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Abstract: This paper investigates the application of fractional-order PID controllers in the velocity control 
of a servo system. The servo system is controlled by using a real-time digital control system based on 
MATLAB/Simulink tools. Experimental responses are presented and analyzed, showing the effectiveness 
of the proposed fractional-order algorithms. Comparison with classical PID controllers is also investigated. 
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1. INTRODUCTION 

Fractional calculus (FC) is the area of mathematics that 
extends derivatives and integrals to an arbitrary order (real or, 
even, complex order) and emerged at the same time as the 
classical differential calculus. FC generalizes the classical 
differential operator nnn

t dtdD ≡  to a fractional operator 
α
tD , where α can be a complex number (Spanier and 

Oldham, 1974; Podlubny, 1999a). However, its inherent 
complexity delayed the application of the associated 
concepts. 

Nowadays, the fractional calculus is applied in science and 
engineering, being recognized its ability to yield a superior 
modeling and control in many dynamical systems. We may 
cite its adoption in areas such as viscoelasticity and damping, 
diffusion and wave propagation, electromagnetism, chaos and 
fractals, heat transfer, biology, electronics, signal processing, 
robotics, system identification, traffic systems, genetic 
algorithms, percolation, modeling and identification, 
telecommunications, chemistry, irreversibility, physics, 
control, economy and finance (Oldham and Spanier, 1974; 
Podlubny, 1999a). 

In what concerns the area of control systems, the fractional 
controllers are now extensively investigated (Machado, 1997; 
Barbosa et al., 2004; Podlubny, 1999a, 1999b). Ma and Hori 
(2003) use a PIαD controller for the speed control of two-
inertia system. The superior robustness performance against 
input torque saturation and load inertia variation are shown 
by comparison with integer order PID control. Feliu-Batlle et 
al. (2007) apply fractional algorithms in the control of main 
irrigation canals, which reveals to be robust to changes in the 
time delay and the gain. Valério and Sá da Costa (2004) 
introduce a fractional controller in a two degree of freedom 
flexible robot, achieving a stable response for the position of 
its tip.  

However, simple and effective tuning rules, such as those for 
classical PID controllers, are still lacking. In this article, we 
use fractional PID controllers in the velocity control of an 
experimental servo system. The tuning of the fractional 
controllers is based on the well-known Ziegler-Nichols (Z-N) 
tuning rules (Ziegler and Nichols, 1942). The authors believe 
that these heuristic rules constitute a good starting point to 
tune a fractional PID controller and to analyze the effect of 
the fractional orders upon the real-system control 
performance. The Z-N rules are used to tune the PID 
controller and the final tuning of the fractional-order PID 
controller is obtained by adjusting the fractional orders and 
the controller gain in order to yield a satisfactory control.  

This paper is organized as follows. Section 2 presents the 
fundamentals of fractional-order control systems while 
section 3 outlines the Oustaloup’s frequency approximation 
method. Section 4 describes the experimental servo system 
set-up and section 5 gives the open-loop Ziegler-Nichols 
tuning rules. Section 6 shows the experimental results 
obtained from the application of several types of fractional-
order PID controllers. Finally, section 7 draws the main 
conclusions. 

2. FRACTIONAL-ORDER CONTROL SYSTEMS 

In general, a fractional-order system can be described by a 
Linear Time Invariant (LTI) fractional-order differential 
equation of the form: 
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or by a continuous transfer function of the form: 
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where ( )K,2,1,0, =αβ kkk  are real numbers, 

0101 , α>α>>αβ>β>>β LL kk and ( )K,2,1,0, =kba kk  
are arbitrary constants. 

The generalized operator α
ta D , where a and t are the limits 

and α the order of operation, is usually given by the 
Riemann-Liouville definition ( )0>α : 

( ) ( )
( )

( ) τ
τ−
τ
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= ∫ +−α

α d
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x
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txD
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a nn
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ta 1

1 , nn <α<−1  (3) 

where ( )zΓ  represents the Gamma function of z. Another 
commom definition is that given by the Grünwald-Letnikov 
approach ( )ℜ∈α : 
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where h is the time increment and [v] means the integer part 
of v.  

As shown by the above definitions, the fractional-order 
derivatives are global operators having a memory of all past 
events. This property is used to model hereditary and 
memory effects in most materials and systems. 

The fractional-order derivatives can also be defined in the 
transform domain. It is shown that the Laplace transform (L) 
of a fractional derivative of a signal x(t) is given by: 
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where ( ) ( ){ }txLsX = . Considering null initial conditions, (5) 
reduces to the simple form (α ∈ ℜ): 

( ){ } ( )sXstxDL αα =  (6) 

which is a direct generalization of the integer-order scheme 
with the multiplication of the signal transform X(s) by the 
Laplace s-variable raised to a real value α. The Laplace 
transform reveals to be a  valuable tool for the analysis and 
design of fractional-order control systems. 

The fractional-order controllers were introduced by 
Oustaloup (2000), who developed the so-called Commande 
Robuste d’Ordre Non Entier (CRONE) controller. More 
recently, Podlubny (1999b) proposed a generalization of the 
PID controller, the PIλDμ-controller, involving an integrator 
of order λ and a differentiator of order μ. The transfer 
function ( )sG c  of such a controller has the form: 

( ) ( )
( )

μλ sKsKK
sE
sUsG DIPc ++== − ,   0, >μλ  (7) 

where ( )sE  is the error signal and ( )sU  the controller’s 
output. The constants ( )DIP KKK ,,  are the proportional, 
integral, and derivative gains of the controller, respectively. 

 

The PIλDμ-controller is represented by a fractional integro-
differential equation of type: 

( ) ( ) ( ) ( )teDKteDKteKtu DIP
μλ− ++=  (8) 

Clearly, depending on the values of the orders λ and μ, we 
get an infinite number of choices for the controller’s type 
(defined continuously on the ( )μλ, -plane). For instance, 
taking ( ) ( )1,1, ≡μλ  gives a classical PID controller, 
( ) ( )0,1, ≡μλ  gives a PI controller, ( ) ( )1,0, ≡μλ  gives a PD 
controller and ( ) ( )0,0, ≡μλ  gives a P controller. All these 
classical types of PID controllers are the particular cases of 
the fractional PIλDμ-controller. Thus, the PIλDμ-controller is 
more flexible and gives the possibility of adjusting more 
carefully the dynamical properties of a control system. 

3. OUSTALOUP’S APPROXIMATION METHOD 

In order to implement the term αs  (α ∈ ℜ) of the fractional 
controller, a frequency-band limited approximation is used by 
cutting out both high and low frequencies of transfer ( )αωus  
to a given frequency range [ ]hb ωω , , distributed 

geometrically around the unit gain frequency ( ) 21
hbu ωω=ω  

(Oustaloup, 2000). The resulting continuous transfer function 
of such approximation is given by the formula: 
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where the zero and pole of rank k can be evaluated, 
respectively, as:  
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Taking N, ,bω  ,hω  and α, permits the determination of the 
values of the set of zeros and poles of (10) and, consequently, 
the synthesis of the desired transfer function (9).  

4. THE EXPERIMENTAL SERVO SYSTEM 

The Servo System (SS) consists of the Inteco 
(http://www.inteco.com.pl) digital servomechanism and 
open-architecture software environment for real-time control 
experiments. The SS supports the real-time design and 
implementation of advanced control methods using 
MATLAB/Simulink tools.  

Fig. 1a illustrates the SS set-up, which consists of several 
modules mounted in a metal rail and coupled with small 
clutches. The modules are arranged in the chain such that the 
DC motor with the generator module is at the front and the 
gearbox with the output disk is at the end of the chain (Fig. 
1b).  

The DC motor can be coupled with the modules of inertia, 
magnetic brake, backlash and gearbox with the output disk. 
The angle of rotation of the DC motor shaft



 
 

     

 

  

a) Set-up b) Mechanical construction 

Fig. 1. The servo system.  

 

is measured using an incremental encoder. The generator is 
connected directly to the DC motor and generates voltage 
proportional to the angular velocity. 

The servomechanism is connected to a computer where a 
control algorithm is implemented based on the measurement 
of the angular position and/or velocity. The accuracy of 
measurement of the position is 0.1% while the accuracy of 
measured velocity is 5%. The armature voltage of the DC 
motor is controlled by a PWM signal v(t) excited by a 
dimensionless control signal in the form u(t) = v(t)/vmax. The 
admissible controls satisfy |u(t)| ≤ 1 and vmax = 12 [V] 
(Manual Inteco, 2006). 

5. ZIEGLER-NICHOLS TUNING RULES 

Ziegler and Nichols (1942) recognized that the step responses 
of a large number of process control systems exhibit a 
process reaction curve like that shown in Fig. 2. The S-shape 
of the curve is characteristic of many higher-order systems, 
and such plant transfer function may be approximated by a 
first-order system plus a time delay of td seconds (Franklin et 
al., 1994): 

( )
( ) 1+τ

=
−

s
Ae

sU
sY std

 (11) 

The constants (A, td, τ) are determined from the unit step 
response of the process (Fig. 2). If a tangent is drawn at the 
inflection point of the reaction curve, then the slope of the 
line is R = A/τ and the intersection of the tangent line with the 
time axis identifies the time delay L = td.  

The choice of controller parameters is designed to result in a 
closed-loop step response transient with a decay ratio of 
approximately 0.25 in one period of oscillation. This 
corresponds to ζ = 0.21 and is a good compromise between 
quick response and adequate stability margins. Table 1 lists 
the controller parameters suggested by Ziegler and Nichols to 
tune the proportional gain Kp, integral time TI, and derivative 
time TD.  

Once the values of TI and TD have been obtained, the gains 
KP  and KI, are computed as: 

I

P
I T

KK = ,   DPD TKK =  (12) 

In general, the controller settings according to Z−Ν  rules 
provide a good closed-loop response for many systems. 

 
Fig. 2. Process reaction curve (from Franklin et al., 1994). 

Table 1.  Ziegler-Nichols tuning for the controller 
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Fig. 3. Real-time model of the servo with the fractional PID controller. 

 

6. EXPERIMENTAL RESULTS 

This section investigates the application of several types of 
fractional-order PID controllers in the control of the angular 
velocity of the servo system. 

The SS set-up for the experiments includes the modules of 
DC motor with tacho-generator, inertia load, encoder and 
gearbox with output disk (see Fig. 1).  

The real-time control experiments are performed using the 
MATLAB/Simulink real-time model given in Fig. 3. A fixed-
step solver (Euler’s integration method) of a fixed-step size 
set to 0.01 (sampling period of T = 0.01 s) is chosen.  

For the identification experiment, a unit step input is applied 
to the system and the process reaction curve is acquired, as 
shown in Fig. 4. Following the method of Ziegler-Nichols, as 
described in section 5, we get the system parameters 
A = 187.2106, τ = 1.1841 and L = 0.1753. The controller 
parameters are then calculated according to the formulae 
given in Table 1. 

The fractional term sα (α ∈ ℜ) in the fractional PID 
controller transfer function (7) is implemented by using the 
Oustaloup’s frequency approximation method described in 
section 3. The values used were N = 5, bω  = 1 rad/s and 

hω  = 1000 rad/s.  

The fractional-order controllers are implemented in digital 
form by discretization of the continuous controller transfer 
functions. The discretization technique used consists in the 
bilinear (or Tustin’s) approximation with a sampling period 
of T = 0.01 s. 

In the following experiments, a step input of amplitude 
40 rad/s is applied to the servo and the angular velocity 
versus time is acquired for different types of fractional-order 
PID controllers. The experimental results are presented and 
analyzed. 

6.1 The Dμ -controller 

The transfer function of a fractional Dμ -controller is given 
by: 

( ) 0, >μ= μsKsG Dc  (13) 

where the gain KD and the derivative order μ are the 
parameters to be tuned. 

The fractional controller is designed by adopting the 
proportional gain of the P-controller obtained from the 
Ziegler-Nichols rules, that is, .0361.01 == RLK D  

Figure 5 depicts the experimental step responses of the 
angular velocity for several values of derivative order  
μ = {0.1, 0.2, 0.3, 0.4, 0.5, 1} while maintaining the 
derivative gain KD = 0.0361. 
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Fig. 4. Unit step response of the servo. 
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KD=0.0361, P-Controller

μ=0.5, Dμ-Controller

μ=0.4

μ=0.3 μ=0.2 μ=0.1

Fig. 5. Response of the real-system with the Dμ-controller 
and μ = {0.1, 0.2, 0.3, 0.4, 0.5, 1}.  

The responses reveal that the steady-sate error increases as 
the order μ increases. The variation of the gain KD was also 
tested (with a fixed value of the derivative order) and the 
system showed a diminishing stead-state error as KD 
increases. However, the overshoot and settling time are more 
acceptable for the case where the order μ is changed. We 
verify that the extra degree of tuning provided by the 
fractional controller, in comparison to the classical               
P-controller, may be useful to yield a satisfactory control. 

6.2 The Iλ -controller 

The transfer function of a fractional Iλ-controller is given by: 

( ) 0, >λ=
λs

KsG I
c  (14) 

where the gain KI and the integrative order λ are the 
parameters to be tuned. 

In order to assure a good steady state error, the term 
λs1 must be implemented by means of an integer integrator 

(Axtell and Bise, 1990; Franklin et al., 1994). The modified 
Iλ-controller is then given in the form:  

( ) 10,
1

<λ<=
λ−

s
sKsG Ic  (15) 

The Iλ-controller is designed by adopting the proportional 
gain of the P-controller obtained from the Ziegler-Nichols 
rules, that is, .0361.01 == RLK I  

Figure 6 shows the experimental step responses of the 
angular velocity for several values of integrative order 
λ = {0.1, 0.3, 0.5, 0.7, 1} while maintaining the integral gain 
KI = 0.0361. The variation of gain KI (with integrative order 
fixed) was also tested. We observed that the steady-state error 
is very small. Note that the real system is nonlinear and, 
therefore, the oscillations are damped very quickly. Also, we 
verify that the fractional order λ is a very useful parameter 
for adjusting the dynamics of the control system. In fact, the 
order λ has a large influence upon the system dynamics, as 

illustrated in Fig. 6. Note also that the system shows a large 
time delay, particularly when a weak integrator is used. One 
of the reasons for this phenomenon is related with the high 
order transfer function approximation used for the fractional 
controller. This aspect needs further investigation. 

6.3 The PIλ -controller 

The transfer function of a fractional PIλ-controller is given 
by: 

( ) 0, >λ+=
λs

KKsG I
Pc  (16) 

where the proportional gain KP, the integral gain KI and the 
integration order λ are the parameters to be tuned. The term 

λsK I  is implemented as in (15). 

The fractional controller is designed by adopting the 
controller parameters of the PI-controller obtained from the 
Ziegler-Nichols rules, that is, 0325.09.0 == RLK P and 

0556.03.0 == LKK PI . 

Figure 7 shows the experimental step responses of the 
angular velocity for several values of integrative order 
λ = {0.3, 0.5, 0.7, 0.9, 1} while maintaining the gains 
KP = 0.0325 and KI = 0.0556. The variation of integral gain 
KI (with integrative order fixed) was also tested.  As in 
previous case, the steady-state error is very small. Note the 
influence of the order λ in the system overshoot and settling 
time. An adequate phase margin can be easily established by 
a proper choice of fractional order λ. However, the output 
converges to its final value more slowly, as should be 
expected by a weak fractional integral term. 

6.4 The PIλD -controller 

The transfer function of a fractional PIλD-controller is: 

( ) 0, >λ++=
λ D
I

Pc K
s
KKsG  (17) 
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Fig. 6. Response of the real-system with the Iλ-controller and 
λ = {0.1, 0.3, 0.5, 0.7, 1}. 
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Fig. 7. Response of the real-system with the PIλ-controller 
and λ = {0.3, 0.5, 0.7, 0.9, 1}. 

where the proportional gain KP, the integral gain KI , the 
derivative gain KD and the integrative order λ are the 
parameters to be tuned. The term λsK I  is implemented as 
in (15). 

The fractional controller is designed by adopting the 
controller parameters of the PID-controller obtained from the 
Ziegler-Nichols rules, that is, 0433.02.1 == RLK P , 

( ) 1235.02 == LKK PI  and 0038.05.0 == PD LKK . 

Figure 8 shows the experimental step responses of the 
angular velocity for several values of integrative order 
λ = {0.2, 0.4, 0.6, 0.8, 1} while maintaining the gains 
KP = 0.0433, KI = 0.1235 and KD= 0.0038. Once more, we 
note the influence of the order λ upon the system 
performance, particularly in the overshoot and settling time. 
The slow convergence of the response to its final value, due 
to a weak fractional integral, is also evident. 

7. CONCLUSIONS 

In this article we investigated the velocity control of a servo 
system by using several fractional-order PID controllers. For 
the tuning of the controllers we adopted the well-known 
Ziegler-Nichols rules. It was shown that the fractional 
controllers can effectively enhance the control system 
performance providing extra tuning parameters useful for the 
adjustment of the control system dynamics. The Zeigler-
Nichols rules revealed to be simple and effective in the final 
tuning of the fractional-order algorithms. 
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