or failure. “Retain” has to do with the recording of present
cases classified as relevant for the resolution of future ones. This means learning
from success or failure.

 However, CBR on its own is not enough, as technical staff know-how
makes effective use of subjective experiences depending on visual inspection,
noise, smell and approximate measurement of some attribute values. The
translation of this kind of information is possible by means of fuzzy sets and
fuzzy numbers or intervals. The global similarity between cases uses fuzzy
arithmetic operations and possibility theory.

3.2. Fuzzy Model

Equipment fault description observations must express abnormality as, if they
don't, they're irrelevant. Some examples follow: It doesn’t work; Temperature is
10ºC; Temperature is low; Burned smell is evident.

But these examples also show that abnormality can be expressed in different
ways. One of the important issues in the CBR paradigm is the global similarity
computation between the query case and the past cases that takes place in the
Retrieve phase. There are many ways of evaluating this similarity but most make
use of attribute values. However, in order to allow cases to be compared, a
single and normalized format must be devised. Some base definitions used in
this normalization process follow:

1. The Absolute Domain or Possible Range (PR) of an attribute is the set of

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008

12

values considered of interest for abnormal facts representation. For an (L)ogical
attribute PR={0,1}. For a (M)easurable attribute PR=[prl, prr], where prl and prr
stand for PR left and right limits; for (N)on (M)easurable (S)ubjective attributes,
and due to their nature, PR is meaningless.

2. The Absolute Typical Range (
~

ATR) of an attribute is a fuzzy set whose
support is the set of values it can assume in PR in its "normal" state;

3. The Differential Range (DR) of an attribute (L, M or NMS) is a subinterval of
[-1,1];

4. The Differential Typical Range (
~

DTR) of an attribute is the fuzzy set that
translates the linguistic term Normal in DR.

To illustrate the normalization process we will take an M-type attribute.

Suppose we have PR=[2,10] and that
~

ATR is given by a fuzzy set in the α-cut
notation such as (6,7,7,8). This fuzzy set defined in PR along with an auxiliary
level and DR is shown in fig. 5. This figure also illustrates the important

assumption that a correspondence has been established between
~

ATR and
~

DTR :

The fuzzy set
~

ATR corresponds to the linguistic term "normal" defined in
~

DTR .

This assumption has some consequences. The
~

DTR term is generated when, in

the absolute domain, the attribute assumes the “normal value”
~

v or,

()ATRdcbaATRv ,,,
~~

== . In this case we will get a difference
~

ATR∆ given by:

() () ATRATRATR adbccbdadcbadcbaATRATRATR),,,(,,,,,,
~~~

−−−−=−=−=∆           (10) 

 
This fuzzy interval is represented at the auxiliary intermediate level of fig. 5.  
 

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008



 

 

13

 
 
Figure 5 - The Typical Range of a M-type attribute in the Absolute and Differential Domains 
 

As a-d is always symmetrical of d-a and b-c of c-b, we verify that 
~

ATR∆  has 
always a zero medium value and is symmetrical, independently of the shape that 

~

ATR  may assume. Besides this, the maximum differences allowed between any 

possible attribute value and its
~

ATR  are 
~

ATRprl −  for the left (lower) limit, and 
~

ATRprr −  for the right (upper) limit. So, the limits for the fuzzy set represented 

in the auxiliary level of fig. 5, α and β, are given by: 
 

                                           
ATRll dprATRpr −=






 −=

~

minα                    (11) 

                                          
ATRrr aprATRpr −=






 −=

~

maxβ .   

 
In our example we get α=-6 and β=4. We have, then, an “intermediate 

domain” whose width, w, is given by 
 

                                            
( )

( ) ( )ATRATRlr

ATRrATRl

adprpr

aprdprw

−+−=

=−−−=                       (12) 

So, w is the value by which we must divide
~

ATR∆  in order to normalize it 

and to obtain the “normal term” in the differential domain, 
~

DTR .  Defining θ as   
 

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008



14 

 

                                            ( ) ( )ATRATRlr adprpr −+−=θ                         (13) 

 
then combining equations 10 and 13 it yields: 
 

                                         ( )
θATR

DTR

adbccbda

dcbaDTR

),,,(

,,,
~

−−−−=

==                (14) 

 
This gives the fuzzy interval (-0.2, 0, 0, 0,2 )that represents the "normal" 

linguistic term  shown at the differential domain of fig. 5. This also implies that 
the limits of the differential domain are variable and depend on the location of 

~

ATR  in PR. In fact, let DR=[drl, drr]. Combining expressions 11 and 13, we 
have: 
 
                                             ( ) θθα ATRll dprdr −==                                  (15)  

                                            ( ) θθβ ATRrr aprdr −==  

 
For our example we get drl=-0.6 and drr=0.4, visible at the differential 

domain of fig. 5.  
Every time a system user makes an attribute definition by specifying some of 

the elements above described, an weighted mean of all its past definitions with 
the new one is made (for each similar equipment group). The results are sets of 
linguistic terms each one defined by a fuzzy set that attempt to catch the concept 
linguistic terms usually used to describe abnormal attribute values for a given 
equipment group. We call these sets of fuzzy sets Conceptual Models that work 
as templates when a new definition is made. The adaptation of original values to 
a new definition is called Adaptation. Finally the Projection operation is 
symmetrical to normalization and simulates the reality view as modeled by 
previously defined concepts. 

According to this, attribute representation and handling can be conveniently 
supported by the 3-Level Model (3L Model) shown in fig. 6. This model is 
composed of three levels (External, Operational and Conceptual) related with 
the attribute domain and human perception:  

  
1. External Level / Absolute Domain / Reality - models the reality, the real 

world; 
2. Operational Level / Differential Domain / Human Cognition (reasoning) - 

handles normalized attribute values and supports every computation; 
3. Conceptual Level / Conceptual Domain - / Human Cognition (learning) - 

handles meta-models for future attribute definitions.  

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008



 

 

 

 
Figure 6. A 3-Level Model for attribute handling

 
This 3L Model allow

manipulation, by a fuzzy interval whose 
along with an attribute ID and an equipment group ID. This basic application of 
RAE can be complemented with qualifiers and quantifiers that help to express 
occurrence frequency and refer
these elements a Canonical Observation Form (COF) has been defined, as 
follows: 
  

[Qf] ( Attribute ( [Qt] ( [CompID](EquipID)))) =

 
� Qf - Frequency Qualifier
� Qt – Quantifier
� CompID – 
� EquipID – 
� NOT – Logical operator
� Mod. - Modifier 
� Value - Normalized attribute value
� Unit. - Measurement unit 
� [..] stands for “optional”

Level Model for attribute handling 

This 3L Model allows any observation to be translated, after some 
manipulation, by a fuzzy interval whose x-axis values lie in the interval
along with an attribute ID and an equipment group ID. This basic application of 
RAE can be complemented with qualifiers and quantifiers that help to express 
occurrence frequency and refer to several equipment components. Combining all 
these elements a Canonical Observation Form (COF) has been defined, as 

[Qf] ( Attribute ( [Qt] ( [CompID](EquipID)))) = 
= [NOT], [Mod.], Value, [Unit] ) 

Frequency Qualifier 
Quantifier 

 Component ID 
 Equipment ID 

Logical operator 
Modifier  
Normalized attribute value 
Measurement unit  

[..] stands for “optional” 

15

 

any observation to be translated, after some 
nterval [-1, 1] 

along with an attribute ID and an equipment group ID. This basic application of 
RAE can be complemented with qualifiers and quantifiers that help to express 

to several equipment components. Combining all 
these elements a Canonical Observation Form (COF) has been defined, as 

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008



16 

 

 
A set of COFs describes a case and COFs are represented at the Operational 

Level where they are used to compute global case similarity. 
The diagnosis process computes the global similarity between a query case 

and relevant past cases selected from the Case Library. This computation 
generates one positive and a maximum of three negative contributions for every 
diagnosis taken into account:  

The positive contribution is generated by corresponding observations that 
both represent deviations form normal values (error signals) of the same sign, 
that is, both positive or both negative. This feature implements diagnosis 
selection by present symptom in the query case Q and the past case Pi. This 
positive contribution can be emphasized or depreciated according to the value of 
an weighting factor Rij that expresses the relevance of observation i to a possible 
diagnosis j: 

                                                         
j

iij
ij NSL

OFCF
R

.
=                                        (16) 

 
Where CFi expresses by how many different diagnosis the same observation 
spreads (Collection Frequency), OFij represents how frequently each diagnosis 
generates a given observation (Observation Frequency), NSLj characterizes how 
many observations each diagnosis generates when compared to the average of 
all the known diagnosis (Normalised Syndrome Length). Equation 16 is inspired 
by the document retrieval technique described in [10].  

The first negative contribution is also generated by the corresponding 
observations that represent error signals of the same sign, but in which the 
attribute value in Q is somewhat normal. For this negative contribution a factor 
of the type how much a value is normal is computed according to the fuzzy 
pattern matching technique described in [6]. This feature implements the 
diagnosis exclusion by absent symptom in Q and present in Pi.  

The second negative contribution is generated by the corresponding 
observations that represent error signals of contrary signs. This feature 
implements the diagnosis exclusion by present symptom in Q and absent in Pi or 
vice-versa. 

Absent descriptions in Q or in Pi are also taken into account and can lead to 
other negative contribution or determinate the beginning of an ask-for-new-
observation cycle, that takes into account relevance and cost as estimated by the 
technical staff. 

3.3.   Results 

A prototype was implemented according to the principles exposed in the 

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008



 

 

17

above sections and allowing Internet access. Other techniques such as 
transformational case adaptation was  used too as, under certain circumstances, 
this adaptation allows the extension of a known diagnosis for equipment A to a 
similar equipment B, based on taxonomic knowledge [11, 12]. 

The system has been tested in the health-equipment maintenance field. The 
case library was initially loaded with occurrences contained in work orders of 
SUCH - Serviços de Utilização Comum dos Hospitais. The results are promising 
with a correct diagnosis near 100% in some cases.   

3.4.   Conclusions 

Equipment fault diagnosis was carried out with satisfactory results. The fuzzy 
model for attribute representation and handling proved to be adequate for 
technical staff daily maintenance tasks and the system can be useful for 
personnel training too. However, a complete field test is still needed as CBR 
systems, by their nature, need a considerable time period for correct tuning and 
evaluation. 

4.   Evolutionary Algorithms 

 In recent decades Evolutionary Computation (EC) techniques have been 
applied to the design of electronic circuits and systems, leading to a novel area 
of research called Evolutionary Electronics (EE) or Evolvable Hardware (EH) 
[13]. EE considers the concept for automatic design of electronic systems. 
Instead of using human conceived models, abstractions and techniques, EE 
employs search algorithms to develop implementations not achievable with the 
traditional design schemes, such as the Karnaugh or the Quine-McCluskey 
Boolean methods. 

 This section presents an application of an Evolutionary Algorithm, a 
Genetic Algorithm (GA), to the design of combinational logic circuits. 

GAs are adaptive heuristic search algorithms based on the evolutionary 
ideas of natural selection and genetic. The basic concept of GAs is designed to 
simulate processes in natural system necessary for evolution, specifically those 
that follow the principles first laid down by Charles Darwin of survival of the 
fittest. As such they represent an intelligent exploitation of a random search 
within a defined search space to solve a problem [14].  

First pioneered by John Holland in the 60s, GAs has been widely studied, 
experimented and applied in many fields in engineering worlds. Not only does 

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008



18 

 

GAs provide alternative methods to solving problem, it consistently outperforms 
other traditional methods in most of the problems.  

GAs were introduced as a computational analogy of adaptive systems. They 
are modeled loosely on the principles of the evolution via natural selection, 
employing a population of individuals that undergo selection in the presence of 
operators such as mutation and recombination (crossover). A fitness function is 
used to evaluate individuals, and reproductive success varies with fitness. 

In this specific case a GA strategy is adopted to design digital circuits, in 
particular combinational logic circuits. Therefore, it is necessary to define the 
population of individuals in the form of chromosomes (circuit encoding) that 
represent the digital circuits. Another important issue that must be well 
established is the fitness function that will be responsible for the evaluation of 
the circuits. 

The next sub-sections present the problem definition, the circuit encoding, 
the genetic operators employed and the fitness function applied. 

4.1.   Problem Definition and Circuit Encoding 

The circuits are specified by a truth table and the goal is to implement a 
functional circuit with the least possible complexity. Since the combinational 
logic circuits are composed by logic gates, for this study were defined four sets 
of logic gates, as shown in table 4, being Gset 2 the simplest one and Gset 6 the 
most complex gate set. Logic gate named WIRE means a logical no-operation. 

 
Table 4 Gate sets. 

 
Gate Set Logic gates 
Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE} 
Gset 4 {AND,OR,XOR,NOT,WIRE} 
Gset 3 {AND,OR,XOR,WIRE} 
Gset 2 {AND,XOR,WIRE} 

 
In the presented scheme the circuits are encoded [15] as a rectangular 

matrix A (row×column = r×c) of logic cells (fig. 7). Three genes represent each 
cell: <input1><input2><gate type>, where <input1> and <input2> are one of the 
circuit inputs, if they are in the first column, or one of the previous outputs, if 
they are in other columns. The gate type is one of the elements adopted in the 
gate set. The chromosome is formed with as many triplets as the matrix size 
demands (e.g., triplets = 3 × r × c). 

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008



 

 

19

 
 
 
 
 
 
 
 
 
 

Figure 7.  A 3 × 3 matrix A representing a circuit with input X and output Y. 

4.2.   The Genetic Operators 

The initial population of circuits (strings) is generated at random. The search is 
then carried out among this population. The three different operators used are 
reproduction, crossover and mutation, as described in the sequel. 

In what concern the reproduction operator, the successive generations of 
new strings are reproduced on the basis of their fitness function. In this case, it is 
used a tournament selection to select the strings from the old population, up to 
the new population. 

For the crossover operator, the strings in the new population are grouped 
together into pairs at random. Single point crossover is then performed among 
pairs. The crossover point is only allowed between cells to maintain the 
chromosome integrity. 

The mutation operator changes the characteristics of a given cell in the 
matrix. Therefore, it modifies the gate type and the two inputs, meaning that a 
completely new cell can appear in the chromosome. Moreover, it is applied an 
elitist algorithm and, consequently, the best solutions are always kept for the 
next generation. 

To run the GA we have to define the number of individuals to create the 
initial population P. This population is always the same size across the 
generations, until the solution is reached. 

The crossover rate CR represents the percentage of the population P that 
reproduces in each generation. Likewise, the mutation rate MR is the percentage 
of the population P that can mutate in each generation. 

X

Inputs

a
11

a
31

a
21

a
12

a
32

a
22

a
13

a
23

Y

Outputs

a
33

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008



20 

 

4.3.   The Fitness Function 

The calculation of the fitness function F in (17) has two parts, f1 and f2, where f1 
measures the functionality and f2 measures the simplicity. In a first phase, we 
compare the output Y produced by the GA-generated circuit with the required 
values YR, according with the truth table, on a bit-per-bit basis. By other words, 
f1 is incremented by one for each correct bit of the output until f1 reaches the 
maximum value f10, that occurs when we have a functional circuit. Once the 
circuit is functional, in a second phase, the algorithm tries to generate circuits 
with the least number of gates. This means that the resulting circuit must have 
as much genes gate type ≡ wire as possible. Therefore, the index f2, that 
measures the simplicity (the number of null operations), is increased by one 
(zero) for each wire (gate) of the generated circuit, yielding: 
 
• First phase, circuit functionality: 

 

f10 = 2
ni × no (17a) 

f1 = f1 + 1, if {bit i of Y} = {bit i of YR} , i = 1, …, f10  (17b) 

 

• Second phase, circuit simplicity: 

 

f2 = f2 + 1 if gate type = wire (17c) 







≥+

<
=

1021

101

,

,

fFff

fFf
F  

(17d) 

 

where ni and no represent the number of inputs and outputs of the circuit. 

4.4.   Results 

This section shows the implementation of four different combinational logic 
circuits, namely, a 2-to-1 multiplexer, a one-bit full adder, a four-bit parity 
checker and a two-bit multiplier, using the GA algorithm. 

   Due to the stochastic nature of the GAs in order to evaluate its 
performance, for each gate set we perform 20 simulations. Table 5 shows the 

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008



 

 

21

average of the number of generations µ(N) to reach the solution and the average 
of the fitness function  µ(F) after performing 20 experiments for each gate set. 

 
Table 5 Results for the 2-to-1 multiplexer, the one-bit full adder, the 
four-bit parity checker and the two-bit multiplier circuits, using the 

GA algorithm. 
 

 Circuit 

Gate set 
2-1 Multiplexer 

1-bit Full 

Adder 

4-bit Parity Checker 2-bit Multiplier 

µ(N) µ(F) µ(N) µ(F) µ(N) µ(F) µ(N) µ(F) 

Gset 6 27,15 10,25 72,45 18,15 32,55 21,70 1699,00 69,15 

Gset 4 19,75 10,35 53,65 18,35 20,40 21,95 1183,05 69,50 

Gset 3 13,55 10,5 32,40 18,45 13,754 22,65 432,40 70,25 

Gset 2 12,05 11,5 34,86 18,57 7,95 23,95 362,35 70,45 

 
It is possible to see the superiority of the gate sets 2 and 3 in terms of µ(N) 

and µ(F). 
Figure 8 illustrates the average of the fitness function µ(F) versus the 

average of the number of generations µ(N) to reach the solution, for all the gate 
sets (i. e. Gsets 2, 3, 4 e 6) and for all the circuits. 

Comparing the four studied cases, based on the average of the number of 
generations µ(N) to reach the solution and the average of the fitness function  
µ(F) it is possible to conclude that, independent of the circuit complexity, the 
best results appeared with the reduced gate sets. 

In brief, this application uses a GA for designing combinational logic 
circuits given a set of logic gates. The final circuit is optimized in terms of 
complexity (with the minimum number of gates).  

For all the case studies the GA has proved to be efficient, even when the 
number of outputs in the truth table increases. It is also visible that the 
performance of the GA increases as the complexity of the gate set decreases. 

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008



22 

 

Experiments show that we have better results with Gset 2, that is, the simplest 
set that we have adopted in this study. 
 

 
Figure 8: Average of the fitness function µ(F) versus the average of the number of generations µ(N) 
to reach the solution, using the GA algorithm. 

5.   Conclusion 

As stated before, we show how CI techniques overpass the strict limits of AI 
field and can help solving real problems from distinct engineering areas: 
Mechanical, Computer Science and Electrical Engineering.  

For AI researchers these are good news! Still, as a relatively new 
disciplinary field, AI has a long way to go. "Proud, not smug", according to 
Menzies [16]; or, "take pride in how far you have come; have faith in how far 
you can go” (Anonymous). 
  

Acknowledgments 

The authors would like to acknowledge the GECAD and the CEMUC Research 
Units. 

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008



 

 

23

References 

 
1. Hornik, K., H. Stinchcombe and White, H., (1989), Multilayer 

Feedforward Networks are Universal Approximators, Neural Networks, 
Vol. 2, 183-192. 

2. Hagan, T., Demuth, H.B. and M. Beale, Neural Network Design, 
(1996), PWS Publishing Company, USA. 

3. Allik, H. and Hughes, T.J., (1970), Finite Element Method for 
Piezoelectric Vibration, International Journal for Numerical Methods in 
Engineering, Vol. 2, 151-157. 

4. Liu, G.R., Ma, W.B. and. Han, X., (2002), An inverse procedure for 
determination of material constants of composite laminates using 
elastic waves, Computational. Methods in Applied Mechanics and 
Engineering, Vol. 191, 3543-3554. 

5. Bellman,R.E., Zadeh,L.A., 1977, Local and Fuzzy Logics, Selected 
Papers by Lofti A. Zadeh, 1965-1996, Advances in Fuzzy Systems - 
Applications and Theory, Vol.6, World Scientific, 1996. 

6. Zimmerman ,H.J., Fuzzy Set Theory and it's Applications, Kluwer 
Academic Publishers, 1996. 

7. Zadeh,L.A., 1978, Fuzzy Sets as a Basis for a Theory of Possibility, 
Fuzzy Sets and Systems 1. 

8. NRCC-National Research Council of Canada - Institute for Information 
Technology, (1983), Fuzzy CLIPS version v6.04 A. 

9. Aamodt,A., Plaza,E., (1994), Case-Based Reasoning: Foundational 
Issues, Methodological Variations, and System Approaches, AI-Com - 
Artificial Intelligence Communications, Vol7, 1. 

10. Robertson,S., Spark-Jones,K., (1997), Simple, Proven Approaches to 
Text Retrieval, Department of Information Science - City University - 
Cambridge - United Kingdom. 

11. Bergmann,R., (1998), On the Use of  Taxonomies for Representing 
Case Features and Local Similarity Measures, Proceedings of the 6th 
German Workshop on Case-Based Reasoning GWCBR'98. 

12. Bergmann,R., Stahl,A., (1998), Similarity Measures for Object-
Oriented Case Representations, Proceedings of the European Workshop 
on Case-Based Reasoning, EWCBR'98. 

13. Zebulum, R. S., Pacheco, M. A. and Vellasco, M. M., Evolutionary 
Electronics: Automatic Design of Electronic Circuits and Systems by 
Genetic Algorithms, CRC Press, 2001. 

14. Goldberg D E (1989) Genetic Algorithms in Search Optimization and 
Machine Learning. Addison-Wesley. 

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008



24 

 

15. Cecília Reis, J. A. Tenreiro Machado, and J. Boaventura Cunha (2004) 
Evolutionary Design of Combinational Logic Circuits, JACIII, Fuji 
Tec. Press, Vol. 8, No. 5, pp. 507-513, Sept.  

16. Menzies, T., (2003), IEEE Intelligent Systems (http://menzies.us/ 
pdf/03aipride.pdf). 

Proceedings of the 2nd Conference on Nonlinear Science and Complexity
Porto, Portugal, July 28-31, 2008


