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Abstract

Data parallel applications are being extensively deployed in cloud environments
because of the possibility of dynamically provisioning storage and computation re-
sources. To identify cost-effective solutions that satisfy the desired service levels,
resource provisioning and scheduling play a critical role. Nevertheless, the unpre-
dictable behavior of cloud performance makes the estimation of the resources actu-
ally needed quite complex. In this paper we propose a provisioning and scheduling
framework that explicitly tackles uncertainties and performance variability of the
cloud infrastructure and of the workload. This framework allows cloud users to es-
timate in advance, i.e., prior to the actual execution of the applications, the resource
settings that cope with uncertainty. We formulate an optimization problem where
the characteristics not perfectly known or affected by uncertain phenomena are
represented as random variables modeled by the corresponding probability distri-
butions. Provisioning and scheduling decisions – while optimizing various metrics,
such as monetary leasing costs of cloud resources and application execution time –
take fully account of uncertainties encountered in cloud environments. To test our
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framework, we consider data parallel applications characterized by a deadline con-
straint and we investigate the impact of their characteristics and of the variability
of the cloud infrastructure. The experiments show that the resource provisioning
and scheduling plans identified by our approach nicely cope with uncertainties and
ensure that the application deadline is satisfied.

Keywords: Cloud computing; Resource provisioning; Scheduling; Data parallel
workload; CloudSim; Genetic Algorithm.

1. Introduction

The analysis and management of the increased variety of massive complex
data streams being produced nowadays by applications, such as multimedia, social
media, Internet of Things and social dispersed computing, are challenging issues
(Hashem et al. (2015); Garcı́a-Valls et al. (2018)). To cope with these challenges
and accelerate large scale data processing and data analytics, “big data” applica-
tions exploit programming paradigms that support parallelism, e.g., MapReduce.
These applications are often deployed in cloud or multi-cloud environments be-
cause of virtually unlimited storage and computation resources that can be dynam-
ically provisioned on demand.

In this framework, cloud users are willing to minimize monetary costs and de-
lays by seamlessly combining their privately owned systems with external public
infrastructure. On the contrary, cloud providers are mainly interested in maximiz-
ing resource utilization and throughput and more specifically their profit. There-
fore, to identify cost-effective solutions and achieve the desired service levels, pro-
visioning and scheduling of cloud resources play a critical role.

The estimation of the resources to be provisioned to an application is a com-
plex task since their performance varies and depends on many factors, includ-
ing, among the others, the mix of workloads being concurrently processed (see,
e.g., Calzarossa et al. (2016a,b)). In particular, the use of virtualized resources and
the co-location of heterogeneous applications on a given physical machine could
lead to contentions and performance instability that are often not directly corre-
lated to cloud characteristics, as suggested by Ristov et al. (2017). Moreover, in
the case of data parallel applications that require massive data and computations,
performance fluctuations could also result in a severe load imbalance across Virtual
Machines (VM) (see Calzarossa et al. (2003); Della Vedova et al. (2016b). Since
all these uncertainties have a direct impact on resource provisioning and schedul-
ing decisions, it is important to identify the various types of uncertainty and their
sources – see Jamshidi et al. (2016); Tchernykh et al. (2016) for their classifi-
cation. In addition, these phenomena need to be taken into account before their
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effects appear, that is, prior to the application execution. This will also allow users
to obtain an accurate estimation of the budget required to deploy their applications
and take advantage of the reservation options that offer significantly cheaper cloud
resources with respect to the on demand counterpart. In fact, neglecting uncer-
tainties could lead to inefficient resource provisioning, i.e., over-provisioning or
under-provisioning.

In this paper, we propose a resource provisioning and scheduling approach for
data parallel applications that includes explicitly cloud uncertainties and perfor-
mance variability in its definition. According to this approach provisioning and
scheduling decisions are evaluated offline, i.e., prior to the actual execution of the
application, thus reducing for cloud users the risk of over-provisioning and under-
provisioning. In particular, to identify – among the large variety of resources
offered nowadays by cloud providers – an “optimal” set of resources to be pro-
visioned and the corresponding scheduling plan, our methodological framework
relies on the formulation of an optimization problem where the characteristics of
the cloud infrastructure not perfectly known or affected by uncertain phenomena
are represented as random variables modeled by the corresponding probability dis-
tributions. Thus, the provisioning and scheduling decisions – while optimizing
various parameters, such as monetary leasing costs of cloud resources and appli-
cation execution time – take fully account of uncertainties encountered in cloud
environments.

To test our methodological framework we develop various scenarios affected
by uncertainty. Moreover, as a comparison baseline, we define two reference mod-
els that do not include any variability in the decision process, even though the
variability is actually affecting the performance of the cloud infrastructure. The
evaluation of these scenarios relies on an integrated environment implemented as
extensions of the CloudSim toolkit. In particular, to validate the proposed frame-
work the identified resource provisioning and scheduling plans have been tested
under different uncertainty conditions.

We summarize our contributions as follows:

• Definition of a methodological framework for offline resource provisioning
and scheduling that copes with performance uncertainty and variability of
workload characteristics and cloud environments.

• Customization of well-known meta-heuristics for solving combinatorial op-
timization problems.

• Development of an integrated environment – implemented as extensions of
the CloudSim toolkit – for the probabilistic evaluation of resource provision-
ing and scheduling plans prior to the actual execution of the applications.
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The paper is organized as follows. Section 2 reviews the state of the art of re-
source provisioning and scheduling in cloud environments by focusing in particular
on the issues related to performance uncertainty. Section 3 presents in detail the
formal settings of the proposed methodological framework. The setup of the ex-
periments carried out to test the proposed approach is described in Section 4, while
their results are discussed in Section 5. Finally, Section 6 draws some concluding
remarks and outlines future research directions.

2. Related work

Many research efforts have been directed towards the investigation of resource
provisioning and task scheduling in cloud environments. Most of these works for-
mulate optimization problems whose goal is to identify resource settings that mini-
mize various parameters (e.g., monetary cost, execution time, energy consumption)
subject to some workload constraints (e.g., budget, deadline). In what follows, we
review the approaches applied in the literature to address these research challenges
and we outline the novelty of our approach.

2.1. Resource provisioning and scheduling

An optimization problem with a binary integer program formulation is pre-
sented in Van den Bossche et al. (2010) to study resource provisioning and schedul-
ing of a set of batch applications characterized by hard deadlines. An integer linear
programming formulation is proposed in Ruiz-Alvarez et al. (2015) for the opti-
mal resource provisioning of two specific classes of cloud applications, namely,
MapReduce applications and Monte Carlo simulations. In particular, to devise
an optimal scheduling plan based on cost and execution time, the problem for-
mulations take into account the characteristics of the infrastructure as well as the
peculiarities of the applications. Cost-effective VM provisioning approaches for
deadline-constrained MapReduce applications are suggested in Hwang and Kim
(2012). Resource provisioning of MapReduce applications is also addressed by
Chen et al. (2014) who introduce various optimization problems. The core com-
ponent for solving these problems is represented by a cost model that takes into
account the relationship among amount of input data, available system resources
and application-specific complexity. The problem of cost-efficiently scheduling
deadline-constrained bag-of-tasks applications in hybrid cloud environments is stud-
ied by Van den Bossche et al. (2013). The proposed algorithms consider the task
properties as well as the inaccuracies in their runtime estimates. Chen et al. (2017)
present a heuristic algorithm for task scheduling of budget constrained parallel ap-
plications in heterogeneous cloud environments. Moschakis and Karatza (2015a,b)
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focus on meta-heuristic optimization algorithms to schedule bag-of-task applica-
tions in a dynamic multi-cloud environment characterized by heterogeneous per-
formance and fluctuating costs even under sporadically arriving critical jobs.

A comparative review of workflow scheduling algorithms is offered by Wu
et al. (2015) in the framework of a taxonomy defined according to workflow prop-
erties (e.g., structure, execution time) and resource characteristics.

Despite these studies, our modeling framework takes explicitly account of the
presence of uncertainty in cloud performance as well as in the characteristics of
the workload to be processed and it allows cloud users to assess the impact of the
uncertainty prior the execution of their applications.

2.2. Provisioning and scheduling under uncertainty

As already pointed out, resource and workload uncertainties have a direct im-
pact on provisioning and scheduling decisions. Nevertheless, few papers explicitly
deal with the effects exercised by uncertainty on these decisions. Chaisiri et al.
(2012) include the uncertainty associated with resource demand and pricing in
multi-cloud environments in their resource provisioning algorithm. The goal of
this algorithm – formulated as a stochastic programming problem – is to mini-
mize the provisioning costs by adjusting the tradeoff between resource reservation
and on demand allocation. The provisioning and scheduling strategy for scien-
tific workflows presented by Rodriguez and Buyya (2014) model the variations of
cloud performance and data transfer by simply inflating the processing capacity
and bandwidth according to the estimations of the performance variance reported
by Schad et al. (2010). On the contrary, Fard et al. (2016) address the uncer-
tainty under the assumption of unknown processing time of a workflow activity by
proposing a robust approach based on upper and lower bounds of processing times.
Tang et al. (2017) formulate a linear programming model to address the problem
of scheduling tasks – whose characteristics are assumed stochastic or unknown in
advance – on heterogeneous clouds under budget constraints. A probabilistic ap-
proach that takes into account uncertainties is considered in Della Vedova et al.
(2016a) to address the cloud resource provisioning and task scheduling of MapRe-
duce applications.

Unlike most of the previous works, we formulate an optimization problem that
minimizes the expected monetary cost under a probabilistic constraint on the appli-
cation deadline. This problem represents workload and cloud uncertainty by means
of random variables characterized by arbitrary probability distributions, whose al-
gebraic composition describes the application cost and performance.
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2.3. Simulation of uncertainty
Performance instability of cloud environments has also been addressed within

simulation tools. For example, DynamicCloudSim – developed by Bux and Leser
(2015) as an extension of the CloudSim simulation toolkit (Calheiros et al. (2011))
– introduces several capabilities to model the instability, including heterogeneity
and dynamic changes of performance at runtime as well as failures during task ex-
ecution. In particular, this tool provides the functionality to randomize the individ-
ual performance characteristics of a VM (e.g., CPU, I/O, bandwidth) by sampling
a normal distribution. An extension of DynamicCloudSim is proposed by Mathá
et al. (2017), who developed a model that injects some noise in the workload to
mimic cloud performance uncertainty and simplify the setup of the simulator.

Similarly to this tool, we developed customized extensions of the CloudSim
toolkit that allow us to analytically model and simulate both the workload and
cloud characteristics. In details, we describe the uncertainty with any type of dis-
tribution without being limited to normal distributions. In fact, normal distribu-
tions do not always comply with real workload execution as stated by Ristov et al.
(2017). Our integrated environment includes the Stochastic Simulation in Java
(SSJ) software library (L’Ecuyer et al. (2002)) and the environment for statistical
computing R (R Core Team (2018)).

2.4. Optimization algorithms
An additional issue faced by provisioning and scheduling decisions in cloud en-

vironments deals with finding global optimal solutions in very large search spaces.
These problems are usually intractable with exact methods. Therefore, heuristic or
meta-heuristic methods are often applied to obtain feasible solutions of optimiza-
tion problems even though the solution is not guaranteed to be optimal. Simple
methods as well as more sophisticated approaches are devised for this purpose.
Zhan et al. (2015) examine the problem and solutions of resource scheduling and
offer a comprehensive survey of the evolutionary approaches adopted in this frame-
work. In particular, various combinations of Genetic Algorithms have been pro-
posed to schedule independent tasks as well as tasks characterized by precedence
constraints.

The solutions of the optimization problem proposed in this paper rely on cus-
tomizations of the Branch-and-Bound and Genetic Algorithms whose cost and fit-
ness functions take directly into account the probabilistic nature of the problem.

3. Methodological framework

This section presents the methodological approach proposed for resource pro-
visioning and scheduling of data parallel applications being deployed in cloud en-
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vironments. Our methodology allows cloud users to identify the best resource set-
tings that meet their optimization targets. In particular, to cope with performance
uncertainty, we define a general modeling framework whose overall architecture
is sketched in Figure 1. According to this framework, the application and cloud

VM1
VM2
VM3

resource provisioning
and scheduling plan

clouds
characteristics

workload
characteristics

user
requirements

optimization problem
with probabilistic evaluation

Uncertainty

Figure 1: Architecture of the modeling framework.

characteristics that could be affected by uncertainty are described by independent
random variables, whose probability distributions explain their variability. Further-
more, these distributions are evaluated in the optimization problems formulated to
identify the resource settings, (i.e., resources to be provisioned and corresponding
scheduling plans) that satisfy the selected performance and cost metrics. Due to
the combinatorial nature of these problems, their solution requires the application
of optimization methods based on heuristic or meta-heuristic approaches.

3.1. Modeling framework

Let us recall that data parallel applications are usually represented by Directed
Acyclic Graphs whose nodes correspond to the tasks the application consists of
and whose edges describe the dependencies among tasks, that is, their control and
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data precedence constraints and more specifically their execution order (see Fig-
ure 2(a)).

(a) (b)

Figure 2: Directed Acyclic Graph of an application consisting of eight tasks (a)
and corresponding scheduling plan on two VMs (b).

Therefore, according to our formalism, a data parallel application A is de-
scribed by the set of its n tasks Ti, namely, A = {Ti; i = 1, . . . , n}, and by the set
E ⊆ A×A of the edges connecting pairs of tasks.

The resource requirements of the application, that is, its demands, are described
in terms of the demands of the individual tasks. In particular, we define the follow-
ing random variables to represent the demands of task Ti:

• Dcomp
i : computation demand, that is, amount of processing;

• Dcomm
i,j : communication demand, that is, data volume to be exchanged with

task Tj ;

• Dxfer
i : transfer demand, that is, data volume to be transferred to/from I/O

devices.

The computation demand of each task can be expressed in million of instructions,
while the communication and transfer demands in megabytes.

Similarly, the characteristics of the cloud infrastructure are described in terms
of the performance of the VMs that can be provisioned to the application. More
precisely, we define the following random variables associated with VMi:

• Vproc
i : processing capacity;

• V bw
i,j : network bandwidth between VMi and VMj ;

• V xfer
i : data transfer rate to/from I/O devices (e.g., local storage, distributed

storage).
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The processing capacity can be expressed in million instructions per second (MIPS),
while the bandwidth and the transfer rate in megabits per seconds (Mbps) and
megabytes per second, respectively.

While task demands and VM performance are expressed by random variables
that account for uncertainty, the monetary costs of cloud infrastructure are not af-
fected by any type of uncertainty. Therefore, we define the deterministic costs as
follows:

• cVM
i : leasing cost of VMi;

• cbw
i,j : cost of network bandwidth between VMi and VMj ;

• c xfer
i : data transfer cost to/from I/O devices.

Finally, we introduce a function match(i, j) that describes whether the char-
acteristics of VMi match the functional and non functional requirements of task Tj

(e.g., number of cores, memory size, availability zone).
Note that multi-cloud environments usually consist of multiple instances of

either private and public VM types (e.g., large, medium, small). In what follows,
we model each of the characteristics of the instances of a given VM type with
independent and identically distributed random variables.

To identify the optimal set of resources to be provisioned to a given appli-
cation and the corresponding scheduling plan – prior to its execution – we de-
fine the resource provisioning R as the set of the VMs to be allocated, that is,
R = {VMi, i = 1, . . . ,m}. Moreover, the scheduling plan is defined by:

• a function map : [1, . . . , n]→ [1, . . . ,m] that assigns each of the n tasks to
one of the m provisioned VMs matching its functional and non functional
requirements;

• a preorder scheduling relation S that includes the task precedence constraints,
that is, S = {(Ti, Tj);Ti, Tj ∈ A}, where (Ti, Tj) implies that Tj can be
processed only after Ti has completed its execution.

In particular, in this paper we refer to static non preemptive scheduling approaches
where decisions are taken offline, that is, prior to the application execution. More-
over, we assume that tasks are executed as soon as their scheduling constraints are
fulfilled, that is, at their earliest start time.

Figure 2(b) shows an example of a scheduling plan on two VMs,
i.e., R = {VM1,VM2}, of the eight tasks of the application of Fig. 2(a). As can
be seen, some of precedence constraints between tasks (e.g., between T4 and T8)
are indirectly taken into account by the scheduling relationships (e.g., (T4, T5) and
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(T5, T8)) under the assumption of strictly positive task execution times. Moreover,
we notice that the scheduling has introduced additional precedences between tasks
that result in their sequential processing on the allocated VMs.

As already pointed out, we model the application and cloud characteristics af-
fected by uncertainty in terms of random variables. Hence, to predict the execution
time of a task ahead of its actual execution, we perform algebraic computations on
these random variables. In detail, the total execution time ti of task Ti includes
three components, namely:

• tcomp
i i.e., processing time;

• tcomm
i i.e., time spent to communicate with other tasks by exchanging data;

• txfer
i i.e., time spent to transfer data to/from I/O devices.

Hence, under the assumption that task Ti is allocated to VMk, that is, k = map(i),
and sequential communications among VMs, we can express these three compo-
nents as follows:

tcomp
i =

Dcomp
i

V proc
k

tcomm
i =

n∑
j=1;j 6=i

l=map(j)

Dcomm
i,j

V bw
k,l

txfer
i =

Dxfer
i

V xfer
k

Note that in the case of parallel communications tcomm
i is given by the maximum

of all communication times instead of their sum.
The task execution time ti is the random variable computed as the sum of the

random variables previously defined, that is, ti = tcomp
i + tcomm

i + txfer
i . By com-

bining these ti’s according to the preorder scheduling relation S, we obtain the
random variable TA corresponding to the overall execution time of the application.

The monetary cost ci for leasing the cloud resources allocated to task Ti is
obtained as follows:

ci = ti × cVM
i + Dxfer

i × c xfer
i +

n∑
j=1;j 6=i

l=map(j)

Dcomm
i,j × cbw

k,l

The overall cost C for processing the application is given by the sum of the costs
of the individual tasks, namely, C =

∑n
i=1 ci. Note that the ci’s and C are random

variables as they are the result of algebraic computations on random variables.
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The probability distributions of the application execution time and monetary
cost describe the uncertainty of workload and cloud infrastructure and allow the
resource provisioning and scheduling plans to take explicitly into account the ef-
fects of the uncertainty.

3.2. Probabilistic evaluation
According to the modeling framework introduced in the previous section, the

execution time ti of task Ti and the monetary cost ci of the cloud resources provi-
sioned to the task are random variables. Similarly, as the overall execution time TA
of the application and its cost C are obtained from these random variables, they
are themselves random variables. Therefore, it is necessary to perform some al-
gebraic computations over non negative independent random variables. The types
of computation depend on the specific relationships being created by the resource
provisioning and scheduling plan identified for the application.

We recall that a random variable is described in terms of its cumulative distri-
bution and probability density functions. More specifically, let us denote with X ,
Y and Z three non negative independent random variables, where Z is obtained
fromX and Y after some algebra (see, e.g., Grimmett and Stirzaker (2001); Petrov
(2012)). Moreover, let us denote with FX , FY , FZ and fX , fY , fZ their proba-
bility distribution and density functions, respectively. The probability distribution
function FZ of Z = X + Y is given by:

FZ(z) =
∫ +∞

−∞
FY (z − x)fX(x)dx = (FY ∗ fX)(z)

where ∗ denotes the convolution product. Similarly, FZ of Z = X/Y is obtained
as follows:

FZ(z) =
∫ z

−∞

∫ +∞

−∞
|y|fY (x× z)fY (z) dy dz

On the other hand, FZ of Z = max{X,Y } is given by:

FZ(z) = FX(z)× FY (z)

As discussed in Sect. 3.1, the random variable ti is derived from the random
variables associated with task demands and cloud infrastructure characteristics.
More specifically, the task processing time tcomp

i and the time txfer
i spent in I/O

transfers are computed as the ratio of two random variables, while the time for
data exchanges tcomm

i is computed as the sum or the maximum of ratios of random
variables.

The random variable TA is then computed by properly applying addition and
maximum operators to the ti’s. In particular, the addition of random variables takes
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into account the sequential execution of tasks on a given VM, whereas the maxi-
mum takes into account the precedence constraints introduced by the scheduling
plan. For example, for the scheduling plan shown in Fig. 2(b), the overall execution
time of the application TA is given by:

TA = max{(t1 + t2 + t3), (t4 + t5)}+ max{(t6 + t7), t8}

Note that the probability distribution functions of random variables obtained
from algebraic computations of other random variables – as it is the case of TA –
are seldom analytically tractable. Hence, it is necessary to resort to their numerical
evaluation. These evaluations are the basis for assessing the impact of the uncer-
tainties typical of cloud environments on the resource provisioning and scheduling
decisions.

3.3. Provisioning and scheduling
In cloud and multi-cloud environments, the decisions associated with resource

provisioning and scheduling strategies are always very challenging because of the
large number of possible choices. These strategies aim at finding “optimal” re-
source settings that cope with the application requirements and cloud uncertainty.
Therefore, the identification of a resource provisioning setR and a scheduling plan
{map(),S} is formulated as an offline optimization problem whose goals include
various performance and cost metrics.

The total monetary cost required to deploy an application in the clouds is a
typical metrics that needs to be minimized, while at the same time some proba-
bilistic guarantees on the obtained performance are to be satisfied. For any pair of
resource provisioning R and scheduling plan {map(),S}, such a problem can be
formulated as follows:

minimize E [C]

subject to Pr(TA ≤ d) ≥ p
(1)

where E [C] and d denote the expected overall cost and the deadline associated
with the application execution time, while p is a measure of the acceptable risk,
namely, the probability that the deadline is satisfied.

To identify the cheapest scheduling plan that satisfies the deadline constraint, a
straightforward approach consists of evaluating all possible mappings between the
tasks and the VMs to be provisioned. Nevertheless, this approach is seldom feasi-
ble especially in the case of data parallel applications to be deployed in multi-cloud
environments. In fact, the solution space of this combinatorial problem grows ex-
ponentially with the number of tasks the application consists of and the number
and types of VMs to be provisioned. Hence, heuristic or meta-heuristic approaches
are applied to identify suitable – even though non optimal – resource settings.
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3.4. Optimization methods

The methods applied to solve the optimization problems have to cope with the
nature and characteristics of the application to be deployed. Therefore, popular
methods, such as Branch-and-Bound and Genetic Algorithms, require customized
extensions that take also into account the probabilistic nature of the problem. In
what follows, we present the extensions developed to cope with our modeling
framework. In particular, without loss of generality, we will focus on data parallel
applications consisting of n tasks distributed across two sequential phases, where
all tasks of the first phase distribute their output across the tasks of the second phase
as depicted in Fig. 2(a).

3.4.1. Branch-and-Bound
The Branch-and-Bound (BB) is a well known state space search technique for

exploring in a rooted tree structure all solutions of discrete optimization problems
(see, e.g., Brusco and Stahl (2006)). Our extensions focus on an n level solution
tree whose levels correspond to application tasks and whose nodes to all possible
VMs that can be provisioned and satisfy at the same time the match function.

The root-to-leaf branches encode the candidate scheduling plans. These branches
are built according to the task precedence constraints and evaluated by means of a
cost function defined as follows:

f(R,map) =

{
E [C] Pr(TA ≤ d) ≥ p
+∞ Pr(TA ≤ d) < p

(2)

More precisely, we discard solutions (i.e., assign them an infinite cost) that satisfy
the deadline with a probability less than p and rank the other solutions according to
their expected cost. In addition, to identify the cheapest resource provisioning and
scheduling plan, we discard the partial branch explorations whose cost is higher
than the cost of previously explored root-to-leaf branches.

Various optimization techniques based on branch pruning are usually applied to
reduce the solution space exploration by discarding redundant equivalent solutions.
For example, at each tree level when an additional VM has to be provisioned to a
given task, our approach considers only one VM per type (see Figure 3).

Figure 3 depicts a portion of the BB exploration tree for the application of
Fig. 2 (a) to be scheduled on two VM types. The highlighted branch corresponds
to the identified scheduling plan on two VMs, namely, an instance of a small VM
and an instance of a large VM. Each root-to-leaf branch describes the provisioned
resource setR and the map scheduling function.

Let us remark that because of the exponential growth of the number of branches,
the application of the BB algorithm is not always feasible.
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Figure 3: Example of pruned tree derived with the Branch-and-Bound algorithm.
The branch in the box corresponds to the scheduling plan.

3.4.2. Genetic Algorithm
A Genetic Algorithm (GA) is an adaptive heuristic search method for finding

a global suboptimal solution within a predefined processing time. The underlying
idea is to study the evolution of a population of possible candidate solutions, i.e.,
individuals or chromosomes in the GA terminology (see, e.g., Affenzeller et al.
(2009)).

To apply the GA approach to our optimization problem, we formulate this prob-
lem as an integer problem. In detail, each individual – encoded by a vector M of
n integers – describes the mapping between the tasks and the VMs corresponding
to the identified resource provisioning and scheduling plans. Figure 4 shows an
example of the individual representing the scheduling plan of eight tasks on the
two provisioned VMs. Each element M [i] encodes the VM – satisfying the match
function – where task Ti is scheduled. Therefore,M is the tabular representation of
the map function and the unique VM instances represent the provisioned resource
setR.

The choice of the initial population is very important as it affects the processing
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Task T1 T2 T3 T4 T5 T6 T7 T8

99K

99K

99K

99K

99K

99K

99K

99K

VM 1 1 1 2 2 1 1 2

Figure 4: Individual representing the scheduling plan of Fig. 2 (b).

time of the Genetic Algorithm. Therefore, instead of randomly selecting the indi-
viduals, we generate the initial population using two simple bin packing heuristics
(see Hwang and Kim (2012)) that take advantage of the structure of data parallel
applications, namely:

• List and First Fit. According to this heuristic, each task of the first sequential
phase is allocated to one VM as a function of its expected execution time and
monetary cost. The tasks of the second phase are then allocated to the VMs
already provisioned. The allocation process is repeated until the proposed
solution satisfies the desired deadline.

• Deadline-aware Tasks Packing. According to this heuristics, the application
deadline is broken down into sub-deadlines associated with each phase of
the application. A first-fit strategy is applied to allocate tasks to the VMs –
sorted according to their cost/performance ratio. In particular, starting from
the tasks of the first phase, each VM is allocated as many tasks as the sub-
deadlines allow.

In addition, the initial population includes the individuals associated with a fully
parallel schedule of the tasks on the cheapest VMs as well as with fully parallel
and sequential schedule on the fastest VMs.

At each generation, we rank the population according to a fitness function in-
versely proportional to the cost function (2) introduced in Section 3.4.1. There-
fore, top ranked individuals – identified according to tournament selections – are
preserved in the next generation, while individuals with lower fitness scores are re-
placed by offsprings randomly generated according to simulated binary crossover
and polynomial mutation operators.

We note that the parameters associated with the population size, the probabili-
ties of crossover and mutation, and the number of tournaments are used to fine tune
the trade off between the exploitation and the exploration of the search space.
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4. Experimental setup

In this section we describe the setup of the experiments carried out to test
our methodological framework and probabilistically evaluate the corresponding re-
source provisioning and scheduling plans. The experiments rely on an integrated
environment developed to cope with the probabilistic nature of the problem. In par-
ticular, we consider the deployment of data parallel applications in a simple model
of a hybrid multi-cloud environment. Moreover, we define some scenarios to be
used as a reference for our probabilistic framework.

4.1. Experimental environment
The experimental environment developed for testing our methodological frame-

work allows the identification of optimal resource provisioning and scheduling
plans as well as their simulation. As shown in Figure 5, this integrated environ-
ment consists of a core component that includes the optimization and probabilistic
evaluation modules. In detail, the optimization module – responsible of the ex-

Cloud and workload

characteristics

Optimization

Probabilistic

evaluation with R

GA BB

CloudSim

SSJ

Resource provisioning

and scheduling

Simulation

Figure 5: Architecture of experimental environment.

ploration of the solution space – includes the Branch-and-Bound algorithm and
the Genetic Algorithm heuristic. In particular, the implementation of BB is based
on existing CloudSim extensions (Alrokayan et al. (2014)), while GA relies on
jMetal framework (Durillo and Nebro (2011)).

The optimization module is strictly coupled with the probabilistic evaluation
module for ranking the solutions that satisfy the deadline constraint according to
their cost. More precisely, the evaluation of their probability distribution func-
tions relies on numerical techniques based on spectral methods. For this purpose,

16



our evaluation module integrates distr package of the environment for statistical
computing R (Ruckdeschel and Kohl (2014)).

An add-on of our experimental environment is a simulation component for
reproducing the execution of the workload deployed in uncertain cloud environ-
ments. In detail, the simulation component consists of customized extensions of
the CloudSim toolkit that integrates the Stochastic Simulation Library for tackling
the uncertainty.

Various probability distributions are implemented in the core and simulation
components for describing the cloud and workload characteristics.

4.2. Cloud and workload characteristics

As already pointed out, to test our methodological framework we model a batch
workload consisting of data parallel applications to be executed in a multi-cloud
environment. More precisely, we model two providers – each offering multiple
instances of several types of VMs – and a private cloud infrastructure deploying
multiple instances of two VM types.

The main characteristics of the cloud infrastructures are summarized in Ta-
ble 1. In particular, the processing capacity VVM

i of each VM type is modeled in

Table 1: Main characteristics of the cloud infrastructures considered in the exper-
iments.

Provider VM Type ECU
Leasing cost Proc. capacity Bandwidth

[USD/h] [MIPS ×103] [Mbps]

Public cloud A

micro 0.5 0.040 1.95 300
small 1 0.080 3.91 300

medium 4 0.320 15.63 600
large 6.5 0.520 25.38 800
xlarge 8 0.640 31.25 800

x2large 13 1.040 51.02 1,100
x3large 26 2.080 101.63 1,100

Public cloud B

micro 0.5 0.045 1.95 300
small 1 0.090 3.91 300

medium 2 0.180 7.81 600
large 4.1 0.369 16.03 800
xlarge 8.6 0.774 33.67 1,100

Private cloud
small 0.5 0.001 1.95 800

medium 2 0.001 7.81 800
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terms of MIPS rate. We note that different VM types are characterized by different
processing capacities independently of the type of hardware. On the contrary, the
nominal bandwidth V bw

i,j between VMs depends on their type. For example, the
bandwidth for x3large instances is equal to 1,100 Mbps, while for micro type VM
instances it is equal to 300 Mbps. The table also lists for each VM type the corre-
sponding EC2 Compute Unit (ECU) – a measure of the integer processing power
introduced by Amazon – and the corresponding cost – expressed in USD/hour. In
the experiments we will use a per-minute billing.

Additional specifications of the cloud infrastructures refer to the bandwidth
between different VM types, that is assumed to be equal to the smaller of the two
nominal bandwidths, e.g., 300 Mbps for a micro VM instance and any VM in-
stance. Similarly, the bandwidth across the public clouds is assumed equal to 800
Mbps, while between private and public clouds to 150 Mbps. Moreover, since the
storage devices are associated with a public cloud infrastructure, the corresponding
data transfer rate V xfer

i varies with the bandwidth.
The workload considered in our experiments consists of two data parallel ap-

plications characterized by a different degree of parallelism. In addition, without
loss of generality, we assume the tasks of each application organized in two se-
quential phases – of u and v tasks – and characterized in each phase by the same
transfer and processing demands.

One of our target applications – referred to as 5/3 in what follows – consists
of five parallel tasks in the first phase and three parallel tasks in the second phase,
while the other – referred to as 64/16 – includes 64 and 16 parallel tasks in the two
phases, respectively. The tasks of the first phase read their input data from a data
storage and – after some local processing – communicate with every other task of
the second phase for transferring their output. The tasks of the second phase, in
turn, process this data and transfer their output back to the data storage. The overall
characteristics of the target applications are as follows:

• total transfer demand – input:
∑u

i=1 Dxfer
i = 1.5 TB;

• total transfer demand – output:
∑u+v

i=u+1 Dxfer
i = 750 GB;

• total communication demand:
∑

i,j Dcomm
i,j = 750 GB;

• total computation demand – first phase:
∑u

i=1 Dproc
i = 1.7× 107 million of

instructions;

• total computation demand – second phase:
∑u+v

i=u+1 Dproc
i = 3.75×106 mil-

lion of instructions.
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Note that by varying these characteristics we can model compute intensive or data
intensive applications. In addition, we consider a fixed application deadline d =
36 hours to be satisfied with a probability p greater or equal to 0.8.

In what follows, for the sake of simplicity, we assume task demands perfectly
known and not affected by any variability. On the contrary, we model uncertainty
and variability of cloud performance in terms of well-know probability distribu-
tions, such as Uniform, Half-Normal and Weibull. More precisely, to take account
of the upper bounds associated with VM processing capacity, bandwidth and trans-
fer rate – bounds that correspond to their maximum (i.e., nominal) performance –
we model the reciprocal of the positive random variables describing these charac-
teristics. In fact, many well-known distributions are not upper bounded.

Moreover, we will describe the uncertainty associated with the probability dis-
tributions in terms of a variability factor VF that represents the relative deviation
with respect to the nominal performance of the VMs. In the experiments, we will
vary this factor to investigate the impact of different degrees of uncertainty on the
behavior of our approach.

4.3. Baseline models

As part of the experimental setup, we define two baseline models that differ
from the proposed approach in the estimation of the execution time of the applica-
tion under the various resource provisioning and scheduling plans. These estima-
tions are based on simple algebraic computations performed on the constant values
describing the cloud performance.

In particular, we define the “Nominal” and “Average” (Avg) baseline models.
The Nominal model assumes the performance not affected by any variability or
uncertainty. Hence, cloud characteristics are simply specified by their nominal
values, i.e., maximum performance (see Table 1).

On the contrary, the Avg model tries to take account of the degradation af-
fecting cloud performance by assuming some – although limited – knowledge of
the actual performance, that is, the average values. More precisely, from the ex-
pected value of a random variable X we derive the corresponding estimation (or
underestimation), namely: x = (1− α)E[X], with 0 ≤ α < 1.

In what follows, we consider the Nominal and the Avg models as well as the
Avg-25% model, that is, an underestimation of cloud performance with α = 0.25.
These models will be used as a reference for our approach, denoted to as Proba-
bilistic.
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5. Experimental results

In this section we describe the results of the experiments carried out to test
our methodological framework and probabilistically evaluate the corresponding re-
source provisioning and scheduling plans. In particular, the experiments investigate
the impact of the characteristics of the applications (i.e., input transfer demand,
degree of parallelism) and of the variability of the cloud infrastructure (i.e., prob-
ability distribution, variability factor). Moreover, we compare the behavior of the
proposed approach with the baseline models.

5.1. Validation

As an introductory proof of concept, we focus on estimations of the execution
time of the 5/3 application with the resource provisioning and scheduling plan de-
picted in Fig. 2. Two VMs are provisioned, namely, one xlarge (i.e., VM1) and one
medium (i.e., VM2) instance of Public cloud B (see Table 1), whose variabilities
are modeled with Half-Normal distributions and VF= 0.3.

In particular, we compare the execution time TA computed according to our
probabilistic approach with the times obtained by simulating the behavior of the
application using our integrated environment. Figure 6 shows the two correspond-
ing probability density functions. As can be seen, the distribution of the execu-
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Figure 6: Probability density functions of the execution time of the 5/3 application
obtained by probabilistic evaluation and by simulation. Vertical lines refer to two
baseline models and to the 80th percentile of the distribution of the execution time
obtained with the probabilistic evaluation.

tion time provided by our framework nicely copes with the distribution obtained
with 1,000 simulation replications. This is also confirmed by statistical tests, such
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as the quantile-quantile plots and the Kolmogorov-Smirnov test (i.e., D = 0.025,
p−value = 0.9135).

Moreover, to investigate the behavior of the baseline models previously de-
fined, we plot in the figure the execution times derived by these models, namely,
Nominal and Avg. Note that the lower bound of TA – about 70 hours – corre-
sponds to a cloud infrastructure without any variability, i.e., to the Nominal model.
On the contrary, the execution time for the Avg model – that is about 90 hours – is
computed using the expected values of the random variables describing the cloud
variability. We finally observe that the 80th percentile of the distribution of the
execution time corresponds to the deadline constraint of the optimization problem
considered in the following experiments.

5.2. Impact of cloud variability
To assess the impact and the sensitivity of the proposed approach to cloud vari-

ability, we perform several experiments where we vary the probability distributions
describing the VM characteristics as well as the corresponding variability factors
VF. In detail, these tests – that focus on the 5/3 application – consider three dif-
ferent probability distributions (i.e., Uniform, Half-Normal, Weibull). Moreover,
the value of VF is set to 0.3 for the network bandwidth V bw

i,j and data transfer rate
V xfer

i , while for the VM processing capacity VVM
i it varies from 0.1 to 0.7.

The optimal resource provisioning and scheduling plans identified by the Branch-
and-Bound algorithm are evaluated in terms of the probability that the deadline is
satisfied and of the expected monetary cost required to deploy the application in
uncertain cloud conditions (see Figure 7) As expected, our approach guarantees
the deadline constraint regardless of the type of distribution, resulting in proba-
bilities always greater or equal to the desired value, that is, 0.8. Moreover, the
figure suggests that the selection of the resource provisioning and scheduling plans
is influenced by both the distribution type and VF. In particular, the greater the
variability, the more expensive the set of resources required to ensure the deadline
constraint. For example, the minimum cost estimated by the probabilistic evalua-
tion, that is, 236.20 USD, corresponds to Uniform distribution with VF equal to 0.1.
Eight VMs have been allocated, namely, five x2large of Public cloud A and three
xlarge of Public cloud B. On the contrary, the maximum cost, i.e., 316.33 USD,
corresponds to Half-Normal distribution with VF equal to 0.7 where five x3large
VMs of Public cloud A have been allocated.

It is worth to point out that the provisioning and scheduling problem (see
Eqn. (1)) may not allow any solution when the variability increases above a cer-
tain value. For example, in the case of Half-Normal distribution with VF= 0.9,
even the fully parallel schedule of the application on the fastest VMs leads to a
probability of satisfying the deadline equal to 0.62, well below the 0.8 constraint.
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Figure 7: Probability of satisfying the deadline (a) and expected monetary cost (b)
for the proposed approach under different variability conditions.

Finally, we compare the behavior of our approach with one of the baseline
models defined in Sect. 4.3, namely, the Avg model. As shown by Figure 8 (a),
this model leads to plans that always violate the deadline constraint. In fact, for
identifying the optimal resource provisioning and scheduling plans the Avg model
takes into account only the expected values of the VM characteristics and ignores
their distributions. Nevertheless, the type and VF of these distributions affect the
distribution of the execution time TA and the probability to satisfy the deadline.

Despite the differences in the probabilities, the provisioned resources do not
vary with the distribution type for a given VF. As can be seen from Figure 8 (b), the
expected monetary costs depend on the VF value, while they are slightly affected
by the distribution type. For example, in the three tests with VF=0.7, eight VMs
have been provisioned, namely, five x3large of Public cloud A and three xlarge of
Public cloud B and the corresponding monetary costs differ by less than one USD
(i.e., 0.05%).

In summary, these tests have shown that our approach guarantees to satisfy the
deadline constraint. The monetary costs are only about 4% higher than the cost
associated with resource provisioning and scheduling plans identified by the Avg
model.

5.3. Impact of transfer demands

These experiments are aimed at studying and comparing the behavior of the
proposed approach with some baseline models as a function of the input transfer
demand of the 5/3 application. In particular, we vary the transfer demand from 1
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Figure 8: Probability of satisfying the deadline (a) and expected monetary cost (b)
for the Avg model under different variability conditions.

to 1.5 TB and scale proportionally the remaining application demands. Moreover,
we model the cloud variability with Half-Normal distributions and VF= 0.3.

The optimal resource provisioning and scheduling plans – derived by the Branch-
and-Bound algorithm – are evaluated in terms of the probability of satisfying the
deadline, the application execution time and the expected monetary cost. As base-
line models we consider Nominal, Avg and Avg-25%. Moreover, we also consider
the Fastest VMs model, that corresponds to the fully parallel schedule of the appli-
cation on the fastest available VMs.

Figure 9 summarizes the main results of these tests. In details, Figure 9 (a) con-
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Figure 9: Probability of satisfying the deadline (a), 80th percentile of the execution
time (b) and expected monetary cost (c) for the 5/3 application as a function of the
input transfer demand.

firms that our approach satisfies the deadline constraint regardless the transfer de-
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mand. The Avg-25% and the Fastest VMs models exhibit the same behavior, while
the Nominal and the Avg models violate the deadline constraint. These behaviors
are also visible in the patterns of the application execution time (see Figure 9 (b)).
Note that the figure plots the 80th percentile of the execution time since it corre-
sponds to the deadline constraint of the optimization problem. For example, for the
Probabilistic model these times range from 29.74 to 36 hours. Figure 9 (c) shows
that the expected monetary costs increase with the transfer demand because of the
increased computation and communication requirements. In particular, the Proba-
bilistic model minimizes the expected monetary cost under the deadline constraint.
On the contrary, the Avg-25% and the Fastest VMs models, while satisfying this
constraint, do not minimize the monetary cost.

In the figures we notice piecewise patterns due to the discrete nature of the
solution space of the optimization problem: each step corresponds to a change
of the provisioning and scheduling plan to satisfy the deadline constraint. For
example, for the Avg model the optimal solutions for transfer demands – ranging
from 1.0 to 1.09 TB – correspond to the same plan, whereas for transfer demand
equal to 1.10 TB a more expensive plan is identified leading to a shorter execution
time. These changes are due to an estimation of the execution time (based on the
expected value only) that would exceed the deadline. Figure 10 explains in detail
this behavior by plotting the execution times estimated by the Avg model and the
80th percentile of the distribution of the random variable TA. Note that for the
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Figure 10: Estimated execution time for the Avg model vs. the 80th percentile of
the random variable TA.

transfer demand equal to 1.09 TB the estimation is very close to the deadline, i.e.,
35.98 hours, while the new resource provisioning and scheduling plan for 1.10 TB
leads to an estimation of 33.02 hours. As a consequence, the expected monetary
cost exhibits a sharp increase (i.e., 5.8%) as shown in Figure 9 (c)).

To analyze in more details the behavior of the Probabilistic model, we present
in Table 2 the metrics previously defined together with the number of provisioned
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VMs, the expected value and the 95th percentile of the execution time. These
results refer to transfer demands ranging from 1.2 to 1.3 TB. The table highlights

Table 2: Behavior of the Probabilistic model applied to the 5/3 application for
selected values of transfer demands. T (80)

A and T (95)
A denote the 80th and the 95th

percentiles of the execution time distribution, respectively.
Transfer # VMs Pr(TA ≤ d)

E [C] E [TA] T
(80)
A T

(95)
A

[TB] [USD] [h] [h] [h]
1.20 5 0.902 210.52 31.63 34.37 37.32
1.21 5 0.888 212.24 31.90 34.66 37.63
1.22 5 0.872 214.04 32.16 34.95 37.95
1.23 5 0.854 215.76 32.42 35.23 38.26
1.24 5 0.835 217.56 32.69 35.52 38.57
1.25 5 0.815 219.28 32.95 35.80 38.88
1.26 6 0.823 222.30 32.80 35.69 38.81
1.27 6 0.802 224.10 33.06 35.97 39.11
1.28 5 0.819 226.83 32.72 35.74 38.98
1.29 8 0.998 228.67 27.49 29.74 32.13
1.30 8 0.997 230.42 27.71 29.97 32.37

the four different provisioning and scheduling plans – whose characteristics are
presented in Table 3 – identified as optimal solutions.

We notice that these plan changes happen in accordance with the deadline con-
straint. More precisely, for transfer demand up to 1.25 TB, five x2large VM in-
stances of Public cloud A are able to satisfy the deadline with probability greater
or equal to 0.815. The 80th percentile of the execution time does not exceed the
36 hours deadline, even though it is very close, i.e., 35.80 hours. However, these
VMs cannot cope with an increased transfer demand, hence, an extra x3large VM
instance is provisioned. A further increase (i.e., 1.28 TB) leads to another change
of the resource settings, where two tasks (i.e., T5 and T8) are scheduled on the
same x3large instance. A new plan is also identified for transfer demand equal to
1.29 TB where the tasks are scheduled on eight VM instances from the two public
cloud providers. Despite the larger number of VMs and the probability of satis-
fying the deadline close to one, this plan is only 0.8% more expensive than the
previous plan.

In conclusion, these tests have shown that models other than the Probabilistic
derive resource provisioning and scheduling plans that either do not satisfy the
deadline or experience extra costs.
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Table 3: Details of the four resource provisioning and scheduling plans derived by
the Probabilistic model for the 5/3 application for transfer demand from 1.20 to
1.30 TB (see Table 2 for their behavior).

T1 T2 T3 T4 T5 T6 T7 T8

Provider Public A Public A Public A Public A Public A Public A Public A Public A
VM type x2large x2large x2large x2large x2large x2large x2large x2large
Instance 1 2 3 4 5 1 2 3

Provider Public A Public A Public A Public A Public A Public A Public A Public A
VM type x2large x2large x2large x2large x2large x2large x2large x3large
Instance 1 2 3 4 5 1 2 6

Provider Public A Public A Public A Public A Public A Public A Public A Public A
VM type x2large x2large x2large x2large x3large x2large x2large x3large
Instance 1 2 3 4 5 1 2 5

Provider Public A Public A Public A Public A Public A Public B Public B Public B
VM type x3large x3large x3large x3large x3large xlarge xlarge xlarge
Instance 1 2 3 4 5 6 7 8

5.4. Impact of parallelism

The last experiments focus on the impact of the increased parallelism of the
application on the proposed approach. For this purpose, a first set of tests considers
the 64/16 application with transfer demands varying from 1 to 1.5 TB and cloud
variability modeled with Half-Normal distributions and VF=0.3. In the second set
of tests we vary VF, while keeping the transfer demand equal to 1.5 TB.

Because the larger number of tasks, the solution space of the optimization prob-
lem is vast and cannot be completely searched by an exact algorithm such as BB.
In fact, with 14 types of VMs (see Table 1) the number of possible resource pro-
visioning and scheduling plans is equal to (14 × (64 + 16))64+16 ≈ 8.7 × 10243.
Therefore, we apply the Genetic Algorithm (see Section 3.4.2) to find a suboptimal
solution of our optimization problem. In particular, our implementation is based
on a standard single-objective generational algorithm in which we use a population
of size ten and we set as termination criterion the maximum number of evalua-
tions equal to 10,000. Moreover, we set the parameters of the crossover, mutation
and selection operators as follows: crossover probability 0.9, distribution index for
crossover and mutation 0.5, and number of tournaments five.

The probability of satisfying the deadline, the 80th percentile of the execution
times and the expected monetary costs are plotted in Figure 11 against the transfer
demand. As expected, the deadline constraint is always satisfied with probability
greater or equal to 0.8. Similarly, the 80th percentile of the execution time very
closely approaches the deadline. For example, for about three fourths of the 51 tests
these times are within 30 minutes from the deadline. The monetary costs increase
almost proportionally with the transfer demand from 137.68 to 212.49 USD.
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Figure 11: Probability of satisfying the deadline (a), 80th percentile of the execu-
tion time (b) and expected monetary cost (c) of the 64/16 application computed by
the Probabilistic model.

Let us remark that, despite the piecewise patterns exhibited by BB, GA does
not result in regular patterns. This is due to the increased degree of application
parallelism that leads to a finer-grained solution space of the optimization problem.
Moreover, the randomness of the evolution of the GA population produces some
jitters around the optimal (unknown) solution.

Finally, we investigate – with the second set of tests – the impact of the sub-
optimal solutions on the resource provisioning and scheduling plans as a function
of the cloud variability. In the tests with VF equal to 0.1 and 0.7, the subopti-
mal solutions correspond to a provision of 15 and 21 VM instances, respectively.
More precisely, four out of 15 and three out of 21 VMs belong to the Private cloud,
whereas the remaining VMs are xlarge instances of Public cloud B. The probability
of satisfying the deadline and the expected monetary costs are shown in Figure 12.
Note that for VF=0.1 the probability is close to one, even though the existence
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Figure 12: Probability of satisfying the deadline and expected monetary costs for
the 64/16 application under different variability conditions of the cloud infrastruc-
ture.
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of cheaper resource settings that match the deadline constraint is very likely. As
already stated, this is one of the side effects of the limited search of the solution
space of GA.

As a conclusion, it is worth mentioning that – thanks to the customized exten-
sions of GA – our approach is able to identify a solution – if it exists – that copes
with the deadline constraint since it includes in the initial resource setting the fully
parallel schedule of the application on the fastest VMs.

6. Conclusions

Resource provisioning and scheduling in cloud environments are particularly
challenging because of the performance uncertainty and variability of the cloud in-
frastructure as well as of the workload being deployed. In this paper we defined a
general modeling framework that tackles these issues. The application of this ap-
proach allows cloud users to estimate in advance, i.e., prior to the actual execution
of the applications, the resource settings that cope with uncertainty, thus avoiding
over-provisioning and under-provisioning.

More precisely, we represented the application and cloud characteristics sub-
ject to uncertainty by means of independent random variables, whose probability
distributions explain their variability. These distributions – that can be empirically
derived from measurements of real cloud environments – are an integral component
of the optimization problem formulated to identify the resources to be provisioned
and the scheduling plan that satisfy the desired performance and cost metrics.

To test our methodological framework, we developed an integrated environ-
ment – implemented as extensions of the CloudSim toolkit – and we defined vari-
ous experimental scenarios affected by uncertainty as well as baseline models that
do not take account of the variability in the decision process. In particular, the fo-
cus of our experiments was on the minimization of the expected monetary cost of
the cloud resources to be provisioned to data parallel applications characterized by
a deadline constraint.

The experiments have shown that our approach ensures to satisfy the dead-
line constraint independently of the cloud variability and the degree of parallelism
of the application. On the contrary, the baseline models either fail to satisfy the
deadline or require extra costs.

Future research directions could explore the feasibility of including in the de-
cision process historical data as well as online measurements about the behavior
of applications deployed in cloud environments. This process will require the de-
velopment of novel customized extensions of well know optimization heuristics to
cope with different workloads, such as complex workflows and interactive applica-
tions.
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