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Abstract

Recent applications have demonstrated the crucial role of decreasing absolute ambiguity aversion in 
financial and saving decisions. Yet, most ambiguity models predict that ambiguity aversion remains constant 
when individuals become better off overall. We propose the first tests of constant absolute and relative 
ambiguity aversion, using simple variations of the Ellsberg paradoxes. Our tests are axiomatically founded 
and grounded in the theoretical literature. We implemented these tests in an experiment. Our results call for 
the use of ambiguity models that can accommodate decreasing aversion toward ambiguity.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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Does ambiguity attitude change when individuals become better off overall? Addressing 
risk attitude, seminal papers in finance from the 1960s and 1970s explained portfolio alloca-
tions by hypothesizing that absolute risk aversion is decreasing but relative risk aversion is 
increasing (see in particular Arrow, 1971). Recently, several papers developing applications of 
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Klibanoff et al.’s (2005) smooth ambiguity model demonstrated the crucial role of decreasing 
absolute ambiguity aversion (DAAA) on saving behavior (Berger, 2014; Osaki and Schlesinger, 
2013; Gierlinger and Gollier, 2014) and prevention behavior (Berger, 2016) and in the survival 
of ambiguity-averse agents in a market with expected utility agents (Guerdjikova and Sci-
ubba, 2015). At odds with these applications, most ambiguity models assume constant absolute 
ambiguity aversion (CAAA), and some predict constant relative ambiguity aversion (CRAA). 
In particular, CAAA is implied by Gilboa and Schmeidler’s (1989) maxmin expected utility, 
Schmeidler’s (1989) Choquet expected utility, Ghirardato et al.’s (2004) invariant biseparable 
preferences and alpha-maxmin expected utility, Maccheroni et al.’s (2006) variational prefer-
ences, Siniscalchi’s (2009) vector expected utility and Grant and Polak’s (2013) mean dispersion 
preferences. CRAA is implied by Gilboa and Schmeidler’s (1989) maxmin expected utility and 
Chateauneuf and Faro’s (2009) confidence preferences. Klibanoff et al.’s (2005) can accommo-
date either CAAA (with an exponential function) or CRAA (with a power function).

We propose the first tests of CAAA and CRAA using simple variations of the Ellsberg para-
doxes (Ellsberg, 1961). Our tests are axiomatically founded and grounded in the theoretical 
literature. Consider an urn containing ten red balls and ten balls that are yellow or green in 
unknown proportion. A decision maker is indifferent between winning a prize if he draws a yel-
low ball from the urn and winning the same prize with probability p. He is now told that he can 
win the prize not only if the ball drawn is yellow but also if it is red. Hence, irrespective of his 
prior(s) about the probability of winning, his chances increase by 1

2 . CAAA predicts that the de-
cision maker should be indifferent between betting on yellow or red and winning with probability 
p + 1

2 . This prediction provides a simple test of CAAA.1

Consider again the initial bet on yellow and imagine that the red balls are removed from 
the urn. Irrespective of the number of yellow balls, the chance of drawing one of them is now 
multiplied by 2 with respect to the initial bet on yellow. In other words, regardless of what 
the decision maker’s prior(s) was (were) about the probability of drawing a yellow ball, this 
probability has doubled. The decision maker exhibits CRAA if he is indifferent between betting 
on yellow in the urn without red balls and winning with probability p × 2.2

We conducted an experiment implementing these and similar tests of absolute and relative risk 
aversion. At the aggregate level, our results support decreasing absolute and relative ambiguity 
aversion. At the individual level, although CAAA is a reasonable assumption for about 40% 
of the subjects, we find that a very similar proportion of subjects exhibit DAAA. Almost half 
of the subjects also satisfied DRAA. Studying the magnitude of the deviations from constant 
absolute and relative ambiguity aversion, our results suggest that CAAA would not make accurate 
predictions for most subjects unless we accept errors of up to 10%. Our findings encourage 
theoretical and empirical applications of ambiguity to rely on models accounting for decreasing 
aversion toward ambiguity.

So far, we have discussed how ambiguity attitude evolves when the decision maker becomes 
better off in terms of utility. Alternatively, one may want to predict changes in ambiguity attitude 

1 Consider a maxmin expected utility maximizer, who has a set of priors in mind and evaluates a bet by the lowest 
expected utility he may get. If he thinks there may be between 3 and 7 yellow balls, then his initial winning probability 
is between 0.15 and 0.35. He will be indifferent between the bet on yellow and a bet on p = 0.15 (the worst case). When 
he can also win with red, his winning probability now belongs to [0.65, 0.85] and he is now indifferent between the new 
bet and winning with probability p + 1

2 = 0.65.
2 The maxmin expected utility maximizer of footnote 1 now has in mind a probability between 0.30 and 0.70, and will 

be indifferent between betting on yellow and p × 2 = 0.30.
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when the decision maker becomes better off in terms of wealth. This approach requires to account 
for risk attitudes, as shown by Cerreia-Vioglio et al. (2017). If utility is linear, then our results 
remain: a CAAA decision maker will display the same preferences irrespective of whether he 
faces a change in wealth or in utility. If the decision maker is risk averse and satisfies expected 
utility, then his preferences will remain unchanged at higher wealth levels if he is CARA and 
CRAA (Cerreia-Vioglio et al., 2017, see 1.3 for further details). Combining our results about risk 
and ambiguity, we demonstrate that an increase of wealth can have mixed effects on ambiguity 
aversion.

The following section formally introduces our tests of CAAA and CRAA. Section 2 describes 
the experiment, and the results are reported in section 3. Section 4 concludes.

1. Conceptual background

1.1. Absolute and relative risk aversion

We briefly recall the definitions of constant, decreasing, and increasing absolute risk aversion 
(referred to as CARA, DARA, and IARA) and their relative counterparts (CRRA, DRRA, and 
IRRA). Risk attitude can be characterized by comparing how much an agent values a lottery with 
the expected value of the lottery. Let M = [0,m], an interval of the reals, represent all possible 
outcomes. We denote by L the set of all finite lotteries � over M . The binary lottery xpy yields 
x with probability p and y otherwise. The outcome z such that z ∼ � is called the certainty 
equivalent (CE) of � and is denoted ce(�). Risk aversion holds if ce(�) ≤ E(�) with E(�) being 
the expected value of �. CARA [DARA, IARA] is characterized by

ce (� + W) = [≥,≤] ce(�) + W (1.1)

where � + W is obtained by adding W > 0 to all outcomes of � (assuming � + W ∈ L). CRRA 
[DRRA, IRRA] is defined by

ce(α�) = [≤,≥] αce(�) (1.2)

where α� is obtained by multiplying all outcomes of � by α ∈ (0, 1).

1.2. Absolute and relative ambiguity aversion

Just as CEs are useful to characterize risk attitude, probability equivalents (PEs) are key to 
study ambiguity attitude (Dimmock et al., 2016).3 In the following, we show how to characterize 
constant, decreasing, and increasing absolute ambiguity aversion (CAAA, DAAA, and IAAA) 
and their relative counterparts (CRAA, DRAA, and IRAA).

Uncertainty is introduced through a state space S, which is a finite set of states of nature
s. As usual in the Anscombe and Aumann (1963) framework, an act f maps S to the set of 
lotteries L. An act yielding the same lottery for all s ∈ S is referred to as the lottery itself. F is 
the set of all acts. The decision maker has preferences � over F . The mixture αf + (1 − α)g is 
the act that assigns the lottery αf (s) + (1 − α)g (s) to s ∈ S. Let � = m10 and � = m00 be the 
best and the worst lotteries. We say that preferences satisfy monotonicity if f (s) being first-order 
stochastically dominated by lottery � for all s implies f � �.

3 PEs are also often called matching probabilities.
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Consider the lottery mp0 such that f ∼ mp0. If we scale the utility over M between 0 and 1, 
virtually all ambiguity models interpret p as the utility of act f . We call such p the probability 
equivalent of f and denote it pe(f ). If f is such that f (s) = mps 0, we define the complementary 
act f c of f by f c(s) = m1−ps 0.4

Schmeidler’s (1989) defined ambiguity aversion as follows: for all f, g ∈ F and α ∈ (0, 1), 
f ∼ g implies αf +(1 −α)g � f . This definition implies Siniscalchi’s (2009, axiom 10) comple-
mentary ambiguity aversion, which states that, in our notation, f ∼ mpe(f )0 and f c ∼ mpe(f c)0
imply 1

2f + 1
2f c � m 1

2 pe(f )+ 1
2 pe(f c)

0. Using 1
2f + 1

2f c = m 1
2
0, and assuming that preferences 

over lotteries satisfy first-order stochastic dominance, complementary ambiguity aversion im-
plies pe(f ) + pe(f c) ≤ 1. Hence, comparing the sum of the probability equivalents of two 
complementary acts with 1 is a test of complementary ambiguity aversion and of stronger 
ambiguity-aversion conditions.

We use the definition of CAAA proposed by Grant and Polak (2013):

Definition 1 (CAAA). For all act f in F , lotteries �1, �2, and �3, and α ∈ (0,1), αf +(1 − α)�1 �
α�2 + (1 − α)�1 ⇒ αf + (1 − α)�3 � α�2 + (1 − α)�3.

Grant and Polak (2013) showed that this condition is a weakening of Schmeidler’s (1989)
comonotonic independence, Gilboa and Schmeidler’s (1989) certainty independence, and Mac-
cheroni et al.’s (2006) weak certainty independence.5 All these axioms require invariance to 
translations of utility profiles. Hence, all ambiguity models relying on one of these axioms and 
listed in the introduction predict constant absolute aversion toward ambiguity. In terms of PEs 
and using the best and the worst lotteries, CAAA can be tested with the condition:

pe(αf + (1 − α)�) = pe(αf + (1 − α)�) + (1 − α) (1.3)

with α ∈ (0,1). In words, increasing the probability of obtaining the best outcome m by (1 − α)

for all states of nature increases the PE by (1 − α).

Observation 1. Assume that preferences satisfy weak ordering and monotonicity. Then CAAA 
implies Eq. (1.3).

Proof. Assume pe(αf + (1 − α)�) = p, that is αf + (1 − α)� ∼ mp0. Any f must yield 
lotteries that are (weakly) dominated by getting the best outcome for sure and therefore, act 
αf + (1 − α)� yields lotteries that are (weakly) first-order stochastically dominated by mα0. 
Hence, p ≤ α (by monotonicity) and we can define �2 = mp

α
0. We thus have αf + (1 − α)� ∼

α�2 + (1 − α)�. Then CAAA implies αf + (1 − α) � ∼ α�2 + (1 − α) � = mp+1−α0. �
Observation 2. Gilboa and Schmeidler’s (1989) maxmin expected utility, Schmeidler’s (1989)
Choquet expected utility, Ghirardato et al.’s (2004) invariant biseparable preferences and 
alpha-maxmin expected utility, Maccheroni et al.’s (2006) variational preferences, Siniscalchi’s 
(2009) vector expected utility and Grant and Polak’s (2013) mean dispersion preferences imply 
Eq. (1.3).

4 The pair 
(
f,f c

)
is complementary according to definition 3 of Siniscalchi (2009).

5 Trautmann and Wakker (2018) showed that these axioms were violated because ambiguity attitude changes between 
gains ans losses.
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Proof. Grant and Polak (2013) showed that all these models imply CAAA. Furthermore, they 
all assume weak ordering and monotonicity. Hence, by Observation 1, these models imply 
Eq. (1.3). �

We will further classify decision makers as DAAA [IAAA] using:

pe(αf + (1 − α)�) ≥ [≤] pe(αf + (1 − α)�) + (1 − α) (1.4)

with α ∈ (0,1). Under the same assumptions as before, the conditions for DAAA and IAAA are 
implications of recent definitions proposed by Chambers et al. (2014, Definition 9). The DAAA 
condition is also implied by an axiom used by Ghirardato and Siniscalchi (2015) and Xue (2018, 
Axiom A.2.1).

Maxmin expected utility (Gilboa and Schmeidler, 1989) is invariant to shifts of utility profiles 
but also to multiplication or rescaling. Its core axiom, certainty independence, implies CAAA and 
Chateauneuf and Faro’s (2009) worst independence axiom, a form of homotheticity or invariance 
to mixture with the worst lottery. We propose to use this latter axiom to define CRAA because it 
is similar to CRRA (the only type of homothetic preferences under expected utility).

Definition 2 (CRAA). For all acts f, g in F , and α ∈ (0,1), f ∼ g ⇒ αf + (1 − α)� ∼ αg +
(1 − α)�.

In terms of PEs, we can observe CRAA by

pe(αf + (1 − α)�) = αpe(f ) (1.5)

with α ∈ (0,1). In words, multiplying the probability of obtaining the high outcome by α for all 
states of nature multiplies the PE by α.

Observation 3. Gilboa and Schmeidler’s (1989) maxmin expected utility and Chateauneuf and 
Faro’s (2009) confidence preferences imply CRAA, which implies Eq. (1.5).

Proof. The first implication comes from Chateauneuf and Faro (2009). Furthermore, take g =
mp0 where p is pe(f ). We have f ∼ g. CRAA implies αf + (1 − α)� ∼ αg + (1 − α)� =
mαp0. �

Decision makers deviating from CRAA can be classified as DRAA [IRAA] by

pe(αf + (1 − α)�) ≤ [≥] αpe(f ) (1.6)

with α ∈ (0,1).
In the introduction, we listed the ambiguity models satisfying CAAA and CRAA, includ-

ing special cases of Klibanoff et al.’s (2005) smooth ambiguity model. Let �(S) be the set of 
probability measures on S. According to the smooth ambiguity model, an act f is evaluated 

by 
∫
�(S)

μ(Q)ϕ

(∑
s∈S

Q(s)Eu(f (s))

)
dQ, where μ is a second-order belief measure over the 

possible probability distributions on S. The smooth ambiguity model also satisfies CAAA and 
CRAA if the smooth ambiguity function ϕ is exponential or power, respectively (see Appendix B
for details).

In this section, we rely on the Anscombe-Aumann setting, where acts assign lotteries to events, 
and where risk independence is assumed (Cerreia-Vioglio et al., 2011), ensuring expected utility 
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Table 1
Equivalence between the definitions in terms of utility and in terms of 
wealth (for CARA decision makers).

Risk seeking Risk neutral Risk averse

W-DAAA DRAA DAAA IRAA
W-CAAA CRAA CAAA CRAA
W-IAAA IRAA IAAA DRAA

under risk. However, if expected utility under risk does not hold, adding the same likelihood of 
winning to all states of nature might not have the same impact, depending on the initial lottery 
assigned to the state. After introducing the experimental design, we will assess the robustness of 
the implementation of the CAAA and CRAA tests to deviations from expected utility.

1.3. Impact of wealth

The definitions of CAAA and DAAA given above are common in the literature (Grant and 
Polak, 2013; Ghirardato and Siniscalchi, 2015; Xue, 2018) and in line with Klibanoff et al.’s 
(2005) smooth ambiguity model and its applications (Berger, 2014; Cherbonnier and Gollier, 
2015; Berger, 2016). However, one may prefer to study the impact of changes of wealth instead 
of changes of utility, as recently done by Cerreia-Vioglio et al. (2017).

Let fW be the act assigning lottery f (s) + W to state s for W > 0. Further define �W by 
f �W g whenever fW � gW . The relation �W represents the preferences at a higher wealth level. 
Constant absolute ambiguity aversion in terms of wealth (W-CAAA) holds if � and �W fully 
agree. To define changes in ambiguity attitudes, Cerreia-Vioglio et al. (2017) used Ghirardato 
and Marinacci’s (2002) comparative ambiguity aversion: �1 is more ambiguity averse than �2

if, for all f ∈ F and � ∈ L, f �1 � ⇒ f �2 �. In words, if the more ambiguity averse decision 
maker 1 prefers an act to a lottery, then the less ambiguity averse agent 2 should also prefer the act 
to the lottery. Decreasing absolute ambiguity aversion in terms of wealth (W-DAAA) is defined 
as � being more ambiguity averse than �W for all W > 0. Symmetrically, increasing absolute 
ambiguity aversion in terms of wealth (W-IAAA) is defined as �W being more ambiguity averse 
than �.

The first observation of Cerreia-Vioglio et al. (2017) is that preferences satisfy one of the three 
conditions (W-DAAA, W-CAAA, or W-IAAA) only if they are also CARA. CARA guarantees 
that the decision maker’s risk attitude remains constant when wealth increases, and therefore, that 
changes in ambiguity attitudes cannot be confounded with changes in risk attitudes. Furthermore, 
it is obvious that W-CAAA and CAAA agree (as do W-DAAA and W-IAAA with DAAA and 
IAAA) for risk neutral decision makers because their utility is linear in money.

Cerreia-Vioglio et al. (2017) established the following results for CARA utility (u(x) =
−e−ρx ). A wealth increase of +W multiplies the utility of each state of nature by e−ρW . Hence, 
exponential utility transformed additive shifts into multiplicative shifts. Ambiguity aversion will 
therefore remain constant when wealth increases if it is multiplication invariant when utility in-
creases, that is, if CRAA holds. Aversion will decrease if DRAA holds and the multiplication 
factor e−ρW is more than 1 (ρ < 0, risk seeking) or if IRAA holds and e−ρW is less than 1 
(ρ > 0, risk averse). The results of Cerreia-Vioglio et al. (2017) are summarized in Table 1.
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2. Experimental design

The experiment consisted of two types of tasks: CE tasks under risk and PE tasks under 
ambiguity.

2.1. CE tasks

Subjects were asked to make a series of decisions between a lottery and sure amounts (see 
Fig. 2.1). We define the CE as the midpoint between the lowest amount preferred to the lottery 
and the highest amount for which the lottery was preferred.

Fig. 2.1. CE-task.

Table 2 presents the list of lotteries that the subjects were asked to evaluate. Risk attitude 
can be obtained by comparing the CEs with the expected values (reported in the third column). 
The tests for CARA and CRRA are reported in the fourth and fifth columns, respectively. For 
instance, lottery �2 is obtained by adding 10 euros to both outcomes of lottery �1, which allows 
us to test CARA.6 The outcomes of lottery �1 are one-third of those of �4, which allows us to 
test CRRA.

2.2. PE tasks

The second type of tasks our subjects were asked to complete were PE tasks. The best and 
worst outcomes were 30 and 0 euros. We measured PEs for bets on the color of a ball drawn 
from an Ellsberg urn. The urn contained balls of various colors (red, black, green, yellow, and 
blue), but the proportions of yellow and green balls were unknown. Subjects were asked to make 
a series of decisions between a given act and lotteries yielding 30 euros with probability p (see 

6 In Table 2, we can see that CARA predicts ce(�2) = ce(�1) +10 and ce(�3) = ce(�1) +20. Obviously, it also predicts 
ce(�3) = ce(�2) + 10, but we do not mention this test in the Table because it would be redundant. Throughout the paper, 
redundant tests are omitted.
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Table 2
Lotteries and tests.

Lottery Risk 
neutral [ce(�i ) =] 
averse [≤] 
seeking [≥]

CARA [ce(�i ) =] 
DARA [≥] 
IARA [≤]

[ce(�i ) =] 
DRRA [≤] 
IRRA [≥]

�1 101/20 5 1
3 ce(�4)

�2 201/210 15 ce(�1) + 10

�3 301/220 25 ce(�1) + 20

�4 301/20 15

�5 151/210 12.5 1
2 ce(�3)

�6 101/40 2.5 1
3 ce(�8)

�7 201/410 12.5 ce(�6) + 10

�8 301/40 7.5

�9 103/40 7.5

�10 303/420 27.5 ce(�9) + 20

�11 153/410 13.75 1
2 ce(�10)

Fig. 2.2. PE-task.

Fig. 2.2 for a screenshot). We define the PE as the midpoint between the lowest p preferred to 
the act and the highest p to which the act was preferred.

Table 3 describes the twelve acts and urns that we used to conduct the different tests for 
ambiguity neutrality, CAAA and CRAA. For instance, act f1 wins 30 euros if a yellow ball is 
drawn from an urn containing 20 balls, 5 being red, 5 being black, and the other 10 being yellow 
or green (with at least one of each color).7 Ambiguity arose from the unknown proportions of 
yellow and green balls in the urns. We specified that the proportions of yellow and green balls 

7 The presence of at least one green and one yellow ball in the urn ensured that acts yielding � = 3010 and � = 3000
never occurred. This prevented certainty and impossibility effects from distorting our CAAA and CRAA tests. See 
subsection 2.3.
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Table 3
Acts and tests for ambiguity.

Act Winning color Known Unknown Tests

win 30 euros, 
0 otherwise

# of balls R B L Y (≥ 1) 
or 
G (≥ 1)

Ambiguity 
neutral [pe(fi )=] 
averse [≤] 
seeking [≥]

CAAA [pe(fi) =] 
DAAA [≥] 
IAAA[≤]

CRAA [pe(fi ) =] 
DRAA [≤] 
IRAA[≥]

f1 Y 20 5 5 – 10 1
2 pe(f6)

f2 Y&R 20 5 5 – 10 pe(f1) + 1
4

f3 Y&R&B 20 5 5 – 10 pe(f1) + 1
2

f4 Y&R&B 60 5 5 40 10 1
3 pe(f3); 1

2 pe(f5)

f5 Y&R&B 30 5 5 10 10

f6 Y 10 – – – 10

f7 G 20 5 5 – 10 1 − pe(f3) 1
2 pe(f12)

f8 G&R 20 5 5 – 10 1 − pe(f2) pe(f7) + 1
4

f9 G&R&B 20 5 5 – 10 1 − pe(f1) pe(f7) + 1
2

f10 G&R&B 60 5 5 40 10 1
3 pe(f9); 1

2 pe(f11)

f11 G&R&B 30 5 5 10 10

f12 G 10 – – – 10 1 − pe(f6)

Y (R, B , L and G) indicates that the color of the ball is “yellow”, “red”, “black, “blue” or “green,” respectively.

were the same for all acts.8 It allows us to model the ambiguous (part of the) urn by the state 
space S = {1, ...,9} representing the number of yellow balls in the urn.9

Act f6 offers s
10 chances of obtaining 30 euros for a given state s, and act f12 offers 10−s

10
chances of obtaining 30 euros. Hence, the two acts are complementary, which enables us to test 
ambiguity aversion (see column 8 in Table 3). Comparing f1 and f2, observe that f2 adds red to 
yellow as a winning color and therefore increases the winning probability for all s by 1

4 . Under 
the CAAA assumption, the PE should also increase by 1

4 (see column 9 in Table 3 for the other 
CAAA tests). Comparing f1 and f6, observe that the winning color remains the same but that 
the urn for act f1 contains 10 more balls than the urn for act f6. The probability of winning has 
been halved in f1 with respect to f6 and thus should be the PE under the CRAA hypothesis (see 
the last column of Table 3 for the other CRAA tests).

8 Ellsberg urns create ambiguity because subjects do not know the composition of the urn. We also implemented a 
variation of these urns by relating the urn composition to naturally occurring events, namely, whether the Dutch stock 
index (AEX) during the experiment would increase or decrease. For these acts, subjects were ambiguity neutral (at the 
aggregate level). It could either be that they were not averse towards this particular source of uncertainty (Baillon and 
Bleichrodt, 2015 and Baillon et al., 2018 found little to no ambiguity aversion for resembling sources of uncertainty 
and similar subjects) or that they did not perceive that this source generated ambiguity. As a consequence, our tests 
could not be applied. For the sake of completeness, details on this part of the experiment are reported in supplementary 
material.

9 Alternatively, the state space could describe the color of the ball drawn from the urn. Yet, a state space describing 
the number of yellow balls, as used here, is simpler to present, remains the same for all acts, and models a uniform 
source of ambiguity. We describe the alternative state space(s) in Appendix A and show that our tests remain valid for a 
general class of uncertainty-averse preferences if the subjects incorporates the objective information in their perception 
of uncertainty.
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2.3. Robustness to non-expected utility under risk

The theoretical section of this paper is based on the Anscombe-Aumann framework, assum-
ing expected utility under risk, but this assumption is usually violated in empirical studies. For 
instance, Allais (1953) famously showed that people tend to be too attracted by certainty (or 
impossibility). In the experiment, we avoided certainty and impossibility effects by excluding 
degenerate lotteries from the acts. This does not solve everything though and we need to assess 
the robustness of our experiment to non-expected utility. Many non-expected utility models exist 
but we will focus here on the most used one, Quiggin’s (1981) rank dependent utility (equiva-
lently, Tversky and Kahneman’s (1992) prospect theory for gains). In this model, probabilities 
are weighted, which can bias tests that rely on PEs and shifts of probabilities. We will consider 
several forms of probability weighting and study the biases they imply.

First, we can identify forms of weighting to which the tests are robust. Denote fi(s) = mpi,s
0

the lottery assigned by act fi to state s. With at least one green ball and one yellow ball in the 
urn, we ensured pi,s ∈ (0, 1) for all i and s. If subjects have a neo-additive weighting function, 
defined as a function that is linear on (0, 1), then the CAAA tests are still valid, as shown in 
Appendix C - Observation 4. The appendix also shows that the CRAA tests are robust to power 
weighting functions.

Second, we can estimate the impact of other form of probability weighting. We focus on the 
popular weighting function proposed by Prelec (1998), w(p) = exp(−(−ln(p))ρ), with ρ a cur-
vature parameter. Expected utility corresponds to ρ = 1. Eliciting Prelec’s weighting function in 
many different countries, l’Haridon and Vieider (2019) found values of ρ ranging from 0.5 to 1 
(with the exception of Nigerian students, for whom the value was 0.27). We assumed the smooth 
ambiguity model of Klibanoff et al. (2005) and studied the impact of ρ for values between 0.4 
and 1.2. For each test described in Table 3, we computed how much the obtained probability 
equivalent differed from the predicted one (assuming CAAA or CRAA). For instance, if pe(f2)

was 1.05 times pe(f1) + 1
4 , we said that it had a 5% bias. All computational details and assump-

tions are reported in Appendix C.
We assessed two cases: (i) if we had run the experiment with no restrictions on the number of 

green and yellow balls; (ii) with our restriction that there was at least one ball of each color (Y ≥ 1
& G ≥ 1). We found that the restrictions on Y and G more than halved the biases generated by 
probability weighting. For our CAAA tests, even extreme probability weighting (ρ = 0.4), rarely 
observed, would not create a bias of more than 5%. For CRAA, one type of tests is sensitive 
(comparing f6 and f12 to f1 and f7), the second type is fair, with biases of less than 5%, and the 
last one is very robust to Prelec’s probability weighting. This most robust type of tests compares 
an act with chance of winning between 11/30 and 19/30 to an act with chance of winning between 
11/60 and 19/60. For such values, probability weighting seems to be negligible.

To account for the risk of probability weighting to affect our results, we will report results in 
a conservative manner, requiring a deviation of more than 5% of the PEs to classify subjects as 
non-CAAA or non-CRAA. To classify subjects as CRAA / IRAA / DRAA, we will focus on the 
robust tests, excluding the comparisons of f6 and f12 to f1 and f7.

2.4. Participants and organization

To conduct the experiment, 78 participants were recruited at Erasmus University Rotterdam 
(mean age is 21.5; 60% are male). The ordering of the parts (risk and ambiguity) was counter-
balanced between participants, and choice tasks were randomized within each part. We ran 8 
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sessions on the same day, with 8 to 12 subjects each. A session began with general instructions, 
which were read to all subjects who then entered their cubicles. The CE and PE tasks lasted 
approximately 30 minutes. Afterward, subjects were paid as described in the next section.

2.5. Incentives

We used the random incentive system with the slight modification that the choice that would 
be played out was determined before the experiment began. For each session and before the 
beginning of the experiment, a subject was asked to draw two envelopes in front of the other 
subjects and to sign them. The first envelope was drawn from a pile of envelopes containing all 
lotteries and acts of the experiment (as described in Tables 2, 3, and 7). The second envelope 
was drawn from a pile of 21 envelopes, each containing a different number from 1 to 21, corre-
sponding to a row in the choice lists depicted in Fig. 2.1 or 2.2. At the end of the experiment, the 
signed envelopes were opened and the corresponding choice was played out for real money. The 
subjects received a show-up fee of 5 euros and an additional amount of up to 30 euros depend-
ing on their choices. On average, the subjects earned 21.50 euros for approximately one hour of 
participation. Lotteries and acts were implemented with physical devices (a pair of 10-sided dice 
for the lotteries and an urn for the acts). Subjects were informed that the proportions of yellow 
and green balls were the same for all acts. In practice, an urn with only yellow and green balls 
was prepared before the experiment, and depending on the act that was supposed to be played 
for real, the corresponding number of red, black, and blue balls was added.

Random incentives provided subjects with a mixture over acts and therefore, provided them 
with a way to hedge against ambiguity. Overall, in our experiment, being paid for a choice involv-
ing Y as winning color was as likely as being paid for a choice involving G as winning color. 
Ambiguity averse subjects who would perceive the whole experiment as one choice may then 
behave as if they were ambiguity neutral (Oechssler and Roomets, 2014; Bade, 2015). Hence, 
random incentives may lead to underestimate the prevalence of ambiguity aversion. Baillon et 
al. (2014) argued that performing the randomization before the resolution of the uncertainty 
(and even before choices are made) can mitigate this problem. We followed this procedure, even 
though there is no guarantee that it eliminates hedging concerns.

3. Results

From our initial sample of 78 subjects, eight who violated dominance in the choice lists 
(choosing dominated lotteries or acts) at least three times were removed. In the aggregate analy-
sis, we report the results of two-tailed t-tests. Wilcoxon tests produced similar results.

3.1. Risk

In a first step, we report the aggregate results of our tests of risk neutrality and constant abso-
lute and relative risk aversion. We measured risk attitude by the difference between the expected 
value of the lottery E(�i) and the average certainty equivalent ce(�i). Table 4 shows that, at the 
aggregate level, the subjects were risk seeking for lotteries with winning probability 1

4 and averse 
for lotteries with winning probability 3

4 . For probability 1
2 , they were risk averse or neutral. This 

pattern suggests that our subjects would be better represented by rank-dependent utility than by 
expected utility. Appendix D reports the results of maximum likelihood estimation of expected 
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Table 4
Tests of risk neutrality, CARA and CRRA.

Test for Risk neutrality [=0] p Result Conclusion

E(�1) − ce(�1)

1
2

0.46*** (0.14) aversion

E(�2) − ce(�2) 0.21 (0.16) neutral

E(�3) − ce(�3) −0.1 (0.15) neutral

E(�4) − ce(�4) 2.71*** (0.52) aversion

E(�5) − ce(�5) −0.02 (0.08) neutral

E(�6) − ce(�6)
1
4

−0.49*** (0.15) seeking

E(�7) − ce(�7) −0.74*** (0.17) seeking

E(�8) − ce(�8) −0.90** (0.35) seeking

E(�9) − ce(�9)
3
4

1.11*** (0.21) aversion

E(�10) − ce(�10) 1.44*** (0.21) aversion

E(�11) − ce(�11) 0.93*** (0.10) aversion

Test for CARA [=0]

ce(�2) − [ce(�1) + 10] 0.23 (0.16) CARA

ce(�3) − [ce(�1) + 20] 0.55*** (0.17) DARA

ce(�7) − [
ce(�6) + 10

]
0.29 (0.19) CARA

ce(�10) − [
ce(�9) + 20

] −0.31 (0.21) CARA

Test for CRRA [=0]

ce(�1) − 1
3 ce(�4) 1.33*** (0.42) IRRA

ce(�5) − 1
2 ce(�3) −0.05 (0.17) CRRA

ce(�6) − 1
3 ce(�8) 0.56 (0.38) CRRA

ce(�11) − 1
2 ce(�10) −0.42 (0.29) CRRA

***, **, and * indicate that the test is significant at 1, 5, and 10%, respectively. Not rejecting 
the null hypothesis is interpreted as risk neutrality, CARA and CRRA. Standard errors are in 
parentheses.

utility and of rank-dependent utility for neoadditive and Prelec probability weighting. Introduc-
ing probability weighting substantially increases the fit of the model and neo-additive weighting 
fits the data slightly better than the Prelec weighting function. This result should be interpreted 
with caution because the experiment was not designed to compare weighting functions but it is 
reassuring for the CAAA tests because they are not affected by neo-additive weighting.

Neither CARA nor CRRA was rejected in three out of four tests. Only one of the CARA 
tests is rejected in favor of DARA, and one of the CRRA tests is rejected in favor of IRRA. 
For comparison, previous empirical results from the literature are mixed. Levy (1994) reported 
experimental evidence in favor of DARA but not IRRA, but Eisenhauer (1997) found evidence 
for IARA in an empirical study on life insurance. More comparable to our work, Holt and Laury 
(2002) found that their experimental data conformed well to IRRA together with DARA (expo-
power utility function).

In a second step, we classified our subjects according to their risk behavior. For all classifica-
tions, we used a 5% error margin to account for the (im)precision of the choice lists. A subject 
was classified as CARA (CRRA) if the conditions described in Table 2 were satisfied within 
a 5% error margin on average. As seen in the aggregate results, the subjects were risk seeking 
for small probabilities and risk averse for large probabilities. To classify subjects as, overall, 
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Table 5
Classification of subjects depending on their risk attitude.

IARA CARA DARA Total

Risk seeking 2 6 2 10
Risk neutral 5 22 1 28
Risk averse 7 22 3 32
Total 14 50 6 70

IRRA CRRA DRRA Total

Risk seeking 6 2 2 10
Risk neutral 5 17 6 28
Risk averse 14 11 7 32
Total 25 30 15 70

(a) Risk attitude and absolute risk aversion (b) Risk attitude and relative risk aversion

IRRA CRRA DRRA Total

IARA 2 6 6 14
CARA 18 23 9 50
DARA 5 1 0 6
Total 25 30 15 70

IRRA CRRA DRRA Total

IARA 2 1 4 7
CARA 9 10 3 22
DARA 3 0 0 3
Total 14 11 7 32

(c) Absolute and relative risk aversion (d) Absolute and relative risk aversion (risk averse
subjects only)

more risk averse or seeking, we only considered lotteries �1 to �5, which involved a 1
2 chance 

of winning. A subject was considered risk neutral if his CE was, on average, within 5% of the 
expected value of the lotteries. Subjects whose CEs were lower (higher) than the expected values 
by more/than 5% on average were classified as risk averse (seeking).

The results of the classification are reported in Table 5. A large majority of subjects (71%) 
displayed CARA (panel (a)). CARA was satisfied by a majority of risk averse subjects (panel 
(d)). In terms of relative risk attitude, CRRA was the most common pattern (43%), followed by 
IRRA (36%).

3.2. Ambiguity

Table 6 reports the results of the tests for ambiguity neutrality and for constant absolute and 
relative ambiguity aversion. At the aggregate level, all tests yielded results in favor of ambiguity 
aversion. CAAA and CRAA were systematically rejected in favor of DAAA and DRAA but the 
effect sizes are relatively small and still within the range of possible biases due to non-expected 
utility under risk such as Prelec-style probability weighting. It is therefore crucial to explore 
individual-level data to identify whether the rejection of CAAA and CRAA arises from a small 
bias, possibly due to probability weighting and that all subjects exhibit, or from clear and strong 
deviations of CAAA and CRAA for part of the sample.

Fig. 3.1 displays the PEs of complementary acts, whose sum should be 1 under ambiguity 
neutrality. Many subjects are close to ambiguity neutrality but we see much more and much 
stronger deviations in the direction of ambiguity aversion than in the direction of ambiguity 
seeking. The sum of PEs of f6 and f12 is further away from 1 for many subjects than the sum of 
other PEs for other complementary acts because f6 and f12 concerned the fully ambiguous urns.

Figs. 3.2 and 3.3 depict the PEs of all subjects. They illustrate the magnitude of the violations 
of the CAAA and CRAA conditions at the individual level. In Fig. 3.2.a, the (green) circles 
represent pe(f2) as a function of pe(f1), with the size of the circle representing the number of 
subjects with this combination. The dashed line pe(f1) + 1

4 represents the CAAA hypothesis, 
and a circle above (below) this line indicates DAAA (IAAA). The surrounding dark gray area 
represents a ±5% error margin (which could be due to probability weighting, as illustrated in 
Fig. C.1), and the light gray area represents a ±10% error margin. Similarly, the (red) squares 
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Table 6
Tests of ambiguity neutrality, CAAA and CRAA.

Test for ambiguity neutrality [=1] Result Conclusion

pe(f6) + pe(f12) 0.96* (0.023) aversion
pe(f1) + pe(f9) 0.95*** (0.013) aversion
pe(f2) + pe(f8) 0.97*** (0.012) aversion
pe(f3) + pe(f7) 0.94*** (0.013) aversion

Test for CAAA [=0]

pe(f2) −
[
pe(f1) + 1

4

]
0.03*** (0.009) DAAA

pe(f3) −
[
pe(f1) + 1

2

]
0.02* (0.012) DAAA

pe(f8) −
[
pe(f7) + 1

4

]
0.03*** (0.009) DAAA

pe(f9) −
[
pe(f7) + 1

2

]
0.04*** (0.012) DAAA

Test for CRAA [=0]

pe(f1) − 1
2 × pe(f6) −0.03*** (0.009) DRAA

pe(f4) − 1
3 × pe(f3) −0.01** (0.004) DRAA

pe(f4) − 1
2 × pe(f5) −0.01*** (0.003) DRAA

pe(f7) − 1
2 × pe(f12) −0.03*** (0.009) DRAA

pe(f10) − 1
3 × pe(f9) −0.02*** (0.004) DRAA

pe(f10) − 1
2 × pe(f11) −0.01*** (0.004) DRAA

***, **, and * indicate that the test is significant at 1, 5, and 10%, respectively. Not rejecting the 
null hypothesis is interpreted as ambiguity neutrality, CAAA and CRAA. Standard errors are in 
parentheses.

Fig. 3.1. Magnitude of ambiguity aversion. Notes: Both axes describe PEs. The line represents ambiguity neutrality and 
the light (dark) gray areas a 10% (5%) error margin.

in panel (a) represent pe(f8) as a function of pe(f7). Panel (a) shows that CAAA is a good 
approximation of the behavior of many subjects but that a substantial mass of subjects lays above 
the gray area. Assuming CAAA for those subjects would imply an error of more than 10% 
when predicting their behavior. The circles and squares in panel (b) represent the two CAAA 
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Fig. 3.2. Magnitude of violations of the CAAA conditions. Notes: Both axes describe PEs. The line represents CAAA 
and the light (dark) gray areas a 10% (5%) error margin (in terms of ordinates). The percentages indicate the proportion 
of subject who deviate from CAAA by more than 10% (more than 5% between brackets).

conditions when chances are increased by 1/2. For these PEs, CAAA does not seem to be a 
bad approximation for a vast majority of subjects if we are willing to accept errors of up to 
10%.

In Fig. 3.3, the dashed lines represent the CRAA conditions. The PEs should be multiplied, 
which is represented by a line crossing the origin. Subjects above the CRAA line are DRAA, and 
those below are IRAA. The dark (light) gray areas again represent a 5% (10%) error margin. In 
all panels, a number of subjects approximately satisfy CRAA but a substantial mass of subjects 
is located above the CRAA line, with a deviation of more than 10%. The results in panel (c) 
should be taken with caution, because they correspond to the tests that were the least robust to 
probability weighting according to our robustness analysis.

Table 7 reports the classification of subjects according to their ambiguity behaviors. We used 
classification rules similar to those used for risk attitude and compatible with our robustness 
analysis, with an error margin of 5% to reflect the possible impact of probability weighting. 
For each subject, we computed the average deviation from the conditions given in Table 3 but 
excluded the two CRAA tests that were especially sensitive to probability weighting. Subjects 
were almost equally distributed between CAAA and DAAA (panel (a)). DRAA was found for 
the majority of ambiguity-averse subjects, and most DAAA subjects were also DRAA. Some 
subjects could be classified as ambiguity neutral (if they were slightly ambiguity averse for some 
acts and slightly ambiguity seeking for others) and still classified as DAAA if the switch from 
averse to seeking was consistent across tests. The DAAA-DRAA patterns was also confirmed for 
ambiguity averse subjects (panel (d)).

3.3. Impact of wealth on ambiguity attitudes

Combining our results about risk and ambiguity, we could classify CARA subjects with the 
definitions of Cerreia-Vioglio et al. (2017). A total of 50 subjects were identified as CARA. As
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Fig. 3.3. Magnitude of violations of the CRAA conditions. Note: Both axes describe PEs. The line represents CRAA and 
the light (dark) gray areas a 10% (5%) error margin (in terms of ordinates). The percentages indicate the proportion of 
subject who deviate from CAAA by more than 10% (more than 5% between brackets).

explained in Section 1.3, for risk neutral subjects, W-CAAA [W-DAAA,W-IAAA] agrees with 
CAAA [DAAA,CAAA]. Indeed, for subjects whose utility is linear, if the degree of ambiguity 
aversion remains constant when utility increases (CAAA) then it also remains constant when 
wealth increases (W-CAAA). A majority of risk neutral subjects were classified as W-CAAA, 
followed by W-DAAA (Table 8, panel (a)).

For risk averse subjects, the equivalence between CAAA and W-CAAA does not hold any-
more. For such subjects, W-CAAA is equivalent with CRAA. We therefore classified them using 
their relative ambiguity aversion, as described by Table 1. Risk averse CARA subjects exhibited 
mostly W-IAAA and W-CAAA in equal share. Table 8 reports the complete results.
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Table 7
Classification of subjects depending on their ambiguity attitude.

IAAA CAAA DAAA Total

Ambiguity seeking 0 1 5 6
Ambiguity neutral 6 18 11 35
Ambiguity averse 4 10 15 29
Total 10 29 31 70

IRAA CRAA DRAA Total

Ambiguity seeking 0 0 6 6
Ambiguity neutral 5 17 13 35
Ambiguity averse 5 9 15 29
Total 10 26 34 70

(a) Ambiguity attitude and absolute ambiguity aversion (b) Ambiguity attitude and relative ambiguity aversion

IRAA CRAA DRAA Total

IAAA 5 2 3 10
CAAA 5 18 6 29
DAAA 0 6 25 31
Total 10 26 34 70

IRAA CRAA DRAA Total

IAAA 2 1 1 4
CAAA 3 4 3 10
DAAA 0 4 11 15
Total 5 9 15 29

(c) Absolute and relative ambiguity aversion (d) Absolute and relative ambiguity aversion
(ambiguity-averse subjects only)

Table 8
Classification of CARA subjects in terms of W-CAAA, W-DAAA, and W-IAAA.

W-IAAA W-CAAA W-DAAA Total

Risk seeking 1 1 4 6
Risk neutral 3 8 11 22
Risk averse 10 9 3 22
Total 14 18 18 50

W-IAAA W-CAAA W-DAAA Total

Ambiguity seeking 2 0 2 4
Ambiguity neutral 4 14 9 27
Ambiguity averse 8 4 7 19
Total 14 18 18 50

(a) Risk attitude and impact of wealth (b) Ambiguity attitude and impact of wealth

Overall, the impact of wealth on ambiguity generates a rich variety of behavior. Sadly, the 
restriction to CARA decreases the sample size by almost a third and many CARA subjects were 
also ambiguity neutral. For non-CARA subjects, we only know that the way their ambiguity 
attitudes depend on wealth is irregular, and therefore, that their behavior is non-classifiable in 
terms of W-CAAA, W-DAAA or W-IAAA. By contrast, studying the impact of changes of utility, 
as in the previous subsection, has the advantage of identifying regularities that are useful in 
applications about saving and prevention for instance.

4. Conclusion

We designed simple tests of CAAA and CRAA based on variations of the Ellsberg examples. 
At the aggregate level, we found evidence for DAAA and DRAA. The magnitude of the devia-
tions from CAAA suggests that relying on the common CAAA assumption to predict behavior 
at higher utility levels would lead to errors of more than 10% for a substantial proportion of sub-
jects. CAAA and DAAA coexisted in almost equal shares in our sample of subjects. Our findings 
seem to encourage the use of ambiguity models that are flexible enough to accommodate changes 
in ambiguity attitudes at increased utility levels, such as the smooth ambiguity model (but ex-
cluding exponential and power smooth-ambiguity functions) and the new models of Ghirardato 
and Siniscalchi (2015) and Xue (2018). Finally, combining our results about ambiguity with 
those obtained for risk showed that an increase of wealth can have mixed effects on ambiguity 
aversion.
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Appendix A. Alternative specification of the state space

Let S1 = {Y,G} be the state space for acts 6 and 12 and S2 = {Y, G, R, B} be the state 
space for acts 1-3 and 7-9. F1 and F2 are the sets of acts, and �1 and �2 the set of all 
measures over S1 and S2, respectively. We assume that agents have uncertainty averse pref-
erences (UAP) as defined by Cerreia-Vioglio et al. (2011). Such preferences encompass many 
ambiguity models in the literature satisfying ambiguity aversion (but that need not satisfy 
CAAA or CRAA). According to UAP, v1 (f1) = minP∈�1G1

(∫
Eu(f1) dP,P

)
for f1 ∈F1 and 

v2 (f2) = minδ◦P∈�o
2
G2

(∫
Eu(f2) dδ ◦ P, δ ◦ P

)
for f2 ∈ F2, where G1 and G2 are quasicon-

vex (reflecting ambiguity aversion) and increasing in their first variable (reflecting monotonicity). 
Subjects were informed that, for acts 1-3 and 7-9, 5 red balls and 5 black balls would be added 
to the urn. For consistency, we make the following assumptions:

• Subjects took the objective information into account; therefore, if P(R) 	= 1
4 or P(B) 	= 1

4 , 
then G2(t, P) = +∞.

• Subjects understood that adding red and black balls to the urn did not change the ambiguity 
about the number of yellow (green) balls in the urn; therefore, for P satisfying P(R) =
P(B) = 1

4 , G2(t, P) = G1(t, δ◦P) where δ◦P is uniquely defined by δ◦P (Y ) = 2 ×P (Y ). 
Note that we also assume here that G1 and G2are scaled in the same way.

This consistency assumption implies that v2 (f2) = minP∈�1G1
(∫

Eu(f2) dδ ◦ P,P
)
. We fix 

u(30) = 1 and u(0) = 0.

• If f1 ∈ F1, f2 ∈ F2, f2 (Y ) = f1 (Y ), f2 (G) = f1 (G), and f2 (R) = f2 (B) = 3000, then

v2 (f2) = minP∈�1G1

(
P(Y )

2 Eu(f1 (Y )) +
(

1
2 − P(Y )

2

)
Eu(f1 (Y )) ,P

)
= v1

( 1
2f1 +

1
2 3000

)
.

• If g1 ∈ F1, g2 ∈ F2, g2 (Y ) = g1 (Y ), g2 (G) = g1 (G), and g2 (R) = g2 (B) = 3010, then 

v2 (g2) = minP∈�1G1

(
P(Y )

2 Eu(g1 (Y )) +
(

1
2 − P(Y )

2

)
Eu(g1 (Y )) + 1

2 ,P
)

= v1
( 1

2g1 +
1
2 3010

)
.

As a consequence, under the assumption of subjects’ understanding and incorporating the objec-
tive information into their decisions, the valuations (and, therefore, the probability equivalents) 
obtained for f2 and g2 are the same as those that would have been obtained for 1

2f1 + 1
2 3000

and 1
2g1 + 1

2 3010. Hence, we can still use them to test constant relative and absolute ambiguity 
aversion. The same exercise could be performed for the state spaces of acts 4, 5, 10, and 11.

Appendix B. Application to the smooth ambiguity model

Under risk, CARA and CRRA correspond to exponential and power utility, respectively. 
We show here that the definitions (and tests) that we use in this paper for ambiguity al-
low us to characterize the curvature of the smooth ambiguity function of Klibanoff et al. 
(2005). Recall that f (s) = mps 0 for all s. We set u(m) = 1 and u(0) = 0, which implies that 
Eu (f (s)) = ps . Under the smooth ambiguity model, the PEs satisfy the condition ϕ (pe(f )) =∫
�(S)

μ(Q)ϕ

(∑
s∈S

Q(s)ps

)
dQ, with ϕ the smooth ambiguity function and μ second order be-

liefs over �(S). This implies
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ϕ
(
pe

(
αf + (1 − α)�

)) =
∫

�(S)

μ(Q)ϕ

(
(1 − α) + α

∑
s∈S

Q(s)ps

)
dQ

and

ϕ
(
pe(αf + (1 − α)�)

) =
∫

�(S)

μ(Q)ϕ

(
α
∑
s∈S

Q(s)ps

)
dQ.

It follows that we can apply the usual results for CEs under expected utility to our PEs under 
the smooth model. CAAA is thus equivalent to ϕ being an exponential function and CRAA to 
ϕ being a power function. This also shows that, unlike ambiguity models assuming CAAA, the 
smooth model can accommodate a broader range of ambiguity attitudes if ϕ is not exponential.

Klibanoff et al. (2005, definition 6) defined CAAA as invariance of preferences to increases 
in utility. Implementing a direct test of their definition would require observing utility first. Our 
test does not rely on such additional measurements but still enables us to study the implication 
of their definition (ϕ being exponential).

Appendix C. Deviations from expected utility under risk

Mixtures of acts and lotteries such as αf +(1 − α)� gives corresponding mixtures of expected 
utility values. In our design, we only use acts such that f (s) = mps 0. Hence, with u normal-
ized such that u(m) = 1 and u(0) = 0, we obtain Eu (f (s)) = ps , Eu 

(
αf (s) + (1 − α)�

) =
αps + (1 − α), and Eu 

(
αf (s) + (1 − α)�

) = αps . It is therefore crucial that Eu is linear in 
probabilities to obtain the properties about probability equivalents introduced in the previous 
subsections.

Now assume that expected utility under risk is replaced by rank-dependent utility (Quiggin, 
1981). According to that model, with the same normalization of u, a lottery f (s) = mps 0 is 
evaluated by w(ps). The function w is the probability weighting function and is increasing with 
w(0) = 0 and w(1) = 1. If w is nonlinear, then w(αps + (1 − α)) = αw(ps) + (1 − α) may not 
hold.

However, if w is linear on one interval of the probability domain, then the CAAA test based 
on acts yielding probabilities within that interval are still valid. As noted by Cohen (1992) and 
Webb and Zank (2011) (see also Chateauneuf et al., 2007), certainty effects can be accounted for 
by rank-dependent utility models with w being neo-additive, i.e., w(p) = a−b

2 + (1 − a) ∗ p for 
all p ∈ (0, 1). The neo-additive weighting functions generate jumps at 0 and 1, thus modeling 
impossibility and certainty effects. However, it is linear on (0, 1) and we can make use of it to 
test invariance to utility shifts.

The following observation will apply to models that combine rank-dependent utility for lotter-
ies with an ambiguity model. It can for instance be applied to a sort of “maxmin rank-dependent 
utility”, that could be written as

min
Q∈C

(∑
Q(s)w (ps)

)
(C.1)
s∈S
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when f is of the form f (s) = mps 0 and with C ⊂ �(S), the set of priors. Another example 
would be Klibanoff et al.’s (2005) smooth ambiguity model, with non-expected utility for lotter-
ies where f is valued:

∫
�(S)

μ(Q)ϕ

(∑
s∈S

Q(s)w (ps)

)
dQ. (C.2)

Observation 4. Consider an ambiguity model that values risky lotteries by rank-dependent utility 
with a neo-additive weighting function and that is invariant to utility shifts. Then Eq. (1.3) still 
holds for f of the form f (s) = mps 0 with 0 < ps < (1 − α) (i.e. neither αf + (1 − α)� nor 
αf + (1 − α)� assigns a sure outcome to any state.)

Proof. Under neo-additive rank-dependent utility for risk, an act f assigning a lottery mps 0
yields utility w(ps) = a−b

2 + (1 − a)ps on state s. Act αf + (1 − α) � yields utility a−b
2 + (1 −

a)(αps + (1 −α)) on state s whereas act αf + (1 − α)� only yields utility a−b
2 + (1 −a)(αps) on 

state s. Hence, the utility on each state is higher by (1 − a)(1 − α) for the former act than for the 
latter. We obtain a constant increase of utility across the state space. Now consider an ambiguity 
model assigning pe(f ) to f . The value w(pe(f )) = a−b

2 + (1 − a) × pe(f ) can be interpreted 
as the subjective value of the act, expressed in the unit of the risk model (rank-dependent util-
ity). Invariance to utility shifts means that adding (1 − a)(1 − α) to each state increases the 
value of the act by exactly (1 − a)(1 − α). It must therefore imply w(pe(αf + (1 − α)�)) =
w(pe(αf + (1 − α)�)) + (1 − a)(1 − α). Solving a−b

2 + (1 − a) × pe(αf + (1 − α) �)) =
a−b

2 + (1 − a) × pe(αf + (1 − α)�)) + (1 − a)(1 − α) gives pe(αf + (1 − α)�)) = pe(αf +
(1 − α)�)) + (1 − α). �

Our CRAA tests are also robust to some weighting functions. The next observation establishes 
it.

Observation 5. Consider an ambiguity model that values risky lotteries by rank-dependent utility 
with w(p) = bpc defined on [0, 1) and that is invariant to utility multiplication. Then Eq. (1.5)
still holds for f of the form f (s) = mps 0 with ps < 1.

Proof. Act f yields utility bpc
s on state s whereas act αf + (1 − α)� yields utility bαcpc

s on 
state s. Hence, the utility on each state is multiplied by αc for the latter act with respect to 
the former. Consider a model that is invariant to utility multiplication such as (C.1), i.e. mul-
tiplying the utility by αc on each state multiplies the value of the act by the same factor. It 
must therefore imply αc × w(pe(f ))c = w(pe(αf + (1 − α))�)). Solving αc × b(pe(f ))c =
b(pe(αf + (1 − α)�))c gives α × pe(f ) = pe(αf + (1 − α)�)). Note that this reasoning holds 
as long as all probabilities are strictly less than 1, that is, certainty is never reached on any state 
of the world. �

We do not have formal results for the Prelec weighting function but can compute how much it 
biases the tests for given parameter values. Assume that the subjects’ behavior can be represented 
by the smooth ambiguity model as in Eq. (C.2). For further tractability, we assume that μ(Q) =
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Fig. C.1. Bias as a function of the probability weighting parameter.

1
|S| if there is s such that Q = 1s and μ(Q) = 0 otherwise. We obtain 

∑
s∈S

1
|S|ϕ (w (ps)). With this 

formula, we can compute the probability equivalent of each act. We did so assuming ϕ linear 
(such that it should satisfy both CAAA and CRAA), exponential (such that it should satisfy 
CAAA), and power (such that it should satisfy CRAA). For the exponential and power functions, 
we chose an arbitrary parameter (0.5) to illustrate the effect of the curvature of ϕ. Finally, for each 
test described in Table 3, we computed how much the obtained probability equivalent differed 
from the predicted one (assuming CAAA or CRAA). For instance, if pe(f2) was 1.05 times 
pe(f1) + 1

4 , we said that it had a 5% bias.
Fig. C.1 displays the biases for all probability equivalents we could predict as a function of ρ, 

the weighting function parameter. Continuous lines represent biases if we had run the experiment 
with no restrictions on the number of green and yellow balls; dashed lines represent biases with 
our restriction that there was at least one ball of each color (Y ≥ 1 & G ≥ 1).
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Table 9
Estimates of rank-dependent utility under risk.

Model 1 Model 2 Model 3 Model 4 Model 5

utility curvature γ 0.10** 0.16*** 0.10*** 0.01 0.11***

(0.04) (0.03) (0.04) (0.04) (0.03)

Neo: insensitivity a 0.44*** 0.42***

(0.03) (0.03)

Neo: pessimism b 0.04
(0.02)

Prelec: insensitivity 1 − ρ 0.41*** 0.46***

(0.03) (0.03)

Prelec: pessimism 1 − θ 0.10***

(0.03)

σ 0.17*** 0.15*** 0.14*** 0.15*** 0.15***

(0.01) (0.01) (0.01) (0.01) (0.01)

n 770 770 770 770 770
Pseudo log-likelihood −1539.18 −1437.50 −1435.28 −1443.48 −1436.78
AIC 3082.36 2881.01 2878.55 2892.96 2881.55

Risk neutrality is equivalent to 0 for all parameters.
Standard errors in parentheses.

* p < 0.10.
** p < 0.05.
*** p < 0.01.

Appendix D. Parametric fitting of weighting functions under risk

We used the CEs obtained under risk to estimate several specifications of expected utility 
and rank-dependent utility, using maximum likelihood and clustering standard errors at the sub-
ject level. We assumed power utility u(x) = x(1−γ ) to follow the literature (e.g., Bruhin et al., 
2010) even though one of our tests of CRRA rejected it (another test also rejected CARA). The 
neo-additive model was expressed as w(p) = a−b

2 + (1 − a) ∗ p such that a and b match the 
insensitivity and pessimism indices defined by Abdellaoui et al. (2011). The Prelec function, we 
used w(p) = exp(−θ(−ln(p))ρ) with ρ the insensitivity parameter and θ capturing pessimism. 
We followed Bruhin et al. (2010) and assumed that the error term (the difference between the ob-
served CE and the predicted CE) followed a normal distribution with a standard deviation equal 
to σ ∗|y−x| for lottery xpy. We estimated expected utility (Model 1) and the two rank-dependent 
utility models with and without pessimism. Model 2 is the neo-additive model with insensitivity 
only, Model 3 the full neo-additive model, Model 4 the Prelec model with insensitivity only, and 
Model 5 the full Prelec model.

Table 9 reports the estimates expressed such that risk neutrality is equivalent to 0 for all param-
eters (so we report 1 −ρ and 1 − θ for the Prelec function). First, note that the estimates of ρ are 
between 0.54 and 0.59 (Models 4 and 5), falling within the range such that the bias of the CAAA 
and CRAA tests does not exceed 5%. Second, expected utility (Model 1) is clearly rejected in 
favor of rank-dependent utility as can be seen by the significant weighting function parameters 
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(Models 2 to 5).10 Third, the highest pseudo log-likelihood and the lowest AIC were obtained for 
the full neo-additive model (Model 3). If anything, this analysis supports the neo-additive model.

There are a few caveats to this conclusion though. We only had three probability levels and 
none of them was very low or very high. Many probabilities, especially extreme ones, would be 
necessary to properly compare the two weighting functions. Moreover, the difference in terms of 
pseudo-likelihood between Models 2 to 5 remains mild, compared to the difference with expected 
utility. We can only conclude that the weighting function between 0.25 and 0.75 was close to 
linear but this is already reassuring for our main results about CAAA.

Appendix E. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2019 .02 .006.
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