
1 

COMPUTATIONAL INTELLIGENCE TECHNIQUES IN 

ENGINEERING 

VIRIATO M. MARQUES 

Institute of Engineering of Coimbra 
Computer Science Department, Coimbra, Portugal 

viriato@isec.pt 

CECÍLIA REIS 

Institute of Engineering of Porto 
Electrical Engineering Department, Porto, Portugal 

cmr@isep.ipp.pt 

LUIS ROSEIRO 

Institute of Engineering of Coimbra 
Mechanical Engineering Department, Coimbra, Portugal 

lroseiro@isec.pt 

 
J. TENREIRO MACHADO 

Institute of Engineering of Porto 
Electrical Engineering Department, Porto, Portugal 

jtm@isep.ipp.pt 

Computational Intelligence (CI), as defined by the IEEE Computational Intelligence 
Society, includes four main areas: Evolutionary Computation (genetic algorithms and 
genetic programming), Swarm Intelligence, Fuzzy Systems and Neural Networks.  

This article shows how CI techniques overpass the strict limits of Artificial Intelligence 
(AI) field and can help solving real problems from distinct engineering areas: 
Mechanical, Computer Science and Electrical Engineering.  

An introduction to each of the CI main areas is made and three systems are briefly 
described. The results are, in each case, very promising. 

1.   Introduction 

Webster's New Collegiate Dictionary defines intelligence as " the ability to learn 
or understand or to deal with new or trying situations, the skilled use of reason 
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and the ability to apply knowledge to manipulate one's environment or to think 
abstractly as measured by objective criteria (or tests)"[1]. 

Artificial Intelligence (AI) is the area of computer science focusing on 
creating machines that can engage on behaviors that humans consider intelligent. 
The ability to create intelligent machines has intrigued humans since ancient 
times and today, with the advent of the computer and 50 years of research into 
AI programming techniques, the dream of smart machines is becoming a reality.  

Researchers are creating systems which can mimic human thought, 
understand speech, beat the best human chess player, and countless other feats 
never before possible.  

Artificial Intelligence has come a long way from its early roots, driven by 
dedicated researchers.  The beginnings of AI reach back before electronics, to 
philosophers and mathematicians such as George Boole and other theorists on 
principles that were used as the foundation of AI logic. AI really began to 
intrigue researchers with the invention of the computer in 1943. The technology 
was finally available, or so it seemed, to simulate intelligent behavior.  

Alan Mathison Turing was one of the great pioneers of the computer field. 
He inspired the now common terms of "The Turing Machine" and "Turing's 
Test." As a mathematician he applied the concept of the algorithm to digital 
computers. His research into the relationships between machines and nature 
created the field of artificial intelligence. 

Computational Intelligence is a successor of Artificial Intelligence. Eberhart 
defines computational intelligence as "a methodology involving computing 
(whether with a computer or wetware) that exhibits an ability to learn and/or to 
deal with new situations, such that the system is perceived to possess one or 
more attributes of reason such as generalization, discovery, association and 
abstraction". 

Computational Intelligence (CI) as defined by the IEEE Computational 
Intelligence Society includes four main areas: Evolutionary Computation 
(genetic algorithms and genetic programming), Swarm Intelligence, Fuzzy 
Systems and Neural Networks. Furthermore CI is closely related to Fractals and 
Chaos Theory. 

This article presents a brief introduction to CI main areas and describes their 
application to three engineering problems: 1) Neural Networks for identification 
of material constants 2) Fuzzy Logic for equipment fault diagnosis 3) 
Evolutionary Computation for digital circuit synthesis.  
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2.   Neural Networks 

It has been recognized since early that neural networks offer a number of 
potential benefits for application in the field of engineering, particularly for 
pattern recognition problems. Some appealing features of neural networks are 
their ability for learning through examples because, they do not require any a 
priori knowledge and they can approximate arbitrary well any non-linear 
continuous function [1].  

Among the several architectures used in practice, the feedforward type 
neural networks, shown in Fig. 1, have been considered more suitable for the 
purposes of the signature analysis, the problem under investigation in this work 

 

 
 
Figure 1. Feedforward neural network 

 
A feedforward neural network consists on several layers; each one with some 

processing elements, called neurons, linked each other by weights. The weights 
determine the nature and the strength of the connection between the neurons. 
The number of nodes considered in the input and output layers depend on the 
specifications of the problem. The appropriate selection of hidden layers and its 
neurons is problem dependent and the optimum layout can be obtained only 
after extensive computational experimentation in the application domain. In fact, 
a too small number of the hidden units may not be sufficient to develop the 
required internal representation of the problem and, therefore, the neural 
network may not be able to perform the necessary recognition task. One the 
other hand, if the number of the hidden units is too large, then the network can 
learn to give the correct classification for all the data in the training set but with 
a low performance. 

The choice of the activation function depends on the application to be used. 
Several different functions can be applied. One of the most common used is 
hyperbolic tangent function, represented by: 
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The application of an artificial neural network consists of two stages, namely 
training and testing. During the training stage an input-to-output mapping, using 
a set of available sample data is present to the network. The learning stage stops 
when the maximum number of training epochs is reached. In this work a 
variation of the common training method, called cross validation is used. That is, 
a group of data, chosen in a random way among the training values, is used in 
each training epoch to evaluate an error function. When this error function goes 
different from the error with the training samples, the training process is early 
stopped and the node weights and bias are frozen at this point. 

During the testing stage, data that has not been presented to the network in 
the learning stage are provided as input, and the corresponding output is 
calculated using the fixed node weights and bias. The evaluation of the network 
response to the test samples gives a measure of the correct definition and 
training that was performed. 

In this application, feed forward type neural networks with four layers was 
considered. The training of the neural networks was performed with a second 
order type algorithm, the Levenberg Marquardt [2]. As it was pointed out by 
these authors, this algorithm is more efficient than other techniques when the 
network contains no more than a few hundred of parameters, the present 
situation. Cross validation is also used in the training process. 

2.1.   Problem Definition 

Consider a laminated plate, made with 12 glass/epoxy equal thickness layers and 
with stacking sequence [0/+45/-45/90/-45/+45]s. The plate have 200´ 200´ 5 
mm and is considered simply supported on all sides. A finite element 
discretization with 36 equal elements is considered. Six piezoelectric sensors are 
placed on the plate surfaces. A schematic representation of the plate is depicted 
in fig. 2. 
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Figure 2. Laminated plate with piezoelectric sensors. 
 
The plate is loaded with a force of 5 N applied in its center, and the sensor 

readings are obtained with a finite element numerical model, programmed in 
Matlab, and based on a displacement field with nine independent variables, 
given by the expressions: 
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where 
0
iu   and αφ  are the displacements and the rotations in the middle plane 

of the plate and 3 3, ,αφ θ ψ  are higher order terms [3]. It is considered the PZT 

5H Morgan Matroc Piezoelectric, with the following elastic and piezoelectric 
properties: 
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The main objective is to determine the mechanical properties: 1E , 2E , 

12G  and 12n  of a target plate, designated as “experimental” properties. The 
“experimental” properties and the search space to be considered are shown on 
table 1. 
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Table 1. Search space and “experimental” properties. 

 

Properties 1 [ ]E GPa  2 [ ]E GPa
 

12 [ ]G GPa
 

12n  

“experimental” 38.48 9.38 3.41 0.292 

Search space [9.00, 58.00] [4.00,  14.00] [1.00,  6.00] [0.100,  0.481] 

2.2.   Neural Network Model 

The idea with this model is to use neural networks to interpret the relationship 
among the potential differences in the sensor and the mechanical properties 
associated to the laminate plate. Thus, we define four neural networks 
establishing a mapping between the potential differences and each property. The 
Fig. 3 shows an illustrative outline of the model 
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Figure 3. Neural Networks Model 

 
In order to obtain a correct training for the neural networks and a good 

compromise between the number of training patterns (evaluations by the finite 
method) and the performance of the networks, an iterative methodology 
described below is used. 

For the definition of the problem, the neural networks were considered with 
6 neurons in the input layer, corresponding to the potential differences, and 1 
neuron in the output layer, corresponding to the value of the property. The 
number of neurons in the internal layers (X) is adjusted iteratively during the 
process. Then, for each property, a network with dimension 6-X-X-1 is defined. 
The hyperbolic tangent function is chosen for all neurons. 

An amount N, corresponding to the number of additional data for training of 
the nets, is defined. This amount can be seeing as a step for the methodology 
proposed. The maximum number of new patterns to be added to the neural 
networks training data, as well as the maximum number of training epochs, is 
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also defined. A constant J , to be used as a stop criterion for this methodology, 

is also preset. 
Inside the search space 2N combinations of properties are randomly 

generated. For each combination of properties it is obtained the corresponding 
answer of the sensors, being obtained 2N combinations of data (potential 
differences - properties). 

Half of this data (N) is used in the training of the nets and the remaining half 
(N) is fixed, to be used as test data in each net. A percentage of 10% of the 
training data is randomly chosen for the crossed validation of each net. Then the 
training process of the 4 neural networks begins with these first N patterns. After 
this training, the outputs for the N fixed test data are request for each network 
and the mean relative errors between the output of each net and the fixed targets 
are evaluated and compared with the constant J . If the mean error value for the 
network is smaller than J , the training process for the corresponding network 
stops and the net is fixed. Otherwise, new data (N) must be added to the 
network. 

The new data to be added are generated randomly, but guarantying that is 
different from the previous one. These new data is added to the other and 10% 
of these values are chosen for crossed validation of the nets. The dimension (X) 
for the number of hidden neurons is modified according to a specific criterion 
and a retraining step of the nets begins. After this new training, the nets are 
tested again with the fixed test data and an evaluation of the mean error is 
computed and compared with J . 

This process is repeated until the mean error for all the nets is less than J . If 
this approach is not attained, the process stops when the maximum number for 
new patterns is reached. 

It is important to notice that the training of the 4 nets is performed in 
parallel, that is, whenever new data is generated for training the nets, these are 
used simultaneously for all the properties where the iterative methodology still 
elapses. In this work, a maximum number of 90 new added data and a fixed 

0.3J =  is defined. The maximum number of epochs is fixed as 100. 
After the training of the networks, considering the values of the 

“experimental” properties for the plate, the corresponding potential differences 
in the sensors are obtained with the finite element model. Then, the output of 
each neural network for these “experimental” potential differences gives the 
properties of the plate. 

2.3.   Results 

The programming of the neural networks was made in Matlab, being used a 
computer Pentium IV @ 2.4 MHz, 1024 Mb of RAM. 
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The obtained results are compared with those proposed by Liu et al. [4]. 
These authors used a SGI Origin Computer having needed 33 hours to obtain the 
suitable results, corresponding to 3001 evaluations of the fitness function 
defined for the adopted genetic algorithm. The training of the networks was 
stopped at fourth and sixth iteration of the methodology, respectively for the 
properties 1E and 2E . For the others the 90 new patterns for training show to be 

necessary. 
The total time of computation and the number of finite elements calculations 

is shown in table 2. 
 

Table 2. Time and Number of Finite Elements Calculations. 

 

Model Time 
Number of  

Finite Elements 
 [s] Calculations 
Neural Networks 
Model 

1458 110 

Liu et al. (2002) 120040 3001 

 
The obtained values for the properties and the mean relative error for each 

property, calculated in relation to the correspondent “experimental” one, are 
shown in table 3. 

 
Table 3. Results Obtained. 

 

Model  1E  2E  12G  12n  
  (38.48) (9.38) (3.41) (0.292) 
Neural Networks 
Model 

Value 38.486 9.389 3.409 0.291 
Error 0.017 0.101 0.021 0.362 

Liu et al. (2002) 
Value 38.340 9.240 3.480 0.293 
Error 0.364 1.493 2.053 0.342 

2.4.   Conclusions 

Identification of the material constants of a glass-epoxy plate has been carried 
out with satisfactory results. The neural network iterative model reveals to be 
very accurate and fast. The numerical experiments show that the iterative 
approach leads to small identification errors. 

The obtained results are encouraging and demonstrate the effectiveness of 
the proposed technique to the characterization of material constants of 
composite structures. 
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3.   Fuzzy Systems 

 A Fuzzy Set [5] is a set to which each element belongs in a degree between 0 
and 1, as given by the value of its membership function, µ(x). This concept 
allows the translation of linguistic terms like cold, hot, sometimes or almost 
always, for instance, as shown in Fig. 4, giving rise to Computing with Words 
[6]. Fuzzy Logic, derived from fuzzy sets, is nowadays widely used in very 
distinct fields, from control systems to expert systems. The Mamdani and 
Sugeno inferences are, perhaps, one of its more divulgated results. 

Possibility Theory [5, 6] is based on Fuzzy Set Theory. The distinction 
between probability and possibility may seem not evident: basically probability 
is related to occurrence frequencies while possibility expresses a (subjective) 
experience or judgement about something such as how much someone is older 
or young or how much a given quantity is high or low, for instance.  
 

 

 

 

  

 

Figure 4. Examples of linguistic terms represented by fuzzy sets: “cold”, “warm” and “hot” water. 
Frequency Qualifiers “rarely”, “sometimes”, “almost always”. 
 

Mathematically, possibility is represented by possibility distribution 
functions (see eq.3). A possibility distribution function πx(u), that characterizes a 
possibility distribution πX  associated with a linguistic term, is numerically equal 
to the value of the membership function ( )u

F
~µ  that defines the linguistic term.  

 
                                               ( )uFX ~ˆ µπ =                                              (3) 
 
(That is why in expression 3 the symbol =̂ stands for is defined as.)  
A possibility distribution πX  is induced whenever the Relational Assignment 

Equation (RAE) [6] is used to associate a linguistic term F
~
with the value of the 

attribute A of an object X (see eq.4). In this context R
~
acts as a fuzzy restriction, 

an elastic limit of the values that A may assume. An example of using expression 

          0               50                100 ºC         

µ=1 

    0              0.5                1 Relative                      
frequency       

µ=1 
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4 could be ( )( ) HovenetemperaturR
~~

= where H
~
stands for the linguistic term 

High. 
 
                                              ( )( ) FXAR

~~
=                                           (4) 

 
Given a fuzzy set A

~
 and a possibility distribution function πX, the 

possibility measure ( )A~π  is given by [6, 7]: 
 
                             { } ( ) ( ){ }uuX is Ã XÃ

Uu
πµ ,min  sup ˆ poss

∈
=                    (5) 

 
The importance of eq. 5 resides on the fact that given a definition such as, 

A
~
=high_temperature, in the presence of another fact to which corresponds 

another possibility distribution function, ( )u
FX ~ˆ µπ = , it is possible to calculate 

de possibility of X being A
~
. For example, the possibility of hot water being 

water at high temperature can be computed.  
Necessity measure, N, is related with possibility measure. The most 

important relation is, perhaps, the following one [6]: 
 

                                                  )
~

(1)
~
( ANA ⊄−=π                                          (6) 

 
Necessity is a more demanding and restrictive measure than possibility in 

the sense that it measures how much necessarily a fact is true. The case N=1 
means that a fact is necessarily true.  

Equations 5 and 6 are used in the following forms (see eq. 7, 8 and 9) in 
Fuzzy CLIPS [8]:  

 
                                     P(Fβ|Fα) = max(min(µFβ(u), µFα(u))                           (7) 
 
                                               N(Fβ|Fα) = 1-P(Fβ|F⊄α)                                  (8)     
 
                                                        µ⊄Fα = 1- µFα                                             (9) 

 
where Fα e Fβ are fuzzy sets. The format of these equations, by using the symbol 
“|”, shows clearly that possibility and necessity of fact Fβ  are computed 
according to a previously known fact Fα. 
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3.1.   Problem Definition 

The principles exposed in the previous section were used in SADEX, a Case-
Based-Reasoning (CBR) Fuzzy System for equipment fault diagnosis. SADEX 
makes use of a conceptual model of attribute values, relevance factors based on 
document retrieval techniques, combines information value and cost, and can 
perform some case adaptation tasks based on taxonomic similarities. Here we 
will focus on the fuzzy attribute model. 

 The operation cycle of a CBR system is well described by the Aamodt and 
Plaza diagram [9]. Basically it is composed of four phases named Retrieve, 
Revise, Reuse and Retain. If one relates these terms with the name Case Based 
Reasoning, they become almost self-explanatory: “Retrieve” involves the search 
and selection of past cases, more or less similar to the present case. “Reuse” may 
imply some kind of adaptation, so that a past solution may be applied to the 
present case. “Revise” makes the presentation of the (reused) solution and deals 
with its correctness or failure. “Retain” has to do with the recording of present 
cases classified as relevant for the resolution of future ones. This means learning 
from success or failure.  

 However, CBR on its own is not enough, as technical staff know-how 
makes effective use of subjective experiences depending on visual inspection, 
noise, smell and approximate measurement of some attribute values. The 
translation of this kind of information is possible by means of fuzzy sets and 
fuzzy numbers or intervals. The global similarity between cases uses fuzzy 
arithmetic operations and possibility theory.  

3.2.   Fuzzy Model 

Equipment fault description observations must express abnormality as, if they 
don't, they're irrelevant. Some examples follow: It doesn’t work; Temperature is 
10ºC; Temperature is low; Burned smell is evident. 

But these examples also show that abnormality can be expressed in different 
ways. One of the important issues in the CBR paradigm is the global similarity 
computation between the query case and the past cases that takes place in the 
Retrieve phase. There are many ways of evaluating this similarity but most make 
use of attribute values. However, in order to allow cases to be compared, a 
single and normalized format must be devised. Some base definitions used in 
this normalization process follow: 
 
1.  The Absolute Domain or Possible Range (PR) of an attribute is the set of 
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values considered of interest for abnormal facts representation. For an (L)ogical 
attribute PR={0,1}. For a (M)easurable attribute PR=[prl, prr], where prl and prr 
stand for PR left and right limits; for (N)on (M)easurable (S)ubjective attributes, 
and due to their nature, PR is meaningless.  

2.  The Absolute Typical Range (
~

ATR ) of an attribute is a fuzzy set whose 
support is the set of values it can assume in PR in its "normal" state; 
 
3.  The Differential Range (DR) of an attribute (L, M or NMS) is a subinterval of 
[-1,1];  

4.  The Differential Typical Range (
~

DTR ) of an attribute is the fuzzy set that 
translates the linguistic term Normal in DR. 

 
To illustrate the normalization process we will take an M-type attribute. 

Suppose we have PR=[2,10] and that 
~

ATR  is given by a fuzzy set in the α-cut 
notation such as (6,7,7,8). This fuzzy set defined in PR along with an auxiliary 
level and DR is shown in fig. 5. This figure also illustrates the important 

assumption that a correspondence has been established between 
~

ATR  and 
~

DTR : 

The fuzzy set 
~

ATR  corresponds to the linguistic term "normal" defined in 
~

DTR . 

This assumption has some consequences. The 
~

DTR  term is generated when, in 

the absolute domain, the attribute assumes the “normal value” 
~

v  or, 

( )ATRdcbaATRv ,,,
~~

== . In this case we will get a difference 
~

ATR∆  given by: 

                                 

( ) ( ) ATRATRATR adbccbdadcbadcbaATRATRATR ),,,(,,,,,,
~~~

−−−−=−=−=∆           (10) 

 
This fuzzy interval is represented at the auxiliary intermediate level of fig. 5.  
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Figure 5 - The Typical Range of a M-type attribute in the Absolute and Differential Domains 
 

As a-d is always symmetrical of d-a and b-c of c-b, we verify that 
~

ATR∆  has 
always a zero medium value and is symmetrical, independently of the shape that 

~

ATR  may assume. Besides this, the maximum differences allowed between any 

possible attribute value and its
~

ATR  are 
~

ATRprl −  for the left (lower) limit, and 
~

ATRprr −  for the right (upper) limit. So, the limits for the fuzzy set represented 

in the auxiliary level of fig. 5, α and β, are given by: 
 

                                           
ATRll dprATRpr −=






 −=

~

minα                    (11) 

                                          
ATRrr aprATRpr −=






 −=

~

maxβ .   

 
In our example we get α=-6 and β=4. We have, then, an “intermediate 

domain” whose width, w, is given by 
 

                                            
( )

( ) ( )ATRATRlr

ATRrATRl

adprpr

aprdprw

−+−=

=−−−=                       (12) 

So, w is the value by which we must divide
~

ATR∆  in order to normalize it 

and to obtain the “normal term” in the differential domain, 
~

DTR .  Defining θ as   
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                                            ( ) ( )ATRATRlr adprpr −+−=θ                         (13) 

 
then combining equations 10 and 13 it yields: 
 

                                         ( )
θATR

DTR

adbccbda

dcbaDTR

),,,(

,,,
~

−−−−=

==                (14) 

 
This gives the fuzzy interval (-0.2, 0, 0, 0,2 )that represents the "normal" 

linguistic term  shown at the differential domain of fig. 5. This also implies that 
the limits of the differential domain are variable and depend on the location of 

~

ATR  in PR. In fact, let DR=[drl, drr]. Combining expressions 11 and 13, we 
have: 
 
                                             ( ) θθα ATRll dprdr −==                                  (15)  

                                            ( ) θθβ ATRrr aprdr −==  

 
For our example we get drl=-0.6 and drr=0.4, visible at the differential 

domain of fig. 5.  
Every time a system user makes an attribute definition by specifying some of 

the elements above described, an weighted mean of all its past definitions with 
the new one is made (for each similar equipment group). The results are sets of 
linguistic terms each one defined by a fuzzy set that attempt to catch the concept 
linguistic terms usually used to describe abnormal attribute values for a given 
equipment group. We call these sets of fuzzy sets Conceptual Models that work 
as templates when a new definition is made. The adaptation of original values to 
a new definition is called Adaptation. Finally the Projection operation is 
symmetrical to normalization and simulates the reality view as modeled by 
previously defined concepts. 

According to this, attribute representation and handling can be conveniently 
supported by the 3-Level Model (3L Model) shown in fig. 6. This model is 
composed of three levels (External, Operational and Conceptual) related with 
the attribute domain and human perception:  

  
1. External Level / Absolute Domain / Reality - models the reality, the real 

world; 
2. Operational Level / Differential Domain / Human Cognition (reasoning) - 

handles normalized attribute values and supports every computation; 
3. Conceptual Level / Conceptual Domain - / Human Cognition (learning) - 

handles meta-models for future attribute definitions.  
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Figure 6. A 3-Level Model for attribute handling

 
This 3L Model allow

manipulation, by a fuzzy interval whose 
along with an attribute ID and an equipment group ID. This basic application of 
RAE can be complemented with qualifiers and quantifiers that help to express 
occurrence frequency and refer
these elements a Canonical Observation Form (COF) has been defined, as 
follows: 
  

[Qf] ( Attribute ( [Qt] ( [CompID](EquipID)))) =

 
� Qf - Frequency Qualifier
� Qt – Quantifier
� CompID – 
� EquipID – 
� NOT – Logical operator
� Mod. - Modifier 
� Value - Normalized attribute value
� Unit. - Measurement unit 
� [..] stands for “optional”

Level Model for attribute handling 

This 3L Model allows any observation to be translated, after some 
manipulation, by a fuzzy interval whose x-axis values lie in the interval
along with an attribute ID and an equipment group ID. This basic application of 
RAE can be complemented with qualifiers and quantifiers that help to express 
occurrence frequency and refer to several equipment components. Combining all 
these elements a Canonical Observation Form (COF) has been defined, as 

[Qf] ( Attribute ( [Qt] ( [CompID](EquipID)))) = 
= [NOT], [Mod.], Value, [Unit] ) 

Frequency Qualifier 
Quantifier 

 Component ID 
 Equipment ID 

Logical operator 
Modifier  
Normalized attribute value 
Measurement unit  

[..] stands for “optional” 
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any observation to be translated, after some 
nterval [-1, 1] 

along with an attribute ID and an equipment group ID. This basic application of 
RAE can be complemented with qualifiers and quantifiers that help to express 

to several equipment components. Combining all 
these elements a Canonical Observation Form (COF) has been defined, as 
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A set of COFs describes a case and COFs are represented at the Operational 

Level where they are used to compute global case similarity. 
The diagnosis process computes the global similarity between a query case 

and relevant past cases selected from the Case Library. This computation 
generates one positive and a maximum of three negative contributions for every 
diagnosis taken into account:  

The positive contribution is generated by corresponding observations that 
both represent deviations form normal values (error signals) of the same sign, 
that is, both positive or both negative. This feature implements diagnosis 
selection by present symptom in the query case Q and the past case Pi. This 
positive contribution can be emphasized or depreciated according to the value of 
an weighting factor Rij that expresses the relevance of observation i to a possible 
diagnosis j: 

                                                         
j

iij
ij NSL

OFCF
R

.
=                                        (16) 

 
Where CFi expresses by how many different diagnosis the same observation 
spreads (Collection Frequency), OFij represents how frequently each diagnosis 
generates a given observation (Observation Frequency), NSLj characterizes how 
many observations each diagnosis generates when compared to the average of 
all the known diagnosis (Normalised Syndrome Length). Equation 16 is inspired 
by the document retrieval technique described in [10].  

The first negative contribution is also generated by the corresponding 
observations that represent error signals of the same sign, but in which the 
attribute value in Q is somewhat normal. For this negative contribution a factor 
of the type how much a value is normal is computed according to the fuzzy 
pattern matching technique described in [6]. This feature implements the 
diagnosis exclusion by absent symptom in Q and present in Pi.  

The second negative contribution is generated by the corresponding 
observations that represent error signals of contrary signs. This feature 
implements the diagnosis exclusion by present symptom in Q and absent in Pi or 
vice-versa. 

Absent descriptions in Q or in Pi are also taken into account and can lead to 
other negative contribution or determinate the beginning of an ask-for-new-
observation cycle, that takes into account relevance and cost as estimated by the 
technical staff. 

3.3.   Results 

A prototype was implemented according to the principles exposed in the 
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above sections and allowing Internet access. Other techniques such as 
transformational case adaptation was  used too as, under certain circumstances, 
this adaptation allows the extension of a known diagnosis for equipment A to a 
similar equipment B, based on taxonomic knowledge [11, 12]. 

The system has been tested in the health-equipment maintenance field. The 
case library was initially loaded with occurrences contained in work orders of 
SUCH - Serviços de Utilização Comum dos Hospitais. The results are promising 
with a correct diagnosis near 100% in some cases.   

3.4.   Conclusions 

Equipment fault diagnosis was carried out with satisfactory results. The fuzzy 
model for attribute representation and handling proved to be adequate for 
technical staff daily maintenance tasks and the system can be useful for 
personnel training too. However, a complete field test is still needed as CBR 
systems, by their nature, need a considerable time period for correct tuning and 
evaluation. 

4.   Evolutionary Algorithms 

 In recent decades Evolutionary Computation (EC) techniques have been 
applied to the design of electronic circuits and systems, leading to a novel area 
of research called Evolutionary Electronics (EE) or Evolvable Hardware (EH) 
[13]. EE considers the concept for automatic design of electronic systems. 
Instead of using human conceived models, abstractions and techniques, EE 
employs search algorithms to develop implementations not achievable with the 
traditional design schemes, such as the Karnaugh or the Quine-McCluskey 
Boolean methods. 

 This section presents an application of an Evolutionary Algorithm, a 
Genetic Algorithm (GA), to the design of combinational logic circuits. 

GAs are adaptive heuristic search algorithms based on the evolutionary 
ideas of natural selection and genetic. The basic concept of GAs is designed to 
simulate processes in natural system necessary for evolution, specifically those 
that follow the principles first laid down by Charles Darwin of survival of the 
fittest. As such they represent an intelligent exploitation of a random search 
within a defined search space to solve a problem [14].  

First pioneered by John Holland in the 60s, GAs has been widely studied, 
experimented and applied in many fields in engineering worlds. Not only does 
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GAs provide alternative methods to solving problem, it consistently outperforms 
other traditional methods in most of the problems.  

GAs were introduced as a computational analogy of adaptive systems. They 
are modeled loosely on the principles of the evolution via natural selection, 
employing a population of individuals that undergo selection in the presence of 
operators such as mutation and recombination (crossover). A fitness function is 
used to evaluate individuals, and reproductive success varies with fitness. 

In this specific case a GA strategy is adopted to design digital circuits, in 
particular combinational logic circuits. Therefore, it is necessary to define the 
population of individuals in the form of chromosomes (circuit encoding) that 
represent the digital circuits. Another important issue that must be well 
established is the fitness function that will be responsible for the evaluation of 
the circuits. 

The next sub-sections present the problem definition, the circuit encoding, 
the genetic operators employed and the fitness function applied. 

4.1.   Problem Definition and Circuit Encoding 

The circuits are specified by a truth table and the goal is to implement a 
functional circuit with the least possible complexity. Since the combinational 
logic circuits are composed by logic gates, for this study were defined four sets 
of logic gates, as shown in table 4, being Gset 2 the simplest one and Gset 6 the 
most complex gate set. Logic gate named WIRE means a logical no-operation. 

 
Table 4 Gate sets. 

 
Gate Set Logic gates 
Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE} 
Gset 4 {AND,OR,XOR,NOT,WIRE} 
Gset 3 {AND,OR,XOR,WIRE} 
Gset 2 {AND,XOR,WIRE} 

 
In the presented scheme the circuits are encoded [15] as a rectangular 

matrix A (row×column = r×c) of logic cells (fig. 7). Three genes represent each 
cell: <input1><input2><gate type>, where <input1> and <input2> are one of the 
circuit inputs, if they are in the first column, or one of the previous outputs, if 
they are in other columns. The gate type is one of the elements adopted in the 
gate set. The chromosome is formed with as many triplets as the matrix size 
demands (e.g., triplets = 3 × r × c). 
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Figure 7.  A 3 × 3 matrix A representing a circuit with input X and output Y. 

4.2.   The Genetic Operators 

The initial population of circuits (strings) is generated at random. The search is 
then carried out among this population. The three different operators used are 
reproduction, crossover and mutation, as described in the sequel. 

In what concern the reproduction operator, the successive generations of 
new strings are reproduced on the basis of their fitness function. In this case, it is 
used a tournament selection to select the strings from the old population, up to 
the new population. 

For the crossover operator, the strings in the new population are grouped 
together into pairs at random. Single point crossover is then performed among 
pairs. The crossover point is only allowed between cells to maintain the 
chromosome integrity. 

The mutation operator changes the characteristics of a given cell in the 
matrix. Therefore, it modifies the gate type and the two inputs, meaning that a 
completely new cell can appear in the chromosome. Moreover, it is applied an 
elitist algorithm and, consequently, the best solutions are always kept for the 
next generation. 

To run the GA we have to define the number of individuals to create the 
initial population P. This population is always the same size across the 
generations, until the solution is reached. 

The crossover rate CR represents the percentage of the population P that 
reproduces in each generation. Likewise, the mutation rate MR is the percentage 
of the population P that can mutate in each generation. 
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4.3.   The Fitness Function 

The calculation of the fitness function F in (17) has two parts, f1 and f2, where f1 
measures the functionality and f2 measures the simplicity. In a first phase, we 
compare the output Y produced by the GA-generated circuit with the required 
values YR, according with the truth table, on a bit-per-bit basis. By other words, 
f1 is incremented by one for each correct bit of the output until f1 reaches the 
maximum value f10, that occurs when we have a functional circuit. Once the 
circuit is functional, in a second phase, the algorithm tries to generate circuits 
with the least number of gates. This means that the resulting circuit must have 
as much genes gate type ≡ wire as possible. Therefore, the index f2, that 
measures the simplicity (the number of null operations), is increased by one 
(zero) for each wire (gate) of the generated circuit, yielding: 
 
• First phase, circuit functionality: 

 

f10 = 2
ni × no (17a) 

f1 = f1 + 1, if {bit i of Y} = {bit i of YR} , i = 1, …, f10  (17b) 

 

• Second phase, circuit simplicity: 

 

f2 = f2 + 1 if gate type = wire (17c) 
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where ni and no represent the number of inputs and outputs of the circuit. 

4.4.   Results 

This section shows the implementation of four different combinational logic 
circuits, namely, a 2-to-1 multiplexer, a one-bit full adder, a four-bit parity 
checker and a two-bit multiplier, using the GA algorithm. 

   Due to the stochastic nature of the GAs in order to evaluate its 
performance, for each gate set we perform 20 simulations. Table 5 shows the 
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average of the number of generations µ(N) to reach the solution and the average 
of the fitness function  µ(F) after performing 20 experiments for each gate set. 

 
Table 5 Results for the 2-to-1 multiplexer, the one-bit full adder, the 
four-bit parity checker and the two-bit multiplier circuits, using the 

GA algorithm. 
 

 Circuit 

Gate set 
2-1 Multiplexer 

1-bit Full 

Adder 

4-bit Parity Checker 2-bit Multiplier 

µ(N) µ(F) µ(N) µ(F) µ(N) µ(F) µ(N) µ(F) 

Gset 6 27,15 10,25 72,45 18,15 32,55 21,70 1699,00 69,15 

Gset 4 19,75 10,35 53,65 18,35 20,40 21,95 1183,05 69,50 

Gset 3 13,55 10,5 32,40 18,45 13,754 22,65 432,40 70,25 

Gset 2 12,05 11,5 34,86 18,57 7,95 23,95 362,35 70,45 

 
It is possible to see the superiority of the gate sets 2 and 3 in terms of µ(N) 

and µ(F). 
Figure 8 illustrates the average of the fitness function µ(F) versus the 

average of the number of generations µ(N) to reach the solution, for all the gate 
sets (i. e. Gsets 2, 3, 4 e 6) and for all the circuits. 

Comparing the four studied cases, based on the average of the number of 
generations µ(N) to reach the solution and the average of the fitness function  
µ(F) it is possible to conclude that, independent of the circuit complexity, the 
best results appeared with the reduced gate sets. 

In brief, this application uses a GA for designing combinational logic 
circuits given a set of logic gates. The final circuit is optimized in terms of 
complexity (with the minimum number of gates).  

For all the case studies the GA has proved to be efficient, even when the 
number of outputs in the truth table increases. It is also visible that the 
performance of the GA increases as the complexity of the gate set decreases. 
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Experiments show that we have better results with Gset 2, that is, the simplest 
set that we have adopted in this study. 
 

 
Figure 8: Average of the fitness function µ(F) versus the average of the number of generations µ(N) 
to reach the solution, using the GA algorithm. 

5.   Conclusion 

As stated before, we show how CI techniques overpass the strict limits of AI 
field and can help solving real problems from distinct engineering areas: 
Mechanical, Computer Science and Electrical Engineering.  

For AI researchers these are good news! Still, as a relatively new 
disciplinary field, AI has a long way to go. "Proud, not smug", according to 
Menzies [16]; or, "take pride in how far you have come; have faith in how far 
you can go” (Anonymous). 
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