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Resumo 

 

Haemophilus influenzae é um microrganismo comensal da nasofaringe humana, responsável 

por doenças invasivas e não-invasivas. Este trabalho focou-se no estudo de 93 estirpes de H. 

influenzae, isolados entre 2013 e 2018, de indivíduos com duas doenças não-

invasivas epidemiologicamente relevantes: Doença Pulmonar Obstrutiva Crónica (DPOC) e Otite 

Média (OM). As estirpes foram caraterizadas, fenotípica e molecularmente, relativamente à presença 

de cápsula, produção de β-lactamase, suscetibilidade a antibióticos, diversidade genética por MLST, 

presença/ausência de fatores de virulência (pilA, hifA, hmw1A, hmw2A, hia e ompP5) e a capacidade 

para formar biofilmes.  

A DPOC incidiu numa população adulta (100%), enquanto a OM foi predominante em 

crianças (98,2%). Verificou-se que o H. influenzae não capsulado (HiNC) foi o agente etiológico 

responsável pela DPOC (97,4%) e OM (100%). Relativamente à susceptibilidade aos antibióticos, há a 

destacar a produção de β-lactamase em 15,1% das estirpes. O MLST revelou uma elevada diversidade 

genética, tanto na DPOC como na OM, com a caraterização de 31 STs em 41 estirpes analisadas. Os 

genes pilA e ompP5 foram identificados em mais de 50% dos isolados de DPOC e OM. Os genes hifA 

e hia foram encontrados em menos de metade dos isolados, tendo-se verificado uma maior prevalência 

na OM. Os genes hmw1A e hmw2A foram identificados, respetivamente, em 25,5% e 32,7% das 

estirpes de OM, estando ambos presentes em 76,3% das estirpes de DPOC. A formação de biofilmes 

foi observada em 14,0% e 29,0% das estirpes após 24h e 48h, respetivamente. Não foi possível 

estabelecer uma relação entre formação de biofilmes e origem clínica, nem com a presença de fatores 

de virulência (pilA, hmw1A e hmw2A) envolvidos na produção de biofilmes. 

DPOC e OM são doenças frequentemente associadas a HiNC. Não existindo uma vacina 

disponível, é importante a sua monitorização, pelo impacto social e económico que representam em 

Saúde Pública.  

 

 

 

Palavras-chave: Haemophilus influenzae, DPOC, OM, fatores de virulência, biofilmes, HiNC 
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Abstract 
 

 Haemophilus influenzae is a commensal microorganism of the human nasopharynx, 

responsible for both invasive and non-invasive diseases. This work focused on the study of 93 H. 

influenzae isolates, collected between 2013 and 2018, from patients with two epidemiologically 

relevant non-invasive diseases: Chronic Obstructive Pulmonary Disease (COPD) and Otitis Media 

(OM). Phenotypical and molecular characterizations were performed for the isolates, regarding 

capsular typing, β-lactamase production, antibiotic susceptibility, genetic diversity by MLST, 

presence/absence of virulence factors (pilA, hifA, hmw1A, hmw2A, hia and ompP5) and ability to 

produce biofilms.  

COPD isolates were collected from adults (100%), while 98.2% of OM isolates were collected 

from children. Non-typeable H. influenzae (NTHi) was the aetiological agent in COPD (97.4%) and 

OM (100%). Regarding antibiotic susceptibility, it should be noticed that 15.1% of the isolates were β-

lactamase producers. MLST revealed a high genetic diversity among COPD and OM isolates, with 31 

STs in 41 analysed isolates. pilA and ompP5 genes were present in more than 50% of COPD and OM 

isolates. hifA and hia genes were identified in less than half of the isolates, with a higher prevalence of 

these among OM isolates. hmw1A and hmw2A genes were respectively identified in 25.5% and 32.7% 

of OM isolates, while both hmw genes were present in 76.3% of COPD isolates. Biofilm production 

was observed for 14.0% and 29.0% of all isolates after 24h and 48h, respectively. No relationship 

between biofilm production and clinical source could be established, as well as with the presence of 

virulence factors (pilA, hmw1A e hmw2A) involved in biofilm production. 

COPD and OM are frequently associated with NTHi. Since no vaccines are available, 

monitoring of these diseases is highly recommended, as these constitute a Public Health threat 

associated with a high economic and social burden. 

 

 

 

Keywords: Haemophilus influenzae, COPD, OM, virulence factors, biofilms, NTHi 
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1. Introduction 

 

 

1.1. Haemophilus influenzae 
 
 

 1.1.1. Pasteurellaceae family, Haemophilus genus and Haemophilus influenzae 

 

Pasteurellaceae family belongs to the Pasteurellales order and Gammaproteobacteria class.1 

It is composed of a wide group of gram-negative opportunistic pathogens and commensal organisms, 

which have an important impact on human and animal health.2  

 Currently, the family is composed of 26 genera, including Actinobacillus, Aggregatibacter, 

Avibacterium, Avibacteriumendocarditidis, Basfia, Bibersteinia, Bisgaardia, Chelonobacter, 

Cricetibacter, Frederiksenia, Gallibacterium, Haemophilus, Histophilus, Lonepinella, Mannheimia, 

Mesocricetibacter, Muribacter, Necropsobacter, Nicoletella, Otariodibacter, Pasteurella, 

Phoconobacter, Testudinibacter, Ursidibacter, Vespertiliibacterpulmonis, and Volucribacter.3  

Haemophilus, Actinobacillus and Pasteurella are considered the three main classic genera.2  

 Of the Haemophilus genus, four species possess host specificity for animals (H. parasuis, H. 

felis, H. paracuniculus and H. haemoglobinophilus) and nine for humans (H. influenzae, H. aegyptius, 

H. haemolyticus, H. parainfluenzae, H. ducreyi, H. pittmaniae, H. sputorum, H. paraphrohaemolyticus 

and H. parahaemolyticus).2  

 

H. influenzae was first described by physician Richard Pfeiffer in 1892. The bacilli were 

detected during the epidemic of the influenza virus, in sputum samples of patients suffering from this 

infection and was then named as “The influenza Bacillus”.4 In 1931, Margaret Pittman detected two 

different types of colonies grown on agar plates.5 These two types differentiated in size and 

opaqueness. One type of colonies was described as large, smooth, mucoid, slightly opaque and 

iridescent when observed in obliquely transmitted light and were denominated as S (Smooth) isolates; 

the second type of colonies were smaller, translucent, non-iridescent with transmitted light, with a 

rough surface, being denominated as R (Rough) isolates. S isolates appeared to be more virulent for 

laboratory animals and, in all of them, it was detected the presence of a capsule. This finding led to a 

differentiation of H. influenzae into isolates with a capsule, or typeable, and isolates lacking a capsule, 

also referred to as Nontypeable isolates (NTHi) (Fig. 1.1).  

H. influenzae are small gram-negative, coccobacilli, pleomorphic and fastidious bacteria. This 

bacterium grows optimally with temperature between 35 and 37 ºC, in an atmosphere supplemented 

with 5–10 % of CO2. Regarding in vitro growth, it is dependent on X-factor and V-factor – also known 
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as haemin and Nicotinamide Adenine Dinucleotide (NAD), respectively.6 The X-factor consists of a 

Ferric Ion (Fe3+) inserted in the centre of a porphyrin ring (protoporphyrin IX), with Chloride Ion (Cl-) 

as a ligand.7 It can be used, optionally, for anaerobic growth. The V-factor is a pyridine nucleotide that 

possesses important roles in metabolic conversions, such as signal transducers, plays a major role as 

electron carrier in oxidoreductase reactions and is essential for growth.8,9  

H. influenzae is an important human-restricted commensal of the nasopharynx. A longitudinal 

study conducted in Portugal by Sá-Leão and colleagues10 collected 414 nasopharyngeal samples of 

children from a day care center, during one year. The authors stated that H. influenzae was present in 

87% of the nasopharyngeal samples. In addition, all children were colonized with this bacterium, at 

some point of the study and 34% were persistently colonised, highlighting the importance of this 

bacterium as a colonizer of the respiratory tract.  

 

 

 

Similar to all gram-negative microorganisms, the cell wall of H. influenzae is composed of a 

layer of peptidoglycan – cross-linked by Penicillin-Binding Proteins (PBPs) – that confers strength, 

resistance against antibiotics and protects bacteria against lysis due to variations in osmotic pressure. 

Outer and inner membranes also protect bacteria against antibiotics, by hampering them from reaching 

the cytoplasm, where these could interfere with protein synthesis. These membranes serve as barriers 

of outer, as well as inner permeability.11 Lipooligosaccharides (LOS) are endotoxins present on the 

bacterial cell wall and are fundamental for bacterial adhesion.12 Although H. influenzae lacks flagella, 

Figure 1.1 | (A) NTHi colonies and (B) encapsulated H. influenzae colonies in chocolate agar plates 
supplemented with polivitex. Both photographs were taken during this Master’s Thesis, with an Otitis Media 
isolate included in the study (A) and an invasive serotype e isolate belonging to the collection of the reference 
laboratory (B). 
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NTHi isolates commonly possess pili structures, which have been associated with twitching motility 

(non-flagellar based type IV pilin-dependent motility).13 

 
 

1.1.2. Haemophilus influenzae serotypes 
 

H. influenzae can be classified as encapsulated, or non-encapsulated based on the production 

of a capsular polysaccharide. 

 Encapsulated H. influenzae isolates are divided into six distinct serotypes, a, b, c, d, e, f – also 

referred to as Hia, Hib, Hic, Hid, Hie and Hif – based on the production of different capsular 

polysaccharides. Capsular polysaccharides confer virulence by avoiding complement system lysis.14 

H. influenzae capsular serotypes may be organised into three groups, each composed of two serotypes, 

based on both the structures of the polysaccharides and an association with their resistance to 

antibody-free complement lysis effect.14 Types b and a were considered the most virulent, being 

composed of a phosphodiester, a neutral sugar and an alcohol (ribitol). Types c, d, e and f were much 

less virulent, with types c and f being considered of intermediate complement resistance and 

composed of a phosphodiester, a N-acetylated amino sugar and a monosaccharide. Finally, types d and 

e possessed the least resistance to complement action and have a repeat unit of a N-

acetylmannosamine uronic acid and N-acetylglucosamine.14 Encapsulated isolates are thus more 

virulent and tend to be associated with invasive disease, such as septicaemia and meningitis.6  

 Although NTHi isolates lack a polysaccharide capsule, they can be differentiated by Outer 

Membrane Proteins (OMPs), LOS and High Molecular Weight (HMW) protein profiles, among other 

virulence factors, such as Hif and Hap adhesins, for instance.15 NTHi isolates are usually associated 

with non-invasive diseases, of the upper (e.g.: Otitis Media [OM] and sinusitis) and lower respiratory 

tract (e.g.: chronic obstructive pulmonary disease [COPD] and cystic fibrosis).16  

 

 

 1.1.3. Molecular typing 
  

  1.1.3.1. Capsular typing 
 

 Capsular typing by molecular methods is considered the most accurate technique to 

differentiate NTHi from encapsulated isolates and for identification of H. influenzae serotypes.17  The 

region of the chromosome of H. influenzae responsible for capsule expression is named the “cap 

locus”, which is described in all six capsular serotypes. It is composed of three different regions: 1, 2 

and 3.18 Regions 1 and 3 are common to all serotypes and are composed of a highly conserved cluster 
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of genes, essential for processing and exporting capsular material to the cell surface. These two 

regions flank a serotype-specific region, region 2, which appears to be unique to each capsular 

serotype and contains genes involved in the synthesis and polymerization of the capsular 

polysaccharide (Fig. 1.2).18,19  

 

 

Figure 1.2 | Schematic presentation of the cap b locus. bex genes are located in region 1 of the cap locus, 
downstream from insertion element IS1016. Region 2 possesses capsule-specific genes and region 3 is 
responsible for post polymerization. (adapted from19) 

 

 

 Most Hib isolates usually possess a partial duplication of a DNA fragment. This 

duplication includes two copies of regions 2 and 3, one copy of region 1 and a truncated copy of 

region 1 with a deletion between the insertion element IS1016 and bexA sequences.19  However, these 

isolates may undergo a recombination event that leads to the loss of the complete copy. The truncated 

copy would remain, with a loss of part of the coding sequence located downstream of the start of 

functional bexA gene, which is essential for the exportation of the capsular polysaccharide to the cell 

surface. This results in a capsule-deficient mutant, referred to as b- mutant, or Hib-minus.19 Falla and 

colleagues have developed a Polymerase Chain Reaction (PCR) capsular serotyping method that has 

been used as a standard protocol for typing H. influenzae.20 This method distinguishes NTHi isolates 

from encapsulated ones, by amplification of bexA gene, which is exclusively present in encapsulated 

isolates. The authors were able to obtain an amplification product of 343 base-pairs (bp), confirming 

the presence of this gene in encapsulated isolates. In addition, the authors further designed type-

specific primers to all six capsular serotypes enabling a differentiation of each capsular serotype.

  

 

  1.1.3.2 Multilocus Sequence Typing 
 
  H. influenzae genetic diversity studies have been conducted since the 1980’s. Musser 

and colleagues21 showed that encapsulated isolates tended to be phylogenetically related in a limited 
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number of clusters according to each serotype, which suggested that isolates belonging to a certain 

serotype show limited genetic diversity. The authors hypothesised that since H. influenzae is a 

naturally competent microorganism, the capsule may serve as a barrier for the uptake of extracellular 

DNA, which probably contributes to the clonal structure of encapsulated isolates. In fact, genetic 

diversity in NTHi isolates is mostly due to horizontal genetic exchange.12  

  NTHi isolates have been shown to be electrophoretically distant from serotype b and 

even Hib-minus isolates, presenting a very heterogeneous population, unlike encapsulated population. 

Considering NTHi heterogeneous population structure, Chiara and colleagues15 were able to organize 

NTHi population into six different clades (I-VI) according to the presence/absence of six virulence 

factors, supporting a capacity of clonal evolution in the NTHi population.  

  Initial studies were mostly conducted by Multilocus Enzyme Electrophoresis (MLEE), 

with a main focus on the electrophoretic mobility patterns of major OMPs. However, despite of the 

elucidations provided by MLEE regarding the clonal structure of the encapsulated population and 

great diversity of NTHi isolates, an alternative method – Multilocus Sequence Typing (MLST) – was 

developed as a standard for studies of genetic diversity in H. influenzae species. 

  MLST aimed to address two major issues related to epidemiological surveillance: first, 

to understand if the isolates collected from a certain outbreak were equal, or different from the one that 

started the outbreak. Second, to know if a possible correlation between isolates causing a disease in a 

specific geographic area and worldwide collected isolates could be established.22 Therefore, a focus 

was turned into identifying alleles in the nucleotide sequences of housekeeping genes. Considering 

that MLST provided analysis of nucleotide sequences instead of enzymatic electrophoretic patterns, it 

enabled the identification of more genetic variations, than MLEE. Furthermore, this technique 

permitted comparisons of sequences data between laboratories, due to the existence of worldwide 

databases.23 MLST analyses internal fragments of 450–500 bp from seven selected housekeeping 

genes. Each gene has its sequence assigned to an allele number and the alleles at the seven loci 

provide an allelic profile, which in turn defines the Sequence Type (ST) for each isolate. Since the 

accumulation of nucleotidic changes in housekeeping genes is considered a slow process, the allelic 

profile of a certain bacterial isolate is stable enough in time, allowing this method to be regarded as 

ideal for epidemiologic studies.22 The STs are then displayed in a dendrogram that enables to establish 

a correlation between identical, or highly similar, allelic profiles of isolates. Thus, a phylogenetic 

relation may be inferred.24  

  In the specific case of H. influenzae, Meats and colleagues23 selected Adenylate 

Kinase (adK), ATP Synthase F1 Subunit Gamma (atpG), Fumarate Reductase Iron-Sulfur protein 

(frdB), Fuculokinase (fucK), Malate Dehydrogenase (mdh), Glucose-6-Phosphate Isomerise (pgi) and 

RecA protein (recA) genes that were separated in the genome by a minimum of 120 kb, with the 

exception of recA and fucK (only separated by 22 kb). The sequences for each allele are uploaded to 
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Haemophilus influenzae MLST Database (https://pubmlst.org/hinfluenzae/), where a number is 

assigned to each allele and an ST to each isolate profile.23  

   

 

 

1.2. Haemophilus influenzae infections 
 

H. influenzae is a human-restricted commensal microorganism found in the nasopharynx of 

the respiratory tract, which makes it an ongoing source of potential infections in the upper and lower 

respiratory tract, as it is the case of OM, COPD, pneumonia, cystic fibrosis and bronchitis, in addition 

to invasive diseases.25 

 

 

1.2.1. Invasive disease 
 

In 2018, the European Commission26 updated the definition of invasive disease caused by H. 

influenzae as the isolation of this bacterium, or its nucleic acids from a clinical sample of a biological 

fluid considered sterile, such as blood, or cerebrospinal fluid, for instance. In Europe, the Surveillance 

Report of the European Centre for Disease Prevention and Control (ECDC) showed that the 

distribution of invasive H. influenzae disease tends to follow a seasonal pattern and the highest number 

of reported cases seems to occur during winter months, with a great decrease in August. From this 

month on, the number of cases increases until the end of the year.25,27  

 

 

 1.2.2. Non-invasive disease 
 

  1.2.2.1. Chronic Obstructive Pulmonary Disease  

   

  World Health Organization (WHO) has defined COPD as a disease that can be 

characterized by an airflow limitation, which is usually progressive and associated with alveolar or 

airway abnormalities of the lungs to certain noxious gases and particles. Patients with this disease 

usually present a chronic inflammation of the airways and parenchymal destruction.28 Inflammation, 

pathological changes in the peripheral airways and lesions of the lungs are known to be induced by 

cigarette smoke, in addition to inhaled toxicants and possible occupational exposures to dust and 

smoke.28,29 Chronic inflammation of bronchi and bronchioles leads to the development of emphysema 
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and alteration of the airways and vasculature. Airway obstruction and tissue destruction ultimately 

reduce the capacity of lungs for gas exchange.30 

  COPD is currently the fourth leading cause of worldwide death and it is estimated to 

rank as third in 2020.28 According to WHO, there was a prevalence of 251 million worldwide cases of 

COPD in 2016 and 3.17 million deaths were caused by this disease in 2015.31 Additionally, this 

organization stated that despite of COPD being previously more common in men than women, due to 

increased tobacco smoking among women (in high-income countries) and a higher risk of exposure to 

indoor pollution (in low-income countries), this disease now equally affects both genders.32 

  Exacerbations are changes in the baseline dyspnea, sputum and/or cough of the patient 

that goes beyond the usual variability.33 Interestingly, it is estimated that approximately 50% of all 

COPD exacerbations are actually caused by bacterial infections, being NTHi, along with 

Streptococcus pneumoniae and Moraxella catarrhalis, the most frequent aetiological agents.34,35 NTHi 

may be present in both stable and exacerbated states and it has been shown that patients colonised with 

this bacterium in the stable state tend to present more symptoms and sputum purulence during an 

exacerbation than non-colonised patients. Additionally, these patients present more cough, may take a 

longer period of time to recover from a peak flow at an exacerbation and present a higher exacerbation 

frequency.36 Furthermore, a patient can be colonised by more than one isolate of NTHi and acquisition 

of a new isolate is related to occurrence of an exacerbation. Sethi and colleagues37  have demonstrated 

that, in the majority of cases, after an exacerbation related to NTHi, serum antibodies are produced 

specifically to target that newly acquired isolate. However, this immunological response is only 

efficient against homologous isolates, and has no effect in newly acquired heterologous isolates. The 

authors postulate that these results may elucidate a mechanism that explains recurrent exacerbations, 

in COPD patients, in the presence of H. influenzae.  

  Given the significant role of bacteria in exacerbations, most of the patients are treated 

with antibiotics. However, since clinical features do not distinguish between bacterial and non-

bacterial exacerbations, the benefits of the treatment would not be as successful in non-bacterial 

exacerbations.38 In Portugal, empirical treatment recommended is amoxicillin, with or without 

clavulanic acid, macrolides, or doxycycline. However, it is recommended that antibiotics against 

COPD should only be taken by a patient previously confirmed to have bacterial exacerbations and not 

by a patient in a stable-state.39 

 

  1.2.2.2. Otitis Media  

   

  Otitis Media (OM) are inflammatory and infectious conditions that affect the middle 

ear. Infection occurs when bacteria migrate, through the Eustachian tube, from the nasopharynx to the 

middle ear, which is an event usually triggered by a viral infection.40  
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   OM may be manifested either by acute, or chronic episodes. Three of its most 

common conditions are Acute Otitis Media (AOM), Otitis Media with Effusion (OME) and Chronic 

Suppurative Otitis Media (CSOM). AOM may be caused by either viruses or bacteria and common 

symptoms include otalgia and fever.41 OME, on the other hand,  is a chronic inflammation.41 Common 

symptoms are glue ear fluid (presence of fluid in the middle ear space behind the eardrum) with 

absence of acute signs, and hearing loss is a possible consequence.42 CSOM is a chronic inflammation 

characterized by suppurative middle ear infection established for a long period of time and with 

perforation in the tympanic membrane, in most of the cases.41   

  In 2012, Monasta and colleagues43 conducted a review with data from 1980 to 2008 

with relevant worldwide information regarding AOM and CSOM. From the information they gathered, 

the authors observed that the global AOM incidence rate is estimated as 709 million cases per year, 

with 51% of the cases being registered in children under the age of five. In Central Europe, 40% of the 

cases occurred in children with ages ranging from less than one to five years old. CSOM, on the other 

hand, registered 31 million cases each year, with 22.6% of these cases occurring in children under the 

age of five years old. As for mortality rates, the authors estimated that approximately 21,000 people 

die, each year, due to complications related with OM. The authors stated that, although the mortality 

rates associated with OM are relatively low, when considering the overall combination of AOM and 

CSOM, plus respective sequels, the numbers should be considered relevant, more specifically in the 

first five years of life.43  

 The most common treatment against AOM, in Portugal, is antibiotic administration. 

Amoxicillin, or amoxicillin-clavulanate are the elected choices for treatment of OM infections. 

Second, or third, generation cephalosporins may be an alternative in the case of ineffectiveness of the 

first-line antibiotic, or for penicillin allergic children.44 

  A 10-valent pneumococcal nontypeable Haemophilus influenzae protein-D conjugate 

vaccine – PHiD-CV (SynflorixTM) – was developed against H. influenzae and 10 serotypes of S. 

pneumoniae.45 Using protein D as carrier relates to it being a surface protein mostly conserved in both 

encapsulated and NTHi isolates, serving as antigen.45,46 Thus, this vaccine contains 8 serotypes of S. 

pneumoniae  individually conjugated to a non-lipidated recombinant form of protein D, one serotype 

conjugated with tetanus toxoid and the remaining with diphetheria toxoid. A protective effect of 

protein D as carrier was demonstrated in a predecessor study of an 11-valent vaccine that showed a 

reduction of 57.6% and 35.3% of AOM episodes caused by S. pneumoniae and NTHi, respectively. 

The effectiveness of the 10-valent vaccine was then expected to be similar to that of the 11-valent 

vaccine.45,46 
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1.3. Epidemiology 
 
 Due to the severity of invasive diseases, most epidemiologic studies available in literature are 

focused on these. Limited information is available regarding non-invasive diseases caused by H. 

influenzae. Therefore, the surveillance data here presented are related to invasive disease reports.   

Conjugated Hib vaccine induces bactericidal antibodies to respond against Polyribosylribitol 

Phosphate (PRP), a capsular polysaccharide, regarded as a major virulence factor.47  

In the pre-vaccine era, serotype b was one of the major causes of meningitis in children, 

particularly under five years old.48 In the United Kingdom (UK), a survey conducted in this period49 

revealed that from all H. influenzae reported cases, 82% were caused by Hib, 88% were registered in 

children under five years old, and meningitis was the most common infection. In the United States of 

America (USA), 3–6% of infected children would die and in 20–30% of survivors, permanent mental 

retardation, or mild hearing loss were common sequels.47  

Hib vaccines were first available in the European Union and European Economic Area 

(EU/EEA) in 1989.48 WHO reported that Hib vaccine is currently used as part of the routine 

immunization programme in 192 countries,50 including all EU/EEA member states.25  

In the post-vaccine era, although a decrease of infections caused by Hib was observed, 

invasive disease caused by NTHi increased. Among encapsulated isolates, a major incidence has been 

reported for serotype f, in Europe.25  

An epidemiologic study comprising the years of 2007 and 2014 in 12 European countries51 

showed that, overall, 78% of invasive cases were caused by NTHi and low notification rates for Hib 

supported the efficacy of Hib vaccine. The authors highlighted that these trends may be a result of 

improved surveillance programs, physicians awareness and even better serotyping techniques that 

were not available in the pre-vaccine era. 

In 2015, ECDC reported 3,162 cases of invasive disease, caused by H. influenzae, confirmed 

in 30 European countries (Fig.1.3). Invasive cases were reported, mostly in children under the age of 

one and in elderly people over 65 years old.25 It was further reported that 82% of all cases were caused 

by NTHi and that these were the most common cause of infection in all ages. Regarding encapsulated 

isolates, Hif, Hib and Hie accounted for 9%, 4% and 3% of all cases, respectively and the remaining 

cases were caused by Hia, Hic and Hid. Hie and Hif serotypes seemed to mostly affect people over 45 

years of age. 

Despite of worldwide surveillance data, comparisons of H. influenzae disease incidence 

between countries and overtime trends of infection should be carefully evaluated, since these are 

dependent on policies and surveillance systems of each country, along with reporting processes and 

case detection methods.48  

Since Hib vaccines specifically target the polysaccharide capsule of serotype b, these are 

ineffective against NTHi isolates and even against the remaining encapsulated serotypes. Several 
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studies testing protein-D and protein-E have been conducted, but the development of an effective 

vaccine against NTHi is still an ongoing subject of research.52,53  

 

 

In Portugal, epidemiological data covers three distinct periods: 1989–2001,54 2002–201055 and 

2010–2014,56 with the last period being specific to paediatric cases. All these studies were related to 

H. influenzae invasive disease and the results were in agreement with studies described above.25,51  

Hib vaccine was available in Portugal, in 1994, being then recommended for children under 

five years old. It was implemented as part of the National Vaccination Programme in the year 2000. 

The first study period, 1989–2001, includes the pre-vaccine era. During this period, a majority of Hib 

isolates was characterized (60.5%) followed by NTHi (38.6%) and the first case of a Hif isolate was 

reported. Along with a decrease in the number of Hib infections, a decrease in multidrug resistance 

was also reported, which may be explained due to most of the resistant isolates being, then, of serotype 

b.54  

Between the years 2002 and 201055 prevalence of Hib invasive disease was much lower 

(13.2%), NTHi isolates accounted for the majority of cases (77.1%) and non-b serotypes appeared to 

be emerging, with reports of serotypes a (2.1%) and f (6.9%). Serotype d is a rare serotype that was 

characterized in Portugal for the first time in 2009 and since then, no other serotype d isolate was 

found among Portuguese disease.57 

Figure 1.3 | Distribution of invasive H. influenzae disease cases per 100,000 population, in each EU/EEA 
country, in 2015. (adapted from25) 
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The paediatric study in the period 2010–201456 reported NTHi isolates as being responsible 

for the majority of the cases (65.7%). Hib was characterized in nine children (23.7%), six of which 

were considered vaccine failures.  

 

 

 

1.4. Antibiotics in Haemophilus influenzae 
 
 Antibiotics are biological, or synthetical, substances that either possess the ability to inhibit 

bacterial growth, or kill bacteria, which characterizes them as bacteriostatic, or bactericidal, 

respectively.58 Nowadays, it is recognized that infectious diseases are still a leading cause of 

worldwide death and antimicrobial resistance is a topic of great concern. Antibiotics with a similar 

structure present identical patterns of toxicity, effectiveness and potential side effects.58  

β-lactams usually possess a highly reactive ring – as a common structure – and include 

penicillins (e.g.: ampicillin, amoxicillin), cephalosporins (e.g.: cefepime, cefotaxime, cefuroxime) and 

carbapenems (e.g.: meropenem).58  

These antibiotics usually target PBPs, which are fundamental for synthesis of the bacterial cell 

wall, as they cross link peptide units in peptidoglycan production. Covalent bonding with antibiotic 

disrupts the process by weakening peptidoglycan and the cell eventually bursts, due to osmotic 

pressure.58-60 

 Macrolides (e.g.: azithromycin) and tetracyclines bind to bacterial 50S and 30S ribosome 

subunit, respectively, which stops addition of amino-acids to polypeptide chains, ultimately resulting 

in inhibition of protein synthesis. Quinolones (e.g.: ciprofloxacin) interfere with DNA replication, by 

inhibiting the action of DNA gyrase, an enzyme that introduces negative supercoils in DNA during 

replication. Other agents, such as chloramphenicol, rifampicin and trimethoprim-sulfamethoxazole, 

may act as inhibitors of the 50S ribosome subunit, DNA replication and folic acid metabolism, 

respectively.58,59,61  

 For treatment of H. influenzae infections, β-lactams are commonly used, since the outer 

bacterial membrane presents little resistance to penetration of this class of antibiotics.60 However, 

resistance mechanisms against them have been reported and thoroughly studied over the last decades. 

The most common bacterial resistance mechanisms include efflux pumps, modification of the 

target molecule and inactivation of the antibiotic through enzymatic action.59  
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1.4.1. β-lactams resistance mechanisms in H. influenzae 
 

In H. influenzae, both enzymatic and non-enzymatic mechanisms have been reported and 

production of β-lactamase constitutes the most common resistance mechanism against β-lactams.62  

 

1.4.1.1. β-Lactamase-Positive Ampicillin-Resistant (BLPAR) isolates 

 

  In 1972, the first report of ampicillin resistance in H. influenzae was registered and 

was related to the production of TEM-1 β-lactamase, which is encoded by blaTEM-1 gene. H. influenzae 

rarely produces a second β-lactamase, ROB-1, encoded by the blaROB gene.62  β-lactamases hydrolyse 

the ester-amide bond in β-lactams, which interferes with the structure of the antibiotic and, ultimately, 

its effectiveness (Fig. 1.4).59,63 

 

 

 

 

 

 

 

 

 β-lactamases may be divided into four classes, from A to D, according to similarities 

in their structure. Classes A, C and D possess a serine residue in the active site, whereas class B are 

metalloproteins that require zinc as a cofactor.64 TEM-1 and ROB-1 are class A β-lactamases.62 

  As a solution for β-lactamase producing H. influenzae isolates, alternative treatments 

that combine amoxicillin and clavulanic acid have been administered to patients.65,66 In the presence of 

clavulanic acid, β-lactamase irreversibly binds to its β-lactam ring, which inactivates the enzyme and 

prevents it from binding to β-lactams.67 

 

1.4.1.2. β-Lactamase-Negative Ampicillin-Resistant (BLNAR) isolates 

  

 Ampicillin-resistant isolates that do not produce β-lactamase have been reported and 

designated as BLNAR. Usually, these isolates possess altered PBPs with reduced affinity for β-

lactams, due to amino-acid substitutions in this protein.68 In addition to ampicillin, BLNAR isolates 

also present reduced susceptibility for other β-lactams, such as cephalosporins.62 In opposite to β-

Figure 1.4 | Penicillin inactivation through β-lactamase production. (adapted from63) 
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lactamase producing isolates, clavulanic acid has no effect in BLNAR isolates, due to lack of the 

target enzyme.69  

 H. influenzae possesses eight PBPs, PBP1 – PBP8.62 Mutations in ftsI gene, which 

encodes PBP3, have been reported and are useful to confirm phenotypically identified BLNAR 

isolates. More specifically, amino-acid substitutions close to conserved KTG (K512TG) and SSN 

(S379SN) motifs in the transpeptidase domain of PBP3 are believed to be mostly responsible for 

antibiotic resistance.68 However, there is still not a clear definition for BLNAR isolates, since some 

authors define them based on ampicillin-resistance breakpoint, while others consider ampicillin-

intermediate isolates.62  These isolates can only be accurately identified by sequencing the ftsI gene.68 

 

  1.4.1.3. β-Lactamase-Positive Amoxicillin-Clavulanate-Resistant (BLPACR) isolates 

  

 BLPACR isolates possess both the production of β-lactamase and modified PBPs, 

which means that these are resistant to β-lactams, such as ampicillin and amoxicillin-clavulanate as 

well. Most authors define these isolates considering the amoxicillin-clavulanate breakpoint, but 

mutations identified in the ftsI gene ultimately serve as confirmation.62,69,68 BLPACR isolates have 

higher amoxicillin resistance levels than BLNAR isolates, due to the presence of β-lactamases.69  

 

 

 

1.5. Virulence factors 
 
 Identifying and understanding how virulence factors influence pathogenic, or commensal 

behaviour is very important and this is, nowadays, a main focus in NTHi research.12 H. influenzae has 

developed several mechanisms to resist immune responses and to adhere, persist and, consequently, 

invade host cells.70,71   

 

 

 1.5.1. Adhesion 

  

The very first step in the NTHi pathogenesis is adherence of bacteria to the mucosa, after 

initial interaction.70,71    

To avoid complement system immune responses, encapsulated isolates usually rely on the 

presence of a capsule for protection against deposition and/or binding of host complement factors, or 

immunoglobulins. NTHi isolates, however, have to develop alternative defence mechanisms against 

host immune responses.70 One of the most important is inactivation of Immunoglobulin A (IgA) which 
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is the most common immunoglobulin in nasal secretions. Both Hib and NTHi isolates may produce 

IgA protease, which cleaves IgA1 antibodies into Fc and Fab fragments.72  

LOS are lipopolysaccharides, with shorter saccharide chains, considered to be essential for 

interaction of bacteria with host cells.12 These structures vary among bacterial cells of the same isolate 

and also between different isolates, which naturally affects interaction and invasion of host cells. LOS 

are present in both Hib and NTHi isolates.71  

 For adherence to host mucosa, H. influenzae also counts on the expression of several adhesins, 

which are proteins that facilitate this action.73 Five important adhesins, HifA, HMW1, HMW2, 

Hia/Hsf and Hap, have been identified in encapsulated (Hib) and NTHi isolates.71 Piliated adhesins 

include PilA and HifA proteins. PilA was shown to be essential for NTHi adherence to epithelium and 

twitching motility, since experiments with pilA-mutant isolates demonstrate a significant reduced 

ability of isolates to properly accomplish these mechanisms.13 Kubiet and colleagues74 have also 

shown that for both Hib and NTHi isolates, absence of HifA pili significantly decreases the ability of 

isolates to adhere to mucin and that pre-treatment with antibodies that specifically targeted HifA has a 

similar effect.   

However, isolates that lack pili structures still have the ability to adhere to human epithelium, 

which suggests expression of non-piliated adhesins. For instance, non-piliated high molecular weight 

proteins, HMW1 and HMW2, are present in encapsulated non-type b and most NTHi isolates, in 

addition to Hia protein, which seems to be a substitute for HMW-deficient isolates.75-77  

 

  1.5.1.1. pilA 

   

  pilA is a highly conserved gene that is present in, approximately, 100% of NTHi 

isolates,13,78 (Table 1.1).  This gene is one of the four-member gene cluster pilABCD, expressing Type 

IV Pilin (Tfp). Bakaletz and colleagues13 have showed that expression of pilA is essential for pilus 

structures on the bacterial surface. pilA expression has been shown to be necessary for proper 

adherence, biofilm formation and epithelium colonization. Jurcisek and colleagues79 demonstrated that 

pilA mutants showed diminished capacity for in vitro adherence, which translated into loss of ability to 

colonize in vivo and decreased stability of biofilms in chinchilla middle ear. Tfp structures additionally 

play a significant role in competence, as these help the uptake of extracellular DNA through bacterial 

membranes.80 Pili structures have also been suggested to mediate interbacterial interaction, since pilA-

mutants present thinner and biomass decreased biofilms.80  
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  1.5.1.2. hifA 

   

  HifA, encoded by hifA gene, is a structural subunit of the pilus structure encoded by 

hifABCDE cluster. This protein mediates adherence to eukaryotic cells, by specifically binding to 

sialyl-lactosylceramide ganglioside receptor on epithelial cells. Expression of hifA is essential for 

adherence, since inactivation of this gene highly hampers the ability of H. influenzae to adhere to 

epithelial cells.81 Analysis of amino-acid sequences revealed conserved and variable regions, in which 

variable regions possibly result in different antigenic sites.82 Geluk and colleagues82 found that 

hifABCDE cluster is present in both Hib and NTHi isolates with 18% of NTHi isolates possessing 

hifABCDE cluster (Table 1.1). The authors additionally suggested that H. influenzae probably loses the 

ability to express fimbriae structures inside tissues, as a defence mechanism to avoid clearance. 

Although HifA plays a role in adherence to mucosa, other factors such as HMW proteins are also 

important for establishment of binding to epithelium.74,82  

 

  1.5.1.3. hmw1A and hmw2A 

   

  hmw1A and hmw2A genes encode HMW1 and HMW2 proteins, respectively. These 

genes present 80% similarity and are 71% identical.83 Despite of highly similar, HMW1 and HMW2 

proteins possess different binding specificities: while HMW1 is specific for sialylated glycoprotein 

receptor containing sialic acid, a recent study has shown a high affinity of HMW2 to 2-6 linked N-

acetylneuraminic acid, suggesting that this may be the receptor.84 Both proteins mediate attachment to 

Chang epithelial cells.76,85 van Schilfgaarde and colleagues86 conducted a study for comparison of 

adherence, hmw presence/absence and expression of HMW proteins in NTHi isolates. The authors 

found that isolates presenting both hmw genes and HMW proteins represented 72% of all isolates 

capable of adherence. These results highlighted a correlation between HMW and capacity for 

adherence. Other studies also corroborate the importance of expression of hmw genes for 

adherence.76,78 A study conducted by Ecevit and colleagues87 found, in NTHi isolates, percentages of 

51% and 23% for hmw1A and hmw2A, respectively, while others have found prevalence for both 

genes from 55 to 100% of isolates (Table 1.1).78,88  NTHi isolates that do not express HMW proteins 

are still able to adhere, since other adhesins, such as Hia and OMP P5, may serve as alternative 

adherence mechanisms.78  

 

  1.5.1.4. hia 

   

  Hia adhesin is encoded by hia gene and has been described for 32% to 55.6% of NTHi 

isolates (Table 1.1).87,89 Hia seems to act as a substitute for HMW1/HMW2 with adherence function 
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when these are absent, since hmw and hia genes are mutually excluded in both NTHi and non-type b 

encapsulated isolates.75,77 In fact, hia has been described to be present in over 80% of NTHi isolates 

lacking both HMW1 and HMW2 proteins.90 However, a receptor for Hia still remains unidentified.91 

In the chromosome, hia and hsf are located in the same region. Although these genes encode proteins 

with similar functions, hia is present in NTHi isolates, while hsf is the major non-pilus adhesin of Hib 

isolates. Non-type b encapsulated isolates also possess a gene homologous to hsf.75  

 

1.5.1.5. ompP5 

   

  OMP P5 is a β-barrel outer membrane protein. It is encoded by ompP5 gene and is a 

member of the OmpA protein family,92,93 which has been identified from 52% to 100% of NTHi 

isolates (Table 1.1).78,92 OMP P5 binds to mucin and surface-expressed Carcinoembryonic Antigen-

Related Cell Adhesion Molecule-1 (CEACAM1) receptor.93 Duim and colleagues analysed NTHi 

isolates from patients with chronic bronchitis and verified that, regarding ompP5, all isolates had 

conserved sequences, in addition to diverse regions located on the cell surface. These diverse regions 

resulted in OMPs with different molecular weights. The authors explain that this diversity may have 

resulted from selective pressure, which becomes an advantage of these isolates in persistence during a 

chronic infection.94 Similar results have been found by other authors when analysing isolates from 

patients with non-respiratory and respiratory diseases, as well as with exacerbations of chronic 

diseases (COPD isolates included).92 Vuong and colleagues described that 13% of isolates lacking 

hmw1A and hmw2A genes, had ompP5 gene and these were still capable of adherence. The authors 

stated that although these results were not statistically significant, these may elucidate the importance 

of OMP P5 in adherence.78  

 

 

1.5.2. Persistence and invasion 
  

 Ability of H. influenzae to adhere and persist on the mucosa is especially favoured in patients 

with underlying diseases of the upper and lower respiratory tract, in which mucociliary clearance is 

hampered.74 After adherence has been established, persistence on the mucosa is the following step. In 

order to persist, H. influenzae depends upon a constant supply of iron and heme, among additional 

nutrients from the surrounding environment. Uptake of nutrients not only promotes survival, but also 

bacterial replication. Furthermore, bacteria must develop further mechanisms to resist host immune 

system responses.70,71  

Most of iron in mammalian hosts is kept as heme components, inside ferritins, or bound to 

transferrins, meaning that its availability is much limited for invading microorganisms. Hib and NTHi 
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isolates count on Transferrin-Binding Proteins (Tbp), Tbp1 and Tbp2, for direct iron uptake from 

transferrins.95 For heme uptake, H. influenzae uses hemoglobulin and Hemoglobulin:Haptoglobolin 

binding Proteins (Hgp), encoded by hgp genes and Heme-Hemopexin (HxuC), the most important 

complexes for heme binding and transfer to cytoplasm.96 
 

 
Table 1.1 | Distribution of virulence genes among NTHi isolates. 

Gene Prevalence Reference 

pilA ~ 100 % Bakaletz et al., 200513  and Vuong et al., 201378 

hifA 

 

 

~ 18 % 

 

 

 

Geluk et al., 199882 

 

hmw 1A 51% 
55–100 % 

Ecevit et al., 200487 Vuong et al., 2013, 78 and Busher 

et al., 200488 hmw 2A 23% Ecevit et al., 200487 

   

 

hia 

 

 

32% ; 55.6% 

 

 

 

Ecevit et al., 200487 and Cardines et al., 200789 

 

 

ompP5 

 

52% ; 100 % 

 

Vuong et al., 201378 and Martí-Lliteras et al., 201192 

  

  

In addition to genetic diversity, H. influenzae has the ability to express phase variable 

virulence factors. Phase variation is an adaptation mechanism developed when bacteria are faced with 

changes in the surrounding environment, or must resist certain immune responses. It involves a 

variation of a structure and is usually associated with the number of nucleotides in a gene sequence.71 

This means that each isolate may independently express some genes and switch-off different ones, 

considering the surrounding environment. The result is hundreds of different H. influenzae virulence 

phenotypes in a single culture, which can be translated to different structures of LOS, or expression of 

fimbriae surface antigens. Ultimately, the phenotype that better fits the environment requirements is 

the one that persists. Therefore, there is a very high probability that phenotypes of the same isolate 

observed in vivo and in vitro may quite differ.12,91 Key targets of phase variation are structures 

important for virulence behaviour, such as HMW1 and HMW2 proteins, or OMP P5. Loss of fimbria 

structures, once inside tissues, may also be helpful for avoidance of clearance.73,82,94  
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 Hap protein was shown to be a major virulence factor for establishment of interaction between 

Hib, or NTHi isolates and host cells and as an adhesin, by binding to laminin, fibronectin and collagen 

IV, which are components present on the respiratory epithelium. Additionally, considering the 

opportunistic behaviour of H. influenzae, Hap is also important for interaction and consequent 

invasion of damaged epithelium.97 Naturally, it is expected that other factors besides Hap, such as 

proteins D and E, may also contribute to invasion of the epithelium.70,71 

 

 

 

1.6. Biofilms 
 
 Biofilms are assemblies of microorganisms enclosed in a self-produced Extracellular 

Polymeric Substance (EPS) matrix, adhered to a surface.98 Changing from a planktonic to a biofilm 

state enables a multicellular behaviour that favours bacterial survival in unfavourable conditions.99 

Cell signalling (e.g.: quorum sensing) is a fundamental mechanism for bacterial communication and, 

ultimately, biofilm production.100  

Biofilm production is a dynamic process divided in three main stages. The first is adhesion 

and involves attachment to a surface, plus formation of microcolonies. The second phase is maturation 

of biofilm, which involves an adaptation to conditions of the surrounding environment and the 

production of an EPS matrix. The final stage is biofilm dispersion that can be triggered by different 

factors, such as nutrient availability, or antibiotic action, among others (Fig.1.5).99 

Attachment may occur on any surface – whether biotic, or abiotic – such as host tissues, or 

medical devices. Biofilms that may be a source of infection for humans pose a major concern of public 

health, since the presence of biofilms in humans constitutes a major virulence behaviour, being mostly 

associated with chronic infections (e.g.: recurrent OM, CSOM, pneumonia, cystic fibrosis, 

endocarditis and osteomyelitis). Biofilms serve as a protection mechanism for bacteria and can be 

repeatedly produced.100,101 Bacteria commonly associated with biofilms include Escherichia coli, 

Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus epidermidis, Enterobacter cloacae 

and Klebsiella pneumoniae. Biofilms formed by these bacteria are related to several human infections 

of the urinary tract, respiratory tract and soft tissue, for instance. Most of these bacteria are associated 

with hospital-acquired infections.101 

Challenges related to biofilm production include spreading of bacteria to bloodstream, causing 

secondary infections, resistance to antibiotics in the presence of a mature biofilm and, ultimately, 

recurrence of infection.101,102 Furthermore, routine bacterial cultures are designed to detect planktonic 

bacteria, meaning that these methods are less sensitive in detecting bacteria inside a biofilm. This may 

lead to false negative cultures.103 
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As referred, bacteria in biofilms usually present increased resistance to drug treatment. 

Resistance may come from hampering the penetration of biofilm, or from inhibition mechanisms 

through the action of enzymes (e.g.: β-lactamases), for instance, that inactivate antibiotics and protect 

bacteria.101,102 Therefore, the conventional use of antibiotics may not be efficient in these cases and 

surgical interventions, or alternative therapies that directly target the EPS matrix, or inhibition of 

quorum sensing signalling molecules, for example, have to be considered.100 
 

 

 1.6.1. H. influenzae biofilms 

 

 Until recently, H. influenzae biofilms were a topic of controversy, as to whether isolates were 

able to produce an EPS matrix and its significance for virulent behaviour.12,104 However, studies have 

shown a capacity of H. influenzae to aggregate in biofilms, which affect bacterial virulence.105  

 Considering that attachment is the first step towards biofilm production, various studies have 

focused on inhibiting bacterial adhesion, thus preventing biofilm production.99 

Several virulence factors expressed by H. influenzae were suggested to contribute to adhesion 

and to be constituents of the EPS matrix, including LOS, PilA, OMPs, HMW1 and HMW2 proteins. 

Jurcisek and Bakaletz106 have described the presence of dsDNA, LOS, OMPs and type IV pilin 

structures in the EPS matrix of NTHi biofilm. They hypothesised that pilin proteins may have a 

fundamental role in the structural stabilization of the biofilm, as interbacterial bridges. The fact that a 

PilA-mutant isolate could not form a biofilm as robust as isolates expressing this protein and that it 

presented a decreased adherence to the middle ear of a chinchilla host, further supported this 

statement. Similar to what has been reported for other bacterial biofilms,99 these authors106 described a 

compartmentalization of the EPS matrix constituents with dsDNA being mostly located in the outer 

edges of the biofilm. This possibly served for stabilization of the structure. A more recent study further 

Figure 1.5 | Schematic presentation of the three main stages of biofilm production: adhesion, maturation 
and dispersal (adapted from99). 
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supported such results, since antisera treatment targeting PilA protein translated into a significant 

inhibition of biofilm production by NTHi isolates.107  

Furthermore, HMW1 and HMW2 are thought to be major constituents of H. influenzae 

biofilms, as well, since antisera specific for these proteins has been shown to cover most of NTHi 

biofilm surface, suggesting a wide distribution of the adhesins on the EPS matrix.108   

Biofilms are known to provide protection against antibiotics, as previously referred. In the 

specific case of H. influenzae, in vitro studies have demonstrated a diminished effect of antibiotics 

against bacteria inside a biofilm. In fact, for the same bacterial isolate, the required antibiotic 

concentration to inhibit bacterial growth in a biofilm may be 100 folds higher than the dose required to 

inhibit the planktonic form.109 These results demonstrate that, in a biofilm associated infection, a 

patient may receive an empirical treatment that may, ultimately, have no effect, leading to bacterial 

survival and persistence of infection. The fact that routine culture methods may not detect bacteria 

inside biofilms and that there are no standard methods of antibiotic susceptibility tests for bacteria in 

biofilms, further hampers a proper treatment of infection.102,103 Moreover, it has been suggested that 

sub-inhibitory concentrations of β-lactams – the antibiotics most commonly used to treat H. influenzae 

infections – may actually induce biofilm production of NTHi isolates.110  

 An additional challenge related to biofilm production is the development of polymicrobial 

biofilms in infected tissues, resulting from interplay of different bacterial species. H. influenzae, for 

example, has been shown to form polymicrobial biofilms with Moraxella catarrhalis and 

Streptococcus pneumoniae.111,112    

When compared to biofilms formed by H. influenzae alone, in vitro and in vivo polymicrobial 

biofilms with Moraxella catarrhalis protected susceptible H. influenzae isolates against ampicillin and 

trimethoprim-sulfamethoxazole action, allowing an increase of the number of viable bacteria inside 

the biofilm. Furthermore, it was demonstrated that quorum sensing was fundamental for polymicrobial 

biofilm production, as previously described, since a quorum signalling-deficient H. influenzae isolate 

hampered biofilm production and bacterial persistence within it.111 Polymicrobial biofilm of H. 

influenzae and Streptococcus pneumoniae may lead to several phenotypes that enhance a capacity for 

both adaptability and persistence. For instance, different combinations of gene expression, that result 

in variations of surface proteins, are mechanisms that might be affected by the interaction between 

these two bacterial species and may help in the adhesion/cohesion of biofilms.112  
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 1.6.2. H. influenzae biofilms in patients with COPD and OM infections 

 

 Although several studies have demonstrated the capacity of H. influenzae isolates from 

patients with both COPD and OM to form biofilms, only a limited number of these have established 

comparisons between biofilm production and underlying diseases and, even so, the results of these 

studies may be contradictory.105,113-119 

Puig and colleagues105,114 have shown that isolates recovered from patients with OM tend to 

form denser biofilms than isolates collected from patients with lower respiratory tract diseases, such as 

COPD or Community Acquired Pneumonia (CAP). Additionally, the authors showed that biofilms 

formed by isolates from healthy carriers presented similar biofilm production to that of patients with 

lower respiratory tract diseases. One of these studies,114 further demonstrated that OM and invasive 

NTHi isolates possessed a higher and faster capacity for adherence than COPD and CAP isolates. 

Together, these studies could establish a correlation between disease and capacity for biofilm 

production.  

However, a different study conducted by Obaid and colleagues,119 which included isolates 

from patients with different clinical backgrounds (OM, conjunctivitis, lower respiratory tract diseases, 

cystic fibrosis and oropharyngeal normal flora) found no relation between clinical source and biofilm 

production. These results were in agreement with findings from Murphy and Kirkham,113 who 

compared OM and COPD isolates and also found that biofilm production was not related with the 

clinical group of isolates. 

 

 

 

1.7. Aim of the work 
 

H. influenzae is a commensal human-restricted microorganism of the nasopharynx. Due to its 

opportunistic behaviour, it is frequently associated with infections of the upper and lower respiratory 

tract. 

This work aimed to characterize non-invasive NTHi isolates recovered from patients with 

COPD and OM. Antibiotic susceptibility, genetic diversity and relatedness and assessment of the 

presence/absence of six virulence genes were performed with the final goal of establishing a 

relationship between these factors and the respective disease. The ability to assemble biofilms was 

assessed in order to explore a possible correlation between the studied diseases and the presence of 

virulence genes (pilA and hmw1A/2A) known to influence biofilm production.  
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2. Methods 
 

 

2.1. Clinical isolates 
 

 Isolates used in this Master Thesis belong to the collection of the “Laboratório Nacional de 

Referência de Infeções Respiratórias” in the “Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA)”, 

Lisboa and were collected between the years of 2013 and 2018. 

 A total of 93 isolates were included in the study. These were collected from patients with two 

non-invasive diseases: COPD and OM. Bacterial isolates were recovered from 10 Portuguese 

hospitals. Overall, 64.5% (60/93) isolates were from men and 35.4% (33/93) from women. Ages for 

COPD patients ranged from 50 to 89 years old and, for OM patients, from four months to 21 years old 

(Table 2.1). 

The thirty-eight H. influenzae isolates recovered from patients with COPD and the 55 isolates 

collected from patients with OM were analysed regarding capsular typing, ability to produce β-

lactamase, susceptibility to 12 antibiotics, genetic diversity, presence/absence of six virulence genes 

and ability for producing biofilms.  

Data regarding isolation date, gender of the respective patient, β-lactamase production, 

presence/absence of a capsule, presence/absence of the six virulence factors and biofilm production 

after 24h and 48h is detailed for each isolate on Tables 5.1 and 5.2 of the Appendix. 
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Table 2.1 | Sample characterization. 

Disease 

 

Epidemiological data 

COPD 

(n=38) 

n (%) 

OM 

(n=55) 

n (%) 

Total 

(n=93) 

n (%) 

Hospital 

North 19 (50.0%) 22 (40.0%) 41 (44.1%) 

Centre 17 (44.7%) 3 (5.5%) 20 (21.5%) 

Lisboa 2 (5.3%) 4 (7.3%) 6 (6.5%) 

Alentejo 0 25 (45.5%) 25 (26.9%) 

Açores and Madeira 

islands 
0 1 (1.8%) 1 (1.1%) 

Isolation Date 

2013 5 (13.2%) 14 (25.5%) 19 (20.4%) 

2014 3 (7.9%) 18 (32.7%) 21 (22.6%) 

2015 11 (28.9%) 5 (9.1%) 16 (17.2%) 

2016 7 (18.4%) 0 7 (7.5%) 

2017 11 (28.9%) 16 (29.1%) 27 (29.0%) 

2018 1 (2.6%) 2 (3.6%) 3 (3.2%) 

Age in Years 

<1 0 15 (27.3%) 15 (16.1%) 

1 - 4 0 36 (65.5%) 36 (38.7%) 

5 - 9 0 1 (1.8%) 1 (1.1%) 

10 - 25 0 2 (3.6%) 2 (2.2%) 

50 - 59 5 (13.2%) 0 5 (5.4%) 

60 - 69 8 (21.1%) 0 8 (8.6%) 

70 - 80 13 (34.2%) 0 13 (14.0%) 

≥80 12 (31.6%) 0 12 (12.9%) 

Gender 
Male 32 (84.2%) 28 (50.9%) 60 (64.5%) 

Female 6 (15.8%) 27 (49.1%) 33 (35.4%) 
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2.2. Bacterial growth and conservation 
 

Bacteria were grown on chocolate agar plates supplemented with polivitex (bioMérieux) and 

then incubated, for 18–24h, at 35ºC in a 5% CO2 atmosphere. 

 

H. influenzae isolates were stored in Tryptic Soy Broth (TSB) with 20 % glycerol at -80 ºC. 

 

 

2.3. DNA extraction 
 

 DNA extraction was performed by a boiling procedure: six to eight colonies were suspended 

in 100 µL of nuclease free ultra-pure water. The sample was boiled for 10 minutes (VWRTM – VMS-

C7), in order to disrupt the membranes of bacterial cells and was then centrifuged for 3 minutes at 

13000 rpm (eppendorf® – Centrifuge 5418). The supernatant, which contained the DNA, was stored at 

-20ºC.   

 

 

2.4. Antimicrobial susceptibility testing 

   

 

 2.4.1. β-lactamase production 
  

β-lactamase production was determined by a chromogenic cephalosporin assay: five to seven 

colonies of bacteria were suspended in 30 µL of nitrocefin (OXOIDTM – Nitrocefin Solution, 1mg). If a 

change in colour, from yellow to red, was observed, it was an indicative of a positive result 

(production of β-lactamase).120  

 

 

 2.4.2. Minimum Inhibitory Concentration  
 

Minimum Inhibitory Concentration (MIC) was determined for 12 antibiotics: Ampicillin 

(Am), Amoxicillin-clavulanate (Aug), Cefuroxime (Crm), Cefotaxime (Cft), Cefepime (Cpe), 

Meropenem (Mer), Azithromycin (Azi), Tetracycline (Te), Ciprofloxacin (Cp), Chloramphenicol (C), 

Rifampicin (Rif), and Trimethoprim/Sulfamethoxazole (T/S). 
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Commercial microdilution panels (Beckman Coulter – MICroSTREP Plus) were used to 

determine MICs, according to supplier’s instructions. 

In brief, 4 to 5 colonies of bacteria were suspended in 3 mL of sterile water (Beckman 

Coulter). Turbidity was compared to that of 0.5 of the McFarland barium sulphate standard 

(bioMérieux). Then, 100 µL of the suspension were added to 25 mL of Haemophilus Test Medium 

(Beckman Coulter). Suspension (200 µL) was poured into the 96-well microplate with the different 

antibiotic concentrations (Table 2.2) and was incubated at 35 ºC for 18 to 24 h in a non-CO2 incubator. 

MICs for each isolate were registered on a panel worksheet, as shown in Fig. 5.1 of the Appendix. 

 
Table 2.2 | Antibiotic concentrations on the microdilution panels. 

Antibiotic Concentrations of Antibiotic (mg/L) 

Am 0.03 0.06 0.12 0.25 0.5 1 2 4 8 

Cft 0.03 0.06 0.12 0.25 0.5 1 2 4 8 

Crm 0.25 0.5 1 2 4 8     

Te 1 2 4           

Rif 0.5 1 2           

Mer 0.06 0.12 0.25 0.5 1 2 4   

Aug 0.25/0.12 0.5/0.25 1/0.5 2/1 4/2       

C 1 2 4 8         

T/S 0.25/4.75 0.5/9.5 1/19 2/38         

Cpe 0.12 0.25 0.5 1 2       

Cp 0.06 0.12 0.25 0.5 1 2     

Azi 0.25 0.5 1 2 4       

 

 

2.5. Capsular typing 
 
 

 2.5.1. Amplification 
 
 Capsular typing, by PCR, was previously described by Falla and colleagues.20  

The reaction mix, with a final volume of 25 µL, was composed as follow: 15.85 µL of pure bi-

distilled water, 2.5 µL of 10x buffer (Qiagen), 2.5 µL of 10 mM dNTPs (dATP, dTTP, dCTP and 

dGTP, Roche, 2.5 µM each), 0.4 µL of each of the primers (forward and reverse) (Thermo Fisher 

Scientific, 10 µM), 1.75 µL of 25 mM MgCl2 (Qiagen), 0.1 µL of Taq DNA polymerase (Qiagen, 5 

U/µL) and 1.5 µL of DNA. 
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A positive and a negative control were included in the PCR.  

Sequences of the primers and the expected length of the amplified product are presented on 

Table 5.3 of the Appendix. PCR was conducted in a thermocycler (Applied Biosystems – GeneAmp® 

PCR System 9700) and the protocol is schematically presented on Table 2.3. 
 

Table 2.3 | Capsular typing PCR protocol. 

 
Temperature Time Cycles 

Denaturation 940C 5 min 1 

Denaturation 940C 1 min 
 

Annealing 550C 1 min 30 

Extension 72oC 1 min   

Final extension 72oC 10 min 1 

Conservation 4oC  ∞ 
 

 

  

2.5.2. Analysis of fragments by gel electrophoresis 
 
 Analysis of the results was conducted by observing the presence/absence of bands of the 

amplified gene fragment in a 2% (w/v) agarose (Lonza - SeaKem®LE Agarose) gel in Tris-Borate-

EDTA 1x (TBE 1x). The gel contained 5% of Sybr Safe (Roche), in order for the bands to be visible in 

a UV-transilluminator (BioRad – Gel DocTM XR). Electrophoresis was conducted for 30 minutes at 100 

V.  

Molecular weight marker VIII (Roche Diagnostics GmbH), which presents standard bands 

between 19 and 1114 pb, was used for band weight comparison. 

 Before loading the samples in the gel, 7 µL of each sample were added to 3 µL of loading 

buffer (0.25 % bromophenol blue, 0.25% cyanol xilene and 50% glycerol, in water).  

 

 If an isolate was encapsulated, a band with, approximately, 343 bp should be visible.  

In order to characterize the capsule type, a second PCR should be performed. In this case, 

specific primers (Eurogentec Gold, 10 µM) for each capsular type were used. PCR serotyping protocol 

was the same as described in 2.5.1. section. Sequences of the primers and the expected length for the 

amplified products are presented on Table 5.3 of the Appendix. 
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2.6. Multilocus Sequence Typing  

 
 

2.6.1. Amplification 
 

MLST protocol was previously described by Meats and colleagues.23  

Seven housekeeping genes were amplified for each H. influenzae isolate: adK, atpG, frdB, 

fucK, mdh, pgi and recA. 

For each allele, a reaction mix with a final volume of 25 µL was constitute as follow: 12.5 µL 

of HotStart Taq DNA Polymerase master mix (Qiagen), 1 µL of the specific primer, forward and 

reverse (Thermo Fisher Scientific, 20 µM), 5.5 µL of nuclease free water (Qiagen) and 5 µL of DNA.  

Sequences of the primers and the expected length for the amplified product are presented on 

Table 5.4 of the Appendix. PCR was conducted in a thermocycler (Applied Biosystems – GeneAmp® 

PCR System 9700) and the protocol is schematically presented on Table 2.4. 

 

 
Table 2.4 | MLST amplification protocol. 

 
Temperature Time Cycles 

Denaturation 950C 15 min 1 

Denaturation 950C 0:30 min 
 

Annealing 470C 0:30 min 34 

Extension 72oC 1 min   

Final extension 72oC 10 min 1 

Conservation 4oC  ∞ 
 

  

 

2.6.2. Purification  
 
 Purification protocol was performed as described by Applied Biosystems by Thermo Fisher 

Scientific.121 

 Each amplification product (5 µL) was added to 2 µL of ExoSAP-IT™ PCR Product Cleanup 

Reagent (Thermo Fisher Scientific).  

PCR was conducted in a thermocycler (Applied Biosystems – GeneAmp® PCR System 9700) 

and the protocol is schematically presented on Table 2.5. 

Samples were loaded into a 2% (w/v) agarose gel in TBE 1x, to verify amplification and 

purification of all seven housekeeping genes, as described in 2.5.2. section. 
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Table 2.5 | Purification PCR protocol. 

Temperature Time Cycles 

370C 15 min 1 

800C 15 min 1 

4oC  ∞   

 

 

2.6.3. Sequencing 
 
 After purification, 1 µL of each purified product was added to a mix, containing 4 µL of 

nuclease and protease free water, 3.2 µL of 5x Big Dye Buffer (Applied Biosystems), 0.8 µL of Big 

Dye (Applied Biosystems) and 1 µL of M13 Phage forward primer (invitrogen, 20 µM).  

PCR was conducted in a thermocycler (Applied Biosystems – GeneAmp® PCR System 9700) 

and the protocol is schematically presented on Table 2.6. 

 
Table 2.6 | Sequencing PCR protocol. 

 
Temperature Time Cycles 

Denaturation 960C 0:30 min 1 

Denaturation 960C 0:10 min   

Annealing 500C 0:05 min 25 

Extension 60oC 4 min   

Conservation 4oC  ∞ 
 

 

 

Samples were forwarded to the “Unidade de Tecnologia e Inovação” from the “Departamento 

de Genética Humana”, in INSA, where sequencing was performed, by capillary electrophoresis, in a 

genetic analyser (Applied Biosystems – ABI 3130XL). 

 

 

 2.6.4. Multilocus Sequence Typing analysis 
 
 After sequences for the seven alleles of each isolate were obtained, these were analysed by the 

Finch TV software. A FASTA document was created for each sequence and uploaded to the 

Haemophilus influenzae database (http://pubmlst.org/hinfluenzae/). Each sequence of the seven 

housekeeping genes were compared with the same locus sequences in the database.  
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If the sequence matched a previously assigned allele, the same allele number was attributed. If 

the sequence did not match any allele, it was necessary to submit the sequence to the database for 

assignment of a new allele number. When the combination of the numbers for the seven alleles 

matched a combination in the database, a ST number was attributed to the isolate. In the case of a new 

combination of the STs for the seven alleles, all seven allele numbers had to be submitted to the 

database for assignment of a new ST number.  

To display allelic differences between obtained STs, goeBURST analysis was performed using 

PHYLOViZ platform. STs that differed in one, two, or three genes were identified as Single Locus 

Variant (SLV), Double Locus Variant (DLV) and Triple Locus Variant (TLV), respectively. A 

Minimum Spanning Tree (MTS) presenting STs as nodes was obtained and STs would be joined if 

these were related up to DLV. 

 

 

2.7. Virulence factors 
 

 Analysis of the presence/absence of six virulence genes was based on the protocols previously 

described by Vuong and colleagues (for pilA, ompP5, hmw1A, hmw2A),78 Geluk and colleagues (for 

hifA),82 and Cardines and colleagues (for hia).89 Original protocols were adapted, in order to reduce 

unspecific amplified products. 

 The reaction mix, with a final volume of 22.5 µL, was composed as follow: 12.7 µL of pure 

bi-distilled water, 5 µL of 5x Buffer (Promega), 1 µL of 10 mM dNTPs (Roche), 1 µL of each primer, 

forward and reverse (Invitrogen, 20 µM) specific for each gene, 1.5 µL of 25 mM MgCl2 (Promega), 

0.2 µL of GO Taq® DNA polymerase (Promega, 5 U/µL) and 2.5 µL of DNA. This master mix was 

common to all analysed genes, except for hia gene, for which 0.15 µL of Ex Taq (Takara, 5 U/µL) 

was used.  

A positive and a negative control were included in the PCR.  

Sequences of the primers and the expected length of the amplified products are presented on 

Table 5.5 of the Appendix. PCR was conducted in a thermocycler (Applied Biosystems – GeneAmp® 

PCR System 9700) and the protocol is schematically presented on Table 2.7 for pilA, Table 2.8 for 

hifA, Table 2.9 for hmw1A/2A, Table 2.10 for hia and Table 2.11 for ompP5. 
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Table 2.7 | pilA PCR protocol. 

 
Temperature Time Cycles 

Denaturation 940C 5 min 1 

Denaturation 940C 1 min 
 

Annealing 500C 0:30 min 35 

Extension 72oC 1:30 min   

Final extension 72oC 5 min 1 

Conservation 4oC  ∞ 
 

 

 

 
Table 2.8 | hifA PCR protocol. 

 
Temperature Time Cycles 

Denaturation 94ºC 5 min 1 

Denaturation 95ºC 1 min 
 

Annealing 55ºC 1 min 35 

Extension 72ºC 2 min   

Final extension 72ºC 8 min 1 

Conservation 4oC  ∞ 
 

 

 

 
Table 2.9 | hmw1A/2A PCR protocol. 

 
Temperature Time Cycles 

Denaturation 940C 5 min 1 

Denaturation 940C 1 min 
 

Annealing 520C 0:30 min 35 

Extension 72oC 1 min   

Final extension 72oC 10 min 1 

Conservation 4oC  ∞ 
 

 

 

 

 

 



Haemophilus influenzae in Chronic Obstructive Pulmonary Disease and Otitis Media 

32 
 

Table 2.10 | hia PCR protocol. 

 
Temperature Time Cycles 

Denaturation 95ºC 5 min 1 

Denaturation 95ºC 1 min 
 

Annealing 53ºC 1 min 30 

Extension 72ºC 5 min   

Final extension 72ºC 10 min 1 

Conservation 4oC  ∞ 
 

 

 

 
Table 2.11 | ompP5 PCR protocol. 

 
Temperature Time Cycles 

Denaturation 94ºC 5 min 1 

Denaturation 94ºC 0:30 min 
 

Annealing 53ºC 0:30 min 35 

Extension 72ºC 2 min   

Final extension 72ºC 10 min 1 

Conservation 4oC  ∞ 
 

 

 

 Samples were loaded into a 2% (w/v) agarose gel in TBE 1x, to verify if all samples contained 

the amplified product, as described in 2.5.2. section. Molecular weight marker VII (Roche Diagnostics 

GmbH) which presents standard bands between 359 and 8576 bp, was used for analysis of hia gel 

bands, while molecular weight marker VIII (bands between 19 and 1114 bp) was used for analysis of 

the remaining genes. 

 

 

2.8. Biofilms 
 

 Regarding biofilm production, in addition to the 93 NTHi isolates, 14 invasive isolates were 

included in this study. Invasive isolates had been previously analysed by Whole Genome Sequencing 

(WGS) and were selected as positive controls for possessing hmw1A/2A genes, which have been 

associated with biofilm production. Invasive isolates comprised the years 2002, 2006, 2008–2012, 

2014–2016 and were all NTHi. 
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Biofilm formation protocol was based on the modified Christensen’s method with small 

modifications.122  

 The assay was conducted using 96-well flat-bottomed cell culture plates (Thermo Scientific 

– Nunc™) with four replicates for each isolate and negative control. Briefly, bacterial suspensions 

were prepared in saline to a final concentration of, approximately, 108 CFU/mL (OD600 nm = 0.2 

[Thermo Scientific – GENESYSTM 20]) from H. influenzae isolates grown overnight in chocolate agar 

plates. Bacterial suspensions were diluted in Brain Heart Infusion (BHI) broth (1:10) for a final 

volume of 200 µL and distributed in each well. BHI broth was used as negative control. Plates were 

incubated, at 37 ºC, for 24h and 48h (Thermo Scientific – HERAThermTM). Each well was, then, 

aspirated and all wells were washed three times with sterile distilled water, for removal of non-

adherent bacteria. Attached bacteria were stained with 100 µL of crystal violet for 15 min at room 

temperature. After crystal violet was removed, each well was washed three times with sterile distilled 

water. To each well, 200 µL of 96% ethanol were added, to elute crystal violet. Optical density was 

measured at an OD570 nm in a microplate reader (Thermo Labsystems – Multiskan AscentTM). 

  

Biofilm formation by H. influenzae was classified as described by Stepanović and 

colleagues.123  

 A mean OD570 nm for each isolate (ODisolate) plus the negative control (ODnc) replicates and 

standard deviation (SD) were calculated. Cut-off for biofilm formation (ODcut-off) was defined as the 

mean of the negative control adding to 3 times the respective SD (SDnc) (ODcut-off = ODnc + 3SDnc).  

Isolates were classified as non-producers, weak, moderate and strong biofilm producers, 

according to the criteria described in Table 2.12. 

 

Statistical significance of the obtained results was evaluated by the chi-square test, where a p 

value inferior to 0.05 (p < 0.05) was regarded as statistically significant.  

 

 
Table 2.12 | Criteria for classification of H. influenzae isolates ability to assemble biofilms. 

Classification OD Range 

Non-producer ODisolate ≤ ODcut-off 

Weak producer ODcut-off < ODisolate ≤ 2ODcut-off 

Moderate producer 2ODcut-off < ODisolate ≤ 4ODcut-off  

Strong producer ODisolate > 4ODcut-off 
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Figure 3.1 | Distribution of COPD isolates according to the age of patients.
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Table 3.1 | Antibiotic breakpoints for H. influenzae. 

Antibiotic 
Susceptible 

(mg/L) 

Intermediate 

(mg/L) 

Resistant 

(mg/L) 

Am ≤ 1 - > 1 

Cft ≤ 0.125 - > 0.125 

Crm (oral) ≤ 0.125 0.125 – 1 > 1 

Te ≤ 1 1 – 2 > 2 

Rif (for prophylaxis only) ≤ 1 - > 1 

Mer (indications other than meningititis) ≤ 2 - > 2 

Aug ≤ 2 - > 2 

C ≤ 2 - > 2 

T/S ≤ 0.5 0.5 – 1 > 1 

Cpe ≤ 0.25 - > 0.25 

Cp ≤ 0.06 - > 0.06 

Azi* ≤ 0.125 0.125 – 4 > 4 

*For azithromycin, 2017 EUCAST breakpoints were used 

 

 

Tables 3.2 and 3.3 show the MIC50, MIC90, MIC range and percentage of susceptible, 

intermediate and resistant isolates for COPD and OM isolates, respectively. 

The majority of both COPD and OM isolates was susceptible to all 12 tested antibiotics. 

Among COPD isolates, resistance to ampicillin was verified for 15.8% (6/38) of isolates, all of 

which were β-lactamase producers. Resistance was also observed for cefuroxime (8/38, 21.1%), 

trimethoprim/sulfamethoxazole (11/38, 28.9%), ciprofloxacin (1/38, 2.6%) and azithromycin (1/38, 

2.6%) (Table 3.2). It should be noted that H. influenzae resistance to ciprofloxacin was characterized 

for the first time in the laboratory (MIC > 32 mg/L, by E-test). 

Intermediate resistances to cefuroxime and azithromycin were identified. Regarding 

cefuroxime, 71.0% (27/38) isolates were considered intermediate. For azithromycin, the lowest 

concentration tested was 0.25 mg/mL. The 2017 susceptible breakpoint was ≤ 0.125 mg/L. 

Considering that MIC50 and MIC90 for this antibiotic were 0.5 and 2 mg/mL, respectively, all COPD 

isolates with a breakpoint inferior to 4 mg/mL (37/38, 97.4%) were classified as intermediate (Table 

3.2). 
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Table 3.2 | Antibiotic susceptibility of COPD isolates. 

 
COPD (n=38) 

Antibiotic 
MIC50 

(mg/L) 

MIC90 

(mg/L) 

MIC range 

(mg/L) 

Susceptible 

n (%) 

Intermediate 

n (%) 

Resistant 

n (%) 

Am 0.25 >8 0.12 – >8 32 (84.2%) 0 6 (15.8%) 

Cft ≤0.03 ≤0.03 ≤0.03 – 0.12 38 (100%) 0 0 

Crm 0.5 2 ≤0.25 – 4 3 (7.9%) 27 (71.0%) 8 (21.1%) 

Te ≤1 ≤1 – 38 (100%) 0 0 
Rif ≤0.5 ≤0.5 – 38 (100%) 0 0 

Mer ≤0.06 0.12 ≤0.06 – 0.25 38 (100%) 0 0 
Aug 0.5 2 ≤0.25 – 2 38 (100%) 0 0 

C ≤1 ≤1 – 38 (100%) 0 0 
T/S ≤0.25 >2 ≤0.25 – >2 27 (71.1%) 0 11 (28.9%) 

Cpe ≤0.12 0.25 ≤0.12 – 0.25 38 (100%) 0 0 

Cp ≤0.06 ≤0.06 ≤0.06 – >2 37 (97.4%) 0 1 (2.6%) 

Azi* 0.5 2 ≤0.25 – >4 0 37 (97.4%) 1 (2.6%) 

*For azithromycin, 2017 EUCAST breakpoints were used 

 

 

Among OM isolates, 18.2% (10/55) of isolates were considered resistant to ampicillin. Eight 

of these were β-lactamase producers, while the remaining two were non-β-lactamase producers. Of the 

non-producers, one was considered resistant to amoxicillin-clavulanate (MIC=4 mg/mL), the other 

intermediate (MIC=2 mg/mL) and both isolates presented reduced susceptibility to other β-lactam 

antibiotics. Considering these, both isolates were phenotypically identified as BLNAR. Resistance 

rates were observed for cefuroxime (11/55, 20.0%), trimethoprim/sulfamethoxazole (14/55, 25.5%), 

cefepime (2/55, 3.6%) and azithromycin (1/55, 1.8%), as well (Table 3.3).  

Thirty-five (35/55, 63.6%) isolates were considered intermediate to cefuroxime. Similar to the 

results for COPD isolates, MIC50 and MIC90 of azithromycin for OM isolates were 1 and 2 mg/mL, 

respectively and 54/55 (98.2%) isolates were considered intermediate (Table 3.3). 
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Table 3.3 | Antibiotic susceptibility of OM isolates. 

 
OM (n=55) 

Antibiotic 
MIC50 

(mg/L) 

MIC90 

(mg/L) 

MIC range 

(mg/L) 

Susceptible 

n (%) 

Intermediate 

n (%) 

Resistant 

n (%) 

Am 0.25 >8 0.06 – >8 45 (81.8%) 0 10 (18.2%) 

Cft ≤0.03 ≤0.03 ≤0.03 – 0.06 55 (100%) 0 0 

Crm 0.5 4 ≤0.25 – 8 9 (16.4%) 35 (63.6%) 11 (20.0%) 

Te ≤1 ≤1 – 55 (100%) 0 0 
Rif ≤0.5 ≤0.5 – 55 (100%) 0 0 

Mer ≤0.06 0.12 ≤0.06 – 1 55 (100%) 0 0 
Aug 0.5 1 ≤0.25 – 0.5 54 (98.2%) 0 1 (1.8%) 

C ≤1 ≤1 – 55 (100%) 0 0 

T/S ≤0.25 >2 ≤0.25 – >2 41 (74.5%) 0 14 (25.5%) 

Cpe ≤0.12 0.25 ≤0.12 – 0.5 53 (96.4%) 0 2 (3.6%) 

Cp ≤0.06 ≤0.06 – 55 (100%) 0 0 

Azi* 1 2 ≤0.25 – >4 0 54 (98.2%) 1 (1.8%) 

*For azithromycin, 2017 EUCAST breakpoints were used 

 

 

3.4. Multilocus Sequence Typing 
 

 Forty-one isolates – 16 COPD and 25 OM isolates – were analysed by MLST. Isolates were 

selected according to date of collection and antibiotic susceptibility pattern: (i) all isolates collected in 

2017 and 2018 and (ii) all β-lactamase producers. Besides these, MLST was also performed for the 2 

BLNAR, the ciprofloxacin resistant and the serotype f isolates. 

 Overall, 31 different STs were assigned (31/41, 75.6%). Five of these, were new STs: 1894, 

1895, 1896, 1900 and 1901. All new STs belonged to OM isolates, with the exception of ST 1901, 

which belonged to a COPD isolate (Table 3.4).  
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Table 3.4 | New STs assigned during the course of this project.  

H.influenzae ID Year Diagnosis adk atpG frdB fucK mdh pgi recA ST 

13692 2017 OM 69 20 7 1 26 36 29 1894 

13741 2017 OM 63 32 7 1 46 74 29 1895 

13744 2017 OM 39 8 53 11 65 48 19 1896 

12880 2013 OM 3 54 65 1 64 82 48 1900 

13776 2017 COPD 5 8 58 14 46 13 29 1901 

 

 

 A schematic presentation of isolates genetic diversity is shown in Fig. 3.4, where isolates that 

differed up to two alleles (DLVs) were joined together. STs exclusive to each clinical group – COPD, 

or OM – were separated according to the respective group. STs shared among both COPD and OM 

isolates were presented between the two groups. 

It was verified a high genetic diversity among NTHi isolates, with 31 different STs assigned to 

41 analysed isolates. Serotype f isolate was characterized as ST=124. 

 There were COPD and OM isolates with the same STs: 155, 389, 103 and 1218. STs 155, 389 

and 1218 were shared among two isolates, each: one COPD and one OM. ST 103 was shared among 

three isolates: one COPD and two OM.  

STs 155 and 1281, 1218 and 107 and 1521 and 196 differed in two alleles. STs 474 and 1900 

only differed in one allele. 

 Four STs were assigned to isolates belonging to the same clinical group. Regarding COPD 

isolates, STs 170 and 388 were both shared among two isolates. In relation to OM isolates, ST 57 was 

shared among three isolates and ST 241 was shared among two isolates. ST 57 was the most prevalent 

among OM isolates. 
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Figure 3.4 | Schematic presentation of genetic diversity among H. influenzae isolates (PHYLOViZ 2.0©, 
with goeBURST algorithm). Thirty-one STs are indicated by numbers within circles. Colours were attributed 
to each ST number and are described in the Legend. The number (n) of isolates that belong to each ST is also 
described in the Legend. The size of the circle is proportional to the number of isolates that share that ST. STs 
were grouped according to the clinical group, COPD or OM. Four STs were shared among COPD and OM 
clinical groups. STs that presented up to DLVs were joined by dark lines, labelled with the number of allelic 
differences between STs.  

*new STs assigned during the present study  
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3.5. Virulence genes 

 
All 93 isolates were analysed for the presence of six virulence genes: pilA, hifA, hmw1A, 

hmw2A, hia and ompP5. 

 Presence of pilA was observed for the majority of both COPD (38/38, 100%) and OM isolates 

(51/55, 92.7%). Similarly, the presence of ompP5 was also verified for most COPD (31/38, 81.6%) 

and OM isolates (36/55, 65.5%) (Table 3.5). 

On the other hand, hifA and hia were present in less than 50% of either COPD (5.3% and 

13.2%, respectively), or OM isolates (25.5% and 41.8%, respectively). However, our results showed a 

higher prevalence of both hifA and hia genes in OM isolates, when compared to COPD isolates (Table 

3.5). 

 Regarding hmw1A and hmw2A genes, these were found together in the majority of COPD 

isolates (29/38, 76.3%) and in less than 50% of OM isolates (14/55, 25.5%). We highlight four OM 

isolates where hmw2A gene was found, in the absence of hmw1A gene, which turned in a higher 

prevalence of hmw2A gene (18/55, 32.7%), when compared with hmw1A gene (14/55, 25.5%), as 

presented on Table 3.5. 

 
Table 3.5 | Distribution of virulence genes in COPD and OM H. influenzae isolates.  

Gene            
                   
Disease 

pilA 
n (%) 

hifA 
n (%) 

hmw1A 
n (%) 

hmw2A 
n (%) 

hia 
n (%) 

ompP5 
n (%) 

COPD (n=38) 
38  

(100%) 
2 

(5.3%) 
29  

(76.3%) 
29 

 (76.3%) 
5 

(13.2%) 
31 

 (81.6%) 

OM (n=55) 
51  

(92.7%) 
14 

 (25.5%) 
14  

(25.5%) 
18 

 (32.7%) 
23  

(41.8%) 
36  

(65.5%) 
 

 

It was further observed, in both clinical groups, that hia gene was present only when both hmw 

genes were absent. 

Regarding COPD clinical group, it was verified that the majority of isolates (29/38, 76.3%) 

possessed both hmw genes, with absence of hia gene. Only 10.5% (4/38) of COPD isolates lacked all 3 

genes (Table 3.6). 

In opposite, in the OM clinical group, most isolates lacked both hmw genes and possessed hia 

gene (23/55, 41.8%). Curiously, the same number of isolates possessed both hmw genes and lacked 

hia (14/55, 25.5%), or lacked all 3 genes (14/55, 25.5%).  

It was further observed that in all four isolates that only possessed the hmw2A gene, hia gene 

was absent (Table 3.6).  
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Table 3.6 | Relation between hmw1A/2A and hia genes in COPD and OM H. influenzae isolates.  

Disease                                                   
Genes 

COPD (n=38) 
n (%) 

OM (n=55) 
n (%) 

hmw1A/2A (+) / hia (-) 
29 

 (76.3%) 
14  

(25.5%) 

hmw1A/2A (-) / hia (+) 
5 

 (13.2%) 
23 

 (41.8%) 

hmw1A/2A (-) / hia (-) 
4 

 (10.5%) 
14 

 (25.5%) 

hwm2A (+) / hia (-) 0 
4 

 (7.3%) 

hmw2A (+) / hia (+) 0 0 

 

 

 

3.6. Biofilms 
 

 3.6.1. Biofilm production 
 

After 24h incubation, only 14.0% (15/107) of isolates were able to form a biofilm and after 

48h, this number had increased to 29.0% (31/107). Therefore, an overall increase of 15.0% in biofilm 

production was verified from 24h to 48h. Even so, the results suggested a lack of ability for more than 

50% of all isolates to form a biofilm after either 24h, or 48h incubation. Measurement of OD600nm at 

24h and 48h, enabled to conclude that the overall bacterial growth remained relatively stable after 

these incubation times.  

Results for biofilm production after 24h and 48h incubation and isolate classification 

regarding biofilm production, according to each clinical group, are summarized on Table 3.7 and 

schematically presented on Fig. 3.5.  

After 24h, the majority of isolates from the three clinical groups was not able to assemble a 

biofilm (92.1% [35/38], 81.8% [45/55] and 85.7% [12/14] of COPD, OM and invasive isolates, 

respectively). At 48h, this behaviour persisted for most of these isolates (71.4% [25/35], 86.7% 

[39/45] and 83.3% [10/12] of COPD, OM and invasive isolates, respectively) and only in a minority 

biofilm assembly was observed (17.1% [9/35], 13.3% [6/45] and 16.7% [2/12] of COPD, OM and 

invasive isolates, respectively). Even so, these biofilm assemblers fitted the category of weak 

producers. Only one COPD isolate (2.9%) became a moderate producer, after 48h incubation. 

Few COPD, OM and invasive isolates were weak biofilm producers after 24h (7.9% [3/38], 

16.4% [9/55] and 7.1% [1/14] of COPD, OM and invasive isolates, respectively) and while the 

majority of COPD isolates became moderate producers (66.7% [2/3]) most OM isolates persisted as 
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weak producers, after 48h (88.9% [8/9]). One OM (11.1% [1/9]) and the invasive isolate (7.1% [1/14]) 

became non-producers after 48h.  

None of COPD isolates were moderate biofilm producers after 24h. Only 1.8% (1/55) of OM 

and 7.1% (1/14) of invasive isolates were moderate producers after 24h incubation. After 48h, the OM 

isolate persisted as a moderate biofilm producer, while the invasive isolate became a weak biofilm 

producer. 

No isolates, in the three clinical sets, were strong biofilm producers after either 24h, or 48h. 

 

Although a relation between the production of biofilm and the respective clinical group could 

be identified, with OM isolates being most capable of biofilm production – mainly after 24h – 

followed by COPD and invasive isolates (Table 3.7 and Fig. 3.5), this association was not statistically 

significant (p = 0.342).  

Similar results were obtained for classification of isolates as weak and moderate biofilm 

producers. For example, it was possible to conclude that the majority of weak COPD producer isolates 

became moderate producers from 24h to 48h and that most weak OM isolates maintained as weak 

producers. However, classifications and correlation with each clinical group after 24h (p = 0.236) and 

48h (p = 0.339) did not meet statistical significance, as well. 

 

 

3.6.2. Virulence factors and biofilm production 
 

It was verified that all COPD and the majority of OM biofilm producer isolates possessed the 

pilA gene. The majority of COPD biofilm producer isolates also possessed hmw1A/2A genes. 

However, none of OM biofilm producers, after 24h, possessed these genes and few producers after 

48h incubation possessed both (n=2). Considering that most COPD and OM non-producer isolates, 

after either 24h or 48h, also possessed pilA and hmw1A/2A genes, it appears that no correlation could 

be established. Furthermore, very few invasive isolates produced a biofilm after 24h (n=2) and 48h 

(n=3). Since all of these isolates were known to possess hmw1A/2A genes, these results further suggest 

that a correlation could not be established. 
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Table 3.7 | Biofilm production at 24h and 48h and classification of isolates as weak and moderate 
producers, according to each clinical group.  

     Classification of biofilm producer isolates 

   Biofilm Production Weak Moderate 
  n (%) n (%) n (%) 

Pathology Biofilm (24h) Biofilm (48h) 24h 48h 24h  48h 

COPD 3 13 3 10 - 3 
(n=38) (7.9%) (34.2%) (7.9%) (26.3%) (7.9%) 

       
OM 10 15 9 14 1 1 

(n=55) (18.2%) (27.3%) (16.4%) (25.5%) (1.8%) (1.8%) 

       
Invasive 2 3 1 3 1 

- 
(n=14) (14.3%) (21.4%) (7.1%) (21.4%) (7.1%) 
Total 15 31 13 27 2 4 

(n=107) (14.0%) (29.0%) (12.1%) (25.2%) (1.9%) (3.7%) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3.5 | Biofilm production after 24h and 48h.   
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4. Discussion 
 

 

4.1. Haemophilus influenzae and non-invasive diseases 

  
H. influenzae has been long associated to invasive disease. Therefore, most worldwide 

epidemiological studies have focused on these infections.25,27,48,51,125-128 Similarly, in Portugal, 

epidemiology of invasive disease is published in three studies: one of the pre-vaccine era (1989-

2001)54 and two of the post-vaccine era (2002-201055 and 2010-201456). However, since H. influenzae 

is a commensal bacterium in the human nasopharynx, it is also responsible for triggering non-invasive 

infections that may be associated with diseases of the respiratory tract, such as COPD and OM.  

  
 

4.1.2. Chronic Obstructive Pulmonary Disease 
 

 Due to its chronic nature, COPD is a disease that usually affects adults over 40 years of age. In 

fact, a review that included data from 19 European countries showed that the mean age for COPD 

patients was 55.9 years old.129 Two other studies that analysed COPD data from six European 

countries and from USA, Mexico, Brazil, Russia, Japan and South Korea130,131 described a mean age 

ranging from 57.2 to 66.8 years old for COPD patients. An increase in prevalence of the disease with 

aging was also reported. Our results were in agreement with these findings, since all clinical isolates 

were recovered from patients with more than 50 years of age (Fig. 3.1), being the majority of these 

(36.8%) within the range of 75 to 84 years old. These were also in agreement with data from France 

and Spain, that also presented a higher rate of disease in the oldest population (70 years old, or 

older).130,131 The difference in age range between Portugal and reports for other countries may be 

related to geographical factors, tobacco smoking, environmental exposure and/or occupational 

exposure to pollution.  

Considering gender distribution, our data showed that males were the most affected gender 

(84.2%), with only a small percentage of isolates recovered from women (15.8%) (Table 2.1). These 

results are in agreement with previous reports for different countries,130 but recent data suggests that 

this disease may equally affect both genders, nowadays.32   
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4.1.3. Otitis Media 
 

 In opposite to COPD, OM is a disease that mostly affects children in the first years of life.41 

An epidemiological study,43 that collected worldwide data from all continents, indicated that 51% of 

annual AOM cases affected children under the age of five, with a higher global incidence in children 

with less than one and between one and four years old. Our results are in agreement with such data, 

since the majority of the isolates were recovered from children between the ages of less than one and 

three years old (85.5%), with a high percentage of cases in the first year of life (30.9%) (Fig. 3.2). 

Differences in gender were not observed, since 50.9% of the patients were male and 49.1% were 

female (Table 2.1). These results were in agreement with other studies that reported no risk factors and 

no significant differences associated with gender.132,133 

  

 
 

4.2. Capsular typing 
  

NTHi has been associated with infection in patients suffering from COPD, with or without 

exacerbations.34,134 Similarly, in patients suffering from OM, NTHi is one of the most common 

pathogens. It has been further demonstrated that a high prevalence of NTHi in children up to two years 

old, suffering from AOM, highlights the important infectious role of this bacteria.135 

In our study, all 55 OM isolates were characterized as NTHi, as well as all but one COPD 

isolate (37/38, 97.4%). This was expected, since COPD and OM have been extensively described as 

NTHi diseases.34,36,134,135,136 Since NTHi is an opportunistic commensal of the human nasopharynx, it 

can easily spread to the lower respiratory tract, causing infections in COPD patients, or it may spread 

to the middle ear to cause OM.136 

 

 

 

4.3. Antibiotic susceptibility 
 

 COPD and OM infections are often treated with antibiotics. In Portugal, guidelines from the 

“Direcção-Geral da Saúde” (DGS) recommend the use of a β-lactam (amoxicillin with, or without 

clavulanic acid), macrolides or doxycyclines for treatment of COPD exacerbations with sputum.39 For 

children with AOM, the first antibiotics to be recommended by DGS are amoxicillin/amoxicillin-

clavulanate, or cefuroxime in the case of ineffectiveness of the first antibiotics.44 However, an increase 
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of bacterial resistance against antibiotics has been observed over the last decades, which is a great 

concern.   

In the present study, the antibiotic that presented the highest percentage of resistance was 

trimethoprim/sulfamethoxazole. Our results showed that 28.9% and 25.5% of COPD and OM isolates, 

respectively, were resistant to trimethoprim/sulfamethoxazole (Table 3.2 and 3.3). These results were 

in accordance with the percentages described among 144 invasive H. influenzae isolates in the 

previous Portuguese study55 (20.4%) and among 482 NTHi invasive isolates in a Canadian study137 

(20.7%). Decreased susceptibility to trimethoprim/sulfamethoxazole was also reported for 54.4% of H. 

influenzae isolates, recovered from patients with respiratory tract infections, in China.138 Although 

trimethoprim/sulfamethoxazole is not an antibiotic commonly used in Portugal for treatment of either 

COPD, or OM infections,39,44 the resistance rate here identified may be related to its use for treatment 

of other infections, which may ultimately affect susceptibility of H. influenzae, in general.   

It is worth noting that, although it is not common, one COPD isolate was identified as resistant 

to ciprofloxacin. This was the first time that a H. influenzae isolate resistant to ciprofloxacin was 

characterized, in our laboratory, in approximately 4,500 isolates. A case study in USA139 reported a 

patient, suffering from a chronic lung disease, infected with a H. influenzae resistant to ciprofloxacin 

and presenting a MIC of 8 mg/L. The authors attributed resistance to a long exposure to the antibiotic, 

which was used for treatment of respiratory tract infections. Curiously, a 2015 Spanish study140 

reported 15 NTHi isolates, recovered from patients with respiratory infections, with ciprofloxacin 

MICs between 8 and 16 mg/L. The authors related this result with a common use of this antibiotic to 

treat respiratory infections. However, the authors reported that the percentage of ciprofloxacin 

resistant isolates remained low. Even so, this antibiotic is not recommended for treatment of COPD, or 

OM infections in Portugal, which could explain the presence of only one resistant isolate among the 

93 analysed isolates.39,44  

 

 

4.3.1. β-lactamase production 
 

In the present study, most isolates (84.9%) did not produce β-lactamase. Ampicillin resistance 

by β-lactamase production was identified in 15.8% and 14.5% of COPD and OM isolates, 

respectively, which accounted for 15.1% among a total of 93 characterized isolates (Fig. 3.3). The 

percentages for ampicillin-resistant β-lactamase producer COPD and OM isolates were slightly higher 

than that described for NTHi invasive isolates in the 2002-2010 study (12.6%),55 but similar to those 

obtained in a Spanish study with 349 NTHi isolates, recovered from patients with respiratory tract 

infections (15.8%).141 Due to the common use of β-lactams for treatment of  H. influenzae infections 



Haemophilus influenzae in Chronic Obstructive Pulmonary Disease and Otitis Media 

50 
 

(e.g.: COPD and OM) resistance to ampicillin has increased over the years, although resistance rates 

differ from different countries.62  

In fact, higher percentages were found in a Canadian study137 that reported 21.4% β-lactamase 

producers among NTHi invasive isolates. For NTHi isolates recovered from patients with COPD and 

other respiratory tract infections, South Korea,142 China138 and UK143  reported even higher percentages 

for ampicillin resistance, due to β-lactamase production, of 47.2%, 31.0% and 37.5%, respectively. 

Such percentages were related with common prescriptions of β-lactams for treatment of H. influenzae 

infections in these countries. Curiously, the UK had been previously reported to possess a higher 

prevalence of β-lactamase producers when compared with other European countries, such as Germany, 

Italy, Poland, Turkey, The Netherlands and Spain, which presented lower prevalences.143,144  

 

 

4.3.2. β-Lactamase-Negative Ampicillin-Resistance (BLNAR) mechanism 
 

In our work, only 2.2% of the isolates were phenotypically identified as BLNAR (Table 3.3). 

These isolates were collected from patients with OM and also presented reduced susceptibility to other 

β-lactam antibiotics, which has been described for BLNAR isolates.140 When compared with the 

previous Portuguese study, that described 7.7% genetically defined BLNAR invasive isolates,55 the 

percentage obtained in the present study was lower, but more similar to percentages reported for other 

countries.138,142,143 Globally, several countries have found low percentages of 4.2%, 5.1%, 6.1% for 

BLNAR isolates in UK,143 China138 and South Korea,142 respectively, among isolates from patients 

with respiratory tract infections. However, a higher percentage of 56.0% BLNAR H. influenzae 

isolates has been described in Spain.141 Likewise, in Japan, before introduction of Hib vaccine, 52.0% 

BLNAR H. influenzae isolates were reported (mostly from patients with respiratory diseases).145 

Similarly, a longitudinal study of meningitis caused by H. influenzae observed an increase in BLNAR 

isolates from 2000 to 2011.146  

A Portuguese study,147 with a majority of respiratory isolates, showed that a selected sample 

characterized as ampicillin non-susceptible isolates (MIC ≥ 1 mg/mL) included 66.7% (94/141) 

BLNAR isolates with ftsI mutations.  

Although BLNAR prevalence among COPD and OM isolates was low, surveillance of this 

resistance mechanism is recommended, since β-lactams are the first line antibiotics commonly used 

for treatment of these diseases in Portugal.39,44  
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4.4. Multilocus Sequence Typing analysis 
 
 MLST is a technique that analyses nucleotide sequences of housekeeping genes. Analysis of 

variations at gene level enables the genetic comparison of different bacterial isolates, which becomes 

useful when studying global epidemiology of disease.24 Different studies have shown that while 

encapsulated H. influenzae isolates are highly clonal and are, therefore, organized in a limited number 

of clusters, NTHi isolates are a genetically diverse population.15,23,55  

In our work, 31 STs were assigned to 41 analysed isolates (16 COPD and 25 OM isolates) 

(Fig. 3.4). Since our isolates were almost all NTHi, these results of great genetic diversity were 

expected, which is in agreement with the 2002–2010 Portuguese study,55 as well as with reports from 

other countries, that also described a highly diverse NTHi population.15,23 Only four STs (155, 389, 

103 and 1218) were shared among COPD and OM isolates, being two of these (STs 155 and 1218) 

closely related to two COPD STs (STs 1281 and 107) (Fig. 3.4). Therefore, we could not establish a 

relationship between determined STs and clinical origin. The most common ST was ST 57, shared 

among three OM isolates (Fig. 3.4) which is in accordance with results from a previous study148 that 

found ST 57 to be the most common ST among OM isolates. These authors even postulated that this 

ST might be representative among OM isolates, contributing to virulence associated with the disease. 

 

 

 

4.5. Virulence genes 
 

 H. influenzae infection starts by adhesion of the bacteria to the mucosa surface of the host. For 

adherence, H. influenzae expresses several surface adhesins, such as PilA, HifA, HMW1A, HMW2A, 

Hia and OMP P5.  

 pilA gene is part of a four-gene cluster, pilABCD, and PilA protein represents the major 

subunit of the type IV pilus in H. influenzae.13,80 In our study, pilA was found in all 38 COPD isolates 

(100%) and in 92.7% (51/55) OM isolates (Table 3.5). Similar results were described by Bakaletz and 

colleagues and Vuong and colleagues, who found a presence of pilA between 91 and 100% of NTHi 

respiratory isolates.13,78  

 hifA belongs to hifABCDE gene cluster and expresses fimbrial HifA, which is the major 

subunit of the fimbriae encoded by the cluster.81 Prevalence of hifA gene was 25.5% in OM isolates 

and 5.3% in COPD isolates (Table 3.5). A study by Geluk and colleagues82 showed a prevalence of 

18% for hifA in NTHi respiratory isolates. Regarding our results, OM isolates presented a similar 

percentage, while COPD isolates presented a lower percentage. 

 hmw1A/2A and hia genes encode mutually exclusive adhesins HMW1A/2A and Hia, 

respectively.77 hmw genes have been shown to undergo phase variation mechanisms related to tandem 
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repeats of 7-bp (ATCTTTC) in the promoters of hmw1A and hmw2A genes. That is, protein expression 

decreases with an increase in the number of repeats.73 In our study, a prevalence of 76.3% was found 

for hmw1A/2A in COPD isolates (Table 3.5). This is in good agreement with different studies that 

described a prevalence of both hmw genes in NTHi respiratory isolates varying from 55 to 100%.78,88  

However, the same was not observed for OM clinical group. In this case, both genes were present in 

25.5% (14/55) of the isolates, while in 7.3% (4/55) of the isolates, only hmw2A was present (Table 3.5 

and 3.6). Ecevit and colleagues,87 also found a different prevalence for the hmw1A/2A genes in NTHi 

isolates collected from the respiratory tract, which was similar to our results. Nevertheless, in that 

study, a higher prevalence was observed for hmw1A gene (51%), when compared with that of hmw2A 

gene (23%).  

 Our study found a higher percentage of hia in OM isolates (41.8%) than in COPD isolates 

(13.2%) (Table 3.5).  Presence of hia gene in OM isolates was more similar to the percentage of 

32.0% , described by Ecevit and colleagues,87 in NTHi respiratory isolates, than to the percentage of  

55.6% described by Cardines and colleagues,89 for invasive NTHi isolates.  

 Since it has been described that hia is present in the absence of the hmw1A/2A genes, this 

relation was assessed (Table 3.6).77 Indeed, presence of hia was only identified in COPD and OM 

isolates lacking both hmw genes. Furthermore, the four OM isolates that only possessed the hmw2A 

gene also lacked hia gene (7.3%). It was further verified that while the majority of COPD isolates 

(76.3%) possessed both hmw genes and lacked hia, the majority of OM isolates (41.8%) lacked both 

hmw genes and possessed hia (Table 3.6). Curiously, when comparing nasopharyngeal and OM 

isolates, Dawid and colleagues73 found that isolates recovered from the ear contained less HMW 

proteins. The authors hypothesized that, since the middle ear is rich in antibodies against HMW1/2, a 

lesser content of these proteins could serve as a survival mechanism for persistence. Even so, it 

appears that this is a controversial topic since results of other studies showed the opposite, with more 

OM isolates possessing hmw1A/2A genes and HMW1/2 expression, than COPD/lower respiratory tract 

isolates.86,87  

Nevertheless, it is interesting to notice that, in the present study, hmw1A/2A genes were more 

prevalent in COPD isolates than in OM isolates and that the presence of hifA and hia, on the other 

hand, was more prevalent in OM isolates than in COPD isolates. Considering the relatively high 

prevalence of hmw1A/2A genes generally described for NTHi isolates, it might be reasonable to 

hypothesize a relationship between type of disease and presence of these virulence genes. These 

differences could be related with adaptations of the bacteria to the different surfaces in each disease 

and with adaptation to the surrounding environment in the respiratory tract. 

 ompP5 gene encodes protein OMP P5 and, like hmw1A/2A, it was also suggested to be 

variably expressed in NTHi. Variability in expression of this protein is related to four variable regions 

in the ompP5 sequences, which result in amino-acid substitutions in loop regions displayed on the 

bacterial surface. Naturally, this variability becomes an advantage for H. influenzae infection, as a 
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selective adaptation mechanism.94 In our study, ompP5 gene was present in 81.6% and 65.5% of 

COPD and OM isolates, respectively (Table 3.5), which is within the range presented by previous 

studies that reported a prevalence for ompP5 from 20%78 to 100%92 in NTHi respiratory isolates. 

 

 

4.6. Biofilms 
 

 In the last two decades, the role of bacterial biofilms has been an important topic of research. 

Biofilms are dynamic assemblies of microorganisms that serve as a bacterial defence mechanism in 

biofilm associated infections and are usually related with persistence of chronic diseases.100,101  

H. influenzae virulence factors such as PilA, HMW1 and HMW2 proteins have been 

suggested to play important roles on different stages of biofilm formation. In an initial stage, these 

proteins are important for adhesion79,86  and, at later stages, these would be secreted and integrated in 

the EPS matrix.106,108  

 

 

4.6.1. Comparison between different classification methods 
 

Biofilms have been recognized as a serious threat to public health over the last two decades. 

These structures constitute a bacterial defence mechanism usually associated with chronic infections, 

which led to a search for new approaches to fight biofilms. However, the need for new efficient 

therapies resulted in the development of different experimental protocols and testing strategies. The 

lack of standardized protocols for biofilm assessment highly hampers a direct comparison between 

results obtained by different laboratories.149 In fact, this same limitation was identified in a study 

conducted by Murphy and Kirkam.113 This problem led Stepanović and colleagues123 to develop a 

classification system that expressed results as numbers, for an easier comparison between different 

studies. This was the classification system used in the present study. 

We intended to establish a comparison between different classification systems and how these 

affected the interpretation of results. Thus, our results were adapted to the classification system 

described in a study conducted by Puig and colleagues.114 This study was elected for presenting an 

experimental protocol similar to that used in the present study. The major difference was in the 

establishment of cut-offs for biofilm production and classification of biofilm producer isolates. With 

the classification system of the study conducted by Puig and colleagues,114 the cut-off OD was higher 

than that obtained with the classification system described by Stepanović and colleagues.123 In our 

study, this translated into a higher number of non-producer isolates and very few producers, either 

after 24h or 48h. Furthermore, after 24h, no COPD isolates were biofilm producers and only two OM 
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and one invasive isolate were producers. These results suggest that the definition of a cut-off 

influences the interpretation of results.  

There is a need to describe a standardized and reproducible classification system for biofilm 

production and for experimental procedures that do not require too much supplies, time and highly 

specialized personnel.149 Otherwise, comparisons of results between different studies, that used 

different protocols and classification systems, are not straightforward and may lead to misleading 

conclusions. 

 

 

4.6.2. Production of biofilm 
 

Several studies have shown the ability of H. influenzae isolates recovered from patients with 

OM and COPD to form biofilms, both in in vitro and in vivo systems.79,105,113-116,118,119 Those studies 

conducted in vitro showed that most H. influenzae isolates were able to form biofilms after 24h 

incubation. These results were not entirely in agreement with ours, since it was verified that only 

14.0% of isolates were able to form a biofilm after 24h incubation (Table 3.7). Furthermore, an overall 

15.0% increase in biofilm production from 24h to 48h incubation (Table 3.7) suggested that isolates 

may require more than 24h to form biofilms. It has been described that efficient attachment is 

influenced by nutrient availability, roughness and hydrophobicity of the surface and surface 

conditioning, which is associated with the medium to which a surface is exposed. Properties of the 

medium, such as specific particles, influence bacterial adhesion to the exposed surface, which will 

vary according to the surrounding environment.98 Thus, the fact that bacterial growth did not increase 

from 24h to 48h and that biofilm production increased, may suggest that biofilm production was a 

slow process and that bacterial cells possibly required this time to adapt to the surrounding 

environment and eventual stress conditions, such as nutrient consumption. Even so, approximately 

71% to 87% of isolates from the three clinical backgrounds that formed a biofilm after 24h were still 

not capable of forming a biofilm after 48h.  

On the other hand, other in vitro studies have also found a low number of biofilm producer 

isolates among both OM and COPD isolates. Mizrahi and colleagues117 found that after 24h 

incubation, 51% of 216 NTHi isolates recovered from patients with AOM (including a control group 

of 43 isolates) were non-biofilm producers, while a study conducted by Martínez-Reséndez and 

colleagues150 described that only 10% of 98 NTHi isolates recovered from patients with lower 

respiratory tract infections (COPD included) were able to produce a biofilm. These studies presented 

results more similar to those obtained in the present study, with most of OM and COPD isolates not 

being able to produce biofilms. The disparity in the results obtained by different studies may be related 

with geographical variations,114 which cannot be excluded, but may mostly be due to different 
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experimental and classification protocols that may affect interpretation of the results, as previously 

explained. 

 

 

4.6.3. Correlation between production of biofilm and an underlying disease 
 
 Few studies have established comparisons between clinical site of isolation and ability of 

NTHi isolates to form biofilms. Puig and colleagues have demonstrated, in two different in vitro 

studies,105,114 that OM isolates were better biofilm producers and formed denser biofilms than COPD 

isolates, which presented similar biofilm production levels to that of healthy carriers. One of these 

studies114 further included invasive isolates that presented the highest levels for biofilm production. 

Our results, obtained after 24h incubation, partially support these findings: OM isolates were, indeed, 

the most capable of producing biofilms after 24h, when compared with COPD isolates. However, 

invasive isolates were the worst biofilm producers, with less biofilm production than OM and COPD 

isolates (Table 3.7 and Fig. 3.5). The results for invasive isolates were the opposite of the expected, 

since these were used as positive controls for biofilm formation. This suggests that genomic analysis 

alone may not have been enough for an inference between presence of the hmw1A/2A genes and 

biofilm production. 

The results of our work could establish a relation between origin of the isolates and biofilm 

production, as follow: from 24h to 48h most COPD isolates tended to increase biofilm production, 

while OM and invasive isolates tended to stabilize, or decrease production. However, statistical 

analysis indicated that the results were not statistically significant and such conclusions could not be 

withdrawn. In addition, it should be considered the small number of isolates that were, in fact, able to 

produce biofilms after 24h incubation (15/107) (Table 3.7) which further limited the establishment of 

a correlation between clinical groups and the ability of isolates to produce biofilms. 

Other authors were also unable to establish a correlation between origin of isolates and 

production of biofilm. Murphy and Kirkam113 conducted an in vitro study with 15 COPD and 15 OM 

isolates and did not highlight significant differences between biofilms produced by NTHi isolates from 

the two different backgrounds. A more recent in vitro study conducted by Obaid and colleagues119 

examined a collection of 60 isolates recovered from oropharyngeal normal floras and patients with 

different diseases – OM, conjunctivitis, lower respiratory tract diseases and cystic fibrosis – and found 

that there was no relation between site of isolation and ability of NTHi isolates to form biofilms. These 

results suggest that a lack of correlation between different clinical groups may not be specific of 

COPD and OM isolates, since the study conducted by Obaid and colleagues,119 was unable to establish 

a correlation between isolates belonging to several respiratory clinical groups. Although these studies 

are more in agreement with the results here presented, it has to be considered the limited number of 

isolates included in both these studies. 
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It should not be excluded the possibility that differences between the results here obtained and 

results from other studies, could be related with different experimental and/or classification systems 

for establishment of biofilm production, as explained before.  

 

 

4.6.4. Virulence factors and biofilm production 
 

Several studies have described a relation between the presence of virulence genes pilA, 

hmw1A and hmw2A with the ability of H. influenzae isolates to produce biofilms.79,86,106,108  

Apparently, a correlation between presence of the selected virulence genes and production of 

biofilm could not be established, with our results. While most COPD and OM biofilm producer 

isolates possessed pilA gene, the majority of isolates identified as non-producers also possessed this 

gene. In addition, while the majority of COPD producer isolates possessed both hmw genes, most OM 

isolates did not. Besides, several non-producer isolates from both clinical groups also possessed these 

genes, which further supported the assumption that no correlation could be established. Curiously, a 

recent study conducted by Cardines and colleagues151 described that isolates with the hmw1A/2A genes 

presented low biofilm production. These assumptions were further supported by our results with 

invasive isolates, all of which possessed hmw1A/2A genes, but very few actually produced a biofilm 

after 24h and 48h.  

It should always be considered that in vitro studies do not reflect what occurs in vivo. 

Furthermore, regarding the three virulence factors, it should be noted that it was only assessed the 

presence of the genes and not the expression levels by transcriptomic analysis. Therefore, the 

production of PilA and HMW1A/2A proteins may significantly differ from isolates grown in vitro, 

than that observed when bacteria grow in the appropriate environment, which may, eventually, 

influence biofilm production. 
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Conclusions and Future Perspectives 

 

 Haemophilus influenzae is an important human-restricted microorganism that, in spite of being 

commonly found in the nasopharynx, it is also able to cause severe invasive diseases, as well as acute 

and chronic infections. NTHi has long been associated with respiratory tract infections, mainly in 

patients with underlying diseases, or with a compromised immune system, which is related to the 

opportunistic behaviour of H. influenzae.  

A sample of 93 H. influenzae isolates collected from patients with COPD and OM, from 2013 

to 2018, was studied. As expected, COPD isolates were recovered from adults (100%), whereas OM 

isolates were mainly recovered from children (98.2%). 

Results from this study showed that NTHi infection was associated with both COPD and OM. 

These results were expected since the presence of NTHi as a commensal of the nasopharynx makes it 

a potential source of infection in both the upper and lower respiratory tract. Therefore, patients with 

COPD and OM usually present NTHi associated infections. 

 The majority of isolates (84.9%) from both clinical groups was susceptible to all antibiotics. 

Ampicillin resistance, mediated by β-lactamase, was observed for 15.8% of COPD isolates and for 

14.5% of OM isolates. It should be noted that one COPD isolate was resistant to ciprofloxacin. This 

was the first H. influenzae ciprofloxacin resistant isolate characterized in the laboratory. 

 MLST, performed for 41 isolates, revealed a high genetic diversity among isolates from both 

clinical backgrounds, with 31 assigned STs. This is also consistent with results obtained from other 

studies that showed a high genetic diversity among NTHi isolates. Although we could not establish a 

general relation between STs and clinical origin, we observed that ST 57 was the most common 

among OM isolates. This result, previously described in literature, could suggest an association of a 

specific genotype with a clinical outcome (in this case, OM). 

  The presence/absence of six virulence genes, assessed for all 93 isolates, revealed a possible 

association with clinical origin. Results showed that pilA and ompP5 genes were present in the 

majority of the isolates. However, hifA and hia genes were observed for less than 50% of COPD and 

OM isolates. Even so, the presence of hifA and hia was higher among OM isolates. In the OM clinical 

group, hmw1A and hmw2A were only present in 25.5% and 32.7% of isolates, respectively, while both 

genes were found together in 76.3% of COPD isolates. We observed a higher prevalence of 

hmw1A/2A genes and a lower prevalence of hifA and hia genes among COPD isolates, while the 

opposite was found for OM isolates. It was further observed that hia gene was present only when hmw 

genes were absent, which is in accordance with the literature. 

 Biofilm production was verified for less than 50% of isolates from all three clinical groups 

(COPD, OM and invasive disease) after 24h and 48h. These results were not in accordance with 

different reports from several authors that showed NTHi as a strong biofilm producer. However, 
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comparisons between different studies have to be carefully evaluated, not only due to possible 

epidemiological factors, but mainly because of a lack in a standardised protocol for biofilm 

assessment. Furthermore, it was not possible to establish a correlation between clinical origin and 

ability of isolates to form biofilms. Similarly, no association was found with the presence of three 

virulence factors: pilA and hmw1A/2A genes, which express adhesins that were previously described as 

key factors for adherence and biofilm formation. 

 It is worth noting that sample size (38 COPD and 55 OM isolates) is a limitation of the present 

study, which hampered the withdrawn of general conclusions. Furthermore, only genomic studies 

were conducted for virulence genes. The performance of a transcriptomic and proteomic analysis of 

these genes could elucidate their role in H. influenzae pathogenesis, in general, as well as in biofilm 

assembly, in particular. 

COPD is one of the leading worldwide diseases. It is prevalent in adults over 40 years old and 

severe patients usually present high rates of morbidity. OM, on the other hand, is the most common 

paediatric disease and it is highly prevalent in the first five years of life. H. influenzae infection 

contributes for an aggravation of the symptoms and persistence of both these diseases.  Given their 

significant impact in society, monitoring and research studies of NTHi in COPD and OM is 

fundamental for the development of better, and more appropriate, prevention and combat strategies.  
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5. Appendix 

Appendix 5.1. 
 

Table 5.1 | COPD isolates data and characterization.  

      
Biofilm 

Production* 

H. influenzae ID Isolation 
Date Gender β-Lactamase Capsule pilA ompP5 hmw1A hmw2A hifA hia 24h 48h 

12885 

2013 

Male Negative 

Non-
encapsulated 

Present Present Absent Absent Absent Absent - - 
12886 Male Negative Present Present Absent Absent Absent Present - - 
12963 Female Negative Present Present Present Present Absent Absent - - 
12986 Male Negative Present Present Present Present Absent Absent - 1 
13007 Male Negative Present Present Present Present Absent Absent - 1 
13123 

2014 
Male Negative Non-

encapsulated 

Present Present Absent Absent Present Present - 1 
13156 Male Negative Present Present Present Present Absent Absent - 1 
13303 Male Negative Present Present Present Present Absent Absent - - 
13354 

2015 

Male Negative 

Non-
encapsulated 

Present Present Present Present Absent Absent 1 1 
13360 Female Negative Present Present Present Present Absent Absent - 1 
13390 Male Negative Present Present Present Present Absent Absent - 1 
13391 Male Negative Present Present Present Present Absent Absent - 1 
13394 Male Positive Present Present Present Present Absent Absent - 1 
13395 Male Positive Present Present Present Present Absent Absent - 1 
13421 Female Negative Present Absent Present Present Absent Absent - 1 
13424 Male Negative Present Absent Present Present Absent Absent - - 
13449 Male Negative Present Absent Absent Absent Absent Absent - - 
13463 Male Negative Present Absent Absent Absent Absent Absent - - 
13491 Female Negative Present Present Present Present Absent Absent 1 1 

*Regarding biofilm production, numbers indicate the ODisolate/ODcut-off ratio. 
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Table 5.1 | COPD isolates data and characterization.  

      
Biofilm 

Production* 

H. influenzae ID Isolation 
Date Gender β-Lactamase Capsule pilA ompP5 hmw1A hmw2A hifA hia 24h 48h 

13515 

2016 

Male Negative 

Non-
encapsulated 

Present Absent Absent Absent Absent Present - 1 
13556 Male Negative Present Present Present Present Absent Absent - 1 
13558 Male Negative Present Present Present Present Absent Absent 1 2 
13559 Male Negative Present Present Present Present Absent Absent - 1 
13593 Male Negative Present Absent Absent Absent Absent Present 2 3 
13615 Male Negative Present Absent Present Present Absent Absent 1 2 

13638 Male Negative Encapsulated 
(f) Present Present Absent Absent Present Absent - 1 

13645 

2017 

Male Positive 

Non-
encapsulated 

Present Present Present Present Absent Absent - 2 
13647 Male Negative Present Present Present Present Absent Absent - 2 
13655 Male Negative Present Present Present Present Absent Absent - 1 
13696 Male Positive Present Present Present Present Absent Absent 1 3 
13703 Male Negative Present Present Present Present Absent Absent 1 2 
13716 Female Negative Present Present Present Present Absent Absent - 2 
13727 Male Negative Present Present Present Present Absent Absent 1 1 
13728 Male Positive Present Present Present Present Absent Absent 2 3 
13758 Male Negative Present Present Present Present Absent Absent - 2 
13776 Male Negative Present Present Absent Absent Absent Present 1 2 
13777 Male Positive Present Present Present Present Absent Absent 1 2 

13791 2018 Female Negative Non-
encapsulated Present Present Present Present Absent Absent 2 2 

*Regarding biofilm production, numbers indicate the ODisolate/ODcut-off ratio.  
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Appendix 5.2. 
 
Table 5.2 | OM isolates data and characterization.  

     
Biofilm 

Production* 

H. influenzae ID Isolation 
Date Gender β-Lactamase Capsule pilA ompP5 hmw1A hmw2A hifA hia 24h 48h 

12579 

2013 

Male Negative 

Non-
Encapsulated 

Present Absent Absent Absent Absent Absent 1 1 
12580 Female Negative Present Absent Present Present Absent Absent - 1 
12595 Female Positive Present Present Absent Present Absent Absent - 1 
12608 Female Negative Present Absent Present Present Absent Absent - 1 
12635 Female Negative Present Present Absent Absent Present Absent 1 2 
12693 Male Negative Present Present Absent Absent Absent Present 1 2 
12717 Male Negative Present Absent Present Present Absent Absent 1 2 
12719 Female Negative Present Present Absent Absent Present Absent - - 
12733 Male Positive Present Absent Present Present Absent Absent - 1 
12734 Female Negative Present Present Absent Absent Present Absent 2 2 
12735 Male Negative Present Absent Present Present Absent Absent - 1 
12880 Male Positive Present Absent Absent Absent Present Absent 1 1 
12906 Male Negative Present Present Absent Absent Absent Present 2 2 
12931 Male Negative Present Present Absent Absent Absent Present 2 2 
12860 

2014 

Female Negative 

Non-
Encapsulated 

Present Present Present Present Absent Absent - 1 
12925 Male Negative Present Present Absent Absent Absent Absent 1 2 
12939 Female Positive Present Present Present Present Absent Absent - 2 
12957 Male Negative Present Present Absent Absent Absent Present 1 1 
12968 Female Negative Present Present Present Present Absent Absent - 1 
13002 Female Positive Present Present Absent Present Absent Absent - 1 
13030 Male Positive Present Present Present Present Absent Absent - 1 
13078 Male Negative Present Present Absent Absent Present Present 1 2 
13083 Female Negative Absent Absent Absent Absent Present Absent 2 2 
13102 Female Negative Present Present Absent Absent Absent Present 2 2 

*Regarding biofilm production, numbers indicate the ODisolate/ODcut-off ratio. 
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Biofilm 

Production* 

H. influenzae ID Isolation 
Date Gender β-Lactamase Capsule pilA ompP5 hmw1A hmw2A hifA hia 24h 48h 

13164 

2014 

Male Negative 

Non-
Encapsulated 

Present Present Absent Absent Present Present - 1 
13165 Male Negative Present Absent Absent Present Absent Absent - 1 
13166 Male Negative Present Present Present Present Absent Absent - 1 
13167 Male Negative Present Present Absent Absent Absent Absent - 1 
13223 Male Negative Present Present Absent Absent Absent Absent - 1 
13224 Female Negative Present Present Absent Absent Present Present 3 3 
13225 Male Negative Present Present Absent Absent Present Present - - 
13309 Female Negative Present Present Absent Absent Present Absent - 1 
13283 

2015 

Female Negative 

Non-
Encapsulated 

Present Absent Absent Absent Absent Present - - 
13340 Female Negative Absent Present Absent Absent Present Absent - 1 
13352 Male Negative Present Absent Absent Absent Absent Absent - - 
13425 Male Negative Present Absent Present Present Absent Absent - 1 
13450 Female Negative Present Present Absent Absent Absent Present - - 
13623 

2017 

Male Negative 

Non-
Encapsulated 

Present Present Present Present Absent Absent - 1 
13628 Male Negative Present Present Absent Absent Absent Present 1 1 
13632 Female Negative Present Present Absent Absent Absent Present - - 
13660 Female Negative Present Absent Present Present Absent Absent - - 
13673 Female Negative Present Present Absent Absent Absent Present - - 
13674 Male Positive Present Present Absent Present Absent Absent - - 
13686 Female Negative Present Absent Present Present Absent Absent - - 
13692 Female Negative Present Absent Absent Absent Absent Present - - 
13693 Female Negative Present Absent Absent Absent Absent Present - 1 
13739 Male Negative Present Absent Absent Absent Absent Present 1 1 
13740 Male Negative Present Absent Absent Absent Present Absent 1 1 
13741 Male Positive Present Present Absent Absent Present Present 1 1 
13742 Female Negative Present Absent Absent Absent Absent Present - 1 
13744 Female Negative Absent Present Absent Absent Absent Present 1 1 
13770 Male Negative Absent Present Absent Absent Absent Present 2 2 

*Regarding biofilm production, numbers indicate the ODisolate/ODcut-off ratio. 

Table 5.2 | OM isolates data and characterization.  
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Table 5.2 | OM isolates data and characterization. 

     
Biofilm 

Production* 

H. influenzae ID Isolation 
Date Gender β-Lactamase Capsule pilA ompP5 hmw1A hmw2A hifA hia 24h 48h 

13787 2018 Female Negative 
Non-

Encapsulated 

Present Present Absent Absent Absent Present 2 2 
13795 2017 Male Negative Present Present Absent Absent Absent Absent 2 1 
13801 2018 Female Negative Present Present Absent Absent Present Present 2 2 

*Regarding biofilm production, numbers indicate the ODisolate/ODcut-off ratio. 
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Appendix 5.3.  
 

Table 5.3 | Primers used for capsular typing.20 

Primer name Sequence (5'- 3') Use Length of fragment (bp) 

Hi1  CGTTTGTATGATGTTGATCCAGAC  
Capsule amplification (bexA gene) 343 

Hi2  TGTCCATGTCTITCAAAATGATG 

Hia1 CTACTCATTGCAGCATTTGC 
Serotype a characterization 250 

Hia2 GAATATGACCTGATCTTCTG 

Hib1  GCGAAAGTGAACTCTTATCTCTC 
Serotype b characterization 480 

Hib2  GCTTACGCTTCTATCTCGGTGAA 

Hic1  TCTGTGTAGATGATGGTTCA  
Serotype c characterization 250 

Hic2  CAGAGGCAAGCTATTAGTGA  

Hid1  TGATGACCGATACAACCTGT  
Serotype d characterization 150 

Hid2  TCCACTCTTCAAACCATTCT  

Hie1  GGTAACGAATGTAGTGGTAG 
Serotype e characterization 1350 

Hie2  GCTTTACTGTATAAGTCTAG  

Hif1 GCTACTATCAAGTCCAAATC 
Serotype f characterization 450 

Hif2  CGCAATTATGGAAGAAAGCT  
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Appendix 5.4. 
 

Table 5.4 | Primers used for MLST.23  

Primer name Sequence (5'- 3') Gene Expected amplified product (bp) 

adK-M13F TGTAAAACGACGGCCAGTGGTGCACCGGGTGCAGGTAA 
adK 477 

adK-M13R CAGGAAACAGCTATGACCCCTAAGATTTTATCTAACTC 

atpG-M13F TGTAAAACGACGGCCAGTATGGCAGGTGCAAAAGAGAT 
atpG 447 

atpG-M13R CAGGAAACAGCTATGACCTTGTACAACAGGCTTTTGCG 

frdB-M13F TGTAAAACGACGGCCAGTCTTATCGTTGGTCTTGCCGT 
frdB 489 

frdB-M13R CAGGAAACAGCTATGACCTTGGCACTTTCCACTTTTCC 

fucK-M13F TGTAAAACGACGGCCAGTACCACTTTCGGCGTGGATGG 
fucK 345 

fucK-M13R CAGGAAACAGCTATGACCAAGATTTCCCAGGTGCCAGA 

mdh-M13F TGTAAAACGACGGCCAGTTCATTGTATGATATTGCCCC 
mdh 405 

mdh-M13R CAGGAAACAGCTATGACCACTTCTGTACCTGCATTTTG 

pgi-M13F TGTAAAACGACGGCCAGTGGTGAAAAAATCAATCGTAC 
pgi 468 

pgi-M13R CAGGAAACAGCTATGACCATTGAAAGACCAATAGCTGA 

recA-M13F TGTAAAACGACGGCCAGTATGGCAACTCAAGAAGAAAA 
recA 426 

recA-M13R CAGGAAACAGCTATGACCTTACCAAACATCACGCCTAT 

M13F and M13R sequences are highlighted in grey. M13F primer was used for sequencing 
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Appendix 5.5. 
 

Table 5.5 | Primers used for each virulence gene.78,82,89 

Primer name Sequence (5'- 3') Gene Expected amplified product (bp) 

pilA1 ATGAAACTAACAACACAGCAAACC  
pilA  416 

pilA2 AAATAAAGAGGCATCCGTTCC 

ompP51  GCATTAGTAGTTGCTGGC 
ompP5  1040 

ompP52 TGCGATTTCTACACGACG  

hmw1A1 GAAACGCRRRTCCTTGAG 
hmw1A  149 

hmw1A2 GACTTGATGGTYYYYTGGTTGTAAA 

hmw2A1 CGAAACGCGTCCTTGAGAA  
hmw2A  200 

hmw2A2 TGCGCCATTACCACTTGAGAA 

hifA1 TGCTGTTTATTAAGGCTTTAG 
hifA  800 

hifA2 TTGTAGGGTGGGCGTAAGCC 

hia1 CAAAATTTTTAACGTTATTTGGAAT 
hia  3259 

hia2 AACGCCTGTTTTACCTTGACTAT 
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Appendix 5.6. 

 

 

Figure 5.1 | Antibiotic susceptibility panel worksheet. 


