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Abstract: We propose a C2-continuous alternating direction implicit (ADI) method for

the solution of the streamfunction-vorticity equations governing steady 2D incompressible

viscous fluid flows. Discretisation is simply achieved with Cartesian grids. Local two-node

integrated radial basis function elements (IRBFEs) [D.-A. An-Vo, N. Mai-Duy, T. Tran-

Cong, A C2-continuous control-volume technique based on Cartesian grids and two-node

integrated-RBF elements for second-order elliptic problems, CMES: Computer Modeling

in Engineering & Sciences 72 (2011) 299-334] are used for the discretisation of the diffusion

terms, and then the convection terms are incorporated into system matrices by treating nodal

derivatives as unknowns. ADI procedure is applied for the time integration. Following ADI

fatorisation, the two-dimensional problem becomes a sequence of one-dimensional problems.

The solution strategy consists of multiple use of a one-dimensional sparse matrix algorithm

that helps saving the computational cost. High levels of accuracy and efficiency of the

present methods are demonstrated with solutions of several benchmark problems defined on

rectangular and non-rectangular domains.

Keywords: Navier-Stokes equations, integrated-radial-basis-function elements, C2-continuous

solutions, Cartesian grid, ADI method, local RBF approximation.

1. Introduction

The dimensionless Navier-Stokes (N-S) equations for steady incompressible planar viscous

flows, subject to negligible body forces, can be expressed in terms of the streamfunction ψ

and the vorticity ω as follows.

∂2ψ

∂x2
+
∂2ψ

∂y2
+ ω = 0, (1)

∂2ω

∂x2
+
∂2ω

∂y2
= Re

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
, (x, y)T ∈ Ω, (2)

where Re = UL/ν is the Reynolds number, in which L is the characteristic length, U the

characteristic speed of the flow and ν the kinematic viscosity of the fluid. The vorticity and

streamfunction variables are defined by

ω =
∂v

∂x
− ∂u

∂y
, (3)

∂ψ

∂y
= u,

∂ψ

∂x
= −v, (4)
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where u and v are the x and y components of the velocity vector. In this study, the method

of modified dynamics or false transients (e.g. [1, 2]) is applied to obtain the structure of a

steady flow. The governing equations (1) and (2) are modified as

∂2ψ

∂x2
+
∂2ψ

∂y2
+ ω = 0, (5)

∂ω

∂t
+
∂2ω

∂x2
+
∂2ω

∂y2
= Re

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
. (6)

A steady state solution to (5) and (6), which is obtained by integrating the equations from

a given initial condition up to the steady state, is also solution to (1) and (2).

Cartesian-grid-based methods for solving (1) and (2) can be very economical owing to the

facts that (i) generating a grid is low-cost; and (ii) ADI procedure [3, 4] can be straightfor-

wardly applied to accelerate computational processes. The approximations for the dependent

variables and their spatial derivatives can be constructed globally on the whole grid or locally

on small segments of the grid. A very prominent local approximation scheme is the finite-

difference (FD) which can be based on two nodes (first-order accuracy) and three nodes.

The three-node approximations can take the second-order central difference (CD) form, e.g.

[5], or high-order compact (HOC) implicit forms, e.g. [6–8], where nodal values of the field

variables and their derivatives are considered as unknowns. The three-node HOC implicit

schemes can achieve higher order numerical accuracy and yield greater computational effi-

ciency compared with CD schemes for the same level of the accuracy, e.g. [7]. However, the

computational cost of these implicit schemes was quite high because of time consumption

for solving (i) less-than-optimal banded matrices (block diagonal structure where each block

corresponds to a grid line) [9–11]; or (ii) a larger number of equations per grid point [7], i.e.

3N equations for N grid points in 1D problems and 5N equations for N grid points in 2D

problems. In addition, these finite difference schemes (i.e. the two-node and the three-node

schemes) typically produce solutions which are continuous for the fields but not for their

partial derivatives, i.e. C0-continuity. The grid thus needs to be sufficiently fine to mitigate

the effects of discontinuity of partial derivatives.

On the other hand, the well-known alternating direction implicit (ADI) method proposed

by Peaceman and Rachford (PR-ADI) was much more computationally cost-effective than

the HOC implicit schemes. In the PR-ADI method, the solution is obtained by solving

sets of equations defined on grid lines in x- and then y-direction sequentially. Each set
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includes Nη equations (matrix dimensions are Nη × Nη) for Nη grid points on a particular

η-grid line where η represents x and y. These relatively small sets of equation (in tridiagonal

matrix form) are solved separately and effectively by the Thomas algorithm that helps saving

the computational cost. However, the numerical accuracy of PR-ADI is only second-order in

space [3]. The combination of the ADI approach and the HOC schemes has been proposed by

e.g. [7, 10] for solving fluid mechanics problems, by e.g. [12] for parabolic partial differential

equations, and by e.g. [9, 11] for convection-diffusion problems. Hirsh [7] applied the ADI

procedure to HOC implicit schemes for simulating a model square cavity flow through solving

sets of 3Nη equations for Nη grid points on η-grid lines. Adam [12] further reduced the

number of equations on each grid line to sets of 2Nη equations by means of the so-called

implicit elimination. Recently, Karaa and Zhang [9] and Karaa [10] solve sets of Nη equations

on η-grid lines through block matrices. However, as shown in [13], the solution quality of

this ADI method is degraded for convection-diffusion equations with high Peclet numbers.

Ma et al. [11] proposed to use fourth-order schemes for convection terms and second-order

schemes for diffusion terms for convection-dominated diffusion problems and achieved very

efficient sets of Nη equations in tridiagonal matrix form on η-grid lines. This ADI method

hence becomes second-order accurate when diffusion terms are dominant.

Radial basis functions (RBFs) have recently emerged as an attractive tool for the solution

of ordinary and partial differential equations (ODEs and PDEs), e.g. [14–16]. RBF-based

approximants can be constructed through a conventional differentiation process, e.g. [17], or

an integration process, e.g. [18–20]. RBF-based approximants can be global or local. Global

RBF-based methods are very accurate, e.g. [21, 22]. However, they result in a system

matrix that is dense and usually highly ill-conditioned for large problems. The use of RBF-

approximants in local forms can help circumvent these difficulties, e.g. [23–25]. Recently, a

local high order approximant based on 2-node elements and integrated RBFs (IRBFs) has

been proposed by An-Vo et al. [26]. It was shown that such elements lead to a C2-continuous

solution rather than the usual C0-continuous solution.

In this paper, we develop a high-order ADI method based on C2-continuous 2-node IRBFEs

[26] for solving the N-S equations in the form of streamfunction-vorticity formulation, dis-

cretised by Cartesian grids. Unlike finite difference methods, the proposed method can

guarantee inter-element continuity of derivatives of the streamfunction and vorticity of or-
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ders up to 2. 2-node IRBFEs are used for the discretisation of the diffusion terms, and then

the convection terms are incorporated into system matrices by treating nodal first-derivatives

as unknowns. By treating the convection terms as unknowns, we obtain matrices on grid

lines that are always diagonally dominant. The matrix of each η-grid line includes 2Nη

equations for Nη grid points as in Adam [12] without the need of implicit elimination. It is

noted that in Adam [12], one has 6 nonzero entries for the governing equation and 5 nonzero

entries for the equation of first-derivatives at a grid point. It will be shown later that the

proposed C2-continuous ADI method yields 4 nonzero entries for the governing equation and

6 nonzero entries for the equation of first-derivatives (by imposing C2-continuity condition)

at a grid point. Several viscous flows defined on rectangular and non-rectangular domains

are considered to verify the proposed method in terms of computational cost and numerical

accuracy on a wide range of Reynolds number.

The remainder of the paper is organised as follows. A brief review of integrated RBF elements

is given in Section 2. Section 3 describes the proposed C2-continuous ADI method for the

streamfunction-vorticity formulation. In section 4, viscous flows in square and triangular

cavities are presented to demonstrate the attractiveness of the present method. Section 5

concludes the paper.

2. Two-node integrated-RBF elements (IRBFEs)

The problem domain is embedded in a Cartesian grid as shown in Figure 1. Grid points

inside the problem domain are taken to be interior nodes, while boundary nodes are defined

as the intersections of the grid lines and the boundaries. There are two types of elements,

namely interior and semi-interior IRBFEs. An interior element is formed using two adjacent

interior nodes while a semi-interior element is generated by an interior node and a boundary

node.

2.1. Interior elements

Consider an interior element, η ∈ [η1, η2], and its two nodes are locally named as 1 and 2. Let

φ(η) be a function and φ1, ∂φ1/∂η, φ2 and ∂φ2/∂η be the values of φ and ∂φ/∂η at the two

nodes, respectively (Figure 2a). The 2-node IRBFE scheme approximates the second-order
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derivative of φ(η) using two multiquadric (MQ) functions whose centres are located at η1

and η2

∂2φ

∂η2
(η) =

d2φ

dη2
(η) = w1

√
(η − η1)2 + a21 + w2

√
(η − η2)2 + a22 = w1I

(2)
1 (η) + w2I

(2)
2 (η), (7)

where I
(2)
i (η) conveniently denotes the MQ, wi and ai are the associated weight and MQ-

width at node i (i = {1, 2}). We simply take ai = βh, where h is a grid size and β is a

factor.

First-order derivative of φ and the function φ are approximated by integrating (7) with

respect to η

∂φ

∂η
(η) =

dφ

dη
(η) = w1I

(1)
1 (η) + w2I

(1)
2 (η) + C1, (8)

φ(η) = w1I
(0)
1 (η) + w2I

(0)
2 (η) + C1η + C2, (9)

where I
(1)
i (η) =

∫
I
(2)
i (η)dη, I

(0)
i (η) =

∫
I
(1)
i (η)dη, and C1 and C2 are the constants of

integration. By collocating (9) and (8) at η1 and η2, the relation between the physical space

and the RBF coefficient space is obtained




φ1

φ2

∂φ1

∂η

∂φ2

∂η




︸ ︷︷ ︸
φ̂

=




I
(0)
1 (η1) I

(0)
2 (η1) η1 1

I
(0)
1 (η2) I

(0)
2 (η2) η2 1

I
(1)
1 (η1) I

(1)
2 (η1) 1 0

I
(1)
1 (η2) I

(1)
2 (η2) 1 0




︸ ︷︷ ︸
I




w1

w2

C1

C2




︸ ︷︷ ︸
ŵ

, (10)

where φ̂ is the nodal-value vector, I the conversion matrix, and ŵ the coefficient vector. It

is noted that not only the nodal values of φ but also of ∂φ/∂η are incorporated into the

conversion system and this imposition is done in an exact manner owing to the presence of

integration constants. Solving (10) yields

ŵ = I−1φ̂. (11)

6



Substitution of (11) into (9), (8) and (7) leads to

φ(η) =
[
I
(0)
1 (η), I

(0)
2 (η), η, 1

]
I−1φ̂, (12)

∂φ

∂η
(η) =

[
I
(1)
1 (η), I

(1)
2 (η), 1, 0

]
I−1φ̂, (13)

∂2φ

∂η2
(η) =

[
I
(2)
1 (η), I

(2)
2 (η), 0, 0

]
I−1φ̂. (14)

They can be rewritten in the form

φ(η) = ϕ1(η)φ1 + ϕ2(η)φ2 + ϕ3(η)
∂φ1

∂η
+ ϕ4(η)

∂φ2

∂η
, (15)

∂φ

∂η
(η) =

dϕ1(η)

dη
φ1 +

dϕ2(η)

dη
φ2 +

dϕ3(η)

dη

∂φ1

∂η
+

dϕ4(η)

dη

∂φ2

∂η
, (16)

∂2φ

∂η2
(η) =

d2ϕ1(η)

dη2
φ1 +

d2ϕ2(η)

dη2
φ2 +

d2ϕ3(η)

dη2
∂φ1

∂η
+

d2ϕ4(η)

dη2
∂φ2

∂η
, (17)

where {ϕi(η)}4i=1 is the set of basis functions in the physical space. These expressions allow

one to compute the values of φ, ∂φ/∂η, and ∂2φ/∂η2 at any point η in [η1, η2] in terms of

four nodal unknowns, i.e. the values of the field variable and its first-order derivatives at the

two extremes (also grid points) of the element.

For convenience, in the case of η ≡ x, we denote

µi =
d2ϕi(x1)

dx2
, (18)

νi =
d2ϕi(x2)

dx2
, (19)

and in the case of η ≡ y,

θi =
d2ϕi(y1)

dy2
, (20)

ϑi =
d2ϕi(y2)

dy2
, i = {1, 2, 3, 4}. (21)

2.2. Semi-interior elements

As mentioned earlier, a semi-interior element is defined by two nodes: an interior node and

a boundary node. The subscripts 1 and 2 are now replaced with b (b represents a boundary

node) and g (g an interior grid node), respectively (Figure 2b). Assume that the value of φ
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is given at ηb. The conversion system can be formed as




φb

φg

∂φg

∂η


 =




I
(0)
b (ηb) I

(0)
g (ηb) ηb 1

I
(0)
b (ηg) I

(0)
g (ηg) ηg 1

I
(1)
b (ηg) I

(1)
g (ηg) 1 0







wb

wg

C1

C2



. (22)

(22) leads to

φ(η) = ϕ1(η)φb + ϕ2(η)φg + ϕ3(η)
∂φg

∂η
, (23)

∂φ

∂η
(η) =

dϕ1(η)

dη
φb +

dϕ2(η)

dη
φg +

dϕ3(η)

dη

∂φg

∂η
, (24)

∂2φ

∂η2
(η) =

d2ϕ1(η)

dη2
φb +

d2ϕ2(η)

dη2
φg +

d2ϕ3(η)

dη2
∂φg

∂η
. (25)

It can be seen that the conversion matrix in (22) is under-determined and its inverse can

be obtained using the SVD technique (pseudo-inversion). Owing to the facts that point

collocation is used and the RBF conversion matrix is not over-determined, the boundary

condition φb is imposed in an exact manner. For other types of semi-interior elements, the

reader is referred to An-Vo et al. [26] for details.

3. Derivation of C2-continuous ADI method

3.1. ADI scheme for N-S equations on a Cartesian grid

Consider a grid point P and its east, west, north and south neighbouring nodes denoted as

E, W , N and S, respectively (Figure 3). Collocating (5) and (6) at P , one obtains

∂2ψP

∂x2
+
∂2ψP

∂y2
+ ωP = 0, (26)

∂ωP

∂t
+
∂2ωP

∂x2
+
∂2ωP

∂y2
= Re

(
∂ψP

∂y

∂ωP

∂x
− ∂ψP

∂x

∂ωP

∂y

)
. (27)
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We now employ the ADI (Alternating-Direction Implicit) procedure [3, 4] to relax the time

derivative term in (27) in two stages. At a time instant tn, (41) and (27) become

∂2ψn
P

∂x2
+
∂2ψn

P

∂y2
+ ωn−1

P = 0, (28)

ω
n−1/2
P − ωn−1

P

∆t/2
+
∂2ω

n−1/2
P

∂x2
+
∂2ωn−1

P

∂y2
= Re

(
∂ψn

P

∂y

∂ω
n−1/2
P

∂x
− ∂ψn

P

∂x

∂ωn−1
P

∂y

)
, (29)

ωn
P − ω

n−1/2
P

∆t/2
+
∂2ω

n−1/2
P

∂x2
+
∂2ωn

P

∂y2
= Re

(
∂ψn

P

∂y

∂ω
n−1/2
P

∂x
− ∂ψn

P

∂x

∂ωn
P

∂y

)
. (30)

It can be seen that in the first stage, i.e. (29), ∂2ω
n−1/2
P /∂x2 and ∂ω

n−1/2
P /∂x are treated

implicitly and ∂2ωn
P/∂y

2 and ∂ωn
P/∂y are treated implicitly in the second stage, i.e. (30).

These derivatives and the second-order derivatives of streamfunction in (28) are typically

approximated by a second-order CD scheme, e.g. [5], or HOC implicit schemes, e.g. [6, 7,

12, 27]. For instance in x-direction, one has

∂ω
n−1/2
P

∂x
=
ω
n−1/2
E − ω

n−1/2
W

2h
+O(h2), (31)

∂2ω
n−1/2
P

∂x2
=
ω
n−1/2
E − 2ω

n−1/2
P + ω

n−1/2
W

h2
+O(h2), (32)

∂2ψn
P

∂x2
=
ψn
E − 2ψn

P + ψn
W

h2
+O(h2), (33)

or

1

6

∂ω
n−1/2
W

∂x
+

2

3

∂ω
n−1/2
P

∂x
+

1

6

∂ω
n−1/2
E

∂x
=
ω
n−1/2
E − ω

n−1/2
W

2h
+O(h4), (34)

1

12

∂2ω
n−1/2
W

∂x2
+

10

12

∂2ω
n−1/2
P

∂x2
+

1

12

∂2ω
n−1/2
E

∂x2
=
ω
n−1/2
E − 2ω

n−1/2
P + ω

n−1/2
W

h2
+O(h4), (35)

1

12

∂2ψn
W

∂x2
+

10

12

∂2ψn
P

∂x2
+

1

12

∂2ψn
E

∂x2
=
ψn
E − 2ψn

P + ψn
W

h2
+O(h4). (36)

In (31), (32) and (33) the derivatives are explicitly given in term of nodal values of the field

variable while one has to solve tridiagonal systems to obtain the derivative values in (34),

(35) and (36). If one makes use of (31) or (34) to approximate the convection term of (29),

the obtained system matrix might not be diagonally dominant at high values of the Re. As

a result, they suffer from the so-called cell Reynolds number limitation (e.g. [28]). Similar

discussions can be made for equation (30) in y-direction.
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3.2. Proposed C2-continuous IRBFE-ADI method

As in Figure 3, one can form 4 two-node IRBFEs associated with P , namely WP , PE, SP

and PN , assumed to be interior elements. To approximate ∂2ψn
P /∂x

2 and ∂2ω
n−1/2
P /∂x2,

∂2ψn
P/∂y

2 and ∂2ωn
P/∂y

2 via (17), we propose to use the elements WP , SP , respectively,

with abbreviations (19) and (21),

∂2ψn
P

∂x2
= ν1ψ

n
W + ν2ψ

n
P + ν3

∂ψn
W

∂x
+ ν4

∂ψn
P

∂x
, (37)

∂2ω
n−1/2
P

∂x2
= ν1ω

n−1/2
W + ν2ω

n−1/2
P + ν3

∂ω
n−1/2
W

∂x
+ ν4

∂ω
n−1/2
P

∂x
, (38)

∂2ψn
P

∂y2
= ϑ1ψ

n
S + ϑ2ψ

n
P + ϑ3

∂ψn
S

∂y
+ ϑ4

∂ψn
P

∂y
, (39)

∂2ωn
P

∂y2
= ϑ1ω

n
S + ϑ2ω

n
P + ϑ3

∂ωn
S

∂y
+ ϑ4

∂ωn
P

∂y
. (40)

It will be shown later that C2-continuous conditions are imposed at P in both x- and y-grid

lines. As a result, instead of using element WP to give approximations of ∂2ψn
P/∂x

2 and

∂2ω
n−1/2
P /∂x2, we are able to use element PE as a replacement. Similarly, element PN can

replace SP to give approximations for ∂2ψn
P/∂y

2 and ∂2ωn
P/∂y

2. These possibilities will give

the same results. Substituting (37) and (39) into (28), (38) into (29), and (40) into (30), we

have

ν1ψ
n
W + ϑ1ψ

n
S + (ν2 + ϑ2)ψ

n
P + ν3

∂ψn
W

∂x
+ ϑ3

∂ψn
S

∂y
+ ν4

∂ψn
P

∂x
+ ϑ4

∂ψn
P

∂y
= ωn−1

P , (41)

ν1ω
n−1/2
W + (ν2 +

1

∆t/2
)ω

n−1/2
P + ν3

∂ω
n−1/2
W

∂x
+ (ν4 −Re

∂ψn
P

∂y
)
∂ω

n−1/2
P

∂x
=

ωn−1
P

∆t/2
− ∂2ωn−1

P

∂y2
− Re

∂ψn
P

∂x

∂ωn−1
P

∂y
, (42)

ϑ1ω
n
S + (ϑ2 +

1

∆t/2
)ωn

P + ϑ3
∂ωn

S

∂y
+ (ϑ4 +Re

∂ψn
P

∂x
)
∂ωn

P

∂y
=

ω
n−1/2
P

∆t/2
− ∂2ω

n−1/2
P

∂x2
+Re

∂ψn
P

∂y

∂ω
n−1/2
P

∂x
. (43)

Thus, at a nodal point P in (41) there are three unknowns, namely ψn
P , ∂ψ

n
P /∂x and

∂ψn
P /∂y. To solve (41), two additional equations are needed and devised here by impos-

ing C2-continuous conditions at P in x- and y-directions, i.e.

(
∂2ψn

P

∂x2

)

L

=

(
∂2ψn

P

∂x2

)

R

, (44)

(
∂2ψn

P

∂y2

)

B

=

(
∂2ψn

P

∂y2

)

T

, (45)
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where (.)L indicates that the computation of (.) is based on the element to the left of P , i.e.

element WP, and similarly subscript R,B,T denotes the right (PE ), bottom (SP) and top

(PN ) elements. The left of equations (44) and (45) are replaced by (37) and (39) and the

right by similar expressions obtained via (17), noting (18) and (20) respectively, yielding

ν1ψ
n
W + ν2ψ

n
P + ν3

∂ψn
W

∂x
+ ν4

∂ψn
P

∂x
= µ1ψ

n
P + µ2ψ

n
E + µ3

∂ψn
P

∂x
+ µ4

∂ψn
E

∂x
, (46)

ϑ1ψ
n
S + ϑ2ψ

n
P + ϑ3

∂ψn
S

∂y
+ ϑ4

∂ψn
P

∂y
= θ1ψ

n
P + θ2ψ

n
N + θ3

∂ψn
P

∂y
+ θ4

∂ψn
N

∂y
. (47)

At the nodal point P and for the vorticity field, in the first relaxation stage in the x-direction,

there are two unknowns in (42), namely ω
n−1/2
P and ∂ω

n−1/2
P /∂x and in the second stage of

relaxation in the y-direction, two unknowns in (43), namely ωn
P and ∂ωn

P /∂y. To solve (42),

one additional equation is needed and also devised by imposing C2-continuity condition at

P in x-direction, i.e. (
∂2ω

n−1/2
P

∂x2

)

L

=

(
∂2ω

n−1/2
P

∂x2

)

R

. (48)

The left of equation (48) is replaced by (38) and the right by a similar expression obtained

via (17), noting (18), yielding

ν1ω
n−1/2
W +ν2ω

n−1/2
P +ν3

∂ω
n−1/2
W

∂x
+ν4

∂ω
n−1/2
P

∂x
= µ1ω

n−1/2
P +µ2ω

n−1/2
E +µ3

∂ω
n−1/2
P

∂x
+µ4

∂ω
n−1/2
E

∂x
.

(49)

In a similar manner, to solve (43), one additional equation is created by imposing C2-

continuity condition at P in y-direction, i.e.

(
∂2ωn

P

∂y2

)

B

=

(
∂2ωn

P

∂y2

)

T

, (50)

The left of equation (50) is replaced by (40) and the right by a similar expression obtained

via (17), noting (20), yielding

ϑ1ω
n
S + ϑ2ω

n
P + ϑ3

∂ωn
S

∂y
+ ϑ4

∂ωn
P

∂y
= θ1ω

n
P + θ2ω

n
N + θ3

∂ωn
P

∂y
+ θ4

∂ωn
N

∂y
. (51)

(41-43), (46), (47), (49) and (51) will be slightly different at the domain boundary where

(25) for semi-interior elements is used instead of (17). To solve for the streamfuncion field

we collect equations (41), (46) and (47) at all nodal points which leads to a large system

matrix of size 3N × 3N where N is the total number of grid points of the problem domain.

Nonetheless, this system is sparse and banded. As a result, the LU technique is very efficient

for factorisation. It is noted that the factorisation needs to be done only once.
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For the vorticity field, it can be seen from (42), (43), (49) and (51) that there are 4 nonzero

entries for the governing equations, i.e. (42) and (43), and 6 nonzero entries for the C2-

continuity conditions at the grid point P , i.e. (49) and (51). At the first relaxation stage,

collection of equations (42) and (49) at nodal points on each and every x-grid line leads

to Ny independent sets of equations. Each set contains 2Nx equations for 2Nx unknowns

associated with an x-grid line with Nx nodes. At the second stage, collection of equations

(43) and (51) at nodal points on each and every y-grid line leads to Nx independent sets of

equations. Each set contains 2Ny equations for 2Ny unknowns associated with a y-grid line

with Ny nodes. In contrast to the direct solution approaches in [26, 29] where a system of

3N equations for 3N unknowns are required, the current approach results in considerable

savings in terms of both storage and computational time. The latter is significantly reduced

further when parallelisation is implemented to independently solve these relatively small sets

of 2Nη equations.

At high values of the Re, the fourth terms on the LHS of (42) and (43) are dominant, which

guarantees diagonally dominant system matrices. Owing to the fact that two-node IRBFEs

are used, the proposed method also leads to very sparse systems and its solution is a C2

function across IRBFEs.

4. Numerical examples

The performance of the proposed C2-continuous IRBFE-ADI method is studied through the

simulation of flows in square and triangular cavities. For all numerical examples presented in

this study, the MQ shape parameter a is simply chosen proportionally to the element length

h by a factor β. β = 1 is used throughout the computations. In the case of non-rectangular

domains, there may be some nodes that are too close to the boundary. If an interior node

falls within a distance of h/4 to the boundary, such a node is removed from the set of

nodal points. A steady solution is obtained with a time marching approach starting from a

computed solution at a lower Reynolds number. For the special case of Stokes equation, the

starting condition is the rest state.

The solution procedure involves the following steps

(1) Guess the initial distributions of the streamfunction and vorticity in the case of Stokes

12



flow. Otherwise, take the solution of a lower Reynolds number as an initial guess.

(2) Discretise the streamfunction equation at a time instant tn (28) by means of C2-continuous

IRBFEs, i.e. (41), (46) and (47), and then apply the LU technique to factorise the system

matrix into two triangular matrices. It is noted that the factorisation needs to be done only

once.

(3) Solve (28) subjects to boundary conditions for the new streamfunction field.

(3) Derive a computational boundary condition for the vorticity from the updated stream-

function field.

(4) Solve for the new vorticity field in two stages by using (42) and (49), (43) and (51) in x-

and y-directions respectively.

(5) Check to see whether the solution has reached a steady state through a condition on

convergence measure

CM(ψ) =

√
N∑
i=1

(ψi − ψ0
i )

2

√
N∑
i=1

ψ2
i

< 10−9, (52)

where N is the total number of grid nodes.

(6) If CM is not satisfactorily small, advance pseudo-time and repeat from step (3). Other-

wise, stop the computation and output the results.

4.1. Square cavity

Square cavity flow is the most studied case in the literature of internal flows. This type of

flow is important firstly in its own right as a basic physical model. Then, owing to its simple

geometry and rich flow physics at different Reynolds numbers, the problem also serves as a

useful test for numerical algorithms in CFD. The cavity is taken to be a unit square, with

the lid sliding from left to right at a unit velocity. The boundary conditions can be specified

as

ψ = 0, ∂ψ/∂x = 0 on x = 0, x = 1,

ψ = 0, ∂ψ/∂y = 0 on y = 0,

ψ = 0, ∂ψ/∂y = 1 on y = 1.

We take Dirichlet boundary conditions, ψ = 0, on all walls for solving (5). The Neumann

boundary conditions, ∂ψ/∂n (i.e. ∂ψ/∂n = ∇ψ · n̂, where n̂ is the outward unit vector

13



normal to the boundary), are used to derive computational boundary conditions for ω in

solving (6). Making use of (5), the values of ω on the boundaries are computed by

ωb = −∂
2ψb

∂x2
on x = 0, x = 1, (53)

ωb = −∂
2ψb

∂y2
on y = 0, y = 1. (54)

In computing (53) and (54), one needs to incorporate ∂ψb/∂x into ∂2ψb/∂x
2, and ∂ψb/∂y into

∂2ψb/∂y
2, respectively. A simple technique to derive ωb in the context of 2-node IRBFEs can

be found in [29]. It will be briefly reproduced here for the sake of completeness. Assuming

that node 1 and 2 of an IRBFE are a boundary node and an interior grid node respectively

(i.e. 1 ≡ b and 2 ≡ g). Boundary values of the vorticity are obtained by applying (17) as

ωb = −∂
2ψb

∂η2
= −

(
d2ϕ1(ηb)

dη2
ψb +

d2ϕ2(ηb)

dη2
ψg +

d2ϕ3(ηb)

dη2
∂ψb

∂η
+

d2ϕ4(ηb)

dη2
∂ψg

∂η

)
, (55)

where η represents x and y; ψb and ∂ψb/∂η are the Dirichlet and Neumann boundary con-

ditions for ψ, and ψg and ∂ψg/∂η are known values taken from the solution of the stream-

function equation (5). It is noted that (i) all given boundary conditions are imposed in an

exact manner; and (ii) this technique only requires the local values of ψ and ∂ψ/∂η at the

boundary node and its adjacent grid node to estimate the Dirichlet boundary conditions for

the vorticity equation (6).

It can be seen that there are two values of u at each top corner of the cavity making the

solution singular. In the well-known paper by Ghia et al. [30], the flow was simulated by

the finite-difference scheme and a multigrid method using very fine grids (i.e. 129 × 129

and 257 × 257). The obtained results are very accurate and they have been considered as

a benchmark of finite-difference methods. In the later work by Botella and Peyret [31], the

regular and singular parts of the solution are handled by a Chebyshev collocation and an

analytic method respectively. Benchmark spectral results for the flow at Re = 100 and

Re = 1000 were reported. In the present study, the set of 2-node IRBFEs is generated from

grid lines that pass through interior grid nodes. As a result, the set of interpolation points

does not include the top corners of the cavity and hence corner singularities do not explicitly

enter the discrete system.

Simulation is carried out for a wide range of Re, namely (100, 400, 1000, 3200, 5000, 7500).

Grid convergence is also studied. Results obtained are compared with the benchmark so-
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lutions, i.e. Ghia et al. [30] and Botella and Peyret [31], and with the global 1D-IRBF

collocation (1D-IRBF-C) results recently given in Mai-Duy and Tran-Cong [32]. These com-

parisons aim to assess the accuracy of the present method. To assess the efficiency and

stability, an ADI method where streamfunction and vorticity are discretised by a three-

node CD is also implemented. We denote this method as CD-ADI. It is noted that the same

method of deriving computational vorticity boundary conditions is used in both IRBFE-ADI

and CD-ADI methods.

Time-stepping convergence: The convergence behaviours of IRBFE-ADI and CD-ADI

with respect to time are shown in Figures 4-6 and Table 1. It can be seen that solutions

converge faster and larger time steps can be used for the present IRBFE-ADI method. The

numbers of iterations are about 2.8×103 and 5.8×103 to reach CM < 10−9 for IRBFE-ADI

and CD-ADI respectively in the case of Re = 1000 and a grid of 51 × 51 (Figure 4). In

the case of Re = 3200 and a grid of 91 × 91 (Figure 5), IRBFE-ADI takes about 2.1 × 104

to have CM < 10−9 while CD-ADI requires about 7.4 × 104 to have the same CM . At

Re = 7500, in contrast to the IRBFE-ADI method (∆t = 1 × 10−6), the CD-ADI method

diverges even with a smaller time step of 5 × 10−7 as shown in Figure 6. The numbers

of iterations in IRBFE-ADI method are generally lower than in CD-ADI method, yielding

shorter computational time (Table 1). It is noted that the Thomas algorithm is used to solve

tridiagonal systems in CD-ADI method and CPU seconds are associated with a computer

which has 3.25 GB of RAM and one Intel(R) Core(TM)2 Duo CPU of 3.0 GHz. All codes

are written in MATLABr language.

Grid-size convergence: The convergence of extrema of the vertical and horizontal velocity

profiles along the centrelines of the cavity with respect to grid refinement is presented in

Table 2. Benchmark results by Ghia et al. [30] and Botella and Peyret [31] are also included

for comparison purposes. It can be seen that errors relative to the benchmark results are

consistency reduced as the grid is refined (Re = 100, 1000); and (ii) extrema values very

close to the benchmark values are obtained with relatively coarse grids (e.g. 21 × 21 for

Re = 100, 41× 41 for Re = 400 and 61× 61 for Re = 1000).

Solution quality: The solution qualities of IRBFE-ADI are shown in Table 2 and Figures

7-12. Table 2 reveals that the IRBFE-ADI results are the closest to the benchmark spectral

solutions in comparison with the CD-ADI, the benchmark finite-difference and the global
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1D-IRBF-C results. Errors relative to the benchmark spectral results are less than 1% for

Re = 100 using a grid of 21 × 21 and for Re = 1000 using a grid of 61 × 61. It can be

seen from Figs 7-11 that smooth contours are obtained in the present IRBFE-ADI method

for both the streamfunction and vorticity fields at relatively coarse grids. In Figure 7, the

IRBFE-ADI method captures the primary vortex and the bottom-right corner eddy better

than the CD-ADI method at Re = 100 and a grid of 11 × 11. With the same grids, CD-

ADI method yields oscillatory contours especially for the vorticity field as shown in Figures

8-10. Converged velocity profiles at Re = 1000 and Re = 3200 are obtained by IRBFE-ADI

method with grids of 51× 51 and 91× 91, respectively, as shown in Figure 12.

4.2. Triangular cavity

The proposed method is further verified through the simulation of steady recirculating flow

in an equilateral triangle cavity. This is an example that presents a severe test for structured

grid-based numerical methods [33, 34]. Figure 13 shows the geometry of the triangular cav-

ity with the boundary conditions and the coordinate system. As in the square cavity flow

problem, no-slip boundary condition is imposed on the left and right boundaries, while a

unit horizontal velocity is prescribed on the top boundary. Numerical studies of this problem

can be categorised into structured and unstructured grid/mesh-based methods. The former

includes e.g. [33, 35, 36] where a finite difference method (FDM) was employed and the

equilateral triangle had to be transformed to a computational domain on an isosceles right

triangle. In the latter, Jyotsna and Vanka [34] used a multigrid procedure and a control

volume formulation on triangular grids. They numerically verified interesting features of the

flow in the Stokes regime. Kohno and Bathe [37] presented a flow-condition-based inter-

polation finite element scheme on triangular meshes to achieve solutions for high Reynolds

numbers.

The imposition of boundary conditions for ω on the top is similar to that used in the square

cavity flow, i.e. (55). On the left and right sides, analytic formulae for computing the

vorticity boundary condition on a non-rectangular boundary [38] are utilised here

ωb = −
[
1 +

(
tx
ty

)2
]
∂2ψb

∂x2
, (56)
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for a x-grid line, and

ωb = −
[
1 +

(
ty
tx

)2
]
∂2ψb

∂y2
, (57)

for a y-grid line. In (56) and (57), tx and ty are the x- and y-components of the unit vector

tangential to the boundary. The approximations in (56) and (57) require information about

ψ in one direction only and they are constructed here by means of 2-node IRBFEs, i.e. (17).

No exterior/fictitious points as in [33] are involved here.

Four Cartesian grids, namely Grid 1 (1952 interior points), Grid 2 (2680 points), Grid

3 (3526 points) and Grid 4 (4486 points) as shown in Figure 14, are employed to study

the convergence of the solution. Unlike FDMs [33, 35, 36], the present method does not

require any coordinate transformation, making modelling simple. The flow is simulated at

Re = (0, 100, 200, 500) where Re = U(H/3)/ν, U the lid velocity and H the cavity height

(i.e. length AD in Figure 13). An alternative definition of Reynolds number was Res = US/ν

where S is the cavity side length. We have Res = 2
√
3Re. For example, Re = 500 here is

equivalent to Res = 1732.

Figures 15 and 16 present contour plots of the streamfunction and vorticity fields, the stream

and iso-vorticity lines look comparable to those available in the literature (e.g. [33, 37]).

Figure 17 shows the profiles of u along the vertical centreline x = 0 and v along the horizontal

line y = 2. Results obtained in [37] are also included for comparison purposes. It can be

seen that the velocity profiles obtained by Grid 1 and Grid 2 at Re = 100, and by Grid 2

and Grid 3 at Re = 200 are almost identical. The present results are in good agreement with

those by the flow-conditioned-based interpolation FEM for all values of Re. The profiles of

v near the the stagnant corner at different Reynolds numbers also confirm the Stokes flow

assumption of the flow field in this region (i.e. [39]).

4.3. Discussion

4.3.1. Comparison with other RBF techniques

To the best of our knowledge, the present two-node RBF scheme yields the smallest RBF

set ever used for constructing approximation. When compared with other local RBF tech-

niques, the present method results in remarkably sparse and banded system matrices and C2-
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continuous solutions rather than the usual C0-continuous solutions. C2-continuous stream-

function field leads to smooth and highly accurate velocity field.

Unlike other conventional RBF techniques, the present technique considers both the field

variables and their partial derivatives in Cartesian directions in the formulation. As a re-

sult, the convection terms are naturally incorporated into the system matrices as unknowns

and diagonally dominant systems are always guaranteed. Numerical results show that the

present technique is very stable for high Re flows without recourse to up-winding schemes.

Although the present system matrices are much larger, bigger time steps can be used and

hence a smaller number of iterations are required to obtain a steady state solution. The com-

putational time hence becomes competitive to those required by the conventional techniques

as shown in Table 1.

4.3.2. Comparison with other conventional discretisation techniques

In terms of geometric modelling, unlike pseudo-spectral and finite-difference methods, the

present Cartesian-grid technique can handle irregular domains well. In contrast to finite

element and finite volumes, the pre-processing here is much more economical. Non-boundary

grid points are trivially generated and the intersections between grid lines and the domain

boundary can be determined as in a typical FE mesh generation [40]. For example, the

intersections of an x-grid line with the boundary can be found as follows. Either an xy-plane

or an xz-plane passing through the x-grid line is used and the intersection between this plane

and the boundary (a curve or curves) is determined by analytic geometric methods. The

intersection between the grid line and the curve(s) can then be easily determined.

In terms of solution, the governing equations are collocated at nodal points without the need

for numerical integration. ADI solution strategies are conveniently applied to accelerate the

computational process. When compared with low-order techniques, the present technique

can produce accurate results on a relatively coarse mesh, therefore has the ability to reduce

computational effort for a given accuracy. On the other hand, with more information (first

derivatives are also involved in the interpolation) the cost to construct the approximation is

quite higher than the standard CD scheme. In addition, the system matrix on each grid line

of the present ADI method is not as sparse as and twice the size of those obtained by the PR-

ADI method, requiring more than twice the memory storage. However, works on optimising
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the proposed ADI method are under investigation. It is pointed out that we can approach

tridiagonal system matrices with the same size as those in PR-ADI for diffusion-convection

type equations.

5. Concluding remarks

We propose a C2-continuous alternating direction implicit solution method for solving the

streamfunction-vorticity formulation governing fluid flows. Numerical experiments are con-

ducted with problems on rectangular and non-rectangular domains. The method successfully

simulates the fluid flows considered in a wide range of Reynolds numbers. Attractive fea-

tures of the proposed methods include (i) simple preprocessing (Cartesian grids); (ii) a sparse

system matrix (2-node approximations); and a higher order of continuity across grid nodes

(C2-continuous elements). Numerical results show that (i) larger time steps can be used and

smaller numbers of iterations are required in comparison with the classical CD-ADI method;

and (ii) smooth solutions and high levels of accuracy are achieved using relatively coarse

grids.
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Table 1: Lid-driven cavity flow: computational times.

Re Method Grid ∆t Cycle seconds Number of cycles CPU seconds

100 CD-ADI 11x11 4.0E-3 2.7E-4 198 5.3E-2

IRBFE-ADI 11x11 4.0E-3 1.7E-4 110 1.9E-2

CD-ADI 21x21 1.0E-3 9.5E-4 413 0.393

IRBFE-ADI 21x21 1.0E-3 8.9E-4 276 0.246

400 CD-ADI 21x21 2.0E-4 9.3E-4 1144 1.066

IRFBE-ADI 21x21 4.0E-4 9.6E-4 452 0.432

CD-ADI 31x31 2.0E-4 2.1E-3 922 1.945

IRBFE-ADI 31x31 3.0E-4 2.8E-3 588 1.654

CD-ADI 41x41 2.5E-4 4.1E-3 1568 6.378

IRBFE-ADI 41x41 2.5E-4 5.8E-3 693 3.997

1000 CD-ADI 31x31 2.0E-5 2.2E-3 8884 19.853

IRBFE-ADI 31x31 6.0E-5 2.7E-3 2851 7.785

CD-ADI 41x41 2.0E-5 3.9E-3 8681 33.510

IRBFE-ADI 41x41 6.0E-5 5.4E-3 2853 15.451

CD-ADI 51x51 2.0E-5 6.6E-3 8447 55.910

IRBFE-ADI 51x51 6.0E-5 1.2E-2 2807 33.880
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Table 2: Lid-driven cavity flow: extrema of the vertical and horizontal velocity profiles along the centrelines
of the cavity. % denotes percentage errors relative to the benchmark spectral results [31]. Results of the
global 1D-IRBF-C, FDM and Benchmark are taken from [41], [30] and [31] respectively.

Re Method Grid umin % vmax % vmin %

100 CD-ADI 11x11 -0.15242 28.79 0.10823 39.73 -0.14355 43.44

IRBFE-ADI 11x11 -0.19916 6.95 0.14276 20.50 -0.18436 27.36

CD-ADI 21x21 -0.19725 7.84 0.16069 10.51 -0.22401 11.74

IRBFE-ADI 21x21 -0.21537 0.62 0.17932 0.14 -0.24960 0.78

FDM (ψ − ω) 129x129 -0.21090 1.47 0.17527 2.40 -0.24533 3.34

Benchmark -0.21404 0.17957 -0.25380

400 CD-ADI 21x21 -0.20572 0.16693 -0.25885

IRFBE-ADI 21x21 -0.29015 0.24953 -0.36327

CD-ADI 31x31 -0.27258 0.24391 -0.37199

IRBFE-ADI 31x31 -0.32166 0.29581 -0.43622

CD-ADI 41x41 -0.29689 0.26978 -0.40808

IRBFE-ADI 41x41 -0.32780 0.30305 -0.44986

FDM(ψ − ω) 129x129 -0.32726 0.30203 -0.44993

1000 CD-ADI 31x31 -0.26073 32.90 0.24723 34.41 -0.36708 30.36

1D-IRBF-C 31x31 -0.34791 10.46 0.33580 10.91 -0.46765 11.27

IRBFE-ADI 31x31 -0.33775 13.08 0.32592 13.54 -0.44434 15.70

CD-ADI 41x41 -0.30741 20.89 0.29382 22.05 -0.42451 19.46

1D-IRBF-C 41x41 -0.37122 4.47 0.35910 4.73 -0.50168 4.82

IRBFE-ADI 41x41 -0.37334 3.92 0.36193 3.98 -0.49863 5.40

CD-ADI 51x51 -0.33242 14.45 0.31932 15.29 -0.45556 13.57

1D-IRBF-C 51x51 -0.37985 2.25 0.36781 2.42 -0.51469 2.35

IRBFE-ADI 51x51 -0.38482 0.97 0.37336 0.95 -0.51831 1.66

CD-ADI 61x61 -0.34772 10.51 0.33502 11.12 -0.47488 9.90

1D-IRBF-C 61x61 -0.38366 1.26 0.37173 1.38 -0.52029 1.29

IRBFE-ADI 61x61 -0.38886 0.08 0.37719 0.07 -0.52537 0.32

FDM (ψ − ω) 129x129 -0.38289 1.46 0.37095 1.59 -0.51550 2.20

Benchmark -0.38857 0.37694 -0.52708
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Ω

Semi−interior element

Interior grid nodeInterior element

Boundary node

Figure 1: A domain is embedded in a Cartesian grid with interior and semi-interior elements.
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Figure 2: Schematic outline for 2-node IRBFEs.

27



PW E

S

N

x

y

Figure 3: A grid point P and its neighbouring points on a Cartesian grid.
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Figure 4: Lid-driven cavity flow, Re = 1000, 51× 51: convergence behaviour. IRBFE-ADI method using a
time step of 6× 10−5 converges faster than the CD-ADI method using a time step of 3 × 10−5. It is noted
that the latter diverges for time steps greater than 3× 10−5. CM denotes the relative norm of the difference
of the streamfunction fields between two successive time levels.
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Figure 5: Lid-driven cavity flow, Re = 3200, 91×91, solution at Re = 1000 used as initial guess: convergence
behaviour. IRBFE-ADI method using a time step of 7 × 10−6 converges faster than the CD-ADI method
using a time step of 2× 10−6. It is noted that the latter diverges for time steps greater than 2× 10−6. CM

denotes the relative norm of the difference of the streamfunction fields between two successive time levels.
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(b) IRBFE-ADI

Figure 6: Lid-driven cavity flow, Re = 7500, 131 × 131, solution at Re = 5000 used as initial guess:
convergence behaviour. CD-ADI method uses a time step of 5× 10−7 and IRBFE-ADI method uses a time
step of 1 × 10−6. CM denotes the relative norm of the difference of the streamfunction fields between two
successive time levels.
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CD-ADI IRBFE-ADI

Figure 7: Lid-driven cavity flow, Re = 100, grid = 11 × 11: streamlines. The contour values for CD-ADI
and IRBFE-ADI plots are the same.
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(a) CD-ADI

ψ ω

(b) IRBFE-ADI

ψ ω

Figure 8: Lid-driven cavity flow, Re = 1000, grid = 51 × 51: stream and iso-vorticity lines. The contour
values are taken to be the same as those in [30] and [42] respectively. Note the oscillatory behaviour near
the top right corner in the case of CD-ADI method.
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(a) CD-ADI

ψ ω

(b) IRBFE-ADI

ψ ω

Figure 9: Lid-driven cavity flow, Re = 3200, grid = 91 × 91: stream and iso-vorticity lines. The contour
values are taken to be the same as those in [30] and [42] respectively. Note the oscillatory behaviour near
the top right corner in the case of CD-ADI method.
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(a) CD-ADI

ψ ω

(b) IRBFE-ADI

ψ ω

Figure 10: Lid-driven cavity flow, Re = 5000, grid = 111× 111: stream and iso-vorticity lines. The contour
values are taken to be the same as those in [30] and [42] respectively. Note the oscillatory behaviour near
the top right corner in the case of CD-ADI method.
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ψ ω

Figure 11: Lid-driven cavity flow, IRBFE-ADI, Re = 7500, grid = 131× 131: stream and iso-vorticity lines.
The contour values are taken to be the same as those in [30] and [42] respectively.
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(a) Re = 1000, grid= 51× 51
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(b) Re = 3200, grid= 91× 91
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Figure 12: Lid-driven cavity flow: velocity profiles along the vertical and horizontal centrelines of the cavity.
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Figure 13: Triangular cavity flow: schematic outline of the computational domain and boundary conditions.
Note that the characteristic length is chosen to be AD/3 to facilitate comparison with other published results
[33, 37].
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Grid 1 Grid 2
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Figure 14: Triangular cavity flow: the computational domain is discretised by four Cartesian grids.
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Re = 0, Grid 1 Re = 100, Grid 2

Re = 200, Grid 3 Re = 500, Grid 4

Figure 15: Triangular cavity flow: streamlines which are drawn using 21 equi-spaced levels between the
minimum and zero values, and 11 equi-spaced levels between the zero and maximum values.
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Re = 0, Grid 1 Re = 100, Grid 2

Re = 200, Grid 3 Re = 500, Grid 4

Figure 16: Triangular cavity flow: iso-vorticity lines which are drawn at intervals of ∆ω = 0.5 for a range of
−5 ≤ ω ≤ 0.5.
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Figure 17: Triangular cavity flow: velocity profiles by the present method and the flow condition-based
interpolation FEM [37].
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