

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 23, 2019

Deep Generative Models for Semi-Supervised Machine Learning

Maaløe, Lars

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Maaløe, L. (2018). Deep Generative Models for Semi-Supervised Machine Learning. Kgs. Lyngby, Denmark:
DTU Compute. DTU Compute PHD-2018, Vol.. 472

http://orbit.dtu.dk/en/publications/deep-generative-models-for-semisupervised-machine-learning(e0cde206-53c3-48f2-aa8e-d0412225c014).html

Deep Generative Models for
Semi-Supervised Machine Learning

Lars Maaløe

Kongens Lyngby 2018
PhD-2018-472

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

The reintroduction of deep neural networks has a large impact on the modeling
capabilities of modern machine learning. This reignites the general public’s
dream of achieving artificial intelligence, and spawns rapid progress in large-
scale industrial machine learning development, such as autonomous driving.
However, the leaps in development are still confined to a rather limited learning
domain, in which labeled data is required. Labeled data is hard and costly to
acquire, due to the amount needed to efficiently learn a modern machine learning
model, and that many data sources are not directly interpretable. Consequently,
research in different learning paradigms that utilize vast amounts of unlabeled
data is getting more and more attention. Albeit possessing intriguing theoretical
properties, machine learning models that learn from unlabeled data are still an
unsolved research topic.

The thesis comprises methods that utilize the power of deep neural networks to
learn from both labeled and unlabeled data. A background for the theoretical
foundation of the proposed methods are described and empirical results showing
their capabilities within generation and classification tasks are presented. Fi-
nally, a real-life application within condition monitoring for sustainable energy
is demonstrated, proving that the proposed methods have the expected impact
and are applicable.

ii

Summary (Danish)

Re-introduktionen af dybe neurale netværk har haft stor indflydelse på mo-
delleringskapaciteten i den moderne maskinlæring. Det har aktualiseret offent-
lighedens efterspørgsel af kunstig intelligens, hvilket har medført signifikante
fremskridt i den industrielle udvikling af maskinlæring, for eksempel inden for
selvkørende biler. Udviklingen har dog været begrænset til et indskrænket læ-
ringsdomæne, hvori der kræves annoteret data. Store mængder af annoteret data
er vanskelige og dyre at erhverve, og det er ikke muligt at fortolke mange datakil-
der for at skabe en moderne maskinlæringsmodel. Det resulterer i, at forskning
inden for andre læringsparadigmer, der udnytter store mængder ikke-annoteret
data, får stadig større opmærksomhed. På trods af at maskinlæringsmodeller
der lærer fra ikke-annoteret data, har spændende teoretiske egenskaber, er det
dog stadig et åbent forskningsfelt.

I denne afhandling præsenterer vi metoder, der udnytter mulighederne i neu-
rale netværk til at lære fra både annoteret og ikke-annoteret data. Vi giver en
baggrund for det teoretiske grundlag for de foreslåede metoder og præsenterer
empiriske resultater, der viser metodernes evne inden for genererings- og klas-
sifikationsopgaver. Endelig præsenterer vi en applikation inden for bæredygtig
energiovervågning, hvori vi viser, at de foreslåede metoder virker.

iv

Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science, Technical University of Denmark, in fulfilment of the require-
ments for acquiring a PhD in Engineering.

During the PhD, a research stay was conducted at Apple Inc., Cupertino, Cali-
fornia, USA. The research considered machine learning in autonomous systems,
from which the findings are not disclosed in this thesis.

The thesis was funded by the Technical University of Denmark and Innovation
Fund Denmark with guidance under Professor Ole Winther. The work was
carried out between December 15, 2014 and March 17, 2018.

The thesis consists of 5 research papers.

17-March-2018

Lars Maaløe

vi Preface

Contributions

Papers included in thesis

A Maaløe, L., Sønderby, C. K., Sønderby, S. K., Winther, O. (2016). Auxil-
iary deep generative models. In Proceedings of the International Confer-
ence on Machine Learning, pages 1445–1454.

B Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., Winther, O.
(2016). Ladder variational autoencoders. In Advances in Neural Informa-
tion Processing Systems, pages 3738-3746.

C Maaløe, L., Fraccaro, M., Winther, O. (2017). CaGeM: A cluster aware
deep generative model. In Neural Information Processing Systems Work-
shop on Approximate Bayesian Inference.

D Maaløe, L., Spataru, S. V., Sera, D., Winther, O. (2018). Condition moni-
toring in photovoltaic systems by semi-supervised machine learning. Sub-
mitted to IEEE Transactions of Industrial Informatics.

E Maaløe, L., Winther, O. (2018). Feature map variational auto-encoders.
To be submitted.

viii Contributions

Papers not included in thesis

(I) Maaløe, L., Arngren, M., Winther, O. (2014). Deep belief nets for topic
modeling. International Conference of Machine Learning Workshop on
Knowledge-Powered Deep Learning for Text Mining.

(II) Maaløe, L., Sønderby, C. K., Sønderby, S. K., Winther, O. (2015). Improv-
ing semi-supervised learning with auxiliary deep generative models. In
Neural Information Processing Systems Workshop on Approximate Bayesian
Inference workshop.

(III) Sønderby, S. K., Sønderby, C. K., Maaløe, L., Winther, O. (2015). Recur-
rent spatial transformer networks. arXiv preprint arXiv:1509.05329.

(IV) Spataru, S. V., Gavriluta, A., Sera, D., Maaløe, L., Winther, O. (2016).
Development and implementation of a PV performance monitoring system
based on inverter measurements. IEEE Energy Conversion Congress and
Exposition (ECCE), 1-7.

(V) Tax, T. M. S., Antich, J. L. D., Purwins, H., Maaløe, L. (2017). Utilizing
domain knowledge in end-to-end audio processing. In Neural Information
Processing Systems Workshop on Machine Learning for Audio.

(VI) Parachiv, M., Borgholt, L., Tax, T. M. S., Singh, M., Maaløe, L. (2017).
Exploiting nontrivial connectivity for automatic speech recognition. In
Neural Information Processing Systems Workshop on Machine Learning
for Audio.

ix

Other contributions

Co-authored a large amount of teaching material throughout the PhD. They
can all be found on the Github account named DeepLearningDTU :

(i) Exercises on neural networks, Bayesian neural networks, variational auto-
encoders and ladder networks for course on Advanced Topics in Machine
Learning, Technical University of Denmark, 2015.
github.com/DeepLearningDTU/Summerschool_2015

(ii) Exercises on semi-supervised learning for summerschool on semi-supervised
learning for image analysis and computer graphics, Technical University
of Denmark and University of Copenhagen, 2016.
github.com/DeepLearningDTU/variational-autoencoders-summerschool-2016

(iii) Various material for the the course on Deep Learning, Technical University
of Denmark, 2016-2017.
github.com/DeepLearningDTU/02456-deep-learning

Developed Python libraries built upon Theano (Bastien et al., 2012), Lasagne (Diele-
man et al., 2015), and Tensorflow (Abadi et al., 2015) as frameworks for imple-
menting variational neural network models for semi-supervised and unsupervised
learning:

(iv) Sønderby, C. K., Sønderby, S. K., Maaløe, L., Parmesan.
github.com/casperkaae/parmesan

(v) Maaløe, L., Auxiliary Deep Generative Models.
github.com/larsmaaloee/auxiliary-deep-generative-models

(vi) Maaløe, L., Variational Tensorflow.
github.com/larsmaaloee/variational-tensorflow

x

Acknowledgements

First and foremost I would like to thank my supervisor, Professor Ole Winther,
for giving me the chance to embark on this journey, and for providing highly
professional guidance and collaboration throughout the research. This has led
to a PhD study that has been both fun and challenging.

I would also like to thank my research collaborators: Søren K. Sønderby, Casper
K. Sønderby, Tapani Raiko, Marco Fraccaro, and my PhD colleagues: Rasmus B.
Palm, Simon D. Kamronn, and Anders B. L. Larsen, for interesting discussions
and learnings throughout the research.

Thanks to the Technical University of Denmark and Innovation Fund Denmark
for funding the research.

Last but not least, I would like to thank Iben Thomsen, for her eternal support
throughout these studies.

xii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Contributions vii

Acknowledgements xi

1 Introduction 1
1.1 Probabilistic Generative Models 4
1.2 Semi-Supervised Learning . 5
1.3 Thesis outline . 6

2 Deep Neural Networks 9
2.1 Supervised Learning . 10
2.2 Representation learning . 14
2.3 Unsupervised Learning . 15

3 Deep Generative Models 19
3.1 Variational Inference (VI) . 20
3.2 VI with Deep Neural Networks 23

3.2.1 A High-Variance Gradient Estimator 24
3.2.2 Variational Auto-Encoder 26

3.3 Towards a Richer Posterior . 29

xiv CONTENTS

4 Deep Generative Models for Semi-supervised Learning 35
4.1 Defining a Semi-Supervised VAE 36
4.2 Auxiliary Deep Generative Models 40
4.3 Cluster-Aware Deep Generative Models 47

5 Deep Generative Models for Unsupervised Learning 53
5.1 Improving Permutation Invariant Deep Generative Models 54

5.1.1 Ladder Variational Auto-Encoders 54
5.1.2 Comparing the Deep Generative Models 57

5.2 Utilizing Spatial Information in Deep Generative Models 59

6 Condition Monitoring with Deep Generative Models 63
6.1 Condition Monitoring in Energy Production 64
6.2 Evaluating the Condition Monitoring System 65

7 Conclusion 71

A Auxiliary Deep Generative Models 75

B Ladder Variational Autoencoders 85

C CaGeM: A cluster aware deep generative model 99

D Condition monitoring in PV systems by semi-supervised ma-
chine learning 111

E Feature map variational auto-encoders 121

Bibliography 131

Chapter 1

Introduction

A problem domain can be characterized as one where the boundaries that sys-
tematically explain the domain are not understood. For some human beings, a
problem domain could be the game of tic-tac-toe and for most it would be the
game of chess, thus it is one where an analytical solution is intractable for the
subject at hand. Explicitly programmed machine algorithms are great means
of solving a problem domain, but they quickly become intractable when the
dimensionality and possible outcomes get too large. In machine learning we
define computational models that learn from data. The promise is that these
models are able to solve, or at least approximate, a solution to very complex
problem domains. However, in a large amount of domains, for which the human
cognition naturally thrives, such as facial and speech recognition, the traditional
modeling approaches come to a halt.

Deep learning has revived the hype of artificial intelligence by spawning an un-
precedented increase in performance within machine learning. The fundamental
basis of deep learning lies within the neural network, which is a model that al-
lows for a deep stacking of computational layers. The hierarchy of layers enables
learning of local as well as global representations of data (LeCun et al., 2015).
The main breakthroughs in deep learning concern natural image and language
modeling, where we have seen rapid improvements in the ability to capture
patterns from very complex data distributions. Amongst the most impressive
breakthroughs stand the improvements in computer vision (Krizhevsky et al.,

2 Introduction

2012), natural language processing (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014), audio processing (Amodei et al., 2016; van den Oord et al., 2016a),
and reinforcement learning (Mnih et al., 2015). A general conception is that it all
spawned from Hinton et al. (2006) that illuminated how one could learn a deep
stacking of neural network layers. However, the invention of a neural network is
much older and can be attributed to research on the perceptron model1 (Rosen-
blatt, 1958) on which Rumelhart et al. (1986) introduced a way of applying
backpropagation to learn a hierarchy of internal representations2. Conversely
to attributing the deep learning movement to a single event, we believe that it is
a result of a plethora of inventions, introduced in order to solve the caveats that
have impeded the performance of neural networks through time. Many of the
inventions with the highest impact can be attributed as tricks that are easily ac-
companied by each other, e.g. non-linear functions (Glorot et al., 2011), simple
regularization (Srivastava et al., 2014), and optimization schemes (Kingma and
Ba, 2014). Other inventions have achieved to reinvent the architecture of the
neural network in order to successfully embed temporal (Hochreiter and Schmid-
huber, 1997) and spatial (LeCun et al., 1999) structure. In cohesion with the
scientific research, rapid development in computer resources impact the size of
the models that can be allocated in computer memory and the amount of time
it takes to learn them.

Recent neural network research presents models with the ability to discriminate
between images on par with the human visual cortex (He et al., 2016), tran-
scribe conversational speech better than the human ear (Xiong et al., 2017), and
outperform the world champion in the ancient game of Go (Silver et al., 2016).
However, due to theoretical limitations in the applied machine learning frame-
works, we are far from the final frontier in the development of useful machine
learning models3.

What I cannot create, I do not
understand.

—Richard Feynman

Most of the groundbreaking results are still confined to the area of discriminative
modeling, in which the neural networks learn a deterministic mapping between
an input and a target, e.g. a natural image and its corresponding category. This
paradigm is referred to as supervised learning. There exist two constraints in

1A neural network and multi-layer perceptron are often referred to interchangeably.
2Rumelhart et al. (1986) are not the first account of backpropagation. However, it is a

publication that achieved tremendous traction since it presented the learning of internal rep-
resentations by applying backpropagation. Cf. (Schmidhuber, 2014) for a detailed discussion.

3Inspiration for quote from Open AI blog: blog.openai.com/generative-models.

3

this formulation. One is that the models require vast amounts of labeled data,
such as millions of labeled natural images or thousands of transcribed hours of
audio from a highly varied data distribution in order to learn efficiently. One
might say that the annotation process has become slightly less cumbersome by
crowd-sourced solutions, however, these solutions still require large quantities
of manual labor and that the type of data is directly interpretable, e.g. natural
images or audio. Many interesting applications of machine learning lie within
a problem domain where the data is not directly interpretable. This could
be genome sequences, sensor data from wind turbines, or agricultural data of
crop diseases. Another constraint when using neural networks as discriminative
models, is that they have a tendency to be overly confident when presented to
data that is significantly different than what was learned on (Nguyen et al., 2015;
Gal, 2016; Carlini and Wagner, 2017). Many problem domains have a tolerance
for faulty predictions, but what happens when we rely on image segmentation
models for predicting cancer, or when we trust the next action made by the
autonomous vehicle? It is simply infeasible to acquire enough labeled data in
order to ascertain that one covers the entire problem domain, which is why we
must learn more about where the data comes from. Gal (2016) refers to this
as: the importance of knowing what we don’t know. In order to achieve this, we
tend to the unsupervised learning paradigm in which we learn from unlabeled
data.

Conversely to discriminative models, generative models are typically defined as
probabilistic models and have the ability to learn a distribution of the observed
data, which in turn results in the ability to create, or more concisely, draw ob-
servations from a learned distribution. Generative models bear resemblance to
how humans are learning, since both are able to learn from a single data dis-
tribution, e.g. the positive category of a binary classification problem, whereas
its counterpart will have to learn from both positive and negative examples in
order to discriminate (Xu and Tenenbaum, 2007; Murphy, 2012). The theoret-
ical advantage of generative models boils down to the fact that they learn the
data distribution and the adhering uncertainty. This results in the potential to
discern overly confident predictions and opens for a wide variety of applications
within machine learning, such as natural image generation and speech synthesis.
The three most popular approaches to generative models are: generative adver-
sarial networks (GAN) (Goodfellow et al., 2014), autoregressive models such as
the PixelRNN (van den Oord et al., 2016b), and probabilistic deep generative
models such as the variational auto-encoder (VAE) (Kingma and Welling, 2014;
Rezende et al., 2014). The approaches are very different in their formulations,
but all share an intriguing potential in the fact that they can learn from both
labeled and unlabeled data. This learning paradigm is called semi-supervised
learning, and that, in combination with the probabilistic deep generative mod-
eling approach, are the main foci of the research presented in this thesis. In the
remainder of the thesis a generative model refers to the probabilistic variant.

4 Introduction

1.1 Probabilistic Generative Models

Defining a generative model may seem as the obvious choice from a theoretical
perspective, but it is often difficult to formulate it in an adequately expres-
sive way. At the core of a generative model lies the definition of a probability
distribution p(x), for which p(x) ≥ 0 and

∫∞
−∞ p(x)dx = 1. The rules of prob-

ability are defined as the sum rule: p(x) =
∫
y
p(x, y)dy, and the product rule:

p(x, y) = p(y|x)p(x), where x, y are two random variables, p(x) is the probability
distribution for the specific variable, p(x, y) the joint probability, and p(x|y) the
conditional probability. We have defined the random variables as continuous,
hence the integral, but the rules also apply to discrete variables. By utilizing
the rules of probability we define Bayes theorem:

p(y|x) = p(x|y)p(y)
p(x)

=
p(x|y)p(y)∫

y
p(x|y)p(y)dy , (1.1)

which explains the relationship between the two conditional probabilities, p(x|y)
and p(y|x) (Bishop, 2006). In this setting, p(y|x) defines the posterior, p(x|y)
the likelihood, p(y) the prior, and p(x) the evidence. While omitting the model
parameters, the above formulation of Bayes theorem, can be seen as the simplest
formulation of a generative model for supervised classification, known as the
naive Bayes classifier. Recall that in a supervised machine learning model
we seek to learn a mapping between an input x and a category y. The naive
Bayes classifier learns to map p(y|x), where this mapping depends on the reverse
conditional p(x|y), from which the observed variable can be generated from a
category. Given a dataset of N examples, x = x1, ..., xN , y = y1, ..., yN , we
can thereby either infer a category for an example in x or an example from a
category in y.

In complex problem domains, it is not trivial to learn the mapping p(x|y). E.g.
if the input distribution is defined as natural images expressed by pixels of
the dimension: width × height × channels, it quickly becomes intractable to
learn the evidence w.r.t. the input distribution. In the discriminative models,
introduced in the previous section, the model definition is loosened, by only
learning the mapping p(y|x). Empirical results show that this approach works
significantly better for supervised classification tasks (Chapelle et al., 2010),
but as mentioned earlier, they are also prone to overly confident predictions.
It may be argued that the limitation of a generative model lies in the limited
expressive power of the mapping function f(x; y) = p(x|y). As we will see later,
neural networks provide the ability for a much richer representation of the data,
which provides the flexibility to model this complex mapping through non-linear
functions.

Conversely to the discriminative model, a generative model can also be applied

1.2 Semi-Supervised Learning 5

in unsupervised learning. In unsupervised learning a common approach is to
learn a latent representation directly from the input data distribution, thus no
labeled data is needed. A good latent representation achieves to find global
features of the input distribution that can be used for clustering, anomaly de-
tection, denoising, and much more. In the context of probabilistic modeling for
unsupervised learning problems, we can introduce a latent variable z, instead of
the label y, to the generative modeling framework, such that:

p(z|x) = p(x|z)p(z)∫
z
p(x|z)p(z)dz . (1.2)

The latent variable is often defined so that it is of a lower dimensionality than the
input. Thereby, the data represented in the latent variable is less prone to the
curse of dimensionality, which is a phenomenon in which data becomes sparse
in high dimensions, so that the properties from low-dimensional data, such as
measures of similarity, are intractable. There exist many approaches to estimate
the latent variable, such that it explains the input distribution well. This will
be explained further in Chapter 3. Learning a good latent representation of an
input data distribution opens for a wide variety of applications.

1.2 Semi-Supervised Learning

The modeling of a good latent representation of the input distribution, leads
us to the intriguing properties of generative models in semi-supervised machine
learning. In semi-supervised machine learning we seek to alleviate the problem
of annotating data, by learning from a small fraction of labeled data and a large
fraction of unlabeled data. To accomplish this, we must acquire learnings on
p(x) from the unlabeled data that can support the mapping p(y|x), and vice
versa. If the labeled and unlabeled data is somehow disjoint, meaning that
they come from different distributions, we cannot expect to gain value from a
semi-supervised learning framework, and must resort to purely supervised or
unsupervised learning. This does not necessarily mean that the unlabeled and
labeled data must share direct similarity in the input dimension. Thus, for com-
plex problem domains we cannot expect that the unlabeled data lies within the
same clusters as the labeled data, due to the curse of dimensionality. There-
fore, we propose the manifold assumption that states that the high-dimensional
labeled and unlabeled data lies on a low-dimensional manifold (Chapelle et al.,
2010), on which we will not be prone to the curse of dimensionality. This corre-
sponds nicely to the latent variable z from the probabilistic generative model.
If we can infer a latent variable that encapsulates the shared properties we
can gain value from utilizing semi-supervised learning. From this prerequisite,
we can easily formulate a generative model that encapsulates the variables for

6 Introduction

semi-supervised learning by applying Bayes theorem to the joint probability,
p(x, y, z):

p(y, z|x) = p(x|y, z)p(y, z)∫
z

∫
y
p(x|y, z)p(y, z)dydz . (1.3)

However, as we shall see later, solving the above is not straightforward, due to
the integral that quickly becomes intractable for complex problem domains.

1.3 Thesis outline

In the first part of this thesis we will present a brief background on neural
networks in the context of deep learning and representation learning. Neural
networks are used as parameterizations throughout the remainder of the model-
ing frameworks proposed in this thesis, but will not be further explored. For an
in-depth review on deep learning and representation learning we refer to Bengio
et al. (2013); LeCun et al. (2015) and Goodfellow et al. (2016).

In the second part of the thesis, we present the background on generative models
based on deep learning, denoted deep generative models. The primary goal is
to provide a foundation to the research undertaken in this study and therefore
this should not be perceived as a comprehensive review.

The third and fourth part of the thesis concerns the proposed methodological
research of the thesis within semi-supervised and unsupervised deep generative
models. Here we will present the auxiliary deep generative model (Maaløe et al.,
2016) (cf. Appendix A) for unsupervised and semi-supervised learning. We
will also present the ladder variational auto-encoder (Sønderby et al., 2016)
(cf. Appendix B) for unsupervised learning. Next we formulate a model for
improving generative modeling by utilizing a fraction of labeled information, de-
noted cluster-aware deep generative models (Maaløe et al., 2017) (cf. Appendix
C). We extrapolate over improving the unsupervised generative models, by pre-
senting a research study, still in the process, in which we develop a combination
of a deep generative model and an autoregressive model, denoted feature map
variational auto-encoders (Maaløe and Winther, 2018) (cf. Appendix E).

Finally, we present an applied research study on the use of the proposed meth-
ods in condition monitoring for solar energy systems (Maaløe et al., 2018) (cf.
Appendix D). We show that deep generative models can function for real-life
fault detection, while also detecting outliers.

Within each chapter we clearly state the research contributions of this thesis.

1.3 Thesis outline 7

We also refer to educational course material developed throughout the research,
that will hopefully illuminate some of the more granular details. Throughout
the thesis, we will not provide a comprehensive review of all results found in the
articles. For this, we refer the reader to the original articles in the Appendices.

8 Introduction

Chapter 2

Deep Neural Networks

In this chapter we give a brief introduction to neural networks with a special fo-
cus on the methods used throughout the research. We will treat neural networks
as self-contained models, however, as we show in the following chapters, they
can easily be deployed as learnable function approximations in other machine
learning paradigms. First we explain the theory behind neural networks as dis-
criminative models, in the supervised setting. Next we provide a perspective
on the meaning of representation learning, followed by an introduction to deep
learning models in unsupervised learning.

All models introduced are based on gradient descent optimization algorithms,
for which we need a training set of N examples, x = x1, ..., xN . In supervised
learning, we also need the corresponding labels, y = y1, ..., yN . We refer to a
mini-batch of examples as a collection of B examples where B ≤ N , denoted xB ,
yB . Model parameters are denoted θ and/or φ, and refers to the parameters that
are learned during optimization in order to seek a better model performance.

10 Deep Neural Networks

x1

x2

x3

x4

W (1)

b(1)

h
(1)
1

h
(1)
2

h
(1)
3

W (2)

b(2)

h
(2)
1

h
(2)
2

h
(2)
3

W (3)

b(3)

y1

y2

y3

Figure 2.1: A graphical representation of depth L = 3 densely connected
neural network with input variables x, two hidden layers, h(1) and h(2), and
the output variables y. Subscripts denote the units. In this example the input
dimensionality is reduced throughout the hidden layers and the neural network
outputs 1-of-K classes, where K = 3.

2.1 Supervised Learning

A deep neural network consists of a number of non-linear activation functions,
l = 1, ..., L, denoted hidden layers h(l), stacked on top of each other, so that one
layer accepts the output of the layer below h(l−1) as input. Each layer consists
of an activation function f(·), and learnable parameters, weight matrix W (l),
and bias vector b(l), such that h(l) = f(W (l)h(l−1) + b(l)) (cf. Figure 2.1). The
activation function of the last layer L is defined differently depending on the
task at hand, ŷ = g(W (L)h(L−1) + b(L)). The stacking of the neural network
layers follow:

h(0) = x , (2.1)

h(l) = f(W (l)h(l−1) + b(l)) , l = 1, ..., L− 1 , (2.2)

ŷ = g(W (L)h(L−1) + b(L)) . (2.3)

We refer to the combined parameter space, W (1), ...,W (L) and b(1), ..., b(L) as θ.
As mentioned in Chapter 1, there exist multiple variants beside the one depicted

2.1 Supervised Learning 11

x1

x2

x3

x4

W (1)

h
(1)
1

h
(1)
2

0

0 W (2)

h
(2)
1

h
(2)
2

W (3)

y

Figure 2.2: A graphical representation of a depth L = 3, 1D convolutional
neural network with 1 channel/feature-map, input variables x, two hidden layers,
h(1) and h(2), and the output variable y, represented by a scalar. In this example
the input dimensionality is reduced throughout the hidden layers and the neural
network outputs a binary classification. The solid lines represent the kernel
matrix W (we embed the bias) that is reused within the network layers. The
width of the kernel is 3 for for layers l = 1 and l = 2, where the final layer is
densely connected. In the first transformation we apply no padding and in the
second we apply a padding of 1.

in Figure 2.1. The main variants are the recurrent neural network (RNN) and
convolutional neural network (CNN). This work considers the densely connected
neural network and the convolutional neural network. In Figure 2.2 we give an
example of a 1-dimensional convolutional neural network with only 1 channel
and 1 feature map throughout the layers. The architecture is easily scaled to a
2 or 3-dimensional example with multiple feature maps that intend to capture
different representations of the data. The CNN defines much fewer weights in
each layer that are then shared. While lowering the amount of parameters, this
triggers an ability to capture spatial structure in data.

For the neural network to learn useful representations, we must apply hidden
layer activation functions f(·) that are non-linear in nature. One of the most
well-known activation functions is the sigmoid function:

σ(x) =
1

1 + e−x
, (2.4)

which lies in the range [0, 1] and has a smooth gradient. Both of these prop-

12 Deep Neural Networks

erties are intriguing for optimization, as we will see later. Another well-known
activation function is the tanh that is in the range [−1, 1]:

tanh(x) =
sinh(x)

cosh(x)
= 2σ(2x)− 1 . (2.5)

However, due to the plateaus near the limits of these activation functions, they
are both prone to the phenomenon called vanishing gradients that saturates the
learning process. This is where the ReLU activation function, f(x) = max(0, x),
comes handy, since it does not saturate, [0,∞]. However, it possesses the vul-
nerability of activations blowing up. This can be controlled by other tricks, such
as gradient clipping or batch normalization (Ioffe and Szegedy, 2015). ReLU
units also result in sparse activations, because all negative values become 0 (gra-
dient of 0). This can come at a cost, in which many units in the neural network
become passive, dying ReLU problem, which have spawn other variants, such as
the leaky ReLU. The ReLU and its variants have gained tremendous traction
as being the best choice for a hidden layer activation function. However, due
to the properties of a bounded output interval in the case of the sigmoid and
tanh functions, they are still popular as output activation functions, g(·). In
the case of a discriminative binary classification task the activation function is
a sigmoid, and a neural network with one hidden layer is given by:

ŷθ(x) = σ
(
W (2)ReLU

(
W (1)x+ b(1)

)
+ b(2)

)
. (2.6)

Besides the binary classification task there exist two major applications within
deep neural networks for supervised learning: multi-class classification and re-
gression. In multi-class classification we seek to solve whether x belongs to
1-of-K classes (cf. Figure 2.1). In this case, the output activation function is
denoted the softmax function and for the kth class, with k = 1, ...,K it is:

softmax(ŷ)k =
eŷk

∑K
j e

ŷj
. (2.7)

The neural network in Figure 2.1 is defined as:

ŷθ(x) = softmax
(
W (3)ReLU

(
W (2)ReLU

(
W (1)x+ b(1)

)
+ b(2)

)
+ b(3)

)
.

(2.8)

For continuous regression problems the output is a linear transformation.

In the supervised learning problem, the aim of the learning task is to minimize
the negative likelihood between the target y and the model ŷθ(x) over the
parameters θ:

argmin
θ
−
∏

n

pθ(yn|ŷθ(xn)) . (2.9)

2.1 Supervised Learning 13

We often prefer to define the problem with respect to the log-likelihood, since it
(i) has the same maximum value as the likelihood, (ii) is monotonically increas-
ing, and (iii) avoids overflow and underflow since multiplication and division
becomes addition and subtraction in the log-space. In order to solve the opti-
mization problem in Equation 2.9 we seek to define a negative log-likelihood,
denoted the objective function F(ŷθ(x),y), that solves the task at hand. In
the binary classification task, the objective function is defined as the Bernoulli
cross-entropy:

F(ŷθ(x),y) = −
∑

n

(yn log ŷθ(xn) + (1− yn) log(1− ŷθ(xn))) , (2.10)

where ŷθ(·) is a scalar in the range [0, 1]. For a multi-class classification task
the objective function is the Categorical cross-entropy:

F(ŷθ(x),y) = −
∑

n

yn log ŷθ(xn) , (2.11)

where ŷθ(·) is a vector representing 1-of-K outcomes. Since neural networks
mostly apply to complex datasets, there is often not an analytical solution to find
the maximum likelihood parameter setting θML. The problems solved with deep
neural networks are non-convex problems and the parameter space is too big to
feasibly compute second-order derivatives. Therefore, we resort to a step-wise
first-order derivative optimization scheme. Stochastic gradient descent (SGD)
optimization proves a way to optimize the parameter w.r.t. to a mini-batch
xb and yb. This is done by first calculating the objective function F(ŷθ(x),
and propagate this error back through each layer (backpropagation) in order to
calculate the gradient∇θF(ŷθ(xb),yb). This process is denoted backpropagation
(Rumelhart et al., 1986).

Optimization is performed for a predefined amount of iterations, τ , where each
update is given by:

θτ+1 = θτ − α∇θτF(ŷθτ (xb),yb) , (2.12)

and α is the learning rate. Compared to the gradient descent (GD) optimization
scheme that updates the parameters θ for the entire dataset x, y, SGD has a
regularizing effect. There exist multiple further advancements to the regular
SGD optimization scheme that adapt the learning rate, α, by utilizing adaptive
estimates of lower-order moments. Throughout the research we use ADAM
(Kingma and Ba, 2014).

14 Deep Neural Networks

For an in-depth tutorial on neural networks, go to the lab exercises:

github.com/DeepLearningDTU/02456-deep-learning

Densely connected neural networks: Lab1
A thorough walk-through of the backpropagation algorithm and a
guide to setup a neural network with an accompanying introduction to
optimization algorithms. The tutorial also provides an introduction to
neural network regularization and the reverse effect, overfitting.

Convolutional neural networks: Lab2
Introduction to the concepts of convolutional neural networks, i.e.
stride, pooling, and padding. The lab also provides a deep understanding
of the arithmetics of both the densely connected and convolutional
neural network with exercises on implementing the networks without
libraries such as Tensorflow (Abadi et al., 2015). It proves practical
learnings from posing examples on widely used machine learning
datasets.

Recurrent neural networks: Lab3
A practical introduction to recurrent neural networks. The lab provides
examples on how to implement different encoder-decoder structured net-
works with simple use-cases, such as implementing a network that maps
from spelled numbers, i.e. one, two, three, to the numeric representa-
tion, i.e. 1, 2, 3.

2.2 Representation learning

The learning process of each hidden layer throughout the neural network layers
is referred to as representation learning (or feature learning), where a good
representation is one that can untangle the input data distribution in order to
improve on the training criterion at hand (Bengio et al., 2013). Let us consider
a simple example hereof, in which we have a binary classification task consisting
of two half-moons, where the upper half-moon belongs to the positive class and
the lower half-moon to the negative class (cf. Figure 2.3). The two distributions
are entangled in the input distribution and essentially impossible to discriminate
between without a form of non-linearity.

Discriminating between the two half-moons is a simple task for a neural network,
due to its ability to transform, i.e. rotate and resize, the data through its W (l)

matrices and perform translations through its b(l) vectors. This means that,

2.3 Unsupervised Learning 15

(a) (b)

Figure 2.3: (a) Density plot of a dataset consisting of two entangled half-
moons in the input space. (b) A density plot of two transformations of the
two entangled half-moons, in which they have been untangled. This can be
considered as a representation of the input data distribution.

by stacking multiple layers on top of each other, the neural network gets more
flexible in its ability to transform and translate, hence a higher expressive power.
In order to show the effect, we draw a number of examples from the distributions
and apply a mesh grid to the 2-dimensional half-moon example (cf. Figure
2.4a). To make the effect more clear, we also visualize two tendency lines, one
for each class. We then apply a neural network with two hidden layers, using
the tanh activation function, and an output layer with the sigmoid activation
function with corresponding Bernoulli cross-entropy for the purpose of binary
classification (cf. Equations 2.5, 2.4, 2.10). When training the neural network,
we quickly see how the input data distribution transforms and translates, by
visualizing the representation in one of the hidden layers (cf. Figure 2.4b). In
the end of the learning phase, where this neural network achieves an accuracy
of 100%, it is evident that it has accomplished to untangle the input space, such
that it is possible, for the output layer, to linearly discriminate between the two
half-moons (cf. Figure 2.4c).

2.3 Unsupervised Learning

In contrast to the clear definition of supervised learning, unsupervised learning
covers an extensive amount of machine learning paradigms, e.g. dimensionality
reduction, clustering, anomaly detection, and generative modeling. Amongst
the famous machine learning models for unsupervised learning is: principal
component analysis (PCA), k-nearest neighbours (KNN), restricted Boltzmann
machines (RBM), and many more. In this thesis we will limit ourselves to
unsupervised learning in the context of neural network auto-encoders.

16 Deep Neural Networks

(a)
(b) (c)

Figure 2.4: Visualization of the half-moon dataset with a mesh grid in the
input space (a), the beginning of training of a neural network in one of the
hidden layer representations (b), and finally the visualization of the hidden
representation at the end of training (c), in which the neural network is capable
of discriminating between the half-moons linearly.

Auto means self, thus the meaning is to self-encode, which refers to having a
model that can encode an input x to a latent variable z and decode this latent
variable back into the input dimension, denoted a reconstruction x̂. In Figure
2.5a we show a simple visualization of a densely connected 1 hidden layer auto-
encoder. In this context we denote the bottleneck, as a latent layer z, and the
remainder of the subsequent layers (not present in this visualization) hidden
layers, h. For ease of notation, we show a simpler graphical representation of
the auto-encoder in Figure 2.5b, in which each edge corresponds to a stacking
of hidden layers.

A breakthrough in deep auto-encoding was introduced in Hinton and Salakhut-
dinov (2006). They presented a model for dimensionality reduction that applied
the pre-training and fine-tuning step, from Hinton et al. (2006), to avoid vanish-
ing gradients when stacking layers. Within the pre-training step, they trained
RBMs with the contrastive divergence update (Hinton, 2002), which can be
viewed as a 2-layer bidirectional graphical model, for each hidden layer. This
pre-training method was quite cumbersome, and scaled badly when stacking
many layers on top of each other. Vincent et al. (2008) introduced a simpler
process for the layer-wise pre-training, denoted the denoising auto-encoder, and
later Vincent et al. (2010) complemented this with a stacked version. The intro-
duction of these opened for new findings within areas such as semi-supervised
learning (Ranzato and Szummer, 2008), natural image denoising (Vincent et al.,
2010), topic modeling (Salakhutdinov and Hinton, 2009) and much more.

In broad terms, there exist two complementary tricks to make an efficient neural
network auto-encoder. One is to learn to reconstruct the input data through a
bottleneck of lower dimensionality. This force the model to embed the part of

2.3 Unsupervised Learning 17

x1

x2

x3

x4

W (1)

b(1)

z1

z2

z3

W (2)

b(2)
x̂1

x̂2

x̂3

x̂4

(a)

x

z

x̂

θ

(b)

Figure 2.5: (a) A graphical representation of a densely connected auto-encoder
with one hidden layer. (b) A simple graphical visualization of an auto-encoder,
where the edges represent an undefined stacking of neural network layers.

the input data, from which it can reproduce it in the best way possible. The
other trick, is to map from a noisy input x̃ to the reconstruction x̂, but using
the non-noisy x in the objective function, F(x̂θ(x̃),x).

With the advent of activation functions, such as the ReLU, and non-trivial
connectivity, e.g. residual connections (He et al., 2015), the auto-encoder is not
prone to the vanishing gradient problem, thus there is no need for pre-training.
This has let to much more complex and expressive auto-encoder architectures
such as the ladder network for semi-supervised learning (Rasmus et al., 2015)
and U-Nets for image segmentation (Ronneberger et al., 2015) that can be
trained in an end-to-end fashion.

18 Deep Neural Networks

For an in-depth tutorial on auto-encoders, go to the lab exercises:

github.com/DeepLearningDTU/02456-deep-learning

Unsupervised representation learning: Lab5
An introduction to the concept of an auto-encoder with implementation
details and a walk-through on how to validate these models. The lab
also contains an exercise in which the task is to build an auto-encoder
for semi-supervised learning.

For an implementation of the ladder network (Rasmus et al., 2015), go
to the Parmesan library:

github.com/casperkaae/parmesan

Chapter 3

Deep Generative Models

In this chapter we will give an introduction to a general deterministic approxi-
mate inference approach called variational inference (Jordan et al., 1999). Next
we will investigate variational inference in light of using an inference model
(Hinton and Zemel, 1993; Salakhutdinov and Larochelle, 2010) and how this
approach contains caveats when estimating the gradients. Finally, we will intro-
duce the variational auto-encoder (VAE) (Kingma and Welling, 2014; Rezende
et al., 2014) that can be viewed as a variational inference version of the deep
neural network auto-encoder, introduced in the previous chapter.

20 Deep Generative Models

3.1 Variational Inference (VI)

As explained in Section 1.1 we can derive Bayes theorem from the likelihood
p(x|z), the prior p(z), and the joint likelihood p(x, z) = p(x|z)p(z):

p(z|x) = p(x|z)p(z)
p(x)

=
p(x|z)p(z)∫

z
p(x|z)p(z)dz , (3.1)

for which p(z|x) and p(x) is denoted the posterior and the evidence. Solving
the above integral is often intractable, hence a closed form solution can not be
derived. A common approach in order to solve this problem is to apply Markov
Chain Monte Carlo (MCMC) techniques, in which we draw samples from the
posterior, p(z|x), without knowing the normalization constant. Increasing the
number of samples drawn will ensure that the expectation converges towards
the true posterior. We will not go into the different MCMC techniques here, but
common features are, that they will eventually converge to the true p(z|x), but
have a tendency to be cumbersome in regards to training and convergence time
for a high-dimensional z-space (latent space). In many applications the use of
a too simple low dimensional latent space introduces a lack of expressiveness
when modeling complex input data distributions. This can be related to the
bottleneck of the neural network auto-encoder. If this is too low-dimensional,
it is impossible to reconstruct the data sufficiently.

Variational inference (VI) is an approach in which we optimize the parameters,
φ, of a variational approximation, qφ(z), that approximates the posterior, so that
qφ(z) ≈ p(z|x). In the following paragraphs, for the sake of simplicity, we will
refer to the posterior and the variational approximation as discrete distributions,
P (z|x) and Qφ(z).

In order to explain VI in more details, we first introduce the notion of entropy.
If we draw a sample from the discrete probability distribution, P (z|x), the
entropy of this specific draw will be high as a function of how improbable it
is. Conversely, if a specific draw from P (z|x) is the same every time, then the
entropy is 0. From an information theoretical view, the entropy describes the
average amount of information that is transfered from a sender to a receiver
w.r.t. to P (z|x). The entropy of a random variable z can be seen as the degree
of surprise for an event to happen (Bishop, 2006) and is defined as:

H(P (z|x)) = EP (z|x) [− logP (z|x)] = −
∑

z

P (z|x) logP (z|x) . (3.2)

Now that we have a notion of the entropy, we are interested in a measure that
describes a similarity between our variational approximation, Qφ(z), and the
true posterior P (z|x). The Kullback-Leibler divergence (or relative entropy),

3.1 Variational Inference (VI) 21

does that by describing the amount of additional information needed if a sender
transmits z to a receiver through Qφ(z) rather than P (z|x). In other words
it provides a measure to determine the difference between a distribution Qφ(z)
and P (z|x). It is defined as:

DKL[P (z|x)||Qφ(z)] = −
∑

z

P (z|x) log Qφ(z)

P (z|x) =
∑

z

P (z|x) log P (z|x)
Qφ(z)

.

(3.3)

It is important to note that DKL(·) is not symmetrical, DKL[P (z|x)||Qφ(z)] 6=
DKL[Qφ(z)|| P (z|x)]. It is also easily shown that the cross-entropy loss (intro-
duced in Equation 2.11) derives from exactlyH(P (z|x)) andDKL[P (z|x)||Qφ(z)]:

H(P (z|x), Qφ(z)) = H(P (z|x)) +DKL[P (z|x)||Qφ(z)]

= −
∑

z

P (z|x) logP (z|x)−
∑

z

P (z|x) log Qφ(z)

P (z|x)

= −
∑

z

P (z|x)
[
log

P (z|x)Qφ(z)
P (z|x)

]

= −
∑

z

P (z|x) logQφ(z) . (3.4)

DKL(·) is easily extended to continuous distributions p(z|x) and qφ(z):

DKL[p(z|x)||qφ(z)] = −
∫

z

p(z|x) log qφ(z)

p(z|x)dz . (3.5)

Furthermore a property, is that DKL(·) ≥ 0, which can be shown by utilizing
Jensen’s inequality1:

DKL[qφ(z)||pθ(z|x)] = −
∫

z

qφ(z) log
pθ(z|x)
qφ(z)

dz

≥ − log

∫

x

qφ(z)
pθ(z|x)
qφ(z)

dx

= − log

∫

x

pθ(z|x)dx = − log 1 = 0 . (3.6)

In order to solve the problem from Equation 3.1, we introduce parameters θ
for the joint distribution pθ(x, z). We seek to find an approximation to the
intractable part of the theorem, p(x) =

∫
z
p(x, z)dz, such that:

argmax
θ

N∏

i

pθ(xi) . (3.7)

1If f(·) is a convex function, Jensen’s inequality states that f(E(x)) ≤ E(f(x)).

22 Deep Generative Models

The objective function for the optimization problem is normally derived di-
rectly from the evidence, however we intend to derive it slightly differently. As
stated above, we introduce the variational approximation with parameters φ,
and require that it must be similar to the posterior. In order to define this
relationship, we can apply the KL-divergence to the two distributions. Hence,
when the KL-divergence is small, we ensure that qφ(z) ≈ p(z|x). However, due
to the asymmetry, we must define whether we deploy the forward KL-divergence
DKL[pθ(z|x)||qφ(z)] or the reverse KL-divergence DKL[qφ(z)||pθ(z|x)]. Murphy
(2012) amongst others, notice that there is properties that may affect an opti-
mization problem when defining one over the other. If qφ(z) = 0 and pθ(z|x) > 0
the forward KL-divergence is infinite, referred to as zero avoiding. The result
of this is that qφ(z) has a tendency to overestimate the support of pθ(z|x). The
reverse KL-divergence on the other hand is infinite for pθ(z|x) = 0 and qφ(z) > 0
(zero forcing), which results in a tendency where qφ(z) underestimates pθ(z|x).
In order to exemplify the result of using one over the other, it is helpful to
imagine pθ(z|x) as a bimodal distribution and qφ(z) as a unimodal distribution.
Optimizing w.r.t. the forward KL-divergence will result in the unimodal dis-
tribution covering the full support of the bimodal distribution. However, this
comes at a cost, since there will be many regions covered by qφ(z) with no den-
sity for pθ(z|x). Conversely, the reverse KL-divergence would fit the unimodal
distribution to one of the modes of the bimodal distribution and would thereby
be an underestimation of the true posterior. In order to avoid that the distri-
bution qφ(z) covers too many no-density regions we derive the objective of the
optimization problem from the reverse KL-divergence:

DKL[qφ(z)||pθ(z|x)] = −
∫

z

qφ(z) log
pθ(z|x)
qφ(z)

dz . (3.8)

Another reason for starting with the reverse KL-divergence is that taking the
expectation,

∫
z
qφ(z) = Eqφ(z) is tractable compared to the opposite. However,

the above does not suffice, since it is only defined w.r.t. the posterior. Referring
back to Bayes theorem, we need to optimize for the joint probability pθ(x, z).
Introducing the evidence to the above can easily embed this:

DKL[qφ(z)||pθ(z|x)] = −
∫

z

qφ(z) log
pθ(x)

pθ(x)

pθ(z|x)
qφ(z)

dz

= −
∫

z

qφ(z) log
pθ(z,x)

qφ(z)pθ(x)
dz

= −
∫

z

qφ(z) log
pθ(z,x)

qφ(z)
dz+ log pθ(x) . (3.9)

As explained earlier, it is intractable to optimize w.r.t. the evidence, so Equation
3.9 can be rearranged:

log pθ(x) = DKL[qφ(z)||p(z|x)] +
∫

z

qφ(z) log
pθ(z,x)

qφ(z)
dz . (3.10)

3.2 VI with Deep Neural Networks 23

From the above we have achieved to isolate the evidence (normalization con-
stant). However, we are still dependent on the reverse KL-divergence. Since we
know that DKL ≥ 0, we can remove this term from Equation 3.10 resulting in a
lower bound on the evidence, denoted evidence lower bound (ELBO) for which
there is no dependency on the true posterior:

log pθ(x) ≥
∫

z

qφ(z) log
pθ(x|z)pθ(z)

qφ(z)
dz

= Eqφ(z) [log pθ(x|z)]−DKL[qφ(z)||pθ(z)] ≡ Lφ,θ(x) . (3.11)

We now have an optimization problem and we can optimize the bound w.r.t.
φ and θ where at the maximum value, the variational approximation equals
the posterior, qφ(z) = p(z|x), and the bound equals the evidence, Lφ,θ(x) =
log pθ(x). The integral in the ELBO does not naturally introduce less com-
plexity. However, since we have replaced the dependency on p(z|x) with one
on qφ(z), we now have the option to choose from a tractable family, for which
we can achieve a good approximation to the posterior and one where we can
optimize the parameters φ efficiently.

3.2 VI with Deep Neural Networks

For high-dimensional complex datasets, e.g. images our audio, it will not suf-
fice to introduce qφ(z) as a simple tractable distribution. We need to somehow
approximate the posterior through an expressive model. This is denoted an in-
ference model for which we have seen many different parameterizations through
time (Hinton and Zemel, 1993; Dayan and Hinton, 1996; Salakhutdinov and
Larochelle, 2010). In Figure 3.1 we present a graphical representation of a prob-
abilistic model with a latent variable z and observed variable x. The generative
model is factorized as pθ(x, z) = pθ(x|z)pθ(z) and the corresponding inference
model is qφ(z|x). Parameterizing the inference and generative models with neu-
ral networks provide a more expressive model, since the deep neural network
can find a non-linear representation that lies on a manifold within a tractable
distribution. However, as we shall see, using a deep neural network inference
model raises problems during optimization, due to high variance of the gradient
estimates.

24 Deep Generative Models

x

z θ

(a) Generative model pθ

x

z φ

(b) Inference model qφ

Figure 3.1: Graphical representation of the generative model parameterized
by θ (a) and the variational approximation/inference model parameterized by
φ (b). z represents a latent variable that can either be expressed by a discrete
or continuous distribution and x represents the observed variable.

3.2.1 A High-Variance Gradient Estimator

In order to formulate a gradient estimator for these models, we must first derive
the ELBO from Equation 3.11 w.r.t. θ:

∇θL(x) = ∇θ
∫

z

qφ(z|x) log pθ(x, z)dz−∇θ
∫

z

qφ(z|x) log qφ(z|x)dz

=

∫

z

qφ(z|x)∇θ log pθ(x, z)dz

= Eqφ(z|x) [∇θ log pθ(x, z)] . (3.12)

The z for calculating the gradient w.r.t. θ is thereby dependent on a sample from
the variational approximation. Since the ELBO is dependent on the expectation
over the variational approximation, which is a function of φ, the gradients w.r.t.
to φ is calculated in a slightly different way:

∇φL(x) = ∇φ
∫

z

qφ(z|x) log pθ(x, z)dz
︸ ︷︷ ︸

∇φLA(x)

−∇φ
∫

z

qφ(z|x) log qφ(z|x)dz
︸ ︷︷ ︸

∇φLB(x)

. (3.13)

We split the gradient w.r.t. φ into two terms for convenience, for which the first
term is given by:

∇φLA(x) = ∇φ
∫

z

qφ(z|x) log pθ(x, z)dz

=

∫

z

∇φqφ(z|x) log pθ(x, z)dz . (3.14)

3.2 VI with Deep Neural Networks 25

The derivation of the second term is a little more complex, since we must deploy
the product rule for gradients2, and the chain rule on the log-likelihood3:

∇φLB(x) = ∇φ
∫

z

qφ(z|x) log qφ(z|x)dz

=

∫

z

qφ(z|x)∇φ log qφ(z|x)dz+
∫

z

∇φqφ(z|x) log qφ(z|x)dz

=

∫

z

qφ(z|x)
(∇φqφ(z|x)

qφ(z|x)

)
dz+

∫

z

∇φqφ(z|x) log qφ(z|x)dz

= ∇φ
∫

z

qφ(z|x)dz+
∫

z

∇φqφ(z|x) log qφ(z|x)dz

= ∇φ1 +
∫

z

∇φqφ(z|x) log qφ(z|x)dz

=

∫

z

∇φqφ(z|x) log qφ(z|x)dz . (3.15)

From knowing that ∇φqφ(z|x) log qφ(z|x) = qφ(z|x)∇φ log qφ(z|x) we can com-
bine the two terms by:

∇φL(x) = ∇φLA(x)−∇φLB(x)

=

∫

z

∇φqφ(z|x) log pθ(x, z)dz−
∫

z

∇φqφ(z|x) log qφ(z|x)dz

=

∫

z

∇φqφ(z|x) [log pθ(x, z)− log qφ(z|x)] dz

=

∫

z

qφ(z|x)∇φ log qφ(z|x) [log pθ(x, z)− log qφ(z|x)] dz

= Eqφ(z|x)
[
log

pθ(x, z)

qφ(z|x)
∇φ log qφ(z|x)

]
. (3.16)

In order to calculate the gradients in Equation 3.12 and 3.16 we apply Monte
Carlo integration over a number of samples s to estimate:

∇θL(x) ≈
1

s

s∑

i=1

Eqφ(z(i)|x)
[
∇θ log pθ(x, z(i))

]
, (3.17)

and

∇φL(x) ≈
1

s

s∑

i=1

Eqφ(z(i)|x)

[
log

pθ(x, z
(i))

qφ(z(i)|x)
∇φ log qφ(z(i)|x)

]
. (3.18)

2∇(f · g) = ∇f · g + f · ∇g
3∇ log p(x) = ∇p(x)/p(x)

26 Deep Generative Models

By utilizing the MCMC gradient estimators it is straightforward to apply a SGD
algorithm to optimize the parameters φ and θ. However, due to the scaling-
term of the gradients w.r.t. φ inside the expectation, Eqφ(z(i)|x)[·], the estimator
in Equation 3.18 has proven close to useless (Mnih and Gregor, 2014; Hinton
and Zemel, 1993; Dayan and Hinton, 1996). To circumvent the issue of high-
variance gradient estimates, Mnih and Gregor (2014) introduced a technique to
reduce variance, denoted neural variational inference and learning (NVIL), by
applying control variates. Another less general, but more popular, approach to
estimate the gradients of a generative model and inference model is to apply the
reparameterization trick (Kingma and Welling, 2014; Rezende et al., 2014).

3.2.2 Variational Auto-Encoder

Instead of assuming that z(i) ≈ qφ(z(i)|x), the reparameterization trick changes
the variable z(i) to come from a deterministic function:

z(i) = gφ(ε
(i),x), (3.19)

where ε(i) ≈ p(ε(i)). The gradients w.r.t. φ are hereby not dependent on the
expectation and this results in a much simpler formulation of the gradient esti-
mator:

∇φ,θL(x) ≈
1

s

s∑

i=1

Ep(ε(i))
[
∇φ,θ log

pθ(x, gφ(ε
(i),x))

qφ(gφ(ε(i),x)|x)

]
. (3.20)

With the above formulation, the gradient is not dependent on stochasticity in
the generative and inference model, thus the entire model θ and φ is differential
w.r.t. to the ELBO. This means that we can now backpropagate the ELBO
through the generative model θ followed by the inference model φ, which is
prone to much less variance, due to the elimination of the disjoint update.
Furthermore, it is easily implemented in modern frameworks, e.g. Tensorflow
(Abadi et al., 2015) that utilize automatic differentiation. A model that applies
the reparameterization trick, while being parameterized by neural networks in
both generative and inference models, is often referred to as a variational auto-
encoder (VAE) (cf. Figure 3.2) (Kingma and Welling, 2014; Rezende et al.,
2014), due to its obvious similarity with the neural network auto-encoder.

The reparameterization trick applies to a wide family of continuous latent vari-
ables, but the Gaussian is the most common, for which the trick is given by:

z = gφ(ε ≈ N (0, I),x) = µφ(x) + σφ(x)� ε . (3.21)

3.2 VI with Deep Neural Networks 27

The generative model of the most commonly used VAE is thereby decomposed
by:

pθ(x, z) = pθ(x|z)pθ(z) , (3.22)

with

pθ(z) = N (z|0, I) (3.23)
pθ(x|z) = N (x|µθ(z), σθ(z)) or Pθ(x|z) = B(x|µθ(z)) , (3.24)

where N (·) and B(·) denote the Gaussian and Bernoulli distribution. The cor-
responding inference model is given by:

qφ(z|x) = N (z|µφ(x), σφ(x)) . (3.25)

µφ(x), σφ(x), µθ(z), σθ(z) are all parameterized by deep neural networks. The
inference model is thereby defined as:

h(0) = x, (3.26)

h(m) = f(W (m)h(m−1) + b(m)) , m = 1, ...,M − 1, (3.27)

µφ =W
(M)
φ,µ h

(M−1) + b
(M)
φ,µ , (3.28)

σφ = softplus(W
(M)
φ,σ h

(M−1) + b
(M)
φ,σ) , (3.29)

where softplus denotes an activation function with similar characteristics as the
ReLU, while being differentiable in 0. After defining each element of the VAE
it becomes obvious that the two terms in Equation 3.11 can be viewed as a
reconstruction regularized by a term that keeps the variational approximation
close to the uninformative prior:

Lφ,θ(x) = Eqφ(z) [log pθ(x|z)]︸ ︷︷ ︸
reconstruction term

−DKL[qφ(z|x)||pθ(z)]︸ ︷︷ ︸
regularization term

. (3.30)

When DKL[qφ(z)||pθ(z)] = 0 there will be no information going from the en-
coder. This will be referred to as the latent variable z is collapsing and will be
discussed further in Section 3.3.

From the above formulation of the typical VAE it is obvious that rather limiting
assumptions are made on the true posterior distribution p(z|x). First of, it is
assumed that the posterior distribution is factorial, so that all variables are
statistically independent, p(x1, x2) = p(x1)p(x2). Another assumption is that
the neural networks, used in the inference and generative models, are flexible
enough to map complex input distributions p(x) into a rather simple qφ(z|x)
that is only defined by a unimodal distribution.

28 Deep Generative Models

Burda et al. (2015) was among the first to identify this problem. They pro-
posed the importance-weighted auto-encoder (IWAE), which is a way to perform
multiple samples in the variational approximation, qφ(z|x), so that the ELBO
becomes tighter and the model performs a better approximation towards the
true posterior. In their work an unbiased estimator of p(x) is introduced that
applies importance weights inside the log-term of Equation 3.30:

Lφ,θ(x) = Eqφ(z|x)

log 1

k

k∑

j=1

pθ(x|z(j))pθ(z(j))
qφ(z(j)|x)

 . (3.31)

The intuition behind Equation 3.31 is that the normal VAE emphasizes high-
probability regions of the approximate posterior too much, leaving little to low-
probability regions. In the IWAE we loosen the restrictions such that the vari-
ational approximation may fit a true posterior that does not align with the
limiting assumptions of the VAE. Note that the 1-sample IWAE is equivalent
to the standard VAE. In this thesis we will refer to the ELBO of a VAE as
formulated in Equation 3.31, where we omit the parameters φ and θ for short
and L(x) denotes 1 IW sample and L10(x) denotes 10 IW samples.

Despite the significant improvement from using the tighter bound in equation
3.31 compared to Equation 3.11 the single latent layer with a relatively simple
distribution still pose a limiting constraint to approximate the true posterior.
There are two main research paths that intend to solve this problem, by (i)
adding more latent variables, and (ii) modeling a more flexible distribution for
each latent variable. The research throughout this thesis mainly concerns (i),
where it is important to note that most of the findings in (i) and (ii) are not
mutually exclusive.

For an in-depth tutorial on variational auto-encoders, go to the lab
exercises:

github.com/DeepLearningDTU/02456-deep-learning

Variational auto-encoders: Lab5
An introduction to the derivation and theoretical background of the
variational auto-encoder in cohesion with a Tensorflow (Abadi et al.,
2015) implementation on how to implement and train a one latent layer
model.

For an implementation of the importance weighted auto-encoder (Burda
et al., 2015), go to the Parmesan library:

github.com/casperkaae/parmesan

3.3 Towards a Richer Posterior 29

x1

x2

x3

x4

W (1)

b(1)

σφ,2

σφ,1

µφ,2

µφ,1

ε ≈ N (0, I)

z1

z2

b(2)

x̂1

x̂2

x̂3

x̂4

W (2)

Figure 3.2: Visualization of a densely connected variational auto-encoder
(VAE) with one latent layer z consisting of two units and no hidden deterministic
layers. From this visualization it is evident that the VAE enables backpropa-
gation through all variables, since the stochastic variable can be circumvented
when applying the chain-rule.

3.3 Towards a Richer Posterior

This section cites two of the contributions in this thesis:

B Sønderby, C.K., Raiko, T., Maaløe, L., Sønderby, S. K., Winther,
O.. Ladder variational autoencoders. In Advances in Neural In-
formation Processing Systems, pages 3738-3746.

C Maaløe, L., Fraccaro, M., Winther, O. (2017). CaGeM: A cluster
aware deep generative model. In Neural Information Processing
Systems Workshop on Approximate Bayesian Inference.

The general assumption is to formulate the VAE with a diagonal covariance,
which leaves limitations to the expressiveness of the model, since qφ(z|x) will
be restricted in modeling more complex posteriors. Hence, if the data lies on
a complex posterior, the variational approximation could be a bad fit. Adding
more latent layers may improve flexibility, since the model is thereby able to
learn different representations of the posterior throughout the latent variables.

30 Deep Generative Models

x

z1

z2 θ

(a) Generative model pθ

x

z1

z2 φ

(b) Inference model qφ

Figure 3.3: Graphical representation of the generative model parameterized
by θ (a) and the variational approximation/inference model parameterized by
φ (b) for a two latent layer hierarchical VAE. z1 and z2 represent the latent
variables expressed by continuous distributions and x represents the observed
variable.

This leads to the more general formulation of the VAE with L latent layers (cf.
Figure 3.3):

pθ(x,Z) = pθ(x|z1)pθ(zL)
L−1∏

i=1

pθ(zi|zi+1) , (3.32)

where Z = zi, ..., zL and:

pθ(zi|zi+1) = N (zi|µθ,i(zi+1), σθ,i(zi+1)), pθ(zL) = N (zL|0, I) (3.33)
pθ(x|z1) = N (x|µθ,0(z1), σθ,0(z1)) or Pθ(x|z1) = B(x|µθ,0(z1)) . (3.34)

The corresponding vanilla inference model is decomposed by:

qφ(Z|x) = qφ(z1|x)
L∏

i=2

qφ(zi|zi−1) , (3.35)

with

qφ(z1|x) = N (z1|µφ,0(x), σφ,0(x)), qφ(zi|zi−1) = N (zi|µφ,i(zi−1), σφ,i(zi−1)) .
(3.36)

The reason why a model with more latent layers may introduce more flexibility
is simply that it has more expressive power through the ability to learn multiple
representations of the approximation to the posterior. The view on representa-
tion learning introduced in Section 2.2 is especially useful here. Thus, in many

3.3 Towards a Richer Posterior 31

settings of hierarchical VAEs we seek to introduce dimensionality reduction be-
tween each latent layer z1, ..., zL, such that we force the network to learn more
and more global information of the data distribution p(x). Another intriguing
property of the above formulation is that the latent layers z1, ..., zL−1 are more
flexible, since the prior is learned as opposed to that of pθ(zL) = N (zL|0, I).

Finally, the hierarchical VAE introduces an intuitively compelling feature dur-
ing inference (training), which bears resemblance to findings in the purely de-
terministic neural networks. Throughout the recent research within deep neural
networks, we have seen many research contributions that successfully apply
very deep architectures without the network being prone to vanishing gradi-
ents. These contributions mainly concern skip-connectivity, such as residual
connections (He et al., 2015), highway networks (Srivastava et al., 2015), and
densely connected networks (Huang et al., 2017). These inventions have been
successful in very deep auto-encoder architectures, such as the PixelCNN++
(Salimans et al., 2017) and U-Net (Ronneberger et al., 2015). The intention of
the skip-connectivity is to keep the path from the input to the output of the
neural network as short as possible, while still having a deep stacking of layers
that can learn highly non-linear representations. The skip-connections ensure
that the inference-signal can skip the subsequent layers. During inference of the
VAE, each latent variable can be viewed as a skip-connection between the infer-
ence model and the generative model. This is due to the fact that the sample
z1 ≈ qφ(z1|x) serves as input to pθ(x|z1) and z2 ≈ qφ(z2|z1) serves as input
to pθ(z1|z2) and so forth. For a very deep hierarchical inference and generative
model we can thereby utilize the natural skip-connectivity in order to learn very
deep architectures.

However, as presented in Sønderby et al. (2016) (see Appendix B) among
others, the latent layers have a tendency to collapse when L > 2. Maaløe et al.
(2017) (see Appendix C) gives an explanation to this problem in which we first
consider the asymptotic average properties by taking the expectation over the
true evidence of the data distribution pd(x). This is applied to the log-likelihood
of model pθ(x) (cf. Equation 3.2, 3.3, 3.4):

Epd(x)[log pθ(x)] =
∫

x

pd(x) log pθ(x)dx

=

∫

x

pd(x) log pd(x)
pθ(x)

pd(x)
dx

=

∫

x

pd(x) log pd(x) +

∫

x

pd(x) log
pθ(x)

pd(x)
dx

= −H (pd(x))−DKL [pd(x)||pθ(x)] . (3.37)

Thus, the expected log-likelihood is the difference between the negative entropy
of the data generating distribution pdata(x), and the deviation between the

32 Deep Generative Models

data generating distribution pd(x) and the model distribution pθ(x). When we
introduce a latent variable to the model, such that pθ(x) =

∫
z
pθ(x|z)pθ(z)dz

we can derive the ELBO by:

log pθ(x) = log

∫

z

pθ(x, z)dz

= log

∫

z

qφ(z|x)
qφ(z|x)

pθ(x, z)dz

≥
∫

z

qφ(z|x) log
pθ(x, z)

qφ(z|x)
dz

= Eqφ(z|x)
[
log

pθ(x, z)

qφ(z|x)

]
. (3.38)

We will now take the expectation over the true evidence of the data distribution
on our new model:

Epd(x)[log pθ(x)] ≥ Epd(x)
[
Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]]

=

∫

x

pd(x)

∫

z

qφ(z|x) log
pθ(x, z)

qφ(z|x)
dzdx

=

∫

x

pd(x)

∫

z

qφ(z|x)
[
log pd(x)

pθ(x)

pd(x)
− log

pθ(z|x)
qφ(z|x)

]
dzdx

=

∫

x

pd(x) log pd(x)
pθ(x)

pd(x)
dx−

∫

x

pd(x)

∫

z

qφ(z|x) log
pθ(z|x)
qφ(z|x)

dzdx

= −H (pd(x))−DKL [pd(x)||pθ(x)]− Epd(x) [DKL [qφ(z|x)||pθ(z|x)]] .
(3.39)

When comparing Equation 3.37 with Equation 3.39 it is obvious that adding
a latent variable z will add additional cost. Hence, the model has an in-
centive to omit the latent variable during optimization, which may eventu-
ally result in a collapse. Conversely, if the introduced latent variable proofs
beneficial in maximizing the log-likelihood beyond the additional cost it will
not collapse. It is trivial to show that the cost of adding more variables is
even higher. Following the same derivation as in 3.39 for a model, pθ(x) =∫
z1,z2

pθ(x|z1)pθ(z1|z2)pθ(z2)dz1dz2 we get:

Epd(x)[log pθ(x)] ≥ −H (pd(x))−DKL [pd(x)||pθ(x)]
− Epd(x) [DKL [qφ(z1|x)||pθ(z1|x)]]
− Epd(x) [DKL [qφ(z2|z1)||pθ(z2|z1)]] .

(3.40)

Since we initialize the variational approximation with deep neural networks,
the samples from the latent variables will be very noisy in the beginning of a

3.3 Towards a Richer Posterior 33

SGD optimization. Therefore, the model will have a larger incentive to collapse
latent variables in the beginning of training, resulting in a poor local maxima.
As stated in Bowman et al. (2016); Fraccaro et al. (2016); Chen et al. (2017) the
collapse of latent variable can also happen when the decoder neural network,
parameterized by θ, is very powerful. In the following chapters we will elaborate
more on our findings concerning how to avoid latent variables to collapse in deep
generative models.

Concluding remarks There still remains a lot of recent research, that is
not included in this thesis, investigating a more expressive VAE framework,
such as inverse autoregressive flows (IAF) (Kingma et al., 2016), variational
inference with normalizing flows (Rezende and Mohamed, 2015), and variational
Gaussian processes (Tran et al., 2016). There are also variants of using the
reparameterization in a supervised learning paradigm by applying priors to the
weights of a neural network (Blundell et al., 2015).

34 Deep Generative Models

Chapter 4

Deep Generative Models for
Semi-supervised Learning

In the previous chapter we introduced a framework that utilizes deep neural
networks for probabilistic generative modeling. As we briefly introduced in
Section 1.2, such a modeling framework can prove useful for semi-supervised
learning. In this chapter we first give an introduction to the methodological
foundation of our work on semi-supervised learning. Throughout the chapter
we make a clear distinction between (i) semi-supervised classification and (ii)
semi-supervised generation. (i) relates to models with the objective of learning
from labeled as well as unlabeled data in order to improve on a classification
task. (ii) relates to models that are utilizing labeled and unlabeled data in order
to improve on a generation task. We introduce the auxiliary deep generative
model (Maaløe et al., 2016) (cf. Appendix A) that improves significantly
on semi-supervised classification by utilizing a rich variational approximation.
Then we introduce the cluster-aware generative model (Maaløe et al., 2017) (cf.
Appendix C) that achieves a good generative performance by utilizing labeled
information in both the variational approximation and generative model. In
order to make a proper comparison, the models are benchmarked on image
datasets that are widely used across the machine learning community. The
datasets are MNIST (LeCun et al., 1998) (handwritten digits), OMNIGLOT
(Lake et al., 2013) (handwritten characters), SVHN (Netzer et al., 2011) (natural
images of house numbers), and NORB (LeCun et al., 2004) (images of toys).

36 Deep Generative Models for Semi-supervised Learning

4.1 Defining a Semi-Supervised VAE

This section cites one of the contributions in this thesis:

A Maaløe, L., Sønderby, C. K., Sønderby, S. K., Winther, O. (2016).
Auxiliary deep generative models. In Proceedings of the Interna-
tional Conference on Machine Learning, pages 1445–1454.

Kingma et al. (2014) provide a rather general probabilistic model for semi-
supervised classification, denoted M2, by introducing a new latent variable y
to the framework of the single latent layer VAE. Conversely, to the hierarchical
VAE introduced in Section 3.3, the two latent variables z and y are assumed
statistically independent, such that p(z,y) = p(z)p(y). By applying Bayes
theorem we get following expression for the posterior:

p(z,y|x) = p(x|z,y)p(z)p(y)∫
z,y

p(x|z,y)p(z)p(y)dzdy . (4.1)

The reason for assuming that z and y are independent is that the model can
be explicitly forced to learn different representations of the data distribution,
p(x), beneficial in solving semi-supervised classification. The generative model
is defined as:

pθ(x, z,y) = pθ(x|z,y)pθ(z)pθ(y) , (4.2)

and the adhering distributions are:

pθ(z) = N (z|0, I) , pθ(y) = Cat(y|π) , (4.3)
pθ(x|z,y) = N (x|µθ(z,y), σθ(z,y)) or Pθ(x|z,y) = B(x|µθ(z,y)) , (4.4)

where Cat(·) is a multinomial distribution and π is a probability vector. We
have hereby specified a different purpose of the two latent variables, where z
remains a Gaussian. By defining y as a multinomial, the property is that it is
perfectly aligned with a classifier, since it represents 1-of-K possible categories.
In Figure 4.1a we present the graphical representation of the generative model.

From a learned generative model (Figure 4.1a) we can sample from z and gen-
erate an x corresponding to the 1-of-K classes that we choose from y. The
big difference from the VAE (cf. Section 3.2) is that we no longer learn all
latent information in z, since the class-dependent information is not embedded
within. In Figure 4.2 we present an example of this generative process from
the model introduced in Maaløe et al. (2016) (cf. Appendix A) that will be
further elaborated in Section 4.2. In the Figure we see generated samples from
a model learned on the MNIST dataset, which is a dataset comprising 70, 000

4.1 Defining a Semi-Supervised VAE 37

x

y z θ

(a) Generative model pθ

x

y z φ

(b) Inference model qφ

Figure 4.1: Graphical representation of the M2 model from Kingma et al.
(2014) with the generative model parameterized by θ (a) and the variational
approximation/inference model parameterized by φ (b) for a two latent vari-
able VAE for semi-supervised classification. z represents the continuous latent
variable, y a partially observed latent variable, and x represents the observed
variable.

28 × 28 gray-scale images of handwritten digits in the range from 0 through 9
(LeCun et al., 1998). Each row represents a specific sample from the posterior
and each column represents 1-of-K categories. Since the latent variables are
defined as independent in the model, the model embeds non-category specific
global information in z, which for this dataset is the style of the handwriting.
Some of the rows are expressed by bold and vertical handwriting; others are
expressed by thin and cursive.

Similarly to the VAE we introduce a variational approximation, qφ(z,y|x), with
parameters φ to learn an approximation to the true posterior. We decompose
the variational approximation such that:

qφ(z,y|x) = qφ(z|y,x)qφ(y|x) , (4.5)

where

qφ(z|x,y) = N (z|µφ(x,y), σφ(x,y)) , qφ(y|x) = Cat(y|πφ(x)) . (4.6)

qφ(y|x) is defined as a discriminative classifier similarly to a neural network with
a softmax output function (cf. Equation 2.7). Intuitively, one could suggest
that the inference model should be defined similarly to the generative model
by treating the latent variables as independent. However, this would pose a
problem during inference, since we are interested in introducing a weighting
term that weights the representation of z depending on the category. This leads
to the inference model in Figure 4.1b. To explain this mathematically we tend
to the derivation of the ELBO, which is derived in a similar fashion as in the

38 Deep Generative Models for Semi-supervised Learning

Figure 4.2: An example of generated samples from a generative model de-
scribed in Maaløe et al. (2016) (cf. Appendix A) learned on the MNIST
dataset (LeCun et al., 1998). Each row represents a different sample from the
continuous distribution of the latent variable z and each column represents a
different 1-of-K where K is 10; the number of categories for the handwritten
digits 0 through 9.

previous chapter. Note that y is discrete:

log pθ(x) = log
∑

y

∫

z

pθ(x|y, z)pθ(y)pθ(z)dz

= log
∑

y

qφ(y|x)
∫

z

qφ(z|x,y)
pθ(x|y, z)pθ(y)pθ(z)
qφ(y|x)qφ(z|x,y)

dz

≥
∑

y

qφ(y|x)
∫

z

qφ(z|x,y) log
pθ(x|y, z)pθ(y)pθ(z)
qφ(y|x)qφ(z|x,y)

dz . (4.7)

By rearranging the ELBO similarly to Equation 3.30 we can write up the bound
for an observed x and unobserved latent variables z and y, also denoted the
unsupervised ELBO:

Uφ,θ(x) = H [qφ(y|x)]︸ ︷︷ ︸
entropy term

+
∑

y

qφ(y|x)︸ ︷︷ ︸
weighting term

[
Eqφ(z|x,y)[log pθ(x|y, z)]︸ ︷︷ ︸

reconstruction term

−DKL[qφ(z|x,y)||pθ(z)]︸ ︷︷ ︸
regularization term

]
.

(4.8)

We are seeking to find the parameter setting for φ and θ that maximizes Uφ,θ(x),
meaning that (i) the reconstruction error will decrease, (ii) that the deviation

4.1 Defining a Semi-Supervised VAE 39

between qφ(z|x,y) and pθ(z) is not too big, and (iii) that the entropy is maxi-
mized. It may seem counterintuitive that it is beneficial to increase the entropy
for semi-supervised classification. However, this has a positive effect on precisely
that, since it acts as a regularization term by pushing the multinomial towards
being uniform. When introducing the labeled information during training, this
ensures that the model will not overfit towards the small fraction of labeled
data.

The unsupervised ELBO, Uφ,θ(x), provides a way to introduce the discrete latent
variable y, however, for semi-supervised classification it does not utilize the
information from the fraction of labeled data. Therefore we introduce another
ELBO for the labeled data for which the variable y is observed:

log pθ(x,y) ≥ Eqφ(z|x,y) [log pθ(x|y, z)]−DKL [qφ(z|x,y)||pθ(z)] . (4.9)

In order to incorporate an error term for the classifier, qφ(y|x), we add the
cross-entropy loss (cf. Equation 2.11) to the above:

Jφ,θ(x,y) = Eqφ(z|x,y) [log pθ(x|y, z)]−DKL [qφ(z|x,y)||pθ(z)]
− α · H(y, qφ(y|x))︸ ︷︷ ︸

cross-entropy

, (4.10)

where α denotes a scaling hyper-parameter. The model for semi-supervised
learning is optimized by SGD and the unsupervised and labeled bounds are
estimated with mini-batches for the labeled data xl,yl and the unlabeled data
xu:

Lφ,θ(xl,yl,xu) = Jφ,θ(xl,yl) + Uφ,θ(xu) . (4.11)

We can deploy the reparameterization trick to calculate the gradients ∇φ,θ sim-
ilarly to Equation 3.12 and Equation 3.20.

From Kingma et al. (2014) the M2 model did not prove to perform very well1,
which is why they introduced the M1+M2 model, where M1 is a regular VAE.
First the M1 model is trained to learn a good approximation to the posterior.
Next the M2 model is trained by using samples from the latent layer of M1. Note
that the M1 model parameters are fixed when the M2 model is trained. This
combination of models proved a significant improvement2 over the M2 model
for semi-supervised classification.

1From experiments we have improved on the 11.97%(±1.71) for 100 labeled samples from
MNIST reported in Kingma et al. (2014) to ≈ 9.5% (Maaløe et al., 2016).

2For the semi-supervised MNIST experiments, the M1+M2 model achieves a classification
error of 3.33%(±0.14) compared to 11.97%(±1.71) for the M2 model.

40 Deep Generative Models for Semi-supervised Learning

Concluding remarks When comparing the performance gains from using
M1+M2 over M2, it is clear that learning a latent variable that holds both
the style and class information is beneficial towards semi-supervised classifi-
cation. However, learning the M1 model and then the M2 model has some
serious drawbacks, since the parameter space for the latent variable in M1 is
not adaptable towards the semi-supervised classification accuracy. Therefore an
intriguing adaption to the formulation in Kingma et al. (2014) would be to learn
the M1+M2 model in cohesion. We have performed multiple attempts in learn-
ing this model, but the results never compared to the reported M1+M2 model
and the topmost latent variable had a tendency to collapse (cf. Section 3.3).
This was the initial key driver to our studies on the auxiliary deep generative
model (Maaløe et al., 2016) (cf. Appendix A).

For an in-depth tutorial on variational auto-encoders for semi-supervised
classification, go to the lab exercises:

github.com/DeepLearningDTU/variational-autoencoders-summerschool-2016

VAEs for semi-supervised learning: Lab4
A walk-through of the implementation details of a variational auto-encoder for
semi-supervised learning.

4.2 Auxiliary Deep Generative Models

This section cites one of the contributions in this thesis:

A Maaløe, L., Sønderby, C. K., Sønderby, S. K., Winther, O. (2016).
Auxiliary deep generative models. In Proceedings of the Interna-
tional Conference on Machine Learning, pages 1445–1454.

As the name implies, an auxiliary variable is used to assist the task at hand and
is widely used in the EM algorithm and Gibbs sampling. It was also previously
introduced by Agakov and Barber (2004) in regards to variational inference. In
Maaløe et al. (2015b; 2016) (cf. Appendix A) we introduce auxiliary vari-
ables in the VAE, denoted auxiliary variational auto-encoders (AVAE)3, and
the M2 model, denoted auxiliary deep generative models (ADGM), in order to
(i) improve the flexibility of the variational approximation, and (ii) improve on
semi-supervised classification. For the remainder of this section we will mainly
consider the auxiliary variables for semi-supervised classification, ADGM, and
in Chapter 5 we will analyze its contribution to the generative process.

3Concurrent with this work, Ranganath et al. (2016) developed a similar approach.

4.2 Auxiliary Deep Generative Models 41

x

a z θ

(a) Generative model pθ

x

a z φ

(b) Inference model qφ

Figure 4.3: Graphical representation of the auxiliary VAE from Maaløe et al.
(2016) (cf. Appendix A) with the generative model parameterized by θ (a)
and the variational approximation/inference model parameterized by φ (b). z
represents the continuous latent variable, a the continuous auxiliary variable,
and x the observed variable.

A property of the auxiliary variable, a, is that it complements the distribution
qφ(z|x), so that it can fit a more complicated posterior, while maintaining the
generative model pθ(x, z) when marginalizing over a (cf. Figure 4.3a):

pθ(x, z,a) = pθ(a|x, z)pθ(x, z) . (4.12)

Similarly to the latent variable z the auxiliary variable a is defined by:

pθ(a|z,x) = N (a|µa,θ(z,x), σa,θ(z,x)) . (4.13)

The complementary inference model is:

qφ(a, z|x) = qφ(a|x)qφ(z|a,x) , (4.14)

with

qφ(a|x) = N (a|µa,φ(x), σa,φ(x)) , qφ(z|x,a) = N (z|µz,φ(x,a), σz,φ(x,a)) .
(4.15)

If pθ(a|x, z) = pθ(a), the auxiliary variable will not be used in the variational
approximation, thus the AVAE model would collapse into a normal VAE. In
order to show this, we consider a model where we omit x so that pθ(a, z) =
pθ(a|z)pθ(z). In this case we consider the lower bound on the log-partition func-
tion pθ(z) = fθ(z)/Z and introduce the variational approximation qφ(a, z) =
qφ(z|a)qφ(a):

logZ = log

∫

a

∫

z

fθ(z)pθ(a|z)dzda

= log

∫

a

qφ(a)

∫

z

qφ(z|a)
fθ(z)pθ(a|z)
qφ(a)qφ(z|a)

dzda

≥
∫

a

qφ(a)

∫

z

qφ(z|a) log
fθ(z)pθ(a|z)
qφ(a)qφ(z|a)

dzda . (4.16)

42 Deep Generative Models for Semi-supervised Learning

If the two latent variables are assumed independent in the generative model,
pθ(z,a) = pθ(z)pθ(a), the optimization falls back to the normal VAE:

logZ ≥
∫

a

qφ(a)

∫

z

qφ(z|a) log
fθ(z)

qφ(z|a)
dzda . (4.17)

This concludes that pθ(a|x, z) 6= pθ(a) must hold for the AVAE. One way to
ensure this is to use a temperature on the DKL[qφ(a|x)||pθ(a|z,x)] (cf. Chapter
5). To show that the additional auxiliary variable enables a more expressive
variational approximation, we consider an experiment on a 2D potential model
p(z) = fθ(z)/Z = eU(z)/Z. Similarly to Rezende and Mohamed (2015) we define
a complicated posterior, so that U(z) denotes:

U(z) =
1

2

(||z1|| − 2

0.4

)2

− log
(
e−

1
2 [
z2−2
0.6]2 + e−

1
2 [
z2+2
0.6]2

)
. (4.18)

Again we decompose the variational approximation as qφ(a, z) = qφ(z|a)qφ(a).
The bound is:

logZ ≥ Eqφ(a,z)
[
log

eU(z)pθ(a|z)
qφ(z|a)qφ(a)

]
. (4.19)

In Figure 4.4 we see how the auxiliary variable model is able to fit the two modes
of the complicated posterior, which makes them an intriguing complement to a
regular one layered VAE.

Figure 4.4: The approximation qφ(a, z) = qφ(z|a)qφ(a) to a complex posterior
U(z). We can see how the additional auxiliary variable is able to fit the two
modes.

On the basis of the above, adding an auxiliary variable to a semi-supervised
model is straightforward. Similarly to the derivation in Equation 4.7 we can

4.2 Auxiliary Deep Generative Models 43

xa

y z θ

(a) Generative model pθ

xa

y z φ

(b) Inference model qφ

Figure 4.5: Graphical representation of ADGM from Maaløe et al. (2015b;
2016) (cf. Appendix A) with the generative model parameterized by θ (a)
and the variational approximation/inference model parameterized by φ (b) for
a three latent variable model solving the semi-supervised classification task. z
represents the continuous latent variable, a the continuous auxiliary variable, y
a partially observed latent variable, and x represents the observed variable.

derive the slightly more complex unsupervised bound (cf. Figure 4.5):

log pθ(x) = log

∫

a

∑

y

∫

z

pθ(x,y, z,a)dzda

≥ Eqφ(a|x)

[∑

y

qφ(y|a,x)Eqφ(z|a,x,y)
[
log

pθ(x,y, z,a)

qφ(a,y, z|x)
]]
≡ Uφ,θ(x) ,

(4.20)

where

pθ(x,y, z,a)

qφ(a,y, z|x)
=
pθ(x|y, z)pθ(a|y, z,x)pθ(y)pθ(z)
qφ(a|x)qφ(y|a,x)qφ(z|a,x,y)

. (4.21)

The supervised bound is similarly derived by:

log pθ(x,y) = log

∫

a

∫

z

pθ(x,y, z,a)dzda

≥ Eqφ(a|x)
[
Eqφ(z|a,x,y)

[
log

pθ(x,y, z,a)

qφ(a, z|x,y)
]]

, (4.22)

where we add the cross-entropy loss as in Equation 4.10:

Jφ,θ(x,y) = Eqφ(a|x)
[
Eqφ(z|a,x,y)

[
log

pθ(x,y, z,a)

qφ(a, z|x,y)
]]
− α · H(y, qφ(y|x,a)) .

(4.23)

The supervised and unsupervised bounds for the ADGM can be collected in
Lφ,θ(·) (cf. Equation 4.11). We now have a formulation of a semi-supervised
model with an auxiliary variable that can learn a global latent representation

44 Deep Generative Models for Semi-supervised Learning

xz1

y z2 θ

(a) Generative model pθ

xz1

y z2 φ

(b) Inference model qφ

Figure 4.6: Graphical representation of SDGM from Maaløe et al. (2016)
(cf. Appendix A) with the generative model parameterized by θ (a) and the
variational approximation/inference model parameterized by φ (b) for a three
latent variable model solving the semi-supervised classification task. z1 and z2
represents the continuous latent variables, y a partially observed latent variable,
and x the observed variable.

of the input distribution, similarly to the M1+M2 model. Compared to the
M2 model, ADGM is much stronger due to the addition of the extra auxiliary
variable. Furthermore, the ADGM can be trained in an end-to-end fashion,
conversely to the M1+M2 model. Thereby, the ADGM can adjust the latent
representation in the auxiliary variable in accordance to the semi-supervised
classification task. In Maaløe et al. (2016) we also introduce a slight variant
of the ADGM, where we change the auxiliary variable to be yet another latent
variable. This model is named skip deep generative model (SDGM) for which
we show a graphical representation in Figure 4.6. The difference between the
ADGM and SDGM, is that we now include the additional latent variable in the
generative model, thus the variable is not auxiliary anymore.

Both the ADGM and SDGM4 significantly outperform the directly comparable
M2 and M1+M2 models (cf. Table 4.1). On the more complex datasets, SVHN
and NORB, the SDGM model outperforms the classification of ADGM, which
is expected, since it is a stronger model. However, interestingly the ADGM per-
forms significantly better than the SDGM on the MNIST benchmark. In order
to visualize what the auxiliary variable contributes with in the semi-supervised
classification, we revisit the half-moon example from earlier. Again the task is
a binary classification problem, where the upper half-moon is the positive class
and the lower half-moon is the negative class. However, to make this problem
a semi-supervised task, we only provide 3 labeled data points from each half-
moon (cf. Figure 4.7). The ADGM is able to learn this problem rather fast to
a classification accuracy close to 100%, with slight variations due to the data
points that are lying in the intersection between the two classes. If we visualize
the latent space of the auxiliary variable, we see how it is able to distinguish

4We evaluate the performance of the fully unsupervised AVAE in Section 5.

4.2 Auxiliary Deep Generative Models 45

MNIST SVHN NORB
100 labels 1000 labels 1000 labels

M1+TSVM 11.82% (±0.25) 55.33% (±0.11) 18.79% (±0.05)
M2 11.97% (±1.71) - -
M1+M2 3.33% (±0.14) 36.02%(±0.10) -
VAT 2.12% 24.63% 9.88%
Ladder Network 1.06% (±0.37) - -
ADGM 0.96% (±0.02) 22.86% 10.06% (±0.05)
SDGM 1.32% (±0.07) 16.61% (±0.24) 9.40% (±0.04)

Table 4.1: Semi-supervised test error benchmarks from Maaløe et al. (2016)
(cf. Appendix A) on MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011),
and NORB (LeCun et al., 2004) for randomly labeled and evenly distributed
data points. The lower section demonstrates the benchmarks for the Auxiliary
Deep Generative Model (ADGM) and the Skip Deep Generative Model (SDGM).
M1+TSVM, M2, M1+M2 are reported in Kingma et al. (2014), VAT in Miyato
et al. (2015), and Ladder Network in Rasmus et al. (2015).

the clusters of the half-moons that in turn will aid the classifier.

(a)
(b)

Figure 4.7: Visualization of the ADGM trained on a semi-supervised classifi-
cation task in the half-moon example. In this example there is only provided
6 labeled data points, 3 from each half-moon. Large scalar points visualize the
labeled data. (a) shows the classification prediction of the ADGM in the input
space, where the blue and red color corresponds to the prediction of the upper
and lower half-moon respectively. (b) is a PCA plot on the first two principal
components, showing the latent space of the auxiliary variable.

46 Deep Generative Models for Semi-supervised Learning

Concluding remarks Both the ADGM and SDGM have proven extremely
efficient for the semi-supervised classification task, but there are still many fur-
ther developments that could be explored. One of the limiting caveats of the
models is the summation

∑K
y which scales poorly for many categories K. In

order to perform the summation as efficiently as possible, one can reorder the
unsupervised input mini-batch, so that it becomes K times larger. This is much
more efficient towards the runtime complexity than propagating the unsuper-
vised mini-batch through the deep neural networks K times. However, it comes
at a cost in regards to the space complexity for a large model, located in the lim-
ited amount of memory available on modern graphical processing units. Gumbel
(1954); Jang et al. (2016) provides a good way to circumvent the summation,
by sampling from the discrete latent variable y.

Another interesting research area would be to utilize the bound of the ADGM
and SDGM models similarly to a Bayes classifier p(y|x) ∝ p(y,x). The way that
this works is intuitively derived from the definition of the supervised bound,
Jφ,θ(x,y), so that x belongs to the class y for which the bound is highest.
We have performed some experiments on this procedure, but did not achieve to
outperform the classifier qφ(y|a,x). However, a stronger generative model could
prove to increase performance. Another approach is to utilize the two classifiers
in unison. Finally, a way to utilize the bound in practice is for anomaly detection
as we will see in Section 6. This could in turn prove useful for active learning.

Recently, we have seen several improvements to the semi-supervised classifica-
tion performance, where GANs have proven very efficient (Salimans et al., 2016).
Many of the new additions to the benchmarks on semi-supervised classification
utilize much more complicated deep neural network structures and architectures,
i.e. convolutions. An interesting study to the ADGM and SDGM models would
be to parameterize them with deeper neural networks and convolutions in order
to compare them with recent state-of-the-art.

For an implementation of the auxiliary deep generative model, go to:

github.com/larsmaaloee/auxiliary-deep-generative-models

4.3 Cluster-Aware Deep Generative Models 47

x

y z1

z2 θ

(a) Generative model pθ

x

y z1

z2 φ

(b) Inference model qφ

Figure 4.8: Graphical representation of CaGeM from Maaløe et al. (2017)
(cf. Appendix C) with the generative model parameterized by θ (a) and the
variational approximation/inference model parameterized by φ (b) for a three
latent variable model solving the semi-supervised generation task. z1 and z2
represents the continuous latent variables, y a partially observed latent variable,
and x the observed variable.

4.3 Cluster-Aware Deep Generative Models

This section cites one of the contributions in this thesis:

C Maaløe, L., Fraccaro, M., Winther, O. (2017). CaGeM: A cluster
aware deep generative model. In Neural Information Processing
Systems Workshop on Approximate Bayesian Inference.

As we briefly introduced in the beginning of the previous chapter, we formulate
a clear distinction between semi-supervised classification and semi-supervised
generation, where this section will elaborate on the latter. Now we have seen
that deep generative models can be utilized for semi-supervised classification,
the apparent question arise, to whether a small amount of labeled data can
improve on the generative performance. This view on a generative process can
be directly translated to cognitive science, in the sense that humans can effi-
ciently infer a causal model from very few labeled examples (Tenenbaum et al.,
2006). This pose a problem in the typical generative frameworks, i.e. GANs
and VAEs, since they generally perceive the generative process as fully unsu-
pervised. In Maaløe et al. (2017) (cf. Appendix C) we propose an approach,
denoted cluster-aware generative models (CaGeM), that incorporates labeled
information in order to improve on the generative performance. Similarly to the
SDGM, the CaGeM is defined from three latent variables, pθ(x,y, z1, z2), with
the big difference being that the discrete variable y and the latent variable z2 are

48 Deep Generative Models for Semi-supervised Learning

no longer assumed statistically independent, pθ(y, z2) 6= pθ(y)pθ(z2). Instead
the purpose is to improve on the generative performance by explicitly defining
the natural clustering of the data in the higher latent representations (Bengio
et al., 2013). This leads to the generative model (cf. Figure 4.8a):

pθ(x,y, z1, z2) = pθ(x|y, z1)pθ(z1|y, z2)pθ(y|z2)pθ(z2) , (4.24)

where

pθ(z2) = N (z2|0, I) , pθ(y|z2) = Cat(y|πθ(z2)
pθ(z1|y, z2) = N (z1|µθ(y, z2), σθ(y, z2))
pθ(x|z1,y) = N (x|µθ(z1,y), σθ(z1,y)) or Pθ(x|z1,y) = B(x|µθ(z1,y)) .

(4.25)

As we will see below, the discrete variable pθ(y|z2), will ensure that cluster
information is preserved in the highest latent representation z2, which also has
an effect on the fact that the higher latent representation will stay active (cf.
Section 3.3 for a discussion on this topic). The corresponding inference model
is decomposed by (cf. Figure 4.8b):

qφ(y, z1, z2|x) = qφ(z1|x)qφ(y|z1,x)qφ(z2|z1,y,x) . (4.26)

The ELBO can be derived in a similar fashion as earlier:

Uφ,θ(x) = Eqφ(z1|x)

[∑

y

qφ(y|z1,x)Eqφ(z2|x,y,z1)

[
log

pθ(x,y, z1, z2)

qφ(y, z1, z2|x)

]]
.

(4.27)

Conversely to the semi-supervised classification models, we specify the Cate-
gorical distributions pθ(y|z2) and qφ(y|z1,x), as representing the number of
clusters to be modeled from the dataset, thus the representations learned in
the highest latent variable z2 could be perceived as a form of semi-supervised
clustering (Basu et al., 2002). In this work we perceive clusters as being a more
general term than classes, so that the amount of classes K of a dataset would be
directly translatable to the amount of clusters C but not the other way around.
To exploit cluster information in the CaGeM we can define a classifier in the
inference model as:

qφ(y|x) =
∫

z1

qφ(y, z1|x)dz1 (4.28)

=

∫

z1

qφ(y|z1,x)qφ(z1|x)dz1 , (4.29)

and from the posterior pθ(z2|x) we have another classifier in the generative
model given by:

pθ(y|x) =
∫

z2

pθ(y|z2)pθ(z2|x)dz2 . (4.30)

4.3 Cluster-Aware Deep Generative Models 49

Model Clusters ≤ log p(x)

CaGeM-0 20 −81.92a

CaGeM-0 5 −81.86a

CaGeM-0 10 −81.60
CaGeM-20 10 −81.47
CaGeM-50 10 −80.49
CaGeM-100 10 −79.38

Table 4.2: Log-likelihood scores for CaGeM (Maaløe et al., 2017) (cf. Ap-
pendix C) trained on MNIST (LeCun et al., 1998) with 0, 20, 50 and 100
labels. The more labeled data points, the better the performance.

aThese results are updated compared to the Appendix C version of the article.

The posterior in the classifier given in Equation 4.30 is intractable, which is why
we need to utilize the variational approximation to estimate the classifier:

pθ(y|x) ≈
∫

z2

pθ(y|z2)qφ(z2|x)dz2 (4.31)

=

∫

z2

pθ(y|z2)

∫

z1

∑

ỹ

qφ(z2|x, ỹ, z1)qφ(ỹ|x, z1)qφ(z1|x)dz1

 dz2 .

(4.32)

In Maaløe et al. (2017) we refer to the above as a cascade of classifiers, since
the classifier pθ(y|x) indirectly depends on the weighting term qφ(ỹ|x, z1).

As was done for the M2, ADGM, and SDGM models, we add a cross-entropy
term to the ELBO given in Equation 4.27. However, in order for the classi-
fication term not to have too big of an impact on the generative part of the
model, we update the parameters independently. Hence, we now define the pa-
rameters of the model, such that φy and θy refers to the parameters of qφy (y|x)
and pθy (y|x) respectively. The remainder of the parameters for qφ(z1, z2|x)
and pθ(x, z1, z2) are still denoted φ and θ. The ELBO for the semi-supervised
generation task is then defined as:

L(xl,yl,xu) =
∑

xu

Uφ,θ(xu)− α
[∑

xl,yl

(
Hθy (yl, pθy (y|x)) +Hφy (yl, qφy (y|x))

)
]
,

(4.33)

where α is a scaling term, defined as a hyper-parameter during optimization and
H(·) denotes the cross-entropy. This expression means that we only consider
the cross-entropy loss w.r.t. φy and θy, meaning that the gradient will be 0 for
the remainder of the model parameters. The approach ensures that we do not
overfit the generative model towards our labeled dataset. However, as we will

50 Deep Generative Models for Semi-supervised Learning

Figure 4.9: Visualization of the z2 variable of CaGeM (Maaløe et al., 2017)
(cf. Appendix C) trained with 100 labeled examples from the MNIST dataset
(LeCun et al., 1998). The middle plot shows on the latent space, where we
generate samples by inferring the class label through pθ(y|x) (left) and generate
samples by predefining the class (right) from a mesh grid (black bounding box).

see below, the CaGeM also proves as a very good semi-supervised classification
model.

The evaluation criterion for the generative performance of CaGeM is the 5000
importance weighted ELBO given in Equation 4.27 measured in nats. In Table
4.2 we show the generative performance of CaGeM-0, CaGeM-20, CaGeM-50,
and CaGeM-100, denoting 0, 20, 50, and 100 labeled data points. When we
provide labeled data that is evenly distributed across categories, the amount of
clusters C equals the number of classes, i.e. for the MNIST dataset C = 10.
For the fully unsupervised example, CaGeM-0, on the other hand we show
results for different numbers of clusters, 5, 10, and 20. It is interesting to see
how the fully unsupervised log-likelihood achieves the best score when defining
the natural amount of clusters. Furthermore, one can see how the performance
increases significantly as a function of adding a relatively small fraction of labeled
data points. In Section 5 we will compare the performance of CaGeM to other
fully unsupervised models. When analyzing the latent space of variable z2 it
becomes clear how the model utilize the class-conditional clustering. When we
sample from different regions of z2, the classifier pθ(y|x) infers different classes
corresponding to the region, hence different digits will be generated for the
MNIST case (cf. Figure 4.9).

Besides being optimized towards semi-supervised generation, CaGeM proves
similar performance to ADGM, SDGM, and other state-of-the-art semi-supervised
classification models, 1.16% for 100 labeled MNIST. This comes as a surprise
when comparing the log-likelihood score of a ADGM-100 to CaGeM-100. Here
ADGM achieves a log-likelihood of −86.06 nats, which is significantly worse
than the CaGeM (cf. Table 4.2). This indicates that the CaGeM optimize to-

4.3 Cluster-Aware Deep Generative Models 51

wards both a semi-supervised classification and semi-supervised generation task
much better than above models.

Concluding remarks CaGeM proves to be a compelling model for semi-
supervised learning as a whole. The argument of using these kinds of deep
generative models similarly to a Bayes classifier, brought forward in Section
4.2, is an even more interesting path to follow for the CaGeM, as compared to
ADGM and SDGM, taking into account the significant generative improvement.
As we will see in the next section, CaGeM is also a very efficient generative
model compared to other permutation invariant models5. There are still many
other parameterizations to explore, such as convolutional neural networks for
the image generation task.

5When a model is permutation invariant it means that it is not parameterized with any
spatial or temporal relationship, i.e. a densely connected neural network vs. convolutional
and recurrent neural networks.

52 Deep Generative Models for Semi-supervised Learning

Chapter 5

Deep Generative Models for
Unsupervised Learning

In the previous chapter we introduced models for semi-supervised learning that
take advantage of the information in unlabeled data. This leads us to the re-
search on purely unsupervised learning, for which models like the AVAE and
CaGeM also applies. In addition we will introduce the ladder variational auto-
encoder (Sønderby et al., 2016) (cf. Appendix B) that formulates yet another
parameterization of the inference model in order to encourage a more expres-
sive variational approximation. We will evaluate and compare the three per-
mutation invariant contributions against each other. Finally we introduce our
recent, preliminary work, on defining a deep generative model that combines a
convolutional variant of the VAE framework and recent autoregressive modeling
advances, denoted feature map variational auto-encoder (Maaløe and Winther,
2018) (cf. Appendix E).

54 Deep Generative Models for Unsupervised Learning

5.1 Improving Permutation Invariant Deep Gen-
erative Models

This section cites three of the contributions in this thesis:

B Maaløe, L., Sønderby, C. K., Sønderby, S. K., Winther, O. (2016).
Auxiliary deep generative models. In Proceedings of the Interna-
tional Conference on Machine Learning, pages 1445–1454.

C Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., Winther,
O. (2016). Ladder variational autoencoders. In Advances in Neu-
ral Information Processing Systems, pages 3738-3746.

D Maaløe, L., Fraccaro, M., Winther, O. (2017). CaGeM: A cluster
aware deep generative model. In Neural Information Processing
Systems Workshop on Approximate Bayesian Inference.

5.1.1 Ladder Variational Auto-Encoders

In Sønderby et al. (2016) (cf. Appendix B) we introduce the ladder varia-
tional auto-encoder (LVAE) that, as the name implies, is highly inspired by the
structure of the deterministic ladder network (Rasmus et al., 2015). The main
purpose of the LVAE is to solve the lacking expressiveness of the normal VAE
(discussed in Section 3.3) by defining a different variational approximation while
maintaining the hierarchical generative structure (cf. Equation 3.34). One of
the assumptions made in Sønderby et al. (2016) is that the inference path in the
regular VAE (cf. Equation 3.36) is prone to too much noise in the beginning
of training when stacking multiple layers. As we have seen in Section 3.3, this
gives the model the incentive to collapse the latent variables. In order to avoid
this tendency, and thereby achieve a more expressive approximation to the true
posterior, the LVAE propose a deterministic path from the observed variable,
x, to the top latent variable, zL. The inference model is therefore decomposed
by (cf. Figure 5.1):

qφ(Z|x) = qφ(zL|x)
L−1∏

i=1

qφ(zi|zi+1,x) . (5.1)

We now have an inference model with a similar downwards path to the one in
the generative model. This enables a trick in which we combine the generative
and inference model by applying a precision-weight to the output of each latent

5.1 Improving Permutation Invariant Deep Generative Models 55

x

z1

z2

z3 θ

(a) Generative model pθ

x

d1

d2

d3

z1

z2

z3 φ

(b) Inference model qφ

Figure 5.1: Graphical representation of LVAE from Sønderby et al. (2016)
(cf. Appendix B) with the generative model parameterized by θ (a) and the
variational approximation/inference model parameterized by φ (b) for a three
latent variable model. z1, z2, and z3 represents the continuous latent variables,
and x the observed variable.

variable:

qφ(zi|zi+1) = N (zi|µ̂φ,θ,i(zi+1), σ̂φ,θ,i(zi+1)) , (5.2)

µ̂φ,θ,i(zi+1) =
µφ,i(z

(φ)
i+1)σφ,i(z

(φ)
i+1)

−2 + µθ,i(z
(θ)
i+1)σθ,i(z

(θ)
i+1)

−2

σφ,i(z
(φ)
i+1)

−2 + σθ,i(z
(θ)
i+1)

−2
, (5.3)

σ̂φ,θ,i(zi+1) =
1

σφ,i(z
(φ)
i+1)

−2 + σθ,i(z
(θ)
i+1)

−2
, (5.4)

where z(φ) and z(θ) denotes the latent variable coming from the inference model
and the generative model respectively. The LVAE thereby ties the output of the
latent variables in the generative model together with the latent variable in the
variational approximation. Despite the potential gain in having a deterministic
path directly to the top latent variable, zL, our experiments proved that the
latent variable would still have a tendency to collapse. Therefore, we introduce
a temperature, that is scaling the regularization of the KL-divergence in the
beginning of the parameter optimization. This process is called warm-up1 and

1Concurrently to this research Bowman et al. (2016) introduced an equivalent procedure
to warm-up.

56 Deep Generative Models for Unsupervised Learning

Figure 5.2: The log KL-divergence for each unit/neuron (sorted rows) for a
latent variable zi (box) from Sønderby et al. (2016) (cf. Appendix B). BN
refers to batch normalization (Ioffe and Szegedy, 2015), and WU the warm-
up scheme. The warm-up period for these experiments was a linear increase
from 0 to 1 during the first 200 epochs. The number of units in each layer is
64-32-16-8-4.

the ELBO for the step τ is defined as:

Lφ,θ(x)τ = Eqφ(Z|x) [log pθ(x|z1)]− TτDKL[qφ(Z|x)|| pθ(Z)] , (5.5)

where Tτ denotes the τ th element of the temperatures T 2. In order to show
that the latent variables stay active during optimization, we assume that (i) a
latent variable is not collapsed if D(i)

KL > 0, and (ii) that the KL-divergence is
active beyond the warm-up period. The reason why (ii) is important, is that for
Tτ = 0 the LVAE is a regular auto-encoder. Figure 5.2 shows an analysis of the
activation throughout the latent variable from the beginning of optimization to
the end. As expected, the regular VAE collapse for L > 2 with only few active
units in the second layer. By using batch normalization (Ioffe and Szegedy,
2015) throughout all layers, including the µ and σ layers of the latent variables,
it results in more active units. We hypothesize that this is caused by less noisy
gradients in the beginning of training, thus there is less of an incentive for
the model to collapse the latent variables. The warm-up scheme improves the
activation for the higher latent variables even more for the VAE; however, it is
evident that the LVAE utilize much greater activation throughout all variables
of the model. The question then arise to whether the model actually needs the
utilization of 5 latent variables as opposed to a regular VAE with 1 or 2 latent
variables. In Figure 5.3 we present a comparison of the train-dataset ELBO and
the test-dataset ELBO with 1 IW sample and 5000 IW samples. It is interesting
to see how the VAE with batch-normalization and warm-up performs close to
the LVAE for the 5000 IW sample evaluations. However, when evaluating with

2Sønderby et al. (2016) applies a warm-up scheme in which the KL-divergence is scaled
from 0 to 1 during the first 200 epochs.

5.1 Improving Permutation Invariant Deep Generative Models 57

1 2 3 4 5

−91

−90

−89

−88

−87

−86

−85

−84
a) Ltrain

1

1 2 3 4 5
Number of Layers

 91

 90

 89

 88

 87

 86

 85

 84
b) Ltest

1

1 2 3 4 5

 86

 85

 84

 83

 82

c) Ltest
5000

VAE

VAE+BN

VAE+BN+WU

LVAE+BN+WU

Figure 5.3: Log-likelihood scores for VAEs and LVAEs trained on permutation
invariant and dynamically binarized MNIST (LeCun et al., 1998) from Sønderby
et al. (2016) (cf. Appendix B).

just 1 IW sample it becomes apparent that there is a big discrepancy between
the tightness of the bounds of the LVAE compared to the regular VAE. This
indicates that the LVAE learns a better approximation to the true posterior
distribution throughout the layers.

5.1.2 Comparing the Deep Generative Models

During the research of this thesis, we have developed AVAE, LVAE, and CaGeM
that are all strong permutation invariant unsupervised generative models. They
change the structure of the variational approximation in different ways where
CaGeM also introduce a discrete latent variable. In Table 5.1 we present the
comparison of the models that are directly comparable to a regular VAE. To the
best of our knowledge these models are still among the state-of-the-art together
with more complex models, e.g. VAEs with variational Gaussian processes (Tran
et al., 2016) and discrete VAEs (Rolfe, 2017; Vahdat et al., 2018). When bench-
marking these models there are several factors that make them more or less
comparable:

(i) number of units in the latent variables as well as the deterministic densely
connected networks,

(ii) depth of the latent variable hierarchy L that can enhance the expressive-
ness of the variational approximation significantly,

(iii) number of IW-samples used during optimization varies from 1 to 50, and
shows a significant impact on the results,

(iv) normalization schemes, i.e. both LVAE and CaGeM use batch normaliza-
tion as opposed to AVAE and IWAE. As depicted in Figure 5.2, this may
have a big impact on the result.

58 Deep Generative Models for Unsupervised Learning

However, some of the models are directly comparable. IWAE and AVAE (1
IW-sample) are trained equivalently, and from the result in Table 5.1 it is quite
evident that we achieve a significant improvement by adding an auxiliary vari-
able. Furthermore, the CaGeM has a significant impact over a 5 latent variable
LVAE. This is somewhat surprising, since the LVAE is formulated from a much
deeper hierarchy of latent variables. It indicates that the discrete variable in-
troduce a strong addition to the VAE framework. Last but not least, it is
staggering how much we can improve on the generative performance by adding
a small fraction of labeled data points, CaGeM-100.

Model L IW ≤ log p(x)

IWAE 2 1 −85.33
AVAE 2 1 −82.97
IWAE 2 50 −82.90
LVAE 5 1 −81.84
LVAE 5 10 −81.74
CaGeM-0 (C=10) 2 1 −81.60
CaGeM-100a (C=10) 2 1 −79.38

Table 5.1: Log-likelihood scores for AVAE (Maaløe et al., 2016), LVAE (Søn-
derby et al., 2016), CaGeM (Maaløe et al., 2017) (cf. Appendix A; B; C), and
IWAE (Burda et al., 2015) trained on permutation invariant and dynamically bi-
narized MNIST (LeCun et al., 1998). L denotes the number of continuous latent
variables and IW the number of importance weighted samples used during train-
ing. In this comparison we have only included the best performing models that
are directly comparable to the parameterizations of the normal VAE (Kingma
and Welling, 2014; Rezende et al., 2014) (cf. Appendices for comparisons to
other models, e.g. variational Gaussian processes (Tran et al., 2016)).

aCaGeM-100 utilize labeled information.

Concluding remarks An interesting perspective is that all models are com-
plementary, thus the LVAE could easily be using an auxiliary variables ai for
each zi, and the discrete latent variable y from CaGeM can also be applied
to the generative and inference model. This argument is not limited to these
models, but also applies to other model parameterizations, such as the varia-
tional Gaussian processes (Tran et al., 2016), normalizing flows (Rezende and
Mohamed, 2015), and inverse autoregressive flows (Kingma et al., 2016). In
the next section we will present research where we are utilizing the hierarchical
structure of the LVAE with an autoregressive model and spatial architecture.

For an implementation of the ladder variational auto-encoder, go to:

github.com/larsmaaloee/variational-tensorflow

5.2 Utilizing Spatial Information in Deep Generative Models 59

Figure 5.4: A visualization of FAME (cf. (Maaløe and Winther, 2018), Ap-
pendix E) where the solid lines denote the variational approximation (inference
model) and dashed lines denote the generative model for training. When per-
forming reconstructions during training, the input image is concatenated with
the output of the generative model (blue) and when generating, the model fol-
lows a normal autoregressive sampling flow (red), while also using the stochastic
latent variables Z = z1, ..., zL . Both the variational approximation and the
generative model follow a top-down hierarchical structure, enabling precision
weighted stochastic variables in the variational approximation.

5.2 Utilizing Spatial Information in Deep Gener-
ative Models

This chapter cites one of the contributions in this thesis:

F Maaløe, L., Winther, O. (2018). Feature map variational auto-
encoders. To be submitted.

The previous section presented how the unsupervised generative performance
can be significantly improved by utilizing more flexible variational approxi-
mations. Recent publications utilize (non-permutation invariant) spatial and
temporal information to gain significant improvements. Some of the most no-
table results are the deterministic autoregressive models: PixelRNN (van den
Oord et al., 2016b), PixelCNN (van den Oord et al., 2016b), Gated PixelCNN
(van den Oord et al., 2016c), and PixelCNN++ (Salimans et al., 2017). These
models have also gained traction in audio processing with Wavenet (van den
Oord et al., 2016a). The autoregressive models utilize the RNN and CNN lay-
ers to formulate a generative model where p(xi|x<i)3, and i denotes the pixel
value when modeling images or the current time-step when modeling audio. One
powerful feature of these models is that they are able to generate very complex

3For a detailed explanation on how autoregressive models are implemented, we refer the
reader to van den Oord et al. (2016b) and Salimans et al. (2017).

60 Deep Generative Models for Unsupervised Learning

(a) (b)

Figure 5.5: Random samples drawn from a N (0, I) distribution and prop-
agated through the generative model of FAME (Maaløe and Winther, 2018)
(cf. Appendix E) for the binarized MNIST (LeCun et al., 1998) (a) and OM-
NIGLOT (Lake et al., 2013) (b) dataset.

local information, which has been an inherent problem in the variational auto-
encoder framework (Larsen et al., 2016). Furthermore, they have shown that
the stacking of deep hierarchies of autoregressive layers achieves the embed-
ding of global information. PixelCNN++ (Salimans et al., 2017) has taken this
one step further by formulating the autoregressive dependency while performing
dimensionality reduction, similar to an auto-encoder with skip-connections.

Variants that combine the autoregressive models with the variational auto-
encoder framework has proven equivalent results to the purely autoregressive
models: PixelVAE (Gulrajani et al., 2016) and variational lossy auto-encoders
(VLAE) (Chen et al., 2017). It is noteworthy that these models learn a comple-
mentary global representation that can prove useful in the generative process.
However, they do not improve on the generative performance, despite the fact
that they introduce much more complexity. In this research we aim to formulate
a VAE that is a stronger generative model. For this, we utilize the findings from
the LVAE and complement it with convolutional layers for each deterministic
layer. Next we utilize a shallow variant of the PixelCNN from van den Oord
et al. (2016b). We name this model the feature map variational auto-encoder
(FAME) (Maaløe and Winther, 2018) (cf. Figure 5.4 and Appendix E). The
hope is that the VAE part will learn the global information and that the Pixel-
CNN part will learn the granular details of the local representations.

5.2 Utilizing Spatial Information in Deep Generative Models 61

Model NLL
IWAE (Burda et al., 2015) 82.90
LVAE (Sønderby et al., 2016) 81.74
CaGeM (Maaløe et al., 2017) 81.60
DVAE (Rolfe, 2017) 80.04
VGP (Tran et al., 2016) 79.88
IAF VAE Kingma et al. (2016) 79.10
VLAE Chen et al. (2017) 78.53
FAME No Concatenation 78.73
FAME 77.82

Table 5.2: Negative log-likelihood performance on dynamically binarized
MNIST in nats from (Maaløe and Winther, 2018), Appendix E. The evidence
lower-bound is computed with 5000 importance weighted samples L5000

θ,φ (x).

In Table 5.2 we present the results on the dynamically binarized MNIST dataset,
on which the model significantly outperform previous state of the art (cf. Ap-
pendix Appendix E for more results and implementation details). Figure 5.5
shows generated samples from the learned model. The generative process with
respect to the autoregressive model is cumbersome, hence one must generate
each xi sequentially. Therefore, we also evaluated FAME without the concate-
nation. This variant enables a single forward-pass in the generation model, since
the model is no longer dependent on the input distribution. Surprisingly this
model achieves a comparable result.

Concluding remarks The research on FAME is a work in progress and is
included in this thesis to show some interesting directions for the VAE-based
models. We are currently in the process of extending the approach towards
natural images. An intriguing future direction is to improve further on the
version that is not dependent on the autoregressive model approach. However,
there may be a need for an even more expressive variational approximation to
properly generate complex data sources such as natural images or audio.

62 Deep Generative Models for Unsupervised Learning

Chapter 6

Condition Monitoring with
Deep Generative Models

In this chapter we present, Maaløe et al. (2018) (cf. Appendix D), a real-life
application of the modeling approaches presented throughout this thesis. The
application is within data-driven condition monitoring in photovoltaic (PV) sys-
tems1. This is one in many scenarios where semi-supervised machine learning
models are essential. The data sources are not directly interpretable; hence
it is costly to acquire enough data for a supervised model to generalize. Fur-
thermore, it is difficult to label data according to a specific class, due to the
causal dependency within conditions. We will give a background on condition
monitoring in PV systems followed by our findings.

1Photovoltaics refer to the process of utilizing solar cells in converting sun energy into
electrons.

64 Condition Monitoring with Deep Generative Models

Sensor data Anomaly?

Retrain

Predict
Fault condition A

Normal operation

Outlier?

Fault condition A
Yes

No

++ +
++

+ +

++ +
++

+ +

++ +
++

+ +

++ +
++

+ +

Figure 6.1: Visualization of the proposed condition monitoring system through
semi-supervised learning from Maaløe et al. (2018) (cf. Appendix D). The
semi-supervised learning models proposed in this project have the ability to
capture anomalies by utilizing the formulation of the ELBO. This in turn can
then indicate whether an input condition is an anomaly and whether the model
must be retrained. If the condition is not anomalous, the model will be able to
categorize the condition, either within the normal operation of the PV plant or
within a fault category.

6.1 Condition Monitoring in Energy Production

Energy production systems such as PV and wind power plants are an ever
increasing source of energy across the globe. Two of the key reasons for the rapid
growth lie in the increase in power utilization and cost efficiency (Spataru et al.,
2016; Bach-Andersen, 2017). To uphold maximized yield in such energy systems,
maintenance and operation must be as streamlined as possible. Here condition
monitoring becomes a vital instrument. Condition monitoring concerns the
process of analyzing different system activities in order to discern a condition
that results in a decrease in power utilization. This condition could potentially
be a fault, but it can also be within normal operation, such as changes in weather
patterns. An example is the monitoring of drive train vibration data in wind
turbines (Bach-Andersen et al., 2017). Vibration data contains subtle patterns
showing signs of degradation that can be monitored and detected prior to the
system breaking. In PV systems we can divide the source of power loss into
three categories:

(i) Optical loss concerns conditions such as soiling, shading, and snow (Laukamp
et al., 2002). In a large-scale PV system this can be a result of many dif-
ferent events. They can be easily identified through visual inspection.
However, in large-scale PV systems spanning more than 40 km2, visual

6.2 Evaluating the Condition Monitoring System 65

inspection is far from easily conveyed2. Detecting these conditions from
sensor measurements can be difficult, since the resulting power loss is
highly irregular.

(ii) Electrical circuit degradation denotes open-circuit faults, closed-circuit
faults, and more subtle faults due to partial degradation. Such partial
degradation faults can be difficult to detect and cause an increase in series
resistance of each PV array (King et al., 2000; Yang et al., 2013). The
effect of an increase in series resistance will result in a drop of voltage.

(iii) Solar cell degradation has a wide variety of sources, such as thermo-
mechanical stress, voltage stress, and seasonal variations (King et al., 2000;
Köntges et al., 2014). The patterns for solar cell degradation can be ex-
tremely subtle and thereby hard to detect. However, the identification of
these patterns can prove very valuable, since they may be the result of
system-wide problems, e.g. bad installation practices.

There has been much effort in detecting certain conditions in energy production
systems (Spataru et al., 2016; Alzahrani et al., 2017; Bach-Andersen et al., 2017;
Bach-Andersen, 2017; Ali et al., 2017; Silvestre et al., 2013; Jiang and Maskell,
2015). However, to our knowledge there have been no attempts in performing
end-to-end condition monitoring through semi-supervised learning. In our opin-
ion this is vital in order to perform efficient monitoring, since it is intractable
to perceive all possible conditions for the supervised learning paradigm, both
because of the cumbersome labeling process and due to a risk of overlapping
categories.

6.2 Evaluating the Condition Monitoring System

This chapter cites two of the contributions in this thesis:

A Maaløe, L., Sønderby, S. K., Sønderby, C. K., Winther, O. (2016).
Auxiliary deep generative models. In Proceedings of the Interna-
tional Conference on Machine Learning, pages 1445–1454.

D Maaløe, L., Spataru, S. V., Sera, D., Winther, O. (2018). Con-
dition monitoring in photovoltaic systems by semi-supervised ma-
chine learning. Submitted to IEEE Transactions of Industrial In-
formatics.

2≈ 2
3
the size of Manhattan, New York, USA.

66 Condition Monitoring with Deep Generative Models

Figure 6.2: PCA (principal components 1 and 2) on the latent space of the z1
variable from Maaløe et al. (2018) (cf. Appendix D). The visualized SDGM
is trained on a fully supervised learning task on the dataset proposed in Table
6.1.

In Maaløe et al. (2018) (cf. Appendix D) we use a dataset containing ap-
proximately 2 months of PV system sensor data (cf. Table 6.1) divided into 10
different categories. The dataset contains sensor data considering the current
(I), voltage (V), in-plane irradiance (R), external temperature (TExt), PV mod-
ule temperature (TMod), and wind speed (W). We deploy the SDGM (Maaløe
et al., 2016) (cf. Appendix A) as an end-to-end condition monitoring machine
learning framework. In order to detect anomalous conditions (cf. Figure 6.1) we
utilize the ELBO from Equation 4.20 of which we can label a value significantly
below the ELBO of the training data, as anomalous. Complementary to the
anomaly detection we use the classifier qφ(y|z1,x) to detect conditions.

To test the framework we define 3 experiments:

(i) Benchmark the SDGM model against a densely connected neural network
(MLP) with equivalent architecture to qφ(y|z1,x) and a multi-label linear
regression model (MLR) on a fully supervised learning task.

(ii) Compare the 3 models when only presented with a fraction of labeled data
during training. The SDGM will then utilize the unlabeled data, and we
will achieve a measure of the added value of the semi-supervised approach.

(iii) Finally, we simulate real-life condition monitoring for a PV system by
progressively adding data from a new system condition. We initialize the
models with only 1 sample from each category, and then we add only the
data from one category at a time. The data added contains 500 labeled
samples and the remainder as unlabeled data.

6.2 Evaluating the Condition Monitoring System 67

Condition/Fault Class Description Samples

PS7 Uniform shading on all lower cells of the modules 10.68%
RS4 50% increase in string series resistance 10.18%
PS50 Partial shading on 50% of a submodule 10.83%
RS8 100% increase in string series resistance 5.11%
PSRS Combined 50% shading on a submodule with 50% increase in string Rs 10.93%
PS75 Shading on 50% of a submodule + 25% of another submodule 10.60%
C Cloudy sky day 4.60%
S Snow on the modules 27.64%
N Clear sky day 4.67%
IV Shading on 3/4 of cell area of 6 submodules 4.78%

Table 6.1: Dataset used for testing the semi-supervised learning model frame-
work for condition monitoring (cf. Maaløe et al. (2018), Appendix D). The
dataset is divided into 10 different categories where some lies within the normal
conditions and others are characterized as fault states.

Accuracy Accuracy
I,V I,V,G,TExt

TMod,W

MLR 51.62% 77.33%
MLP 77.81% 89.11%
SDGM 79.06% 92.47%

Table 6.2: Supervised baseline on MLR, MLP and SDGM for a simple sensor
input, {I, V}, and a more complex input, {I, V, G, TExt, TMod, and W} (cf.
Maaløe et al. (2018), Appendix D).

In the fully supervised comparison from Table 6.2, we see a clear improvement
of the non-linear models, SDGM and MLP, over the linear, MLR. This indi-
cates that the categories are difficult to discriminate and therefore need the
transformations of non-linear layers. Furthermore, it comes as no surprise that
the addition of more sensor data {G, TExt, TMod, and W} improves the per-
formance significantly. What is interesting, is that qφ(y|z1,x) outperform the
equivalently expressive MLP. We hypothesize that this may be a result of fuzzy
annotations. This is highly probable, especially in real-life systems, where a
category is not always evidently one thing over another. E.g. a binary clas-
sification task over a natural image dataset, consisting of dogs and cats, may
have some samples where dogs and cats are evenly represented. It may not be
straightforward for a human annotator to label such samples. The SDGM has
the ability to correlate the classification with the internal representation of the
continuous latent variables during training, which can result in a correction of
some of these fuzzy labels. From Figure 6.2 we see how the SDGM captures the

68 Condition Monitoring with Deep Generative Models

(a) (b)

Figure 6.3: (a) A comparison between SDGM Maaløe et al. (2018) (cf. Ap-
pendix D), MLP, and MLR for different fractions of labeled data. The labeled
samples are randomly sampled and evenly distributed across categories (cf. Ta-
ble 6.1) and all models are trained 10 times for each fraction. (b) SDGMs
trained from datasets where we randomly subsample a single data-point from
each category and then progressively add 500 randomly labeled data points for
each category and train a new SDGM for each progression. The plot shows
the ELBO for the data categories included during training (ELBO Lab.) and
the data categories that are not included during training (ELBO Unl.). The
categories that are progressively added is following the order of Table 6.1, i.e.
first {PS7}, next {PS7, RS4}, until reaching {PS7, RS4, PS50, RS8, PSRS,
PS75}.

patterns in the latent variable that follows the progression of the sun.

Figure 6.3a presents the increased value of utilizing the semi-supervised SDGM
over the supervised MLP and MLR. When increasing the number of labeled data
points we see that the improvement of utilizing the unlabeled data remains.
An interesting finding is that, when utilizing 1500 labeled data points in the
SDGM, the performance improves over the equivalent supervised experiment.
This again, underlines indications of the fuzzy annotation hypothesis.

Finally, Figure 6.3b presents the real-life simulation. We show the ELBO for
the categories that are not included during training, denoted ELBO Unl., and
the ELBO for the categories included during training, denoted ELBO Lab.. It is
evident that SDGM is able to detect anomalies, and by deciding on a threshold
value this can be used to re-label incoming sensor data that is not represented
in the data distribution that was trained upon.

6.2 Evaluating the Condition Monitoring System 69

Concluding remarks We have presented a framework for condition mon-
itoring by using the semi-supervised learning models proposed in this thesis.
It would be interesting to further investigate the improved performance of the
semi-supervised model over an equivalent supervised model on machine learning
benchmark datasets, e.g. Imagenet (Deng et al., 2009).

A limitation to this study is that the dataset used is a small-scale dataset com-
pared to a real-life PV system. Future improvements to the research would be
to deploy the framework on a large-scale PV system and investigate on transfer
learning capabilities.

70 Condition Monitoring with Deep Generative Models

Chapter 7

Conclusion

We have presented new approaches to the combination of deep learning and
probabilistic modeling. They significantly improve unsupervised and semi-supervised
learning within classification and generation tasks on real-life applications as well
as machine learning benchmark datasets. The main contributions consist of:

AVAE The auxiliary variational auto-encoder achieves to make the variational
approximation more flexible by introducing an auxiliary variable to the VAE
model. This leads to a significant increase in performance for the unsupervised
generation task.

ADGM The auxiliary deep generative model formulates an end-to-end ap-
proach that learns a global representation of the dataset in the latent auxiliary
variable in order to improve on semi-supervised classification.

SDGM The skip deep generative model reformulates the generative model of
the ADGM in order to propose a 2-latent variable hierarchical model that im-
proves even further on the semi-supervised classification task.

LVAE The ladder variational auto-encoder changes the variational approxima-
tion of the VAE so that it forms a top-down structure similarly to the hier-
archical generative model. This is used to share representations across the in-
ference model and generative model during inference, and with adhering tricks

72 Conclusion

(warm-up and batch-normalization), results in a significant improvement on the
unsupervised generation task.

CaGeM The cluster-aware generative model considers another view on semi-
supervised learning that utilize the labeled information as additional information
in order to achieve a better unsupervised and semi-supervised generation per-
formance. The model formulates a cascade of classifiers that helps in clustering
the input data within the approximated posterior.

FAME The feature map variational auto-encoder changes the architecture of
the neural networks to model spatial information, while utilizing a recently
proposed autoregressive framework. The model thereby improves significantly
on image generation tasks.

The approaches presented in this thesis are all somewhat complementary, which
leaves a variety of interesting future studies. A study could consider, embed-
ding the auxiliary variable in the LVAE that in turn could have the potential
to express much more complicated distributions in the latent variables, while
maintaining the depth of the generative model. Another study could be to com-
bine the top-down approach introduced in the LVAE with the discrete latent
variable in the CaGeM in order to achieve improved cluster-aware generation. It
would also be interesting to consider the strong representational learning of the
FAME in a semi-supervised classification framework such as ADGM or SDGM.

There also exist a vast amount of contributions that are outside the scope of this
study that would be interesting to pursue. Here, the learning of more complex
posterior distributions by utilizing methods such as normalizing flows (Rezende
and Mohamed, 2015), inverse autoregressive flows (Kingma et al., 2016), and
variational Gaussian processes (Tran et al., 2016), would be interesting direc-
tions to follow.

The ADGM, SDGM, and CaGeM all include a discrete variable. Discrete vari-
ables are difficult to sample from, which is why we tended to marginalization.
This could prove to be a cumbersome process in domains with many categories.
Jang et al. (2016) have utilized the Gumbel trick (Gumbel, 1954) that has the
potential of alleviating the marginalization. By introducing this into the semi-
supervised frameworks we can potentially speed up training time and conver-
gence rates significantly and scale to much larger datasets.

During the research we have also performed experiments on other data modali-
ties and modeling paradigms, such as multimodal learning on text and images,
VAEs in off-policy reinforcement learning, and semi-supervised learning for topic
modeling (similarly to Maaløe et al. (2015a)). These studies have shown intrigu-
ing results but have not been pursued any further.

73

A final note on the research is that, since everything is based on deep neural
networks, the different optimization and regularization tricks have a big impact
on model performance. This is considered throughout the analysis of this thesis.
However, in order to formalize a proper comparison to recent state-of-the-art
modeling approaches for unsupervised and semi-supervised learning it would
be necessary to parameterize the models and define the optimization algorithm
and adhering hyperparameter settings equivalently. With the rapid pace of
machine learning research, such a review study is close to incomprehensible.
However, it would be interesting to formulate one that at least approximates a
fair comparison.

74 Conclusion

Appendix A

Auxiliary Deep Generative
Models

In this appendix we include the arxiv.org version of:

Maaløe, L., Sønderby, S. K., Sønderby, C. K., Winther, O. (2016). Auxiliary
deep generative models. In Proceedings of the International Conference on Ma-
chine Learning, pages 1445–1454.

Auxiliary Deep Generative Models

Lars Maaløe1 LARSMA@DTU.DK
Casper Kaae Sønderby2 CASPERKAAE@GMAIL.COM
Søren Kaae Sønderby2 SKAAESONDERBY@GMAIL.COM
Ole Winther1,2 OLWI@DTU.DK
1Department of Applied Mathematics and Computer Science, Technical University of Denmark
2Bioinformatics Centre, Department of Biology, University of Copenhagen

Abstract

Deep generative models parameterized by neu-
ral networks have recently achieved state-of-
the-art performance in unsupervised and semi-
supervised learning. We extend deep genera-
tive models with auxiliary variables which im-
proves the variational approximation. The aux-
iliary variables leave the generative model un-
changed but make the variational distribution
more expressive. Inspired by the structure of the
auxiliary variable we also propose a model with
two stochastic layers and skip connections. Our
findings suggest that more expressive and prop-
erly specified deep generative models converge
faster with better results. We show state-of-the-
art performance within semi-supervised learning
on MNIST, SVHN and NORB datasets.

1. Introduction
Stochastic backpropagation, deep neural networks and ap-
proximate Bayesian inference have made deep generative
models practical for large scale problems (Kingma, 2013;
Rezende et al., 2014), but typically they assume a mean
field latent distribution where all latent variables are in-
dependent. This assumption might result in models that
are incapable of capturing all dependencies in the data. In
this paper we show that deep generative models with more
expressive variational distributions are easier to optimize
and have better performance. We increase the flexibility of
the model by introducing auxiliary variables (Agakov and
Barber, 2004) allowing for more complex latent distribu-
tions. We demonstrate the benefits of the increased flexibil-
ity by achieving state-of-the-art performance in the semi-
supervised setting for the MNIST (LeCun et al., 1998),

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

SVHN (Netzer et al., 2011) and NORB (LeCun et al., 2004)
datasets.

Recently there have been significant improvements within
the semi-supervised classification tasks. Kingma et al.
(2014) introduced a deep generative model for semi-
supervised learning by modeling the joint distribution over
data and labels. This model is difficult to train end-to-end
with more than one layer of stochastic latent variables, but
coupled with a pretrained feature extractor it performs well.
Lately the Ladder network (Rasmus et al., 2015; Valpola,
2014) and virtual adversarial training (VAT) (Miyato et al.,
2015) have improved the performance further with end-to-
end training.

In this paper we train deep generative models with mul-
tiple stochastic layers. The Auxiliary Deep Generative
Models (ADGM) utilize an extra set of auxiliary latent vari-
ables to increase the flexibility of the variational distribu-
tion (cf. Sec. 2.2). We also introduce a slight change to
the ADGM, a 2-layered stochastic model with skip con-
nections, the Skip Deep Generative Model (SDGM) (cf.
Sec. 2.4). Both models are trainable end-to-end and offer
state-of-the-art performance when compared to other semi-
supervised methods. In the paper we first introduce toy data
to demonstrate that:

(i) The auxiliary variable models can fit complex la-
tent distributions and thereby improve the variational
lower bound (cf. Sec. 4.1 and 4.3).

(ii) By fitting a complex half-moon dataset using only six
labeled data points the ADGM utilizes the data mani-
fold for semi-supervised classification (cf. Sec. 4.2).

For the benchmark datasets we show (cf. Sec. 4.4):

(iii) State-of-the-art results on several semi-supervised
classification tasks.

(iv) That multi-layered deep generative models for semi-
supervised learning are trainable end-to-end without
pre-training or feature engineering.

ar
X

iv
:1

60
2.

05
47

3v
4

 [
st

at
.M

L
]

 1
6

Ju
n

20
16

Auxiliary Deep Generative Models

2. Auxiliary deep generative models
Recently Kingma (2013); Rezende et al. (2014) have cou-
pled the approach of variational inference with deep learn-
ing giving rise to powerful probabilistic models constructed
by an inference neural network q(z|x) and a generative
neural network p(x|z). This approach can be perceived as
a variational equivalent to the deep auto-encoder, in which
q(z|x) acts as the encoder and p(x|z) the decoder. How-
ever, the difference is that these models ensures efficient
inference over continuous distributions in the latent space
z with automatic relevance determination and regulariza-
tion due to the KL-divergence. Furthermore, the gradients
of the variational upper bound are easily defined by back-
propagation through the network(s). To keep the computa-
tional requirements low the variational distribution q(z|x)
is usually chosen to be a diagonal Gaussian, limiting the
expressive power of the inference model.

In this paper we propose a variational auxiliary vari-
able approach (Agakov and Barber, 2004) to improve
the variational distribution: The generative model is ex-
tended with variables a to p(x, z, a) such that the original
model is invariant to marginalization over a: p(x, z, a) =
p(a|x, z)p(x, z). In the variational distribution, on the
other hand, a is used such that marginal q(z|x) =∫
q(z|a, x)p(a|x)da is a general non-Gaussian distribution.

This hierarchical specification allows the latent variables to
be correlated through a, while maintaining the computa-
tional efficiency of fully factorized models (cf. Fig. 1). In
Sec. 4.1 we demonstrate the expressive power of the infer-
ence model by fitting a complex multimodal distribution.

2.1. Variational auto-encoder

The variational auto-encoder (VAE) has recently been in-
troduced as a powerful method for unsupervised learning.
Here a latent variable generative model pθ(x|z) for data x
is parameterized by a deep neural network with parameters
θ. The parameters are inferred by maximizing the varia-
tional lower bound of the likelihood −∑i UVAE(xi) with

log p(x) = log

∫

z

p(x, z)dz

≥ Eqφ(z|x)
[
log

pθ(x|z)pθ(z)
qφ(z|x)

]
(1)

≡ −UVAE(x) .

The inference model qφ(z|x) is parameterized by a second
deep neural network. The inference and generative param-
eters, θ and φ, are jointly trained by optimizing Eq. 1 with
stochastic gradient ascent, where we use the reparameter-
ization trick for backpropagation through the Gaussian la-
tent variables (Kingma, 2013; Rezende et al., 2014).

yz

a

x

(a) Generative model P .

yz

a

x

(b) Inference model Q.
Figure 1. Probabilistic graphical model of the ADGM for semi-
supervised learning. The incoming joint connections to each vari-
able are deep neural networks with parameters θ and φ.

2.2. Auxiliary variables

We propose to extend the variational distribution with aux-
iliary variables a: q(a, z|x) = q(z|a, x)q(a|x) such that the
marginal distribution q(z|x) can fit more complicated pos-
teriors p(z|x). In order to have an unchanged generative
model, p(x|z), it is required that the joint mode p(x, z, a)
gives back the original p(x, z) under marginalization over
a, thus p(x, z, a) = p(a|x, z)p(x, z). Auxiliary variables
are used in the EM algorithm and Gibbs sampling and
have previously been considered for variational learning
by Agakov and Barber (2004). Concurrent with this work
Ranganath et al. (2015) have proposed to make the param-
eters of the variational distribution stochastic, which leads
to a similar model. It is important to note that in order
not to fall back to the original VAE model one has to re-
quire p(a|x, z) 6= p(a), see Agakov and Barber (2004) and
App. A. The auxiliary VAE lower bound becomes

log p(x) = log

∫

a

∫

z

p(x, a, z)dadz

≥ Eqφ(a,z|x)
[
log

pθ(a|z, x)pθ(x|z)p(z)
qφ(a|x)qφ(z|a, x)

]
(2)

≡ −UAVAE(x) .

with pθ(a|z, x) and qφ(a|x) diagonal Gaussian distribu-
tions parameterized by deep neural networks.

2.3. Semi-supervised learning

The main focus of this paper is to use the auxiliary ap-
proach to build semi-supervised models that learn clas-
sifiers from labeled and unlabeled data. To encom-
pass the class information we introduce an extra la-
tent variable y. The generative model P is defined as
p(y)p(z)pθ(a|z, y, x)pθ(x|y, z) (cf. Fig. 1a):

p(z) = N (z|0, I), (3)
p(y) = Cat(y|π), (4)

pθ(a|z, y, x) = f(a; z, y, x, θ), (5)
pθ(x|z, y) = f(x; z, y, θ) , (6)

Auxiliary Deep Generative Models

where a, y, z are the auxiliary variable, class label, and la-
tent features, respectively. Cat(·) is a multinomial distribu-
tion, where y is treated as a latent variable for the unlabeled
data points. In this study we only experimented with cate-
gorical labels, however the method applies to other distri-
butions for the latent variable y. f(x; z, y, θ) is iid categori-
cal or Gaussian for discrete and continuous observations x.
pθ(·) are deep neural networks with parameters θ. The in-
ference model is defined as qφ(a|x)qφ(z|a, y, x)qφ(y|a, x)
(cf. Fig. 1b):

qφ(a|x) = N (a|µφ(x), diag(σ2
φ(x))), (7)

qφ(y|a, x) = Cat(y|πφ(a, x)), (8)

qφ(z|a, y, x) = N (z|µφ(a, y, x), diag(σ2
φ(a, y, x))) . (9)

In order to model Gaussian distributions pθ(a|z, y, x),
pθ(x|z, y), qφ(a|x) and qφ(z|a, y, x) we define two sepa-
rate outputs from the top deterministic layer in each deep
neural network, µφ∨θ(·) and log σ2

φ∨θ(·). From these out-
puts we are able to approximate the expectations E by ap-
plying the reparameterization trick.

The key point of the ADGM is that the auxiliary unit a
introduce a latent feature extractor to the inference model
giving a richer mapping between x and y. We can use the
classifier (9) to compute probabilities for unlabeled data xu
being part of each class and to retrieve a cross-entropy er-
ror estimate on the labeled data xl. This can be used in
cohesion with the variational lower bound to define a good
objective function in order to train the model end-to-end.

VARIATIONAL LOWER BOUND

We optimize the model by maximizing the lower bound on
the likelihood (cf. App. B for more details). The variational
lower bound on the marginal likelihood for a single labeled
data point is

log p(x, y) = log

∫

a

∫

z

p(x, y, a, z)dzda

≥ Eqφ(a,z|x,y)
[
log

pθ(x, y, a, z)

qφ(a, z|x, y)

]
(10)

≡ −L(x, y) ,

with qφ(a, z|x, y) = qφ(a|x)qφ(z|a, y, x). For unlabeled
data we further introduce the variational distribution for y,
qφ(y|a, x):

log p(x) = log

∫

a

∫

y

∫

z

p(x, y, a, z)dzdyda

≥ Eqφ(a,y,z|x)
[
log

pθ(x, y, a, z)

qφ(a, y, z|x)

]
(11)

≡ −U(x) ,

with qφ(a, y, z|x) = qφ(z|a, y, x)qφ(y|a, x)qφ(a|x).

The classifier (9) appears in−U(xu), but not in−L(xl, yl).
The classification accuracy can be improved by introducing
an explicit classification loss for labeled data:

Ll(xl, yl) = (12)
L(xl, yl) + α · Eqφ(a|xl)[− log qφ(yl|a, xl)] ,

where α is a weight between generative and discriminative
learning. The α parameter is set to β · Nl+NuNl

, where β is
a scaling constant, Nl is the number of labeled data points
and Nu is the number of unlabeled data points. The objec-
tive function for labeled and unlabeled data is

J =
∑

(xl,yl)

Ll(xl, yl) +
∑

(xu)

U(xu) . (13)

2.4. Two stochastic layers with skip connections

Kingma et al. (2014) proposed a model with two stochas-
tic layers but were unable to make it converge end-
to-end and instead resorted to layer-wise training. In
our preliminary analysis we also found that this model:
pθ(x|z1)pθ(z1|z2, y)p(z2)p(y) failed to converge when
trained end-to-end. On the other hand, the auxil-
iary model can be made into a two-layered stochastic
model by simply reversing the arrow between a and
x in Fig. 1a. We would expect that if the auxiliary
model works well in terms of convergence and perfor-
mance then this two-layered model (a is now part of the
generative model): pθ(x|y, a, z)pθ(a|z, y)p(z)p(y) should
work even better because it is a more flexible genera-
tive model. The variational distribution is unchanged:
qφ(z|y, x, a)qφ(y|a, x)qφ(a|x). We call this the Skip Deep
Generative Model (SDGM) and test it alongside the auxil-
iary model in the benchmarks (cf. Sec. 4.4).

3. Experiments
The SDGM and ADGM are each parameterized by 5 neu-
ral networks (NN): (1) auxiliary inference model qφ(a|x),
(2) latent inference model qφ(z|a, y, x), (3) classification
model qφ(y|a, x), (4) generative model pθ(a|·), and (5) the
generative model pθ(x|·).
The neural networks consists of M fully connected hidden
layers with hj denoting the output of a layer j = 1, ...,M .
All hidden layers use rectified linear activation functions.
To compute the approximations of the stochastic variables
we place two independent output layers after hM , µ and
log σ2. In a forward-pass we are propagating the input x
through the neural network by

hM =NN(x) (14)
µ =Linear(hM) (15)

log σ2 =Linear(hM) , (16)

Auxiliary Deep Generative Models

with Linear denoting a linear activation function. We then
approximate the stochastic variables by applying the repa-
rameterization trick using the µ and log σ2 outputs.

In the unsupervised toy example (cf. Sec. 4.1) we ap-
plied 3 hidden layers with dim(h) = 20, dim(a) = 4
and dim(z) = 2. For the semi-supervised toy example (cf.
Sec. 4.2) we used two hidden layers of dim(h) = 100 and
dim(a, z) = 10.

For all the benchmark experiments (cf. Sec. 4.4) we
parameterized the deep neural networks with two fully
connected hidden layers. Each pair of hidden layers
was of size dim(h) = 500 or dim(h) = 1000 with
dim(a, z) = 100 or dim(a, z) = 300. The generative
model was p(y)p(z)pθ(a|z, y)pθ(x|z, y) for the ADGM
and the SDGM had the augmented pθ(x|a, z, y). Both have
unchanged inference models (cf. Fig. 1b).

All parameters are initialized using the Glorot and Bengio
(2010) scheme. The expectation over the a and z variables
were performed by Monte Carlo sampling using the repa-
rameterization trick (Kingma, 2013; Rezende et al., 2014)
and the average over y by exact enumeration so

Eqφ(a,y,z|x) [f(a, x, y, z)] ≈ (17)

1

Nsamp

Nsamp∑

i

∑

y

qφ(y|ai, x)f(ai, x, y, zyi),

with ai ∼ q(a|x) and zyi ∼ q(z|a, y, x).
For training, we have used the Adam (Kingma and Ba,
2014) optimization framework with a learning rate of 3e-
4, exponential decay rate for the 1st and 2nd moment at 0.9
and 0.999, respectively. The β constant was between 0.1
and 2 throughout the experiments.

The models are implemented in Python using Theano
(Bastien et al., 2012), Lasagne (Dieleman et al., 2015) and
Parmesan libraries1.

For the MNIST dataset we have combined the training set
of 50000 examples with the validation set of 10000 exam-
ples. The test set remained as is. We used a batch size
of 200 with half of the batch always being the 100 labeled
samples. The labeled data are chosen randomly, but dis-
tributed evenly across classes. To speed up training, we
removed the columns with a standard deviation below 0.1
resulting in an input size of dim(x) = 444. Before each
epoch the normalized MNIST images were binarized by
sampling from a Bernoulli distribution with mean parame-
ter set to the pixel intensities.

For the SVHN dataset we used the vectorized and cropped
training set dim(x) = 3072 with classes from 0 to 9, com-

1Implementation is available in a repository named auxiliary-
deep-generative-models on github.com.

bined with the extra set resulting in 604388 data points.
The test set is of size 26032. We trained on the small
NORB dataset consisting of 24300 training samples and an
equal amount of test samples distributed across 5 classes:
animal, human, plane, truck, car. We normalized all
NORB images following Miyato et al. (2015) using image
pairs of 32x32 resulting in a vectorized input of dim(x) =
2048. The labeled subsets consisted of 1000 evenly dis-
tributed labeled samples. The batch size for SVHN was
2000 and for NORB 200, where half of the batch was la-
beled samples. To avoid the phenomenon on modeling dis-
cretized values with a real-valued estimation (Uria et al.,
2013), we added uniform noise between 0 and 1 to each
pixel value. We normalized the NORB dataset by 256 and
the SVHN dataset by the standard deviation on each color
channel. Both datasets were assumed Gaussian distributed
for the generative models pθ(x|·).

4. Results
In this section we present two toy examples that shed light
on how the auxiliary variables improve the distribution
fit. Thereafter we investigate the unsupervised generative
log-likelihood performance followed by semi-supervised
classification performance on several benchmark datasets.
We demonstrate state-of-the-art performance and show that
adding auxiliary variables increase both classification per-
formance and convergence speed (cf. Sec. 3 for details).

4.1. Beyond Gaussian latent distributions

In variational auto-encoders the inference model qφ(z|x) is
parameterized as a fully factorized Gaussian. We demon-
strate that the auxiliary model can fit complicated posterior
distributions for the latent space. To do this we consider the
2D potential model p(z) = exp(U(z))/Z (Rezende and
Mohamed, 2015) that leads to the bound

logZ ≥ Eqφ(a,z)
[
log

exp(U(z))pθ(a|z)
qφ(a)qφ(z|a)

]
. (18)

Fig. 2a shows the true posterior and Fig. 2b shows a den-
sity plot of z samples from a ∼ qφ(a) and z ∼ qφ(z|a)
from a trained ADGM. This is similar to the findings of
Rezende and Mohamed (2015) in which they demonstrate
that by using normalizing flows they can fit complicated
posterior distributions. The most frequent solution found
in optimization is not the one shown, but one where Q fits
only one of the two equivalent modes. The one and two
mode solution will have identical values of the bound so it
is to be expected that the simpler single mode solution will
be easier to infer.

Auxiliary Deep Generative Models

(a) (b) (c) (d)
Figure 2. (a) True posterior of the prior p(z). (b) The approximation qφ(z|a)qφ(a) of the ADGM. (c) Prediction on the half-moon data
set after 10 epochs with only 3 labeled data points (black) for each class. (d) PCA plot on the 1st and 2nd principal component of the
corresponding auxiliary latent space.

4.2. Semi-supervised learning on two half-moons

To exemplify the power of the ADGM for semi-
supervised learning we have generated a 2D synthetic
dataset consisting of two half-moons (top and bot-
tom), where (xtop, ytop) = (cos([0, π]), sin([0, π])) and
(xbottom, ybottom) = (1− cos([0, π]), 1− sin([0, π])− 0.5),
with added Gaussian noise. The training set contains 1e4
samples divided into batches of 100 with 3 labeled data
points in each class and the test set contains 1e4 samples.
A good semi-supervised model will be able to learn the data
manifold for each of the half-moons and use this together
with the limited labeled information to build the classifier.

The ADGM converges close to 0% classification error in 10
epochs (cf. Fig. 2c), which is much faster than an equiv-
alent model without the auxiliary variable that converges
in more than 100 epochs. When investigating the auxiliary
variable we see that it finds a discriminating internal repre-
sentation of the data manifold and thereby aids the classifier
(cf. Fig. 2d).

4.3. Generative log-likelihood performance

We evaluate the generative performance of the unsuper-
vised auxiliary model, AVAE, using the MNIST dataset.
The inference and generative models are defined as

qφ(a, z|x) = qφ(a1|x)qφ(z1|a1, x) (19)
L∏

i=2

qφ(ai|ai−1, x)qφ(zi|ai, zi−1) ,

pθ(x, a, z) = pθ(x|z1)p(zL)pθ(aL|zL) (20)
L−1∏

i=1

pθ(zi|zi+1)pθ(ai|z≥i) .

where L denotes the number of stochastic layers.

We report the lower bound from Eq. (2) for 5000 impor-
tance weighted samples and use the same training and pa-
rameter settings as in Sønderby et al. (2016) with warm-

up2, batch normalization and 1 Monte Carlo and IW sample
for training.

≤ log p(x)

VAE+NF, L=1 (REZENDE AND MOHAMED, 2015) −85.10
IWAE, L=1, IW=1 (BURDA ET AL., 2015) −86.76
IWAE, L=1, IW=50 (BURDA ET AL., 2015) −84.78
IWAE, L=2, IW=1 (BURDA ET AL., 2015) −85.33
IWAE, L=2, IW=50 (BURDA ET AL., 2015) −82.90
VAE+VGP, L=2 (TRAN ET AL., 2015) −81.90
LVAE, L=5, IW=1 (SØNDERBY ET AL., 2016) −82.12
LVAE, L=5, FT, IW=10 (SØNDERBY ET AL., 2016) −81.74

AUXILIARY VAE (AVAE), L=1, IW=1 −84.59
AUXILIARY VAE (AVAE), L=2, IW=1 −82.97

Table 1. Unsupervised test log-likelihood on permutation invari-
ant MNIST for the normalizing flows VAE (VAE+NF), impor-
tance weighted auto-encoder (IWAE), variational Gaussian pro-
cess VAE (VAE+VGP) and Ladder VAE (LVAE) with FT denot-
ing the finetuning procedure from Sønderby et al. (2016), IW the
importance weighted samples during training, and L the number
of stochastic latent layers z1, .., zL.

We evaluate the negative log-likelihood for the 1 and 2 lay-
ered AVAE. We found that warm-up was crucial for activa-
tion of the auxiliary variables. Table 1 shows log-likelihood
scores for the permutation invariant MNIST dataset. The
methods are not directly comparable, except for the Lad-
der VAE (LVAE) (Sønderby et al., 2016), since the train-
ing is performed differently. However, they give a good
indication on the expressive power of the auxiliary vari-
able model. The AVAE is performing better than the VAE
with normalizing flows (Rezende and Mohamed, 2015) and
the importance weighted auto-encoder with 1 IW sample
(Burda et al., 2015). The results are also comparable to the
Ladder VAE with 5 latent layers (Sønderby et al., 2016)
and variational Gaussian process VAE (Tran et al., 2015).
As shown in Burda et al. (2015) and Sønderby et al. (2016)
increasing the IW samples and annealing the learning rate
will likely increase the log-likelihood.

2Temperature on the KL-divergence going from 0 to 1 within
the first 200 epochs of training.

Auxiliary Deep Generative Models

MNIST SVHN NORB
100 LABELS 1000 LABELS 1000 LABELS

M1+TSVM (KINGMA ET AL., 2014) 11.82% (±0.25) 55.33% (±0.11) 18.79% (±0.05)
M1+M2 (KINGMA ET AL., 2014) 3.33% (±0.14) 36.02%(±0.10) -
VAT (MIYATO ET AL., 2015) 2.12% 24.63% 9.88%
LADDER NETWORK (RASMUS ET AL., 2015) 1.06% (±0.37) - -

AUXILIARY DEEP GENERATIVE MODEL (ADGM) 0.96% (±0.02) 22.86% 10.06% (±0.05)
SKIP DEEP GENERATIVE MODEL (SDGM) 1.32% (±0.07) 16.61% (±0.24) 9.40% (±0.04)

Table 2. Semi-supervised test error % benchmarks on MNIST, SVHN and NORB for randomly labeled and evenly distributed data
points. The lower section demonstrates the benchmarks of the contribution of this article.

4.4. Semi-supervised benchmarks

MNIST EXPERIMENTS

Table 2 shows the performance of the ADGM and SDGM
on the MNIST dataset. The ADGM’s convergence to
around 2% is fast (around 200 epochs), and from that point
the convergence speed declines and finally reaching 0.96%
(cf. Fig. 5). The SDGM shows close to similar perfor-
mance and proves more stable by speeding up convergence,
due to its more advanced generative model. We achieved
the best results on MNIST by performing multiple Monte
Carlo samples for a ∼ qφ(a|x) and z ∼ qφ(z|a, y, x).
A good explorative estimate of the models ability to com-
prehend the data manifold, or in other words be as close
to the posterior distribution as possible, is to evaluate the
generative model. In Fig. 3a we show how the SDGM,
trained on only 100 labeled data points, has learned to sep-
arate style and class information. Fig 3b shows random
samples from the generative model.

(a)

(b)

Figure 3. MNIST analogies. (a) Forward propagating a data point
x (left) through qφ(z|a, x) and generate samples pθ(x|yj , z) for
each class label yj (right). (b) Generating a sample for each class
label from random generated Gaussian noise; hence with no use
of the inference model.

Fig. 4a demonstrate the information contribution from the
stochastic unit ai and zj (subscripts i and j denotes a unit)
in the SDGM as measured by the average over the test set
of the KL-divergence between the variational distribution
and the prior. Units with little information content will be
close to the prior distribution and the KL-divergence term

will thus be close to 0. The number of clearly activated
units in z and a is quite low ∼ 20, but there is a tail of
slightly active units, similar results have been reported by
Burda et al. (2015). It is still evident that we have informa-
tion flowing through both variables though. Fig. 2d and 4b
shows clustering in the auxiliary space for both the ADGM
and SDGM respectively.

(a)

(b)

Figure 4. SDGM trained on 100 labeled MNIST. (a) The KL-
divergence for units in the latent variables a and z calculated by
the difference between the approximated value and its prior. (b)
PCA on the 1st and 2nd principal component of the auxiliary la-
tent space.

Auxiliary Deep Generative Models

Figure 5. 100 labeled MNIST classification error % evaluated ev-
ery 10 epochs between equally optimized SDGM, ADGM, M2
(Kingma et al., 2014) and an ADGM with a deterministic auxil-
iary variable.

In order to investigate whether the stochasticity of the aux-
iliary variable a or the network depth is essential to the
models performance, we constructed an ADGM with a de-
terministic auxiliary variable. Furthermore we also imple-
mented the M2 model of Kingma et al. (2014) using the
exact same hyperparameters as for learning the ADGM.
Fig. 5 shows how the ADGM outperforms both the M2
model and the ADGM with deterministic auxiliary vari-
ables. We found that the convergence of the M2 model
was highly unstable; the one shown is the best obtained.

SVHN & NORB EXPERIMENTS

From Table 2 we see how the SDGM outperforms VAT
with a relative reduction in error rate of more than 30% on
the SVHN dataset. We also tested the model performance,
when we omitted the SVHN extra set from training. Here
we achieved a classification error of 29.82%. The improve-
ments on the NORB dataset was not as significant as for
SVHN with the ADGM being slightly worse than VAT and
the SDGM being slightly better than VAT.

On SVHN the model trains to around 19% classification
error in 100 epochs followed by a decline in convergence
speed. The NORB dataset is a significantly smaller dataset
and the SDGM converges to around 12% in 100 epochs.
We also trained the NORB dataset on single images as op-
posed to image pairs (half the dataset) and achieved a clas-
sification error around 13% in 100 epochs.

For Gaussian input distributions, like the image data of
SVHN and NORB, we found the SDGM to be more sta-
ble than the ADGM.

5. Discussion
The ADGM and SDGM are powerful deep generative mod-
els with relatively simple neural network architectures.
They are trainable end-to-end and since they follow the
principles of variational inference there are multiple im-
provements to consider for optimizing the models like us-
ing the importance weighted bound or adding more lay-
ers of stochastic variables. Furthermore we have only pro-
posed the models using a Gaussian latent distribution, but
the model can easily be extended to other distributions
(Ranganath et al., 2014; 2015).

One way of approaching the stability issues of the ADGM,
when training on Gaussian input distributions x is to
add a temperature weighting between discriminative and
stochastic learning on the KL-divergence for a and z when
estimating the variational lower bound (Sønderby et al.,
2016). We find similar problems for the Gaussian input dis-
tributions in van den Oord et al. (2016), where they restrict
the dataset to ordinal values in order to apply a softmax
function for the output of the generative model p(x|·). This
discretization of data is also a possible solution. Another
potential stabilizer is to add batch normalization (Ioffe and
Szegedy, 2015) that will ensure normalization of each out-
put batch of a fully connected hidden layer.

A downside to the semi-supervised variational framework
is that we are summing over all classes in order to evaluate
the variational bound for unlabeled data. This is a com-
putationally costly operation when the number of classes
grow. In this sense, the Ladder network has an advantage.
A possible extension is to sample y when calculating the
unlabeled lower bound −U(xu), but this may result in gra-
dients with high variance.

The framework is implemented with fully connected layers.
VAEs have proven to work well with convolutional layers
so this could be a promising step to further improve the
performance. Finally, since we expect that the variational
bound found by the auxiliary variable method is quite tight,
it could be of interest to see whether the bound for p(x, y)
may be used for classification in the Bayes classifier man-
ner p(y|x) ∝ p(x, y).

6. Conclusion
We have introduced a novel framework for making the vari-
ational distributions used in deep generative models more
expressive. In two toy examples and the benchmarks we in-
vestigated how the framework uses the auxiliary variables
to learn better variational approximations. Finally we have
demonstrated that the framework gives state-of-the-art per-
formance in a number of semi-supervised benchmarks and
is trainable end-to-end.

Auxiliary Deep Generative Models

A. Auxiliary model specification
In this appendix we study the theoretical optimum of the
auxiliary variational bound found by functional derivatives
of the variational objective. In practice we will resort to
restricted deep network parameterized distributions. But
this analysis nevertheless shed some light on the proper-
ties of the optimum. Without loss of generality we con-
sider only auxiliary a and latent z: p(a, z) = p(z)p(a|z),
p(z) = f(z)/Z and q(a, z) = q(z|a)q(a). The results
can be extended to the full semi-supervised setting without
changing the overall conclusion. The variational bound for
the auxiliary model is

logZ ≥ Eq(a,z)
[
log

f(z)p(a|z)
q(z|a)q(a)

]
. (21)

We can now take the functional derivative of the bound
with respect to p(a|z). This gives the optimum p(a|z) =
q(a, z)/q(z), which in general is intractable because it re-
quires marginalization: q(z) =

∫
q(z|a)q(a)da.

One may also restrict the generative model to an unin-
formed a-model: p(a, z) = p(z)p(a). Optimizing with
respect to p(a) we find p(a) = q(a). When we insert this
solution into the variational bound we get

∫
q(a)Eq(z|a)

[
log

f(z)

q(z|a)

]
da . (22)

The solution to the optimization with respect to q(a) will
simply be a δ-function at the value of a that optimizes the
variational bound for the z-model. So we fall back to a
model for z without the auxiliary as also noted by Agakov
and Barber (2004).

We have tested the uninformed auxiliary model in semi-
supervised learning for the benchmarks and we got com-
petitive results for MNIST but not for the two other bench-
marks. We attribute this to two factors: in semi-supervised
learning we add an additional classification cost so that the
generic form of the objective is

logZ ≥ Eq(a,z)
[
log

f(z)p(a)

q(z|a)q(a) + g(a)

]
, (23)

we keep p(a) fixed to a zero mean unit variance Gaussian
and we use deep iid models for f(z), q(z|a) and q(a). This
taken together can lead to at least a local optimum which is
different from the collapse to the pure z-model.

B. Variational bounds
In this appendix we give an overview of the variational ob-
jectives used. The generative model pθ(x, a, y, z) for the
Auxiliary Deep Generative Model and the Skip Deep Gen-
erative Model are defined as

ADGM:
pθ(x, a, y, z) = pθ(x|y, z)pθ(a|x, y, z)p(y)p(z) . (24)

SDGM:
pθ(x, a, y, z) = pθ(x|a, y, z)pθ(a|x, y, z)p(y)p(z) . (25)

The lower bound −L(x, y) on the labeled log-likelihood is
defined as

log p(x, y) = log

∫

a

∫

z

pθ(x, y, a, z)dzda (26)

≥ Eqφ(a,z|x,y)
[
log

pθ(x, y, a, z)

qφ(a, z|x, y)

]
≡ −L(x, y) ,

where qφ(a, z|x, y) = qφ(a|x)qφ(z|a, y, x). We define the
function f(·) to be f(x, y, a, z) = log pθ(x,y,a,z)

qφ(a,z|x,y) . In the
lower bound for the unlabeled data−U(x) we treat the dis-
crete y3 as a latent variable. We rewrite the lower bound in
the form of Kingma et al. (2014):

log p(x) = log

∫

a

∑

y

∫

z

pθ(x, y, a, z)dzda

≥ Eqφ(a,y,z|x) [f(·)− log qφ(y|a, x)] (27)

= Eqφ(a|x)
∑

y

qφ(y|a, x)Eqφ(z|a,x) [f(·)] +

Eqφ(a|x)
[
−
∑

y

qφ(y|a, x) log qφ(y|a, x)
︸ ︷︷ ︸

H(qφ(y|a,x))

]

= Eqφ(a|x)
[∑

y

qφ(y|a, x)Eqφ(z|a,x) [f(·)] +

H(qφ(y|a, x))
]

≡ −U(x) ,

where H(·) denotes the entropy. The objective function of
−L(x, y) and −U(x) are given in Eq. (12) and Eq. (13).

3y is assumed to be multinomial but the model can easily be
extended to different distributions.

Auxiliary Deep Generative Models

Acknowledgements
We thank Durk P. Kingma and Shakir Mohamed for help-
ful discussions. This research was supported by the Novo
Nordisk Foundation, Danish Innovation Foundation and
the NVIDIA Corporation with the donation of TITAN X
and Tesla K40 GPUs.

References
Agakov, F. and Barber, D. (2004). An Auxiliary Varia-

tional Method. In Neural Information Processing, vol-
ume 3316 of Lecture Notes in Computer Science, pages
561–566. Springer Berlin Heidelberg.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Good-
fellow, I. J., Bergeron, A., Bouchard, N., and Bengio, Y.
(2012). Theano: new features and speed improvements.
In Deep Learning and Unsupervised Feature Learning,
workshop at Neural Information Processing Systems.

Burda, Y., Grosse, R., and Salakhutdinov, R. (2015).
Importance Weighted Autoencoders. arXiv preprint
arXiv:1509.00519.

Dieleman, S., Schlter, J., Raffel, C., Olson, E., Sønderby,
S. K., Nouri, D., van den Oord, A., and and, E. B. (2015).
Lasagne: First release.

Glorot, X. and Bengio, Y. (2010). Understanding the dif-
ficulty of training deep feedforward neural networks.
In Proceedings of the International Conference on Ar-
tificial Intelligence and Statistics (AISTATS10)., pages
249–256.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal co-
variate shift. In Proceedings of International Conference
of Machine Learning, pages 448–456.

Kingma, D. and Ba, J. (2014). Adam: A Method
for Stochastic Optimization. arXiv preprint
arXiv:1412.6980.

Kingma, D. P., Rezende, D. J., Mohamed, S., and Welling,
M. (2014). Semi-Supervised Learning with Deep Gener-
ative Models. In Proceedings of the International Con-
ference on Machine Learning, pages 3581–3589.

Kingma, Diederik P; Welling, M. (2013). Auto-Encoding
Variational Bayes. arXiv preprint arXiv:1312.6114.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. In Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition,
pages 2278–2324.

LeCun, Y., Huang, F. J., and Bottou, L. (2004). Learning
methods for generic object recognition with invariance
to pose and lighting. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pat-
tern Recognition, pages 97–104.

Miyato, T., Maeda, S.-i., Koyama, M., Nakae, K., and Ishii,
S. (2015). Distributional Smoothing with Virtual Adver-
sarial Training. arXiv preprint arXiv:1507.00677.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and
Ng, A. Y. (2011). Reading digits in natural images with
unsupervised feature learning. In Deep Learning and
Unsupervised Feature Learning, workshop at Neural In-
formation Processing Systems 2011.

Ranganath, R., Tang, L., Charlin, L., and Blei, D. M.
(2014). Deep exponential families. arXiv preprint
arXiv:1411.2581.

Ranganath, R., Tran, D., and Blei, D. M. (2015).
Hierarchical variational models. arXiv preprint
arXiv:1511.02386.

Rasmus, A., Berglund, M., Honkala, M., Valpola, H., and
Raiko, T. (2015). Semi-supervised learning with ladder
networks. In Advances in Neural Information Processing
Systems, pages 3532–3540.

Rezende, D. J. and Mohamed, S. (2015). Variational In-
ference with Normalizing Flows. In Proceedings of the
International Conference of Machine Learning, pages
1530–1538.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014).
Stochastic Backpropagation and Approximate Infer-
ence in Deep Generative Models. arXiv preprint
arXiv:1401.4082.

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K.,
and Winther, O. (2016). Ladder variational autoen-
coders. arXiv preprint arXiv:1602.02282.

Tran, D., Ranganath, R., and Blei, D. M. (2015).
Variational Gaussian process. arXiv preprint
arXiv:1511.06499.

Uria, B., Murray, I., and Larochelle, H. (2013). Rnade:
The real-valued neural autoregressive density-estimator.
In Advances in Neural Information Processing Systems,
pages 2175–2183.

Valpola, H. (2014). From neural pca to deep unsupervised
learning. arXiv preprint arXiv:1411.7783.

van den Oord, A., Nal, K., and Kavukcuoglu, K.
(2016). Pixel recurrent neural networks. arXiv preprint
arXiv:1601.06759.

Appendix B

Ladder Variational
Autoencoders

In this appendix we include the arxiv.org version of:

Sønderby, C. K., Raiko, Tapani, Maaløe, L., Sønderby, S. K., Winther, O.
(2016). Ladder variational autoencoders. In Advances in Neural Information
Processing Systems, pages 3738-3746.

Ladder Variational Autoencoders

Casper Kaae Sønderby∗
casperkaae@gmail.com

Tapani Raiko†
tapani.raiko@aalto.fi

Lars Maaløe‡
larsma@dtu.dk

Søren Kaae Sønderby∗
skaaesonderby@gmail.com

Ole Winther∗,‡
olwi@dtu.dk

Abstract

Variational autoencoders are powerful models for unsupervised learning. However
deep models with several layers of dependent stochastic variables are difficult to
train which limits the improvements obtained using these highly expressive models.
We propose a new inference model, the Ladder Variational Autoencoder, that
recursively corrects the generative distribution by a data dependent approximate
likelihood in a process resembling the recently proposed Ladder Network. We
show that this model provides state of the art predictive log-likelihood and tighter
log-likelihood lower bound compared to the purely bottom-up inference in layered
Variational Autoencoders and other generative models. We provide a detailed
analysis of the learned hierarchical latent representation and show that our new
inference model is qualitatively different and utilizes a deeper more distributed
hierarchy of latent variables. Finally, we observe that batch normalization and
deterministic warm-up (gradually turning on the KL-term) are crucial for training
variational models with many stochastic layers.

1 Introduction

The recently introduced variational autoencoder (VAE) [9, 18] provides a framework for deep
generative models. In this work we study how the variational inference in such models can be
improved while not changing the generative model. We introduce a new inference model using
the same top-down dependency structure both in the inference and generative models achieving
state-of-the-art generative performance.

VAEs, consisting of hierarchies of conditional stochastic variables, are highly expressive models
retaining the computational efficiency of fully factorized models, Figure 1 a). Although highly
flexible these models are difficult to optimize for deep hierarchies due to multiple layers of conditional
stochastic layers. The VAEs considered here are trained by optimizing a variational approximate
posterior lower bounding the intractable true posterior. Recently used inference are calculated purely
bottom-up with no interaction between the inference and generative models [9, 17, 18]. We propose a
new structured inference model using the same top-down dependency structure both in the inference
and generative models. Here the approximate posterior distribution can be viewed as merging
information from a bottom up computed approximate likelihood with top-down prior information
from the generative distribution, see Figure 1 b). The sharing of information (and parameters) with
the generative model gives the inference model knowledge of the current state of the generative
model in each layer and the top down-pass recursively corrects the generative distribution with
the data dependent approximate log-likelihood using a simple precision-weighted addition. This
∗Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
†Department of Computer Science, Aalto University, Finland
‡Department of Applied Mathematics and Computer Science, Technical University of Denmark

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016).

ar
X

iv
:1

60
2.

02
28

2v
3

 [
st

at
.M

L
]

 2
7

M
ay

 2
01

6

z1

z2

a) b)

d1

d2

x x

z1

z2

x

z1

z2

shared

z1

z2

x

Figure 1: Inference (or encoder/recognition) and
generative (or decoder) models for a) VAE and
b) LVAE. Circles are stochastic variables and dia-
monds are deterministic variables.

200 800 1400 2000
Epoch

−94

−92

−90

−88

−86

−84

L 1

VAE

VAE+BN

VAE+BN+WU

LVAE+BN+WU

Figure 2: MNIST train (full lines) and test
(dashed lines) set log-likelihood using one im-
portance sample during training. The LVAE im-
proves performance significantly over the regular
VAE.

parameterization allows interactions between the bottom-up and top-down signals resembling the
recently proposed Ladder Network [21, 16], and we therefore denote it Ladder-VAE (LVAE). For
the remainder of this paper we will refer to VAEs as both the inference and generative model seen
in Figure 1 a) and similarly LVAE as both the inference and generative model in Figure 1 b). We
stress that the VAE and LVAE models only differ in the inference model, however these have similar
number of parameters, whereas the generative models are identical.

Previous work on VAEs have been restricted to shallow models with one or two layers of stochastic
latent variables. The performance of such models are constrained by the restrictive mean field
approximation to the intractable posterior distribution. We found that purely bottom-up inference
normally used in VAEs and gradient ascent optimization are only to a limited degree able to utilize
the two layers of stochastic latent variables. We initially show that a warm-up period [1, 15, Section
6.2] to support stochastic units staying active in early training and batch normalization (BN) [6]
can significantly improve performance of VAEs. Using these VAE models as competitive baselines
we show that LVAE improves the generative performance achieving as good or better performance
than other (often complicated) methods for creating flexible variational distributions such as: The
Variational Gaussian Processes [20], Normalizing Flows [17], Importance Weighted Autoencoders [2]
or Auxiliary Deep Generative Models[12]. Compared to the bottom-up inference in VAEs we find that
LVAE: 1) have better generative performance 2) provides a tighter bound on the true log-likelihood
and 3) can utilize deeper and more distributed hierarchies of stochastic variables. Lastly we study the
learned latent representations and find that these differ qualitatively between the LVAE and VAE with
the LVAE capturing more high level structure in the datasets.

In summary our contributions are:

• A new inference model combining an approximate Gaussian likelihood with the generative
model resulting in better generative performance than the normally used bottom-up VAE
inference

• We provide a detailed study of the learned latent distributions and show that LVAE learns
both a deeper and more distributed representation when compared to VAE

• We show that a deterministic warm-up period and batch normalization are important for
training deep stochastic models.

2 Methods

VAEs and LVAEs simultaneously train a generative model pθ(x, z) = pθ(x|z)pθ(z) for data x using
latent variables z, and an inference model qφ(z|x) by optimizing a variational lower bound to the
likelihood pθ(x) =

∫
pθ(x, z)dz. In the generative model pθ, the latent variables z are split into L

2

layers zi, i = 1 . . . L as follows:

pθ(z) = pθ(zL)

L−1∏

i=1

pθ(zi|zi+1) (1)

pθ(zi|zi+1) = N
(
zi|µp,i(zi+1), σ

2
p,i(zi+1)

)
, pθ(zL) = N (zL|0, I) (2)

pθ(x|z1) = N
(
x|µp,0(z1), σ2

p,0(z1)
)

or Pθ(x|z1) = B (x|µp,0(z1)) (3)

where observation models is matching either continuous-valued (Gaussian N) or binary-valued
(Bernoulli B) data, respectively. We use subscript p (and q) to highlight if µ or σ2 sigma belongs to
the generative or inference distributions respectively. The hierarchical specification allows the lower
layers of the latent variables to be highly correlated but still maintain the computational efficiency
of fully factorized models. The variational principle provides a tractable lower bound on the log
likelihood which can be used as a training criterion L.

log p(x) ≥ Eqφ(z|x)
[
log

pθ(x, z)

qφ(z|x)

]
= L(θ, φ;x) (4)

= −KL(qφ(z|x)||pθ(z)) + Eqφ(z|x) [log pθ(x|z)] , (5)

where KL is the Kullback-Leibler divergence. A strictly tighter bound on the likelihood may be
obtained at the expense of a K-fold increase of samples by using the importance weighted bound [2]:

log p(x) ≥ Eqφ(z(1)|x) . . . Eqφ(z(K)|x)

[
log

K∑

k=1

pθ(x, z
(k))

qφ(z(k)|x)

]
≥ LK(θ, φ;x) . (6)

The generative and inference parameters, θ and φ, are jointly trained by optimizing Eq. (5) using
stochastic gradient descent where we use the reparametrization trick for stochastic backpropagation
through the Gaussian latent variables [9, 18]. The KL[qφ|pθ] is calculated analytically at each layer
when possible and otherwise approximated using Monte Carlo sampling.

2.1 Variational autoencoder inference model

VAE inference models are parameterized as a bottom-up process similar to [2, 8]. Conditioned on the
stochastic layer below each stochastic layer is specified as a fully factorized gaussian distribution:

qφ(z|x) = qφ(z1|x)
L∏

i=2

qφ(zi|zi−1) (7)

qφ(z1|x) = N
(
z1|µq,1(x), σ2

q,1(x)
)

(8)

qφ(zi|zi−1) = N
(
zi|µq,i(zi−1), σ2

q,i(zi−1)
)
, i = 2 . . . L. (9)

In this parameterization the inference and generative distributions are computed separately with no
explicit sharing of information. In the beginning of the training procedure this might cause problems
since the inference models have to approximately match the highly variable generative distribution in
order to optimize the likelihood. The functions µ(·) and σ2(·) in the generative and VAE inference
models are implemented as:

d(y) =MLP(y) (10)
µ(y) =Linear(d(y)) (11)

σ2(y) =Softplus(Linear(d(y))) , (12)

where MLP is a two layered multilayer perceptron network, Linear is a single linear layer, and
Softplus applies log(1 + exp(·)) nonlinearity to each component of its argument vector ensuring
positive variances. In our notation, each MLP(·) or Linear(·) gives a new mapping with its own
parameters, so the deterministic variable d is used to mark that the MLP-part is shared between µ and
σ2 whereas the last Linear layer is not shared.

2.2 Ladder variational autoencoder inference model

We propose a new inference model that recursively corrects the generative distribution with a data
dependent approximate likelihood term. First a deterministic upward pass computes the approximate

3

1 2 3 4 5

−91

−90

−89

−88

−87

−86

−85

−84
a) Ltrain

1

1 2 3 4 5
Number of Layers

 91

 90

 89

 88

 87

 86

 85

 84
b) Ltest

1

1 2 3 4 5

 86

 85

 84

 83

 82

c) Ltest
5000

VAE

VAE+BN

VAE+BN+WU

LVAE+BN+WU

Figure 3: MNIST log-likelihood values for VAEs and the LVAE model with different number of latent
layers, Batch normalization (BN) and Warm-up (WU). a) Train log-likelihood, b) test log-likelihood
and c) test log-likelihood with 5000 importance samples.

likelihood contributions:

dn =MLP(dn−1) (13)
µ̂q,i =Linear(di), i = 1 . . . L (14)

σ̂2
q,i =Softplus(Linear(di)), i = 1 . . . L (15)

where d0 = x. This is followed by a stochastic downward pass recursively computing both the
approximate posterior and generative distributions:

qφ(z|x) =qφ(zL|x)
L−1∏

i=1

qφ(zi|zi+1) (16)

σq,i =
1

σ̂−2q,i + σ−2p,i
(17)

µq,i =
µ̂q,iσ̂

−2
q,i + µp,iσ

−2
p,i

σ̂−2q,i + σ−2p,i
(18)

qφ(zi|·) = N
(
zi|µq,i, σ2

q,i

)
, (19)

where µq,L = µ̂q,L and σ2
q,L = σ̂2

q,L. The inference model is a precision-weighted combination of
µ̂q and σ̂2

q carrying bottom-up information and µp and σ2
p from the generative distribution carrying

top-down prior information. This parameterization has a probabilistic motivation by viewing µ̂q and
σ̂2
q as the approximate gaussian likelihood that is combined with a gaussian prior µp and σ2

p from the
generative distribution. Together these form the approximate posterior distribution qθ(z|z,x) using
the same top-down dependency structure both in the inference and generative model.

A line of motivation, already noted in [3], is that a purely bottom-up inference process as in i.e. VAEs
does not correspond well with real perception, where iterative interaction between bottom-up and
top-down signals produces the final activity of a unit4. Notably it is difficult for the purely bottom-up
inference networks to model the explaining away phenomenon, see [22, Chapter 5] for a recent
discussion on this phenomenon. The LVAE model provides a framework with the wanted interaction,
while not increasing the number of parameters.

2.3 Warm-up from deterministic to variational autoencoder

The variational training criterion in Eq. (5) contains the reconstruction term pθ(x|z) and the variational
regularization term. The variational regularization term causes some of the latent units to become
inactive during training [13] because the approximate posterior for unit k, q(zi,k| . . .) is regularized
towards its own prior p(zi,k| . . .), a phenomenon also recognized in the VAE setting [2, 1]. This can
be seen as a virtue of automatic relevance determination, but also as a problem when many units
collapse early in training before they learned a useful representation. We observed that such units

4The idea was dismissed at the time, since it could introduce substantial theoretical complications.

4

remain inactive for the rest of the training, presumably trapped in a local minima or saddle point at
KL(qi,k|pi,k) ≈ 0, with the optimization algorithm unable to re-activate them.

We alleviate the problem by initializing training using the reconstruction error only (corresponding
to training a standard deterministic auto-encoder), and then gradually introducing the variational
regularization term:

L(θ, φ;x)T = −βKL(qφ(z|x)||pθ(z)) + Eqφ(z|x) [log pθ(x|z)] , (20)

where β is increased linearly from 0 to 1 during the first Nt epochs of training. We denote this
scheme warm-up (abbreviated WU in tables and graphs) because the objective goes from having a
delta-function solution (corresponding to zero temperature) and then move towards the fully stochastic
variational objective. This idea have previously been considered in [15, Section 6.2] and more recently
in [1].

3 Experiments

To test our models we use the standard benchmark datasets MNIST, OMNIGLOT [10] and NORB
[11]. The largest models trained used a hierarchy of five layers of stochastic latent variables of sizes
64, 32, 16, 8 and 4, going from bottom to top. We implemented all mappings using MLP’s with two
layers of deterministic hidden units. In all models the MLP’s between x and z1 or d1 were of size 512.
Subsequent layers were connected by MLP’s of sizes 256, 128, 64 and 32 for all connections in both
the VAE and LVAE. Shallower models were created by removing latent variables from the top of the
hierarchy. We sometimes refer to the five layer models as 64-32-16-8-4, the four layer models as
64-32-16-8 and so fourth. The models were trained end-to-end using the Adam [7] optimizer with a
mini-batch size of 256. We report the train and test log-likelihood lower bounds, Eq. (5) as well as
the approximated true log-likelihood calculated using 5000 importance weighted samples, Eq. (6).
The models were implemented using the Theano [19], Lasagne [4] and Parmesan5 frameworks. The
source code is available at 6

For MNIST, we used a sigmoid output layer to predict the mean of a Bernoulli observation model
and leaky rectifiers (max(x, 0.1x)) as nonlinearities in the MLP’s. The models were trained for
2000 epochs with a learning rate of 0.001 on the complete training set. Models using warm-up used
Nt = 200. Similarly to [2], we resample the binarized training values from the real-valued images
using a Bernoulli distribution after each epoch which prevents the models from over-fitting. Some of
the models were fine-tuned by continuing training for 2000 epochs while multiplying the learning rate
with 0.75 after every 200 epochs and increase the number of Monte Carlo and importance weighted
samples to 10 to reduce the variance in the approximation of the expectations in Eq. (4) and improve
the inference model, respectively.

Models trained on the OMNIGLOT dataset7, consisting of 28x28 binary images images were trained
similar to above except that the number of training epochs was 1500.

Models trained on the NORB dataset8, consisting of 32x32 grays-scale images with color-coding
rescaled to [0, 1], used a Gaussian observation model with mean and variance predicted using a linear
and a softplus output layer respectively. The settings were similar to the models above except that:
hyperbolic tangent was used as nonlinearities in the MLP’s and the number of training epochs was
2000.

3.1 Generative log-likelihood performance

In Figure 3 we show the train and test set log-likelihood on MNIST dataset for a series of different
models with varying number of stochastic layers.

Consider the Ltest1 , Figure 3 b), the VAE without batch-normalization and warm-up does not improve
for additional stochastic layers beyond one whereas VAEs with batch normalization and warm-up

5github.com/casperkaae/parmesan
6github.com/casperkaae/LVAE
7The OMNIGLOT data was partitioned and preprocessed as in [2],

https://github.com/yburda/iwae/tree/master/datasets/OMNIGLOT
8The NORB dataset was downloaded in resized format from github.com/gwtaylor/convnet_matlab

5

Figure 4: logKL(q|p) for each latent unit is shown at different training epochs. Low KL (white)
corresponds to an inactive unit. The units are sorted for visualization. It is clear that vanilla VAE
cannot train the higher latent layers, while introducing batch normalization helps. Warm-up creates
more active units early in training, some of which are then gradually pruned away during training,
resulting in a more distributed final representation. Lastly, we see that the LVAE activates the highest
number of units in each layer.

≤ log p((x))
VAE 1-layer + NF [17] -85.10
IWAE, 2-layer + IW=1 [2] -85.33
IWAE, 2-layer + IW=50 [2] -82.90
VAE, 2-layer + VGP [20] -81.90
LVAE, 5-layer -82.12
LVAE, 5-layer + finetuning -81.84
LVAE, 5-layer + finetuning + IW=10 -81.74

Table 1: Test set MNIST performance for importance weighted autoencoder (IWAE), VAE with
normalizing flows (NF) and VAE with variational gaussian process(VGP). Number of importance
weighted (IW) samples used for training is one unless otherwise stated.

improve performance up to three layers. The LVAE models performs better improving performance
for each additional layer reaching Ltest1 = −85.23 with five layers which is significantly higher than
the best VAE score at −87.49 using three layers. As expected the improvement in performance is
decreasing for each additional layer, but we emphasize that the improvements are consistent even for
the addition of the top-most layers. In Figure 3 c) the approximated true log-likelihood estimated
using 5000 importance weighted samples is seen. Again the LVAE models performs better than the
VAE reaching Ltest5000 = −82.12 compared to the best VAE at −82.74. These results show that the
LVAE achieves both a higher approximate log-likelihood score, but also a significantly tighter lower
bound on the log-likelihood Ltest1 . The models in Figure 3 were trained using fixed learning rate
and one Monte Carlo (MC) and one importance weighted (IW) sample. To improve performance we
fine-tuned the best performing five layer LVAE models by training these for a further 2000 epochs
with annealed learning rate and increasing the number of IW samples and see a slight improvements
in the test set log-likelihood values, Table 1. We saw no signs of over-fitting for any of our models
even though the hierarchical latent representations are highly expressive as seen in Figure 2.

Comparing the results obtained here with current state-of-the art results on permutation invariant
MNIST, Table 1, we see that the LVAE performs better than the normalizing flow VAE and importance
weighted VAE and comparable to the Variational Gaussian Process VAE. However we note that these
results are not directly comparable to these due to differences in the training procedure.

To test the models on more challenging data we used the OMNIGLOT dataset, consisting of characters
from 50 different alphabets with 20 samples of each character. The log-likelihood values, Table 2,

6

VAE VAE
+BN

VAE
+BN
+WU

LVAE
+BN
+WU

OMNIGLOT
64 −111.21 −105.62 −104.51 −
64-32 −110.58 −105.51 −102.61 −102.63
64-32-16 −111.26 −106.09 −102.52 −102.18
64-32-16-8 −111.58 −105.66 −102.66 −102.21
64-32-16-8-4 −110.46 −105.45 −102.48 -102.11

NORB
64 2741 3198 3338 −
64-32 2792 3224 3483 3272
64-32-16 2786 3235 3492 3519
64-32-16-8 2689 3201 3482 3449
64-32-16-8-4 2654 3198 3422 3455

Table 2: Test set log-likelihood scores for models trained on the OMNIGLOT and NORB datasets.
The left most column show dataset and the number of latent variables i each model.

shows similar trends as for MNIST with the LVAE achieving the best performance using five layers
of latent variables, see the appendix for further results. The best log-likelihood results obtained here,
−102.11, is higher than the best results from [2] at −103.38, which were obtained using more latent
variables (100-50 vs 64-32-16-8-4) and further using 50 importance weighted samples for training.

We tested the models using a continuous Gaussian observation model on the NORB dataset consisting
of gray-scale images of 5 different toy objects under different illuminations and observation angles.
The LVAE achieves a slightly higher score than the VAE, however none of the models see an increase
in performance for more using more than three stochastic layers. We found the Gaussian observation
models to be harder to optimize compared to the Bernoulli models, a finding also recognized in [23],
which might explain the lower utilization of the topmost latent layers in these models.

3.2 Latent representations

The probabilistic generative models studied here automatically tune the model complexity to the data
by reducing the effective dimension of the latent representation due to the regularization effect of the
priors in Eq. (4). However, as previously identified [15, 2], the latent representation is often overly
sparse with few stochastic latent variables propagating useful information.

To study the importance of individual units, we split the variational training criterion L into a sum
of terms corresponding to each unit k in each layer i. For stochastic latent units, this is the KL-
divergence between q(zi,k|·) and p(zi|zi+1). Figure 4 shows the evolution of these terms during
training. This term is zero if the inference model is collapsed onto the prior carrying no information
about the data, making the unit inactive. For the models without warm-up we find that the KL-
divergence for each unit is stable during all training epochs with only very few new units activated
during training. For the models trained with warm-up we initially see many active units which are
then gradually pruned away as the variational regularization term is introduced. At the end of training
warm-up results in more active units indicating a more distributed representation and the LVAE model
produces both the deepest and most distributed latent representation.

We also study the importance of layers by splitting the training criterion layer-wise as seen in Figure 5.
This measures how much of the representation work (or innovation) is done on each layer. The VAEs
use the lower layers the most whereas the highest layers are not (or only to a limited degree) used.
Contrary to this, the LVAE puts much more importance to the higher layers which shows that it learns
both a deeper and qualitatively different hierarchical latent representation which might explain the
better performance of the model.

To qualitatively study the learned representations, PCA plots of zi ∼ q(zi|·) are seen in Figure 6. For
vanilla VAE, the latent representations above the second layer are completely collapsed on a standard
normal prior. Including Batch normalization and warm-up activates one additional layer each in the
VAE. The LVAE utilizes all five latent layers and the latent representation shows progressively more

7

i=1 i=2 i=3 i=4 i=5
0

5

10

15

20

25

K
L

[q
i|p

i]

VAE

VAE+BN

VAE+BN+WU

LVAE+BN+WU

Figure 5: Layer-wise KL[q|p] divergence going
from the lowest to the highest layers. In the VAE
models the KL divergence is highest in the lowest
layers whereas it is more distributed in the LVAE
model

Figure 6: PCA-plots of samples from q(zi|zi−1)
for 5-layer VAE and LVAE models trained on
MNIST. Color-coded according to true class label

clustering according to class, which is clearly seen in the topmost layer of this model. These findings
indicate that the LVAE produce a structured high-level latent representations that are likely useful for
semi-supervised learning.

4 Conclusion and Discussion

We presented a new inference model for VAEs combining a bottom-up data-dependent approximate
likelihood term with a prior information from the generative distribution. We showed that this
parameterization 1) increases the approximated log-likelihood compared to VAEs, 2) provides a tighter
bound on the log-likelihood and 3) learns a deeper and qualitatively different latent representation of
the data. Secondly we showed that deterministic warm-up and batch-normalization are important for
optimizing deep VAEs and LVAEs. Especially the large benefits in generative performance and depth
of learned hierarchical representations using batch normalization were surprising given the additional
noise introduced. This is something that is not fully understood and deserves further investigation
and although batch normalization is not novel we believe that this finding in the context of VAEs are
important.

The inference in LVAE is computed recursively by correcting the generative distribution with a
data-dependent approximate likelihood contribution. Compared to purely bottom-up inference,
this parameterization makes the optimization easier since the inference is simply correcting the
generative distribution instead of fitting the two models separately. We believe this explicit parameter
sharing between the inference and generative distribution can generally be beneficial in other types
of recursive variational distributions such as DRAW [5] where the ideas presented here are directly
applicable. Further the LVAE is orthogonal to other methods for improving the inference distribution
such as Normalizing flows [17], Variational Gaussian Process [20] or Auxiliary Deep generative
models [12] and combining with these might provide further improvements.

Other directions for future work include extending these models to semi-supervised learning which
will likely benefit form the learned deep structured hierarchies of latent variables and studying more
elaborate inference schemes such as a k-step iterative inference in the LVAE [14].

Acknowledgments

This research was supported by the Novo Nordisk Foundation, Danish Innovation Foundation and the
NVIDIA Corporation with the donation of TITAN X and Tesla K40 GPUs.

8

References
[1] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio. Generating

sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

[2] Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoencoders. arXiv preprint
arXiv:1509.00519, 2015.

[3] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel. The Helmholtz machine. Neural
computation, 7(5):889–904, 1995.

[4] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby, D. Nouri, A. van den Oord, and
E. B. and. Lasagne: First release., Aug. 2015.

[5] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. Draw: A recurrent neural network for
image generation. arXiv preprint arXiv:1502.04623, 2015.

[6] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[7] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[8] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised learning with
deep generative models. In Advances in Neural Information Processing Systems, 2014.

[9] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

[10] B. M. Lake, R. R. Salakhutdinov, and J. Tenenbaum. One-shot learning by inverting a composi-
tional causal process. In Advances in neural information processing systems, 2013.

[11] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object recognition with
invariance to pose and lighting. In Computer Vision and Pattern Recognition. IEEE, 2004.

[12] L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. Auxiliary deep generative models.
Proceedings of the 33nd International Conference on Machine Learning, 2016.

[13] D. J. MacKay. Local minima, symmetry-breaking, and model pruning in variational free energy
minimization. Inference Group, Cavendish Laboratory, Cambridge, UK, 2001.

[14] T. Raiko, Y. Li, K. Cho, and Y. Bengio. Iterative neural autoregressive distribution estimator
NADE-k. In Advances in Neural Information Processing Systems, 2014.

[15] T. Raiko, H. Valpola, M. Harva, and J. Karhunen. Building blocks for variational Bayesian
learning of latent variable models. The Journal of Machine Learning Research, 8, 2007.

[16] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko. Semi-supervised learning with
ladder networks. In Advances in Neural Information Processing Systems, 2015.

[17] D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. arXiv preprint
arXiv:1505.05770, 2015.

[18] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

[19] Theano Development Team. Theano: A Python framework for fast computation of mathematical
expressions. arXiv e-prints, abs/1605.02688, May 2016.

[20] D. Tran, R. Ranganath, and D. M. Blei. Variational Gaussian process. arXiv preprint
arXiv:1511.06499, 2015.

[21] H. Valpola. From neural PCA to deep unsupervised learning. In J. L. E. Bingham, S. Kaski and
J. Lampinen, editors, Advances in Independent Component Analysis and Learning Machines,
chapter 8, pages 143–171. 2015. arXiv preprint arXiv:1411.7783.

9

[22] G. van den Broeke. What auto-encoders could learn from brains - generation as feedback in
unsupervised deep learning and inference, 2016. MSc thesis, Aalto University, Finland.

[23] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks. arXiv
preprint arXiv:1601.06759, 2016.

10

A Additional Results

1 2 3 4 5

−91

−90

−89

−88

−87

−86

−85

−84
a) Ltrain

1

1 2 3 4 5
Number of Layers

 91

 90

 89

 88

 87

 86

 85

 84
b) Ltest

1

1 2 3 4 5

 86

 85

 84

 83

 82

c) Ltest
5000

VAE

VAE+BN

VAE+BN+WU

LVAE+BN+WU

Figure 7: MNIST log-likelihood values for VAEs and the LVAE model with different number of
latent layers, Batch normalization (BN) and Warm-up (WU). a) Train log-likelihood, b) test log-
likelihood and c) test log-likelihood with 5000 importance samples. Note that the LVAE without
batch normalization performed very poorly why some of the results fall outside the range of the plots

1 2 3 4 5
−112

−110

−108

−106

−104

−102
a) Ltrain

1

1 2 3 4 5
N mber of Layers

−122

−120

−118

−116

−114

−112

−110

−108
b) Ltest

1

1 2 3 4 5
−108

−107

−106

−105

−104

−103

−102
c) Ltest

5000

VAE

VAE+BN

VAE+BN+WU

Prob. Ladder+BN+WU

Figure 8: OMNIGLOT log-likelihood values for VAEs and the LVAE model with different number
of latent layers, Batch normalization (BN) and Warm-up (WU). a) Train log-likelihood, b) test
log-likelihood and c) test log-likelihood with 5000 importance samples

a) b) c)

Figure 9: MNIST samples. a) True data, b) Conditional Reconstructions and c) Samples from the
prior distribution

11

a) b) c)

Figure 10: OMNIGLOT samples. a) True data, b) Conditional Reconstructions and c) Samples from
the prior distribution

12

98 Ladder Variational Autoencoders

Appendix C

CaGeM: A cluster aware
deep generative model

In this appendix we include the arxiv.org version of:

Maaløe, L., Fraccaro, M., Winther, O. (2017). CaGeM: A cluster aware deep
generative model. In Neural Information Processing Systems Workshop on Ap-
proximate Bayesian Inference.

Semi-Supervised Generation with Cluster-aware Generative Models

Lars Maaløe 1 Marco Fraccaro 1 Ole Winther 1

Abstract
Deep generative models trained with large
amounts of unlabelled data have proven to be
powerful within the domain of unsupervised
learning. Many real life data sets contain a small
amount of labelled data points, that are typi-
cally disregarded when training generative mod-
els. We propose the Cluster-aware Generative
Model, that uses unlabelled information to in-
fer a latent representation that models the natu-
ral clustering of the data, and additional labelled
data points to refine this clustering. The gen-
erative performances of the model significantly
improve when labelled information is exploited,
obtaining a log-likelihood of−79.38 nats on per-
mutation invariant MNIST, while also achieving
competitive semi-supervised classification accu-
racies. The model can also be trained fully un-
supervised, and still improve the log-likelihood
performance with respect to related methods.

1. Introduction
Variational Auto-Encoders (VAE) (Kingma, 2013;
Rezende et al., 2014) and Generative Adversarial Net-
works (GAN) (Goodfellow et al., 2014) have shown
promising generative performances on data from complex
high-dimensional distributions. Both approaches have
spawn numerous related deep generative models, not
only to model data points like those in a large unlabelled
training data set, but also for semi-supervised classification
(Kingma et al., 2014; Maaløe et al., 2016; Springenberg,
2015; Salimans et al., 2016). In semi-supervised classifi-
cation a few points in the training data are endowed with
class labels, and the plethora of unlabelled data aids to
improve a supervised classification model.

Could a few labelled training data points in turn improve
a deep generative model? This reverse perspective, doing
semi-supervised generation, is investigated in this work.

1Technical University of Denmark. Correspondence to: Lars
Maaløe <larsma@dtu.dk>, Marco Fraccaro <marfra@dtu.dk>,
Ole Winther <olwi@dtu.dk>.

Many of the real life data sets contain a small amount of
labelled data, but incorporating this partial knowledge in
the generative models is not straightforward, because of
the risk of overfitting towards the labelled data. This over-
fitting can be avoided by finding a good scheme for up-
dating the parameters, like the one introduced in the mod-
els for semi-supervised classification (Kingma et al., 2014;
Maaløe et al., 2016). However, there is a difference in opti-
mizing the model towards optimal classification accuracy
and generative performance. We introduce the Cluster-
aware Generative Model (CaGeM), an extension of a VAE,
that improves the generative performances, by being able
to model the natural clustering in the higher feature repre-
sentations through a discrete variable (Bengio et al., 2013).
The model can be trained fully unsupervised, but its per-
formances can be further improved using labelled class in-
formation that helps in constructing well defined clusters.
A generative model with added labelled data information
may be seen as parallel to how humans rely on abstract do-
main knowledge in order to efficiently infer a causal model
from property induction with very few labelled observa-
tions (Tenenbaum et al., 2006).

Supervised deep learning models with no stochastic units
are able to learn multiple levels of feature abstraction. In
VAEs, however, the addition of more stochastic layers is
often accompanied with a built-in pruning effect so that the
higher layers become disconnected and therefore not ex-
ploited by the model (Burda et al., 2015a; Sønderby et al.,
2016). As we will see, in CaGeM the possibility of learn-
ing a representation in the higher stochastic layers that can
model clusters in the data drastically reduces this issue.
This results in a model that is able to disentangle some
of the factors of variation in the data and that extracts
a hierarchy of features beneficial during the generation
phase. By using only 100 labelled data points, we present
state of the art log-likelihood performance on permutation-
invariant models for MNIST, and an improvement with re-
spect to comparable models on the OMNIGLOT data set.
While the main focus of this paper is semi-supervised gen-
eration, we also show that the same model is able to achieve
competitive semi-supervised classification results.

ar
X

iv
:1

70
4.

00
63

7v
1

 [
st

at
.M

L
]

 3
 A

pr
 2

01
7

Semi-Supervised Generation with Cluster-aware Generative Models

2. Variational Auto-encoders
A Variational Auto-Encoder (VAE) (Kingma, 2013;
Rezende et al., 2014) defines a deep generative model for
data x that depends on latent variable z or a hierarchy of
latent variables, e.g. z = [z1, z2], see Figure 1a for a graph-
ical representation. The joint distribution of the two-level
generative model is given by

pθ(x, z1, z2) = pθ(x|z1)pθ(z1|z2)p(z2) ,

where

pθ(z1|z2) = N (z1;µ
1
θ(z2), σ

1
θ(z2))

p(z2) = N (z2; 0, I)

are Gaussian distributions with a diagonal covariance ma-
trix and pθ(x|z1) is typically a parameterized Gaussian
(continuous data) or Bernoulli distribution (binary data).
The probability distributions of the generative model of a
VAE are parameterized using deep neural networks whose
parameters are denoted by θ. Training is performed by opti-
mizing the Evidence Lower Bound (ELBO), a lower bound
to the intractable log-likelihood log pθ(x) obtained using
Jensen’s inequality:

log pθ(x) = log

∫∫
pθ(x, z1, z2)dz1dz2

≥ Eqφ(z1,z2|x)
[
log

pθ(x, z1, z2)

qφ(z1, z2|x)

]
= F(θ, φ) .

(1)

The introduced variational distribution qφ(z1, z2|x) is
an approximation to the model’s posterior distribution
pθ(z1, z2|x), defined with a bottom-up dependency struc-
ture where each variable of the model depends on the vari-
able below in the hierarchy:

qφ(z1, z2|x) = qφ(z1|x)qφ(z2|z1)
qφ(z1|x) = N (z1;µ

1
φ(x), σ

1
φ(x))

qφ(z2|z1) = N (z2;µ
2
φ(z1), σ

2
φ(z1)) .

Similar to the generative model, the mean and diagonal co-
variance of both Gaussian distributions defining the infer-
ence network qφ are parameterized with deep neural net-
works that depend on parameters φ, see Figure 1b for a
graphical representation.

We can learn the parameters θ and φ by jointly maximiz-
ing the ELBO F(θ, φ) in (1) with stochastic gradient as-
cent, using Monte Carlo integration to approximate the
intractable expectations and computing low variance gra-
dients with the reparameterization trick (Kingma, 2013;
Rezende et al., 2014).

x

z1

z2 θ

(a) Generative model pθ

x

z1

z2 φ

(b) Inference model qφ

Figure 1: Generative model and inference model of a Vari-
ational Auto-Encoder with two stochastic layers.

Inactive stochastic units A common problem encoun-
tered when training VAEs with bottom-up inference net-
works is given by the so called inactive units in the
higher layers of stochastic variables (Burda et al., 2015a;
Sønderby et al., 2016). In a 2-layer model for example,
VAEs often learn qφ(z2|z1) = p(z2) = N (z2; 0, I), i.e. the
variational approximation of z2 uses no information com-
ing from the data point x through z1. If we rewrite the
ELBO in (1) as

F(θ, φ) = Eqφ(z1,z2|x)
[
log

pθ(x, z1|z2)
qφ(z1|x)

]
−

Eqφ(z1|x) [KL [qφ(z2|z1)||p(z2)]]

we can see that qφ(z2|z1) = p(z2) represents a local max-
ima of our optimization problem where the KL-divergence
term is set to zero and the information flows by first sam-
pling in z̃1 ∼ qφ(z1|x) and then computing pθ(x|z̃1) (and
is therefore independent from z2). Several techniques have
been developed in the literature to mitigate the problem of
inactive units, among which we find annealing of the KL
term (Bowman et al., 2015; Sønderby et al., 2016) or the
use of free bits (Kingma et al., 2016).

Using ideas from Chen et al. (2017), we notice that the in-
active units in a VAE with 2 layers of stochastic units can be
justified not only as a poor local maxima, but also from the
modelling point of view. Chen et al. (2017) give a bits-back
coding interpretation of Variational Inference for a genera-
tive model of the form p(x, z) = p(x|z)p(z), with data x
and stochastic units z. The paper shows that if the decoder
p(x|z) is powerful enough to explain most of the structure
in the data (e.g. an autoregressive decoder), then it will be
convenient for the model to set q(z|x) = p(z) not to incur
in an extra optimization cost of KL[q(z|x)||p(z|x)]. The
inactive z2 units in a 2-layer VAE can therefore be seen as
caused by the flexible distribution pθ(x, z1|z2) that is able
to explain most of the structure in the data without using
information from z2. By making qφ(z2|z1) = p(z2), the

Semi-Supervised Generation with Cluster-aware Generative Models

model can avoid the extra cost of KL [qφ(z2|x)||pθ(z2|x)].
A more detailed discussion on the topic can be found in
Appendix A.

It is now clear that if we want a VAE to exploit the
power of additional stochastic layers we need to define it
so that the benefits of encoding meaningful information
in z2 is greater than the cost KL [qφ(z2|x)||pθ(z2|x)] that
the model has to pay. As we will discuss below, we will
achieve this by aiding the generative model to do represen-
tation learning.

3. Cluster-aware Generative Models
Hierarchical models parameterized by deep neural net-
works have the ability to represent very flexible distribu-
tions. However, in the previous section we have seen that
the units in the higher stochastic layers of a VAE often be-
come inactive. We will show that we can help the model to
exploit the higher stochastic layers by explicitly encoding
a useful representation, i.e. the ability to model the natural
clustering of the data (Bengio et al., 2013), which will also
be needed for semi-supervised generation.

We favor the flow of higher-level global information
through z2 by extending the generative model of a VAE
with a discrete variable y representing the choice of one
out of K different clusters in the data. The joint distribu-
tion pθ(x, z1, z2) is computed by marginalizing over y:

pθ(x, z1, z2) =
∑

y

pθ(x, y, z1, z2)

=
∑

y

pθ(x|y, z1)pθ(z1|y, z2)pθ(y|z2)p(z2) .

We call this model Cluster-aware Generative Model
(CaGeM), see Figure 2 for a graphical representa-
tion. The introduced categorical distribution pθ(y|z2) =
Cat(y;πθ(z2)) (πθ represents the class distribution) de-
pends solely on z2, that needs therefore to stay active for
the model to be able to represent clusters in the data. We
further add the dependence of z1 and x on y, so that they
can now both also represent cluster-dependent information.

3.1. Inference

As done for the VAE in (1), we can derive the ELBO for
CaGeM by maximizing the log-likelihood

log pθ(x) = log

∫∫
pθ(x, z1, z2)dz1dz2

= log

∫∫ ∑

y

pθ(x, y, z1, z2)dz1dz2

≥ Eqφ(y,z1,z2|x)
[
log

pθ(x, y, z1, z2)

qφ(y, z1, z2|x)

]
.

x

y z1

z2 θ

(a) Generative model pθ

x

y z1

z2 φ

(b) Inference model qφ

Figure 2: Generative model and inference model of a
CaGeM with two stochastic layers (black and blue lines).
The black lines only represent a standard VAE.

We define the variational approximation qφ(y, z1, z2|x)
over the latent variables of the model as

qφ(y, z1, z2|x) = qφ(z2|x, y, z1)qφ(y|z1, x)qφ(z1|x) ,

where

qφ(z1|x) = N (z1;µ
1
φ(x), σ

1
φ(x))

qφ(z2|x, y, z1) = N (z2;µ
2
φ(y, z1), σ

2
φ(y, z1))

qφ(y|z1, x) = Cat(y;πφ(z1, x))

In the inference network we then reverse all the dependen-
cies among random variables in the generative model (the
arrows in the graphical model in Figure 2). This results
in a bottom-up inference network that performs a feature
extraction that is fundamental for learning a good repre-
sentation of the data. Starting from the data x we construct
higher levels of abstraction, first through the variables z1
and y, and finally through the variable z2, that includes the
global information used in the generative model. In order
to make the higher representation more expressive we add
a skip-connection from x to z2, that is however not funda-
mental to improve the performances of the model.

With this factorization of the variational distribution
qφ(y, z1, z2|x), the ELBO can be written as

F(θ, φ) = Eqφ(z1|x)

[∑

y

qφ(y|z1, x)·

·Eqφ(z2|x,y,z1)
[
log

pθ(x, y, z1, z2)

qφ(y, z1, z2|x)

]]
.

We maximize F(θ, φ) by jointly updating, with stochastic
gradient ascent, the parameters θ of the generative model
and φ of the variational approximation. When computing
the gradients, the summation over y is performed analyti-
cally, whereas the intractable expectations over z1 and z2

Semi-Supervised Generation with Cluster-aware Generative Models

are approximated by sampling. We use the reparameteriza-
tion trick to reduce the variance of the stochastic gradients.

4. Semi-Supervised Generation with CaGeM
In some applications we may have class label information
for some of the data points in the training set. In the fol-
lowing we will show that CaGeM provides a natural way to
exploit additional labelled data to improve the performance
of the generative model. Notice that this semi-supervised
generation approach differs from the more traditional semi-
supervised classification task that uses unlabelled data to
improve classification accuracies (Kingma et al., 2014;
Maaløe et al., 2016; Salimans et al., 2016). In our case
in fact, it is the labelled data that supports the generative
task. Nevertheless, we will see in our experiment that
CaGeM also leads to competitive semi-supervised classi-
fication performances.

To exploit the class information, we first set the number of
clusters K equal to the number of classes C. We can now
define two classifiers in CaGeM:

1. In the inference network we can compute the class
probabilities given the data, i.e. qφ(y|x), by integrat-
ing out the stochastic variables z1 from qφ(y, z1|x)

qφ(y|x) =
∫
qφ(y, z1|x)dz1

=

∫
qφ(y|z1, x)qφ(z1|x)dz1

2. Another set of class-probabilities can be computed us-
ing the generative model. Given the posterior distribu-
tion pθ(z2|x) we have in fact

pθ(y|x) =
∫
pθ(y|z2)pθ(z2|x)dz2 .

The posterior over z2 is intractable, but we can
approximate it using the variational approximation
qφ(z2|x), that is obtained by marginalizing out y and
the variable z1 in the joint distribution qφ(y, z1, z2|x):

pθ(y|x) ≈
∫
pθ(y|z2)qφ(z2|x)dz2

=

∫
pθ(y|z2)

∫ ∑

ỹ

qφ(z2|x, ỹ, z1)·

· qφ(ỹ|z1, x)qφ(z1|x)dz1
)
dz2 .

While for the labels ỹ the summation can be carried
out analytically, for the variable z1 and z2 we use

Monte Carlo integration. For each of the C classes we
will then obtain a different zc2 sample (c = 1, . . . C)
with a corresponding weight given by qφ(ỹ

c|z1, x).
This therefore resembles a cascade of classifiers, as
the class probabilities of the pθ(y|x) classifier will de-
pend on the probabilities of the classifier qφ(y|z1, x)
in the inference model.

As our main goal is to learn representations that will lead
to good generative performance, we interpret the classifi-
cation of the additional labelled data as a secondary task
that aids in learning a z2 feature space that can be easily
separated into clusters. We can then see this as a form of
semi-supervised clustering (Basu et al., 2002), where we
know that some data points belong to the same cluster and
we are free to learn a data manifold that makes this possi-
ble.

The optimal features for the classification task could be
very different from the representations learned for the gen-
erative task. This is why it is important not to update the
parameters of the distributions over z1, z2 and x, in both
generative model and inference model, using labelled data
information. If this is not done carefully, the model could
be prone to overfitting towards the labelled data. We define
as θy the subset of θ containing the parameters in pθ(y|z2),
and as φy the subset of φ containing the parameters in
qφ(y|z1, x). θy and φy then represent the incoming arrows
to y in Figure 2. We update the parameters θ and φ jointly
by maximizing the new objective

I =
∑

{xu}
F(θ, φ)− α

 ∑

{xl,yl}
(Hp(θy, φy) +Hq(φy))

where {xu} is the set of unlabelled training points, {xl, yl}
is the set of labelled ones, and Hp and Hq are the standard
categorical cross-entropies for the pθ(y|x) and qφ(y|x)
classifiers respectively. Notice that we consider the cross-
entropies only a function of θy and φy , meaning that the
gradients of the cross-entropies with respect to the param-
eters of the distributions over z1, z2 and x will be 0, and
will not depend on the labelled data (as needed when learn-
ing meaningful representations of the data to be used for
the generative task). To match the relative magnitudes be-
tween the ELBO F(θ, φ) and the two cross-entropies we
set α = βNu+NlNl

as done in (Kingma et al., 2014; Maaløe
et al., 2016), where Nu and Nl are the numbers of unla-
belled and labelled data points, and β is a scaling constant.

5. Experiments
We evaluate CaGeM by computing the generative log-
likelihood performance on MNIST and OMNIGLOT (Lake
et al., 2013) datasets. The model is parameterized by feed-
forward neural networks (NN) and linear layers (Linear),

Semi-Supervised Generation with Cluster-aware Generative Models

Figure 3: Visualizations from CaGeM-100 with a 2-dimensional z2 space. The middle plot shows the latent space, from
which we generate random samples (left) and class conditional random samples (right) with a mesh grid (black bounding
box). The relative placement of the samples in the scatter plot corresponds to a digit in the mesh grid.

so that, for Gaussian outputs, each collection of incoming
edges to a node in Figure 2 is defined as:

d = NN(x) µ = Linear(d) log σ = Linear(d) .

For Bernoulli distributed outputs we simply define a feed-
forward neural network with a sigmoid activation func-
tion for the output. Between dense layers we use the rec-
tified linear unit as non-linearity and batch-normalization
(Ioffe & Szegedy, 2015). We only collect statistics for the
batch-normalization during unlabelled inference. For the
log-likelihood experiments we apply temperature on the
KL-terms during the first 100 epochs of training (Bow-
man et al., 2015; Sønderby et al., 2016). The stochastic
layers are defined with dim(z1) = 64, dim(z2) = 32 and
2-layered neural feed-forward networks with respectively
1024 and 512 units in each layer. Training is performed
using the Adam optimizer (Kingma & Ba, 2014) with an
initial learning rate of 0.001 and annealing it by .75 every
50 epochs. The experiments are implemented with Theano
(Bastien et al., 2012), Lasagne (Dieleman et al., 2015) and
Parmesan1.

For both datasets we report unsupervised and semi-
supervised permutation invariant log-likelihood perfor-
mance and for MNIST we also report semi-supervised clas-
sification errors. The input data is dynamically binarized
and the ELBO is evaluated by taking 5000 importance-
weighted (IW) samples, denoted F5000. We evaluate the
performance of CaGeM with different numbers of labelled
samples referred to as CaGeM-#labels. When used, the
labelled data is randomly sampled evenly across the class
distribution. All experiments across datasets are run with
the same architecture.

1A variational repository named parmesan on Github.

6. Results
Table 1 shows the generative log-likelihood performances
of different variants of CaGeM on the MNIST data set. We
can see that the more labelled samples we use, the better
the generative performance will be. Even though the re-
sults are not directly comparable, since CaGeM exploits a
small fraction supervised information, we find that using
only 100 labelled samples (10 samples per class), CaGeM-
100 model achieves state of the art log-likelihood perfor-
mance on permutation invariant MNIST with a simple 2-
layered model. We also trained a ADGM-100 from Maaløe
et al. (2016)2 in order to make a fair comparison on genera-
tive log-likelihood in a semi-supervised setting and reached
a performance of −86.06 nats. This indicates that models
that are highly optimized for improving semi-supervised
classification accuracy may be a suboptimal choice for gen-
erative modeling.

CaGeM could further benefit from the usage of non-
permutation invariant architectures suited for image data,
such as the autoregressive decoders used by IAF VAE
(Kingma et al., 2016) and VLAE (Chen et al., 2017). The
fully unsupervised CaGeM-0 results show that by defin-
ing clusters in the higher stochastic units, we achieve better
performances than the closely related IWAE (Burda et al.,
2015a) and LVAE (Sønderby et al., 2016) models. It is fi-
nally interesting to see from Table 1 that CaGeM-0 per-
forms well even when the number of clusters are different
from the number of classes in the labelled data set.

In Figure 4 we show in detail how the performance of
CaGeM increases as we add more labelled data points.
We can also see that the ELBO F test1 tightens when

2We used the code supplied in the repository named auxiliary-
deep-generative-models on Github.

Semi-Supervised Generation with Cluster-aware Generative Models

≤ log p(x)

NON-PERMUTATION INVARIANT

DRAW+VGP (TRAN ET AL., 2016) −79.88
IAF VAE (KINGMA ET AL., 2016) −79.10
VLAE (CHEN ET AL., 2017) −78.53

PERMUTATION INVARIANT

AVAE, L=2, IW=1 (MAALØE ET AL., 2016) −82.97
IWAE, L=2, IW=50 (BURDA ET AL., 2015A) −82.90
LVAE, L=5, IW=10 (SØNDERBY ET AL., 2016) −81.74
VAE+VGP, L=2 (TRAN ET AL., 2016) −81.32
DVAE (ROLFE, 2017) −80.04

CAGEM-0, L=2, IW=1, K=20 −82.18
CAGEM-0, L=2, IW=1, K=10 −81.60
CAGEM-20, L=2, IW=1 −81.47
CAGEM-50, L=2, IW=1 −80.49
CAGEM-100, L=2, IW=1 −79.38

Table 1: Test log-likelihood for permutation invariant and
non-permutation invariant MNIST. L, IW and K denotes
the number of stochastic layers (if it is translatable to the
VAE), the number of importance weighted samples used
during inference, and the number of predefined clusters
used.

adding more labelled information, as compared toFLVAE
1 =

−85.23 and FVAE
1 = −87.49 (Sønderby et al., 2016).

The PCA plots of the z2 variable of a VAE, CaGeM-0 and
CaGeM-100 are shown in Figure 5 . We see how CaGeMs
encode clustered information into the higher stochastic
layer. Since CaGeM-0 is unsupervised, it forms less
class-dependent clusters compared to the semi-supervised
CaGeM-100, that fits its z2 latent space into 10 nicely
separated clusters. Regardless of the labelled informa-
tion added during inference, CaGeM manages to acti-
vate a high amount of units, as for CaGeM we obtain
KL[qφ(z2|x, y)||p(z2)] ≈ 17 nats, while a LVAE with 2
stochastic layers obtains ≈ 9 nats.

The generative model in CaGeM enables both random sam-
ples, by sampling the class variable y ∼ pθ(y|z2) and feed-
ing it to pθ(x|z1, y), and class conditional samples by fix-
ing y. Figure 3 shows the generation of MNIST digits from
CaGeM-100 with dim(z2) = 2. The images are gener-
ated by applying a linearly spaced mesh grid within the la-
tent space z2 and performing random generations (left) and
conditional generations (right). When generating samples
in CaGeM, it is clear how the latent units z1 and z2 cap-
ture different modalities within the true data distribution,
namely style and class.

Regardless of the fact that CaGeM was designed to op-
timize the semi-supervised generation task, the model
can also be used for classification by using the classifier
pθ(y|x). In Table 2 we show that the semi-supervised clas-
sification accuracies obtained with CaGeM are comparable

Figure 4: Log-likelihood scores for CaGeM on MNIST
with 0, 20, 50 and 100 labels with 1, 10 and 5000 IW sam-
ples.

Figure 5: PCA plots of the stochastic units z1 and z2 in a 2-
layered model trained on MNIST. The colors corresponds
to the true labels.

to the performance of GANs (Salimans et al., 2016).

The OMNIGLOT dataset consists of 50 different alphabets
of handwritten characters, where each character is sparsely
represented. In this task we use the alphabets as the clus-
ter information, so that the z2 representation should divide
correspondingly. From Table 3 we see an improvement

Semi-Supervised Generation with Cluster-aware Generative Models

LABELS 20 50 100

M1+M2 (KINGMA ET AL., 2014) - - 3.33% (±0.14)
VAT (MIYATO ET AL., 2015) - - 2.12%
CATGAN (SPRINGENBERG, 2015) - - 1.91% (±0.1)
SDGM (MAALØE ET AL., 2016) - - 1.32% (±0.07)
LADDER NETWORK (RASMUS ET AL., 2015) - - 1.06% (±0.37)
ADGM (MAALØE ET AL., 2016) - - 0.96% (±0.02)
IMP. GAN (SALIMANS ET AL., 2016) 16.77% (±4.52) 2.21% (±1.36) 0.93% (±0.65)

CAGEM 15.86% 2.42% 1.16%

Table 2: Semi-supervised test error % benchmarks on MNIST for 20, 50, and 100 randomly chosen and evenly distributed
labelled samples. Each experiment was run 3 times with different labelled subsets and the reported accuracy is the mean
value.

over other comparable VAE architectures (VAE, IWAE and
LVAE), however, the performance is far from the once
reported from the auto-regressive models (Kingma et al.,
2016; Chen et al., 2017). This indicates that the alphabet in-
formation is not as strong as for a dataset like MNIST. This
is also indicated from the accuracy of CaGeM-500, reach-
ing a performance of ≈ 24%. Samples from the model can
be found in Figure 6.

Figure 6: Generations from CaGeM-500. (left) The input
images, (middle) the reconstructions, and (right) random
samples from z2.

≤ log p(x)

VAE, L=2, IW=50 (BURDA ET AL., 2015A) −106.30
IWAE, L=2, IW=50 (BURDA ET AL., 2015A) −103.38
LVAE, L=5, FT, IW=10 (SØNDERBY ET AL., 2016) −102.11
RBM (BURDA ET AL., 2015B) −100.46
DBN (BURDA ET AL., 2015B) −100.45
DVAE (ROLFE, 2017) −97.43

CAGEM-500, L=2, IW=1 −100.86

Table 3: Generative test log-likelihood for permutation in-
variant OMNIGLOT.

7. Discussion
As we have seen from our experiments, CaGeM offers a
way to exploit the added flexibility of a second layer of

stochastic units, that stays active as the modeling perfor-
mances can greatly benefit from capturing the natural clus-
tering of the data. Other recent works have presented al-
ternative methods to mitigate the problem of inactive units
when training flexible models defined by a hierarchy of
stochastic layers. Burda et al. (2015a) used importance
samples to improve the tightness of the ELBO, and showed
that this new training objective helped in activating the
units of a 2-layer VAE. Sønderby et al. (2016) trained Lad-
der Variational Autoencoders (LVAE) composed of up to
5 layers of stochastic units, using a top-down inference
network that forces the information to flow in the higher
stochastic layers. Contrarily to the bottom-up inference
network of CaGeM, the top-down approach used in LVAEs
does not enforce a clear separation between the role of each
stochastic unit, as proven by the fact that all of them encode
some class information. Longer hierarchies of stochastic
units unrolled in time can be found in the sequential set-
ting (Krishnan et al., 2015; Fraccaro et al., 2016). In these
applications the problem of inactive stochastic units ap-
pears when using powerful autoregressive decoders (Frac-
caro et al., 2016; Chen et al., 2017), but is mitigated by the
fact that new data information enters the model at each time
step.

The discrete variable y of CaGeM was introduced to be
able to define a better learnable representation of the data,
that helps in activating the higher stochastic layer. The
combination of discrete and continuous variables for deep
generative models was also recently explored by several au-
thors. Maddison et al. (2016); Jang et al. (2016) used a
continuous relaxation of the discrete variables, that makes
it possible to efficiently train the model using stochastic
backpropagation. The introduced Gumbel-Softmax vari-
ables allow to sacrifice log-likelihood performances to
avoid the computationally expensive integration over y.
Rolfe (2017) presents a new class of probabilistic models
that combines an undirected component consisting of a bi-
partite Boltzmann machine with binary units and a directed
component with multiple layers of continuous variables.

Semi-Supervised Generation with Cluster-aware Generative Models

Traditionally, semi-supervised learning applications of
deep generative models such as Variational Auto-encoders
and Generative Adversarial Networks (Goodfellow et al.,
2014) have shown that, whenever only a small fraction
of labelled data is available, the supervised classification
task can benefit from additional unlabelled data (Kingma
et al., 2014; Maaløe et al., 2016; Salimans et al., 2016). In
this work we consider the semi-supervised problem from
a different perspective, and show that the generative task
of CaGeM can benefit from additional labelled data. As
a by-product of our model however, we also obtain com-
petitive semi-supervised classification results, meaning that
CaGeM is able to share statistical strength between the gen-
erative and classification tasks.

When modeling natural images, the performance of
CaGeM could be further improved using more powerful au-
toregressive decoders such as the ones in (Gulrajani et al.,
2016; Chen et al., 2017). Also, an even more flexible vari-
ational approximation could be obtained using auxiliary
variables (Ranganath et al., 2015; Maaløe et al., 2016) or
normalizing flows (Rezende & Mohamed, 2015; Kingma
et al., 2016).

8. Conclusion
In this work we have shown how to perform semi-
supervised generation with CaGeM. We showed that
CaGeM improves the generative log-likelihood perfor-
mance over similar deep generative approaches by creating
clusters for the data in its higher latent representations us-
ing unlabelled information. CaGeM also provides a natural
way to refine the clusters using additional labelled informa-
tion to further improve its modelling power.

A. The Problem of Inactive Units
First consider a model p(x) without latent units. We con-
sider the asymptotic average properties, so we take the ex-
pectation of the log-likelihood over the (unknown) data dis-
tribution pdata(x):

Epdata(x) [log p(x)] = Epdata(x)

[
log
(
pdata(x)

p(x)

pdata(x)

)]

= −H(pdata)−KL(pdata(x)||p(x)) ,

where H(p) = −Ep(x) [log p(x)] is the entropy of the dis-
tribution and KL(·||·) is the KL-divergence. The expected
log-likelihood is then simply the baseline entropy of the
data generating distribution minus the deviation between
the data generating distribution and our model for the dis-
tribution.

For the latent variable model plat(x) =
∫
p(x|z)p(z)dz the

log-likelihood bound is:

log plat(x) ≥ Eq(z|x)
[
log

p(x|z)p(z)
q(z|x)

]
.

We take the expectation over the data generating distribu-
tion and apply the same steps as above

Epdata(x) [log plat(x)] ≥ Epdata(x)Eq(z|x)
[
log

p(x|z)p(z)
q(z|x)

]

= −H(pdata)−KL(pdata(x)||plat(x))
− Epdata(x) [KL(q(z|x)||p(z|x))] ,

where p(z|x) = p(x|z)p(z)/plat(x) is the (intractable)
posterior of the latent variable model. This results shows
that we pay an additional price (the last term) for using an
approximation to the posterior.

The latent variable model can choose to ignore the latent
variables, p(x|z) = p̂(x). When this happens the expres-
sion falls back to the log-likelihood without latent vari-
ables. We can therefore get an (intractable) condition for
when it is advantageous for the model to use the latent vari-
ables:

Epdata(x) [log plat(x))] > Epdata(x) [log p̂(x))] +

Epdata(x) [KL(q(z|x)||p(z|x))] .

The model will use latent variables when the log-likelihood
gain is so high that it can compensate for the loss
KL(q(z|x)||plat(z|x)) we pay by using an approximate
posterior distribution.

The above argument can also be used to understand why
it is harder to get additional layers of latent variables to
become active. For a two-layer latent variable model
p(x, z1, z2) = p(x|z1)p(z1|z2)p(z2) we use a variational
distribution q(z1, z2|x) = q(z2|z1, x)q(z1|x) and de-
compose the log likelihood bound using p(x, z1, z2) =
p(z2|z1, x)p(z1|x)plat,2(x):

Epdata(x) [log plat,2(x)]

≥ Epdata(x)Eq(z1,z2|x)
[
log

p(x|z1)p(z1|z2)p(z2)
q(z1, z2|x)

]

= −H(pdata)−KL(pdata(x)||plat,2(x))
− Epdata(x)Eq(z1|x) [KL(q(z2|z1, x)||p(z2|z1, x))]
− Epdata(x)KL(q(z1|x)||p(z1|x)) .

Again this expression falls back to the one-layer model
when p(z1|z2) = p̂(z1). So whether to use the second layer
of stochastic units will depend upon the potential diminish-
ing return in terms of log likelihood relative to the extra
KL-cost from the approximate posterior.

Semi-Supervised Generation with Cluster-aware Generative Models

Acknowledgements
We thank Ulrich Paquet for fruitful feedback. The re-
search was supported by Danish Innovation Foundation,
the NVIDIA Corporation with the donation of TITAN X
GPUs. Marco Fraccaro is supported by Microsoft Research
through its PhD Scholarship Programme.

References
Bastien, Frédéric, Lamblin, Pascal, Pascanu, Razvan,

Bergstra, James, Goodfellow, Ian J., Bergeron, Arnaud,
Bouchard, Nicolas, and Bengio, Yoshua. Theano: new
features and speed improvements. In Deep Learning and
Unsupervised Feature Learning, workshop at Neural In-
formation Processing Systems, 2012.

Basu, Sugato, Banerjee, Arindam, and Mooney, Ray-
mond J. Semi-supervised clustering by seeding. In
Proceedings of the International Conference on Machine
Learning, 2002.

Bengio, Yoshua, Courville, Aaron, and Vincent, Pascal.
Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 35(8), 2013.

Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Joze-
fowicz, R., and Bengio, S. Generating sentences from
a continuous space. arXiv preprint arXiv:1511.06349,
2015.

Burda, Yuri, Grosse, Roger, and Salakhutdinov, Ruslan.
Importance Weighted Autoencoders. arXiv preprint
arXiv:1509.00519, 2015a.

Burda, Yuri, Grosse, Roger, and Salakhutdinov, Rus-
lan. Accurate and conservative estimates of mrf log-
likelihood using reverse annealing. In Proceedings of the
International Conference on Artificial Intelligence and
Statistics, 2015b.

Chen, Xi, Kingma, Diederik P., Salimans, Tim, Duan, Yan,
Dhariwal, Prafulla, Schulman, John, Sutskever, Ilya, and
Abbeel, Pieter. Variational Lossy Autoencoder. In Inter-
national Conference on Learning Representations, 2017.

Dieleman, Sander, Schlter, Jan, Raffel, Colin, Olson, Eben,
Sønderby, Søren K, Nouri, Daniel, van den Oord, Aaron,
and and, Eric Battenberg. Lasagne: First release., Au-
gust 2015.

Fraccaro, Marco, Sønderby, Søren Kaae, Paquet, Ul-
rich, and Winther, Ole. Sequential neural models with
stochastic layers. In Advances in Neural Information
Processing Systems. 2016.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu,
Bing, Warde-Farley, David, Ozair, Sherjil, Courville,
Aaron, and Bengio, Yoshua. Generative adversarial nets.
In Advances in Neural Information Processing Systems.
2014.

Gulrajani, Ishaan, Kumar, Kundan, Ahmed, Faruk,
Ali Taiga, Adrien, Visin, Francesco, Vazquez, David,
and Courville, Aaron. PixelVAE: A latent variable model
for natural images. arXiv e-prints, 1611.05013, Novem-
ber 2016.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In Proceedings of International Confer-
ence on Machine Learning, 2015.

Jang, Eric, Gu, Shixiang, and Poole, Ben. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Kingma, Diederik and Ba, Jimmy. Adam: A
Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980, 12 2014.

Kingma, Diederik P., Rezende, Danilo Jimenez, Mohamed,
Shakir, and Welling, Max. Semi-Supervised Learning
with Deep Generative Models. In Proceedings of the
International Conference on Machine Learning, 2014.

Kingma, Diederik P, Salimans, Tim, Jozefowicz, Rafal,
Chen, Xi, Sutskever, Ilya, and Welling, Max. Improved
variational inference with inverse autoregressive flow.
In Advances in Neural Information Processing Systems.
2016.

Kingma, Diederik P; Welling, Max. Auto-Encoding Varia-
tional Bayes. arXiv preprint arXiv:1312.6114, 12 2013.

Krishnan, Rahul G, Shalit, Uri, and Sontag, David. Deep
Kalman filters. arXiv:1511.05121, 2015.

Lake, Brenden M, Salakhutdinov, Ruslan R, and Tenen-
baum, Josh. One-shot learning by inverting a composi-
tional causal process. In Advances in Neural Information
Processing Systems. 2013.

Maaløe, Lars, Sønderby, Casper K., Sønderby, Søren K.,
and Winther, Ole. Auxiliary Deep Generative Models. In
Proceedings of the International Conference on Machine
Learning, 2016.

Maddison, Chris J., Mnih, Andriy, and Teh, Yee Whye.
The concrete distribution: A continuous relax-
ation of discrete random variables. arXiv preprint
arXiv:1611.00712, abs/1611.00712, 2016.

Semi-Supervised Generation with Cluster-aware Generative Models

Miyato, Takeru, Maeda, Shin-ichi, Koyama, Masanori,
Nakae, Ken, and Ishii, Shin. Distributional Smooth-
ing with Virtual Adversarial Training. arXiv preprint
arXiv:1507.00677, 7 2015.

Ranganath, Rajesh, Tran, Dustin, and Blei, David M.
Hierarchical variational models. arXiv preprint
arXiv:1511.02386, 11 2015.

Rasmus, Antti, Berglund, Mathias, Honkala, Mikko,
Valpola, Harri, and Raiko, Tapani. Semi-supervised
learning with ladder networks. In Advances in Neural
Information Processing Systems, 2015.

Rezende, Danilo J., Mohamed, Shakir, and Wierstra,
Daan. Stochastic Backpropagation and Approximate
Inference in Deep Generative Models. arXiv preprint
arXiv:1401.4082, 04 2014.

Rezende, Danilo Jimenez and Mohamed, Shakir. Varia-
tional Inference with Normalizing Flows. In Proceed-
ings of the International Conference on Machine Learn-
ing, 2015.

Rolfe, Jason Tyler. Discrete variational autoencoders. In
Proceedings of the International Conference on Learn-
ing Representations, 2017.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for
training gans. arXiv preprint arXiv:1606.03498, 2016.

Sønderby, Casper Kaae, Raiko, Tapani, Maaløe, Lars,
Sønderby, Søren Kaae, and Winther, Ole. Ladder varia-
tional autoencoders. In Advances in Neural Information
Processing Systems 29. 2016.

Springenberg, J.T. Unsupervised and semi-supervised
learning with categorical generative adversarial net-
works. arXiv preprint arXiv:1511.06390, 2015.

Tenenbaum, Joshua B., Griffiths, Thomas L., and Kemp,
Charles. Theory-based Bayesian models of inductive
learning and reasoning. Trends in cognitive sciences, 10
(7):309–318, July 2006.

Tran, Dustin, Ranganath, Rajesh, and Blei, David M. Vari-
ational Gaussian process. In Proceedings of the Interna-
tional Conference on Learning Representations, 2016.

110 CaGeM: A cluster aware deep generative model

Appendix D

Condition monitoring in PV
systems by semi-supervised

machine learning

In this appendix we include:

Maaløe, L., Spataru, S. V., Sera, D., Winther, O. (2018). Condition monitoring
in photovoltaic systems by semi-supervised machine learning. Submitted to
IEEE Transactions of Industrial Informatics.

Condition Monitoring in Photovoltaic Systems by
Semi-Supervised Machine Learning

Lars Maaløe & Ole Winther
Applied Mathematics and Computer Science

Technical University of Denmark
Lyngby, 2800, Denmark
{larsma,olwi}@dtu.dk

Sergiu Spataru & Dezso Sera
Energy Technology Power Electronic Systems

Aalborg University
Aalborg, 9220, Denmark
{ssp,des}@et.aau.dk

Abstract—With the rapid increase in photovoltaic energy
production there is a need for smart condition monitoring
systems ensuring maximum throughput. Complex methods such
as drone inspections are costly and labor intensive, hence
condition monitoring by utilizing sensor data is attractive. In
order to recognize meaningful patterns from the sensor data
there is a need for expressive machine learning models. However,
supervised machine learning, e.g. regression models, suffer from
the cumbersome process of annotating data. By utilizing recent
state of the art semi-supervised machine learning based on
probabilistic modeling, we show that we are able to perform
condition monitoring in a photovoltaic system with high accuracy
and only a small fraction of annotated data. The modeling
approach utilizes all the unsupervised data by jointly learning
a low-dimensional feature representation and a classification
model in an end-to-end fashion. By analysis of the feature
representation, new internal condition monitoring states can be
detected, proving a practical way of updating the model for
better monitoring. We present (i) an analysis that compares the
proposed model to corresponding purely supervised approaches,
(ii) a study on the semi-supervised capabilities of the model, and
(iii) an experiment in which we simulate a real-life condition
monitoring system.

I. INTRODUCTION

With an ever increasing growth in photovoltaic (PV) energy
production the sheer size of individual power plants are
growing at a rapid pace [1]. Building and operating such PV
plants has become a viable business in many countries. High
PV energy production and maximized yield are fundamental
for a profit margin. A challenge is not solely detecting an
anomaly in the PV power plant, but also to optimize the
operation and maintenance costs once detected [2]. Here
condition monitoring plays a crucial role since it is key
to identify the specific system state to ascertain its impact
on energy production and ensure minimal maintenance cost,
e.g. panel cleaning, replacement, circuit or diode check [3].
Another challenge is the size of the PV plants. Minimally, the
performance of the strings or arrays needs to be monitored.
In a MW range there will be hundreds of PV performance
computational streams to monitor in real time or periodically
[2].

Many PV plant conditions can result in decreased yield.
Amongst the conditions are (i) weather patterns, (ii) PV panel
aging, (iii) evolving faults, e.g. diode failure or glass breakage,
and (iv) faulty installation of the PV panels [4]. It is quite

Normal operation Fault condition A

Fault condition B

++ +
++

+ +

x
x

x
x

x
x

Fig. 1: Example of a supervised classification algorithm that is
trained on a two-dimensional input {x1, x2} so that it learns to
discriminate between two categories: (i) the normal operation
and (ii) fault conditions, of a PV plant. In this example the
two categories are linearly separable, but that is often not the
case in real-life settings.

simple to detect anomalies in energy production, however, it
is more complex to find the accurate source of the anomaly.
Furthermore, the cause may be a result of a chain of events
for which the causality is highly non-trivial.

Several alternatives for better condition monitoring exist
many of which include quite costly add-ons, e.g. increased
amount/accuracy of sensors and infrared inspection [5]. An-
other complementary approach is traditional statistical analysis
of the data [6], but this is resource intensive. A less expensive
alternative is a data-driven approach in which supervised
machine learning models parameterized by for example neural
networks learn from the vast amount of incoming sensor data.
These machine learning models have proven efficient within
noise resiliency and in finding non-linear correlations [7],
[8], [9], [10], [11]. However, there is an inherent problem
in assumptions made when applying highly expressive neural
networks to the problem of condition monitoring since they
are mostly formulated in a supervised setting. This means that
we generally expect a large dataset containing condition-data
with adhering labels. Therefore, in order to get started, one

Sensor data Anomaly?

Retrain

Predict
Fault condition A

Normal operation

Outlier?

Fault condition A
Yes

No

++ +
++

+ +

++ +
++

+ +

++ +
++

+ +

++ +
++

+ +

Fig. 2: A visualization of the condition monitoring system. The sensor data is propagated through the machine learning
framework, and the model detects whether the data point is an outlier. If it is an outlier the sensor data must be manually
inspected, and the machine learning framework retrained. If the incoming sensor data is not an outlier, the framework will
predict the state of the condition. If the fault state is detected as a fault maintenance will be scheduled accordingly.

must (i) predefine all potential non-overlapping conditions that
may happen in a PV plant, (ii) have a vast distribution of
annotated data-points for each condition, and (iii) expect no
anomalies from the already defined problem. It is quite clear
that (i) will introduce a constraint on how specific we can be
in defining a condition, since many have a tendency to overlap.
(ii) is also limiting since the data of a PV plant is not directly
interpretable by a human. Therefore one needs to engage in a
costly annotation of data-points in order to train the relatively
data-hungry neural networks. Finally, (iii) is posing a limit
of supervised neural networks, since they are normally not
modeled with an uncertainty, resulting in a risk of an overly
confident estimate of a severe anomaly [12].

Before proposing a solution to the above it is important
to specify how PV plant condition-data can be defined. In
this research the conditions are expressed by the output of
sensors, monitoring the PV array current, voltage, in-plane
irradiance, external temperature, PV module temperature, and
wind speed. The sensor inputs are recorded with a specific
temporal resolution. The hypothesis is that, in cohesion, all of
these sensor inputs will have unique patterns representing a PV
plant condition. We propose a state of the art semi-supervised
probabilistic machine learning framework that can capture
the unique patterns and cluster them accordingly to their
respective similarity. Furthermore, as part of the framework
a supervised classifier, learned from a pre-defined annotation
process, categorizes each of these clusters. The probabilistic
framework thus models the joint distribution of the condition
data and the PV plant state. This should be contrasted to
traditional supervised approaches that model the state given
the condition data. The big advantage of the model is that
it can capture condition data anomalies while also classifying
known conditions. In addition to this, the number of annotated
data-points needed is very low.

The machine learning framework works by learning a dis-

tribution over the PV power plant conditions and thereby cor-
relate new data points with the learned distribution. In recent
years there has been several notable contributions within prob-
abilistic semi-supervised learning methods. Amongst them are
[13], [14] that utilize the variational auto-encoder framework
(VAE) [15], [16] for a Bayesian approach in modeling the
joint probability between the data and labels. In this paper we
utilize the skip deep generative model (SDGM) from [14].

The paper is structured such that we give a background
to PV condition monitoring, supervised machine learning
for fault detection, and the SDGM. Next we introduce the
experimental setup followed by results. We show that SDGM
can indeed be used as a machine learning model for con-
dition monitoring, and performs significantly better than its
supervised counterparts, even in a fully supervised setting.
Finally, we simulate a real-life condition monitoring setup
where PV plant conditions are introduced sequentially. In these
experiments we show how SDGM is able to detect anomalies,
and that retraining the system improves condition monitoring
performance.

II. DETECTION AND IDENTIFICATION OF PV POWER LOSS
AND FAILURES TROUGH CLASSIFICATION METHODS

A. PV failures and factors causing power loss

There exist a number of external factors that can cause
power loss in a PV system, in addition to PV specific degra-
dation modes [4]. These can be roughly categorized in three
groups. The first group covers optical losses and degradation,
such as soiling, snow, or shading affecting the module surface
[17], as well as discoloration of the encapsulant [4]. These
optical power loss factors can be relatively easily detected
through visual inspection, however this is not always feasible,
for large or hard to reach PV installations. Moreover, detecting
them from production measurements can be difficult, since
their associated failure patterns in the power measurements

are irregular, depending on the size and relative position of
the soiling, shading, etc. Detecting such failures is important
since some of them can be remedied relatively easy, through
cleaning of the PV panels.

A second category of factors causing power loss in a PV
system, is the degradation of the electrical circuit of the PV
module. In the most severe cases these are represented by
open-circuit and short-circuit faults within the PV array and
associated cabling [4]. But there can also be partial degrada-
tion, due to moisture ingress and corrosion of the electrical
pathways [18], causing an increased series resistance of the
PV array [19]. Such faults are generally difficult to detect
through visual inspection, and require thermal IR imaging
or electroluminescence to detect. However, they cause more
predictable patterns in the production measurements, such as
voltage drops proportional to the increase in series resistance.
Such failure can cause localized heating and hot-spots, posing
a risk of arcing and fire.

The third category corresponds to degradation of the solar
cells, which in turn can occur due to a number of stress
factors such as: (i) thermo-mechanical stress, causing solar cell
cracks, associated with increased series resistance, shunting
and localized heating [19], [4]; (ii) voltage stress, causing
potential-induced degradation, primarily associated with a
decrease in the cells shunt resistance, but also corrosion and
delamination in the case of some thin film technologies [20];
(iii) diurnal and seasonal variations affecting solar cells with
metastable performance behavior, such as certain thin film
technologies [21]. Degradation modes in this category are
more difficult to detect, and the associated failure patterns
in production measurements are more complex. Nonetheless,
identifying such failures in their incipient phase is of utmost
importance, since they are a symptom of a more serious,
system-wide problems, such as bad system design, installation
practice or module quality, which should be resolved while the
modules and PV system are still in warranty.

The types of power loss factors and degradation modes that
can affect PV systems are varied and difficult to formalize.
And, only few of them may affect a PV system within its
lifetime depending mainly on the solar cell technology, panel
design and quality, environmental and operational conditions,
and installation and maintenance practices.

B. Failure detection through supervised classification

Two of the main prerequisites for implementing supervised
classification in a condition monitoring system, are: (i) the a
priori knowledge of the fault types/classes that will occur/need
to be detected in the PV system; and (ii) representative
measurement datasets for each of the fault classes, necessary
for training the classification model. Once these perquisites
are met, and appropriately monitored, production variables
are chosen as input, and classifiers are trained for each fault
class (cf. Figure 1). Once trained, each classifier will operate
continuously, monitoring the production variables, and will be
able to discern if the system is in Normal operation, or a

specific fault class has occurred (denoted as Fault condition
”A” and ”B” in the example in Figure 1).

There exist many types of supervised classification algo-
rithms, e.g. support vector machines (SVM) [22], random
forest (RF) [23], and multilabel logistic regression (MLR).
These are all very expressive models, however, with the rise of
deep learning [24], we have seen a multitude of improvements
from models that can capture highly non-linear correlations
in the data. The improvements mainly concern areas such
as image classification [25] and automatic speech recognition
[26]. However, the more expressive models also gain traction
within renewable energy, e.g. for condition monitoring in wind
turbines [10] and as forecasting models for solar irradiance
[27]. Defining the deep neural network is not a simple task,
due to the vast number of choices that needs to be taken in
regards to type of architecture, depth, regularization and much
more.

The main challenge in implementing a supervised clas-
sification algorithm for detecting faults in a PV system, is
obtaining the necessary PV production measurement datasets
characterizing the different fault classes. Since there are no
standardized fault classes and representative datasets, faults of
different types and severities can occur throughout the 25+
year expected lifetime of the PV system.

C. Proposed failure detection through semi-supervised classi-
fication

A possible solution is to combine a supervised classification
method with a data clustering method, that is able to detect
anomalous patterns in the monitored PV production data.
Next, on-site inspection of the event/fault by maintenance
personal, can help identify the type or class of this event/fault.
The associated production measurements can then be used
to retrain a supervised classifier for the detected event/fault
class, such that future instances of the event/fault will be au-
tomatically detected and identified by the condition monitoring
system, which is continuously learning new fault classes, as
it’s operating (cf. Figure 2).

D. Theory of the semi-supervised learning framework

We propose to solve the problem for semi-supervised con-
dition monitoring by learning a feature representation z of the
PV condition data x as a continuous conditional probability
density function, p(z|x), and the classification task of the PV
state y as a discrete conditional probability density, p(y|x).
In order to learn both models jointly from both labeled and
unlabeled data the two models must be define in a way where
they share parameters. By applying Bayes theorem we can
formulate the problem by:

p(z, y|x) = p(x|z, y)p(z)p(y)∫
z,y
p(x|z, y)p(y)p(z)dz , (1)

where we assume the latent variable feature representation
z and state labels are y to be a priori statistically inde-
pendent, p(z, y) = p(z)p(y). In a scenario with complex
input distributions, e.g. sensor input from a PV power plant,

x

y

z1

z2 θ

(a) Generative model pθ

x

y

z1

z2 φ

(b) Inference model qφ

Fig. 3: The graphical model of the SDGM for semi-supervised learning [14]. The model is defined by two continuous latent
variables, z1 and z2, a partially observed discrete latent variable y, and a fully observed input, x. (a) depicts the generative
model and (b) the inference model, also known as the variational approximation. Each union of incoming edges to a node
defines a densely connected deep neural network.

the posterior p(z, y|x), becomes intractable. Therefore we
formulate the problem such that we learn an approximation,
q(z, y|x), to the posterior through variational inference [28].
SDGM is an example of this probabilistic framework which
enables the use of stochastic gradient ascent methods for
optimizing the parameters of the generative model, pθ(x, y, z),
and the variational approximation, qφ(z, y|x). θ and φ denotes
the parameters of the generative model and the variational
approximation (also denoted inference model), respectively.
Both are constructed from deep neural networks (cf. Figure
3). We learn the model parameters by jointly maximizing
the objective L(xl, yl) for labeled data xl, yl and U(xu) for
unlabeled data xu:

J =
∑

xl,yl

L(xl, yl) +
∑

xu

U(xu) . (2)

SDGM defines two continuous latent variables, z = z1, z2
and the discrete partially observed latent variable y. The
continuous distributions for the latent variables z are defined
as Gaussian distributions and the discrete distribution y is a
Categorical distribution. For the labeled data we optimize the
parameters, θ, φ w.r.t. a lower bound on the evidence p(x)
(ELBO):

log pθ(x, y) = log

∫

z1

∫

z2

pθ(x, y, z1, z2)dz2dz1

≥ Eqφ(z1,z2|x,y)
[
log

pθ(x, y, z1, z2)

qφ(z1, z2|x, y)

]
(3)

≡ F(x, y) ,

with

qφ(z1, z2|x, y) = qφ(z1|x)qφ(z2|z1, y, x), (4)
pθ(x, y, z1, z2) = pθ(x|z1, z2, y)pθ(z1|y, z2)pθ(y)pθ(z2) .

(5)

Since the labeled ELBO does not include the classification
error we add the Categorical cross-entropy loss

L(x, y) = F(x, y) + α · Eqφ(z1,z2|x,y) [log qθ(y|z1, x)] , (6)

where α is a constant scaling term defined as a hyper-
parameter. Similarly to the labeled loss we define the unlabeled
loss for the unlabeled ELBO:

log pθ(x) = log

∫

z1

∑

y

∫

z2

p(x, y, z1, z2)dz2dydz1

≥ Eqφ(z1,y,z2|x)
[
log

pθ(x, y, z1, z2)

qφ(z1, y, z2|x)

]

≡ U(x) , (7)

where

qφ(z1, z2, y|x) = qφ(z1|x)qφ(y|z1, x)qφ(z2|z1, y, x). (8)

In this paper we restrict the experiments to only use densely
connected neural networks, but simple extensions to the model
include recurrent neural networks and convolutional neural
networks that has proven efficient in modeling temporal as
well as spatial information within condition monitoring [27],
[10].

Besides being amongst state-of-the-art within semi-
supervised image classification, SDGM posses another in-
triguing property for condition monitoring as opposed to
other semi-supervised approaches. Since we are optimizing
the ELBO, we can use this as an anomaly measure. Thus, if
the value of the ELBO for a specific data-point is far below
the value of the ELBO that was evaluated during optimization,
we can define the data-point as an anomaly.

III. EXPERIMENTAL APPLICATION AND TESTS

In order to validate whether the proposed SDGM can be
utilized for condition monitoring we have recorded a dataset
of the sensor data from a small-scale PV plant (cf. Table I),
consisting on an inverter and two strings. During the timespan
of the recording, we witnessed 10 different categories that we
used as labels. In order to benchmark the machine learning
framework we have defined two comparable supervised ma-
chine learning models. The dataset in cohesion with the two
supervised models will act as a benchmark of the performance
of the proposed machine learning framework.

TABLE I: The sensor output from the PV system that was
used to train the machine learning models. The PV system
comprised of two strings and an inverter.

SENSOR INPUT DESCRIPTION

I CURRENT
V VOLTAGE
G PLANE-OF-ARRAY IRRADIANCE
TEXT EXTERNAL TEMPERATURE
TMOD MODULE TEMPERATURE
W WINDSPEED

A. Field test setup and dataset

To evaluate the progressive learning and fault detection
capabilities of the proposed condition monitoring system, we
performed measurements and tests on a 0.9 kWp roof-mounted
PV string (eight multicrystalline silicon modules). The PV
string was connected to a 6 kWp Danfoss TLX Pro string
inverter that was continuously monitoring the string current
(I), voltage (V), plane-of-array irradiance (G), external tem-
perature (TExt), module temperature (TMod), and windspeed
(W), with a 1 minute sampling time.

Since the test PV system is normally not affected by any
faults, we created seven power loss events/fault classes, by
applying different types of shading on the panels, as well as
by connecting different power resistors on series with the PV
string, to emulate series resistance type faults. In addition we
also recorded PV production for when the PV system was
covered by snow, for a clear sky and a cloudy sky day. The
ten conditions/fault classes are outlined in Table II, and will
be used as class labels for testing the classifiers in the next
sections.

Another important step in designing a classification model
is choosing appropriate input variables. Minimally, PV array
current and voltage are monitored in a PV system, and we
denote this case as the simple monitoring case. Additional
monitoring input variables can be the solar irradiance, module
temperature, external temperature, wind speed. These are less
commonly monitored in small PV installations, due to the
additional cost of the sensors, however, in larger PV plants
these are usually monitored by accurate weather stations. We
will denote the case including the ambient conditions as input
variables, the complex monitoring case.

The categories are skewed in accordance to the weather
pattern during the 2 months, e.g. there is a majority of data
points for which there was snow (cf. Table II). For each learned
model, we run a 5-fold Monte Carlo cross-validation with a
random split of 80% for training and 20% for testing. The
labeled samples are either sampled uniformly or progressively
for each PV system state category.

B. Machine learning setup

In order to evaluate the proposed machine learning frame-
work we first define a solid baseline for comparison. Since
the SDGM is parameterized by neural networks, we construct

a supervised neural network for classification with equivalent
parameterization to qφ(y|z1, x). Furthermore, we also define
a simple linear classification model, in order to conclude
whether the added complexity from the neural networks is
needed for modeling this dataset. The supervised deep neural
network for classification, is denoted multi-layer perceptron
(MLP), and the linear model is referred to as multi-label
regression (MLR).

(i) In the first experiment we benchmark SDGM against
MLP and MLR in a fully supervised setting, thus all labels
for the entire dataset is given during training. The aim of
this experiment is to see whether MLP performs significantly
better than MLR and whether SDGM performs approximately
equivalent to MLP. We perform this experiment on both the
simple and complex monitoring case.

(ii) Next, we investigate the semi-supervised performance of
the SDGM. In order to do this, we simulate a scenario where
only a fraction of data in the PV sensor dataset is given. Since
MLP and MLR are supervised models, they are only able to
learn from this fraction of labeled data, whereas SDGM can
utilize the unlabeled fraction also. The fraction of labeled data
is randomly sampled uniformly across categories, such that
there is an even representation of each category in the labeled
dataset.

(iii) Finally, we simulate a real-life PV plant condition
monitoring system, in which we assume that each condition
is introduced to the power plant sequentially (cf. Figure 2).
First we initialize the dataset with only 1 labeled data-point
from each category, in order to introduce the minimal amount
of categorical knowledge in the classifier. Next we introduce
500 labeled samples from the first category in Table II and
optimize MLP and SDGM. Now we can estimate the ELBO
in Equation 7 for the data-points of the categories that are
included during training and the ones that are not. We can
also estimate the accuracy of the classifiers in SDGM and the
MLP. We will expect that the estimate of the ELBO will be
significantly lower for the categories that are not included in
the dataset as opposed to the ELBO for the categories that are
included. This indicates an anomaly. Next we progressively
include another category from Table II and perform the same
analysis until we have evaluated 6 categories.

The SDGM1 consists of 2 densely connected deep neural
neural networks with parameters θ in the generative model and
3 densely connected deep neural networks with parameters φ
in the inference model. The neural networks in both the SDGM
and MLP contains 2 hidden layers with 50 units in each. We
use the ReLU [29] activation function as a non-linearity and
ADAM [13] for optimizing the parameters. For the MLP we
use a dropout [30] rate of 0.5 and for the MLR we use L2
regularization. Model training is stopped upon saturation of the
validation error. The α constant is defined as in [14]. During
optimization of the SDGM we utilize the warm-up introduced
in [31], [32].

1For details on experimental implementation and code refer to [14] and
github.com/larsmaaloee/auxiliary-deep-generative-models.

TABLE II: An overview of the PV system dataset used for this research. The dataset comprises of 10 categories from
approximately 15,000 data samples of a varied representation.

CONDITION/FAULT CLASS DESCRIPTION SAMPLES

PS7 UNIFORM SHADING ON ALL LOWER CELLS OF THE MODULES 10.68%
RS4 50% INCREASE IN STRING SERIES RESISTANCE 10.18%
PS50 PARTIAL SHADING ON 50% OF A SUBMODULE 10.83%
RS8 100% INCREASE IN STRING SERIES RESISTANCE 5.11%
PSRS COMBINED 50% SHADING ON A SUBMODULE WITH 50% INCREASE IN STRING RS 10.93%
PS75 SHADING ON 50% OF A SUBMODULE + 25% OF ANOTHER SUBMODULE 10.60%
C CLOUDY SKY DAY 4.60%
S SNOW ON THE MODULES 27.64%
N CLEAR SKY DAY 4.67%
IV SHADING ON 3/4 OF CELL AREA OF 6 SUBMODULES 4.78%

(a)

(b)

Fig. 4: Normalized confusion matrices for (a) MLR and (b)
MLP trained on the fully labeled complex dataset. The x-axis
denotes the predicted labels and the y-axis the true labels.

IV. RESULTS

We propose three experiments, introduced above. In the first
experiment we will benchmark the SDGM against the MLP
and MLR in a fully-supervised setting. Next we will evaluate
the semi-supervised power of the SDGM. Finally, we present
results for the study in which we simulate a real-life condition
monitoring system.

A. Supervised Condition Monitoring Accuracy

TABLE III: Fully supervised baseline on MLR, MLP and
SDGM with the simple sensor input, {I, V}, and the complex
input, {I, V, G, TExt, TMod, and W}.

ACCURACY ACCURACY
I,V I,V,G,TEXT

TMOD,W

MLR 51.62% 77.33%
MLP 77.81% 89.11%
SDGM 79.06% 92.47%

Table III presents the baseline results of MLR, MLP and
SDGM in a fully supervised learning setup. By utilizing
more sensor attributes (complex vs. simple), the performance
increases well over 10% across all models. This proves that
the additional sensor inputs (G, TExt, TMod, and W) are very
useful for condition monitoring. When comparing the non-
linear MLP to the linear MLR we also achieve a significant
improvement in performance, indicating that the input data is
not linearly separable, and that the added complexity of the
neural networks is worthwhile. The most surprising finding
is that the SDGM is performing significantly better than the
MLP. We believe that this is due to the fact that SDGM also
learns a latent clustering of the data that is correlated with
the PV state. Thereby, the model can discriminate between
the labels and the cluster representations, meaning that it
can put less emphasis on labeled information that does not
seem to correlate with the distribution. Hence, if a small
fraction of faulty labels exist in the training dataset, SDGM
is able to ignore this information and thereby achieve better
generalization towards the validation dataset.

Figure 4 shows how the wrongly classified examples from
the MLR and MLP are quite similar. The highest misclas-
sification rate lies between cloudy and snowy weather, {C,
S}. Other misclassification rates mainly lie between {RS8,
PS50}, {N, RS4}, {RS8, IV}, and {N, RS4}. When we
compare the results of MLR and MLP to the SDGM (cf. Figure

(a)

(b)

Fig. 5: (a) Normalized confusion matrices for SDGM trained
on the fully labeled complex dataset. (b) PCA (principal
components 1 and 2) on the latent space.

5a) we can read from the confusion matrix that the SDGM
manages to learn the difference between cloudy and snowy,
{C, S}. Furthermore the remainder of the most prominent
misclassification rates are significantly decreased. In order to
analyze what is learned in the latent variables of SDGM,
we plot the first two principal components from a principal
component analysis (PCA) (cf. Figure 5b). The visualization of
the latent space shows clear discrimination between categories.
Furthermore we can also see that the data lies on manifolds
resembling the movement of the sun.

B. Semi-Supervised Condition Monitoring Accuracy

In order to evaluate the semi-supervised performance of
SDGM, we define 8 datasets with different fractions of labeled
data that is randomly subsampled across the categories in
Table II for each of the trained models, {100, 300, ..., 1500}.
Figure 7 shows SDGM’s significant increase in performance
by utilizing the knowledge in the unlabeled data. For the
simple dataset, with {I, V} as input, we see that the supervised
models, MLR and MLP, achieves an accuracy of 35%-45%
by learning from 100 labeled data-points, whereas the SDGM
achieves 55%-60%. As expected, the relative improvement
from using SDGM stays significant when introducing more
labels. Similarly, to the supervised analysis above, all models
achieve a significant improvement when adding more sensor
inputs, {I, V, G, TExt, TMod, W}. When comparing the

(a)

(b)

Fig. 6: PCA (principal component 1 and 2) visualization of
the latent space for SDGMs trained a dataset with only 100
labeled samples. (a) Shows the latent space for a model trained
on the simple dataset, {I, V} and (b) for {I, V, G, TExt, TMod,
W} as input.

results of the semi-supervised SDGM with the supervised
SDGM, we see that the models trained on 1500 labeled data
points actually exceeds the performance of the fully-supervised
model, 93.12% compared to 92.47%. Again the reason for
this may be that with fewer labeled examples, SDGM put a
larger emphasis on the unlabeled data and thereby it is not
as prone to faulty annotations. In Figure 6 we visualize the
latent representations by PCA for the SDGM trained with
100 labeled data-points on the simple and complex input. It
is clear that the model trained on the complex is better at
discriminating between the categories than the model trained
on the simple input. Furthermore, when comparing Figure 5b
with 6b we see clear indications that the increase in labels
results in better discrimination between condition states.

C. Adding PV Conditions Progressively

Figure 8a presents the results of a SDGM and MLP
learned up to 6 categories. As expected the accuracy for all
categories increases when more categories are added to the
dataset. Again it is clear that the SDGM is able to utilize the
information from the unlabeled examples as well as the very
sparse information from the other categories to significantly
outperform the MLP. In Figure 8b we visualize the level of
certainty, ELBO (cf. Equation 7), and can easily discriminate
the categories included during training from the categories

(a)

(b)

Fig. 7: Comparison between the supervised MLP, MLR and
the semi-supervised SDGM trained on an increasing amount of
randomly sampled and evenly distributed labeled data points.
For each number of labeled data points, we trained 10 different
models since there may exist a large variance between the
quality of the subsampled labeled data points. (a) shows the
accuracy with one standard deviation for models trained on
the simple input distribution {I,V}, and (b) the accuracy for
models trained on the complex input distribution, {I, V, G,
TExt, TMod, W}.

that are not included. So for a model trained on only {PS7}
data, it is easy to detect {RS4, PS50, RS8, PSRS, PS75, C,
S, N, IV} conditions as anomalous, and for a model trained
on {PS7,RS4} it is easy to detect {PS50, RS8, PSRS, PS75,
C, S, N, IV} as anomalous. In order to state whether a PV
plant condition is an anomaly the operator needs to define a
threshold value. In this experiment a suitable threshold could
be that PV plant conditions with an ELBO below −60 nats is
considered an anomaly. Upon realization of an anomaly, the
PV plant operator will initiate a brief annotation process and
retrain the SDGM framework, so that the new states is now
within the known operational condition.

V. CONCLUSION

In this research we have proposed an approach to PV con-
dition monitoring that simultaneously learns classification and
anomaly detection models. This can significantly improve the
throughput of energy production and lower the maintenance
cost of PV power plants. We have shown that the approach
is easy to train on a rather simple dataset and that it is easily

(a)

(b)

Fig. 8: SDGMs and MLPs trained from datasets where we
randomly subsample a single data-point from each category
and then progressively add 500 randomly labeled data points
for each category and training a new MLP and SDGM for
each progression. (a) presents the accuracy of the classifiers
for the SDGM and MLP. (b) presents the ELBO for the data
categories included during training (ELBO Lab.) and the data
categories that are not included during training (ELBO Unl.).
The categories that are progressively added is following the
order of Table II, i.e. first {PS7}, next {PS7, RS4}, until
reaching {PS7, RS4, PS50, RS8, PSRS, PS75}.

interpretable by evaluating the classification results, the latent
representations, and the ELBO. The main limitations of this
research lies in the dataset used. Due to the representation
and the amount of samples, it does not resemble the vast
amount of data one could acquire from a large-scale PV
power plant. However, deep neural networks have a tendency
to improve when introducing more data, meaning that we
can hypothesize that the results would only improve. Another
interesting direction for future research would be to investigate
the possibility for transfer learning between PV power plant
configurations, so that one could seamlessly deploy a SDGM
that is learned on one PV plant, to another.

ACKNOWLEDGMENT

The research was supported by Innovation Fund Denmark
and the NVIDIA Corporation with the donation of TITAN X
GPUs.

REFERENCES

[1] I. PVPS, “Trends 2017 in phtovoltaic applications - survey report of
selected iea countries between 1992 and 2016,” International Energy
Agency, Report, 25 Jan 2018.

[2] G. Mtter, T. Krametz, and P. Steirer, “Experiences with a performance
package for multi-mw pv plants based on computations on top of
monitoring,” in 31st European Photovoltaic Solar Energy Conference
and Exhibition. WIP, Conference Proceedings, pp. 1675 – 1678.

[3] A. Woyte, M. Richter, D. Moser, N. Reich, M. Green, S. Mau, and H. G.
Beyer, “Analytical monitoring of grid-connected photovoltaic systems,”
International Energy Agency, Report, 2014.

[4] M. Köntges, S. Kurtz, C. Packard, U. Jahn, K. A. Berger, K. Kato,
T. Friesen, H. Liu, and M. Van Iseghem, “Review of failures of
photovoltaic modules,” International Energy Agency, Report, March
2014 2014.

[5] C. Buerhop-Lutz, H. Scheuerpflug, T. Pickel, C. Camus, J. Hauch, and
C. Brabec, “Ir-imaging a tracked pv-plant using an unmanned aerial
vehicle,” in 32nd European Photovoltaic Solar Energy Conference and
Exhibition. WIP, Conference Proceedings, pp. 2016 – 2020.

[6] S. Vergura, G. Acciani, V. Amoruso, G. E. Patrono, and F. Vacca,
“Descriptive and inferential statistics for supervising and monitoring the
operation of pv plants,” IEEE Transactions on Industrial Electronics,
vol. 56, no. 11, pp. 4456–4464, 2009.

[7] S. Silvestre, C. Aissa, and E. Karatepe, “Automatic fault detection in
grid connected pv systems,” vol. 94, pp. 119–127, 06 2013.

[8] L. L. Jiang and D. L. Maskell, “Automatic fault detection and diagnosis
for photovoltaic systems using combined artificial neural network and
analytical based methods,” in Proceedings of the IEEE International
Joint Conference on Neural Networks. IEEE Computer Society, 2015.

[9] M. H. Ali, A. Rabhi, A. E. H., and G. M. Tina, “Real time fault detection
in photovoltaic systems,” Procedia Energy, pp. 914–923, 2017.

[10] M. Bach-Andersen, B. Rømer-Odgaard, and O. Winther, “Deep learning
for automated drivetrain fault detection,” Wind Energy, vol. 21, pp. 29–
41, Oct. 2017.

[11] M. Bach-Andersen, “A diagnostic and predictive framework for wind
turbine drive train monitoring,” Ph.D. dissertation, Technical University
of Denmark, 2017.

[12] Y. Gal, “Uncertainty in deep learning,” Ph.D. dissertation, University of
Cambridge, 2016.

[13] D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling, “Semi-
Supervised Learning with Deep Generative Models,” in In Proceedings
of the International Conference on Machine Learning, 2014, pp. 3581–
3589.

[14] L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther, “Auxiliary
Deep Generative Models,” in Proceedings of the International Confer-
ence of Machine Learning, 2016.

[15] M. Kingma, Diederik P; Welling, “Auto-Encoding Variational Bayes,”
in In Proceedings of the International Conference on Learning Repre-
sentations.

[16] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic Backpropa-
gation and Approximate Inference in Deep Generative Models,” arXiv
preprint arXiv:1401.4082, 04 2014.

[17] H. Laukamp, T. Schoen, and D. Ruoss, “Reliability study of grid con-
nected pv systems, field experience and recommended design practice,”
International Energy Agency, Report, 2002.

[18] B. B. Yang, N. R. Sorensen, P. D. Burton, J. M. Taylor, A. C. Kilgo,
D. G. Robinson, and J. E. Granata, “Reliability model development
for photovoltaic connector lifetime prediction capabilities,” in 39th
IEEE Photovoltaic Specialists Conference (PVSC), 2013, Conference
Proceedings, pp. 0139–0144.

[19] D. L. King, M. A. Quintana, J. A. Kratochvil, D. E. Ellibee, and B. R.
Hansen, “Photovoltaic module performance and durability following
long-term field exposure,” Progress in Photovoltaics: Research and
Applications, vol. 8, no. 2, pp. 241–256, 2000.

[20] W. Luo, Y. S. Khoo, P. Hacke, V. Naumann, D. Lausch, S. P. Harvey,
J. P. Singh, J. Chai, Y. Wang, A. G. Aberle et al., “Potential-induced
degradation in photovoltaic modules: a critical review,” Energy &
Environmental Science, vol. 10, no. 1, pp. 43–68, 2017.

[21] T. Silverman, U. Jahn, G. Friesen, M. Pravettoni, M. Apolloni,
A. Louwen, M. Schweiger, and G. Belluardo, “Characterisation of per-
formance of thin-film photovoltaic technologies,” International Energy
Agency, Report, May 2014 2014.

[22] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, Sep. 1995.

[23] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, Oct 2001.

[24] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, pp. 1527–1554, 2006.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.

[26] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke,
“The microsoft 2017 conversational speech recognition system,” arXiv
preprint arXiv:1708.06073, 2017.

[27] A. Alzahrani, P. Shamsi, C. Dagli, and M. Ferdowsi, “Solar irradiance
forecasting using deep neural networks,” Procedia Computer Science,
pp. 304–313, Nov. 2017.

[28] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An
introduction to variational methods for graphical models,” Machine
Learning, vol. 37, no. 2, pp. 183–233, Nov. 1999.

[29] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks.” in AISTATS, ser. JMLR Proceedings, vol. 15. JMLR.org,
2011, pp. 315–323.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” JMLR, vol. 15, no. 1, pp. 1929–1958, Jan. 2014.

[31] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther,
“Ladder variational autoencoders,” in Advances in Neural Information
Processing Systems, 2016.

[32] S. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and S. Ben-
gio, “Generating sentences from a continuous space,” arXiv preprint
arXiv:1511.06349, 2015.

Appendix E

Feature map variational
auto-encoders

In this appendix we include:

Maaløe, L., Winther, O. (2018). Feature map variational auto-encoders. To be
submitted.

Preliminary draft - To be submitted

FEATURE MAP VARIATIONAL AUTO-ENCODERS

Lars Maaløe, Ole Winther
{larsma,olwi}@dtu.dk

Department of Applied Mathematics and Computer Science, Technical University of Denmark

ABSTRACT

There have been multiple attempts with variational auto-encoders (VAE) to learn
powerful global representations of complex data using a combination of latent
stochastic variables and an autoregressive model over the dimensions of the data.
However, for the most challenging natural image tasks the purely autoregressive
model still outperform the combined stochastic-autoregressive models. In this
paper, we present simple additions to the VAE framework that generalize by em-
bedding spatial information in the variational auto-encoder framework. We signif-
icantly improve the state-of-the-art results on MNIST and OMNIGLOT when the
feature map parameterization are combined with the autoregressive PixelCNN ap-
proach. Interestingly, we also observe close to state-of-the-art results without the
autoregressive part. This opens the possibility for high quality image generation
with only one forward-pass.

1 INTRODUCTION

In representation learning the goal is to learn a posterior latent distribution that explains the ob-
served data well (Bengio et al., 2013). Learning good representations from data can be used for
various tasks such as generative modelling and semi-supervised learning (Kingma, 2013; Rezende
et al., 2014; Kingma et al., 2014; Rasmus et al., 2015; Maaløe et al., 2016). The decomposition of
variational auto-encoders (VAE) (Kingma, 2013; Rezende et al., 2014) provides the potential to dis-
entangle the internal representation of the input data from local to global features through a hierarchy
of stochastic latent variables. This makes the VAE an obvious candidate for learning good repre-
sentations. However, in order to make inference tractable VAEs contain simplifying assumptions,
which limits their ability to learn a good posterior latent representation.

In complex data distributions with temporal dependencies (e.g. text, images and audio), the VAE
assumption on conditional independence in the input distribution limits the ability to learn local
structures. This has a significant impact on its generative performance, and thereby also the learned
representations. Additionally, the one-layered VAE model with a N (0, I) latent prior poses serious
constraints on the posterior complexity that the model is able to learn. A deep hierarchy of stochastic
latent variables should endow the model with more expressiveness, but the VAE has a tendency to
skip the learning of the higher representations since they pose a direct cost in its optimization term.

There have been several attempts to eliminate the limitations of the VAE. Some concern formulating
a more expressive variational distribution (Burda et al., 2015b; Rezende & Mohamed, 2015; Tran
et al., 2016; Maaløe et al., 2016) where other concern learning a deeper hierarchy of latent variables
(Sønderby et al., 2016). These contributions have resulted in better performance, but are still limited
when modelling complex data distributions where a conditional independence does not apply. When
parameterizing the VAE decoder with recurrent neural networks (Krishnan et al., 2015; Bowman
et al., 2015; Fraccaro et al., 2016), the decoding architecture gets too powerful which results in
unused latent stochastic variables (Chen et al., 2017).

The limitations of the VAE have spawned interest towards other generative models such as Gen-
erative Adversarial Networks (GAN) (Goodfellow et al., 2014) and the autoregressive Pixel-
CNN/PixelRNN models (van den Oord et al., 2016b). These methods have proven powerful in
learning good generative models, but the lack of stochastic latent variables makes them less suitable
for representation learning purposes (Chen et al., 2017). Lately, we have seen several successful

1

Preliminary draft - To be submitted

Figure 1: A visualization of FAME where the solid lines denote the variational approximation (infer-
ence/encoder/recognition) network and dashed lines denote the generative model (decoder) network
for training. When performing reconstructions during training, the input image is concatenated with
the output of the generative model (blue) and when generating the model follows a normal autore-
gressive sampling flow (red) while also using the stochastic latent variables z = z1, ..., zL. Both the
variational approximation and the generative model follow a top-down hierarchical structure which
enables precision weighted stochastic variables in the variational approximation.

attempts to combine VAEs with PixelCNNs (Gulrajani et al., 2016; Chen et al., 2017). This results
in a model where some global structure of the data is learned in the stochastic latent variables of the
VAE and the local structure is learned in the PixelCNN. However, despite the additional complexity
and potential extra expressiveness, these models do not outperform a simple autoregressive model
(van den Oord et al., 2016a; Salimans et al., 2017).

In this paper we present the Feature Map Variational Auto-Encoder (FAME) that combines the
top-down variational approximation presented in the Ladder Variational Auto-Encoder (LVAE)
(Sønderby et al., 2016) with a spatial (feature map) representation in the deterministic layers and
an autoregressive decoder. We show that (i) FAME outperforms previously state-of-the-art log-
likelihood on MNIST and OMNIGLOT (ii) FAME learns a deep hierarchy of stochastic latent vari-
ables without inactivated latent units, (iii) by removing the autoregressive decoder FAME performs
close to previous state-of-the-art log-likelihood suggesting that it is possible to get good quality
generation with just one forward pass.

2 FEATURE MAP VARIATIONAL AUTO-ENCODER

The VAE (Rezende et al., 2014; Kingma, 2013) is a generative model with a hierarchy of stochastic
latent variables:

pθ(x, z) = pθ(x|z1)pθ(zL)
L−1∏

i=1

pθ(zi|zi+1) , (1)

where z = z1, ..., zL, θ denotes the parameters, and L denotes the number of stochastic latent
variable layers. The stochastic latent variables are usually modelled as conditionally independent
Gaussian distributions with a diagonal covariance:

pθ(zi|zi+1) = N
(
zi;µθ,i(zi+1),diag(σ

2
θ,i(zi+1))

)
, pθ(zL) = N

(
zL; 0, I

)
. (2)

Since the posterior p(z|x) often is intractable we introduce a variational approximation qφ(z|x) with
parameters φ. In the original VAE formulation, qφ(z|x) is decomposed as a bottom-up inference path

2

Preliminary draft - To be submitted

through the hierarchy of the stochastic layers:

qφ(z|x) = qφ(z1|x)
L∏

i=2

qφ(zi|zi−1) , (3)

qφ(z1|x) = N
(
z1;µφ,1(x),diag(σ

2
φ,1(x))

)
, (4)

qφ(zi|zi−1) = N
(
zi;µφ,i(zi−1),diag(σ

2
φ,i(zi−1))

)
. (5)

We optimize an evidence lower-bound (ELBO) to the log-likelihood log pθ(x) = log
∫
z
pθ(x, z)dz.

Burda et al. (2015a) introduced the importance weighted bound:

log p(x) ≥ Eqφ(z1|x), ...,Eqφ(zK |x)

[
log

K∑

k=1

pθ(x, z
k)

qφ(zk|x)

]
≡ LK(θ, φ;x) (6)

and proved that LK(θ, φ;x) ≥ LL(θ, φ;x) for K > L. For K = 1 the bound co-incides with the
standard ELBO: L(θ, φ;x) = L1(θ, φ;x). The hierarchical structure of both the variational approx-
imation and generative model give the VAE the expressiveness to learn different representations of
the data throughout its stochastic variables, going from local (e.g. edges in images) to global fea-
tures (e.g. class specific information). However, we can apply as recursive argument Maaløe et al.
(2017) to show that when optimizing with respect to the parameters θ and φ the VAE is regularized
towards qφ(zL|zL−1) = pθ(zL) = N (zL; 0, I). This is evident if we rewrite Equation 6 for K = 1:

L(θ, φ;x) = Eqφ(z1:L−1|x)

[
pθ(x, z1:L−1|zL)
qφ(z1:L−1|x)

]
− Eqφ(z1:L−1|x)

[
KL

(
qφ(zL|zL−1)||pθ(zL)

)]
.

KL
(
qφ(zL|zL−1)||pθ(zL)

)
= 0 is a local maxima and learning a useful representation in zL can

therefore be disregarded throughout the remainder of the training. The same argumentation can be
used for all subsequent layers z2:L, hence the VAE has a tendency to collapse towards not using
the full hierarchy of latent variables. There are different ways to get around this tendency, where
the simplest is to down-weight the KL-divergence with a temperature term (Bowman et al., 2015;
Sønderby et al., 2016). This term is applied during the initial phase of optimization and thereby
downscales the regularizing effect. However, this only works for a limited number of hierarchically
stacked latent variables (Sønderby et al., 2016).

Formulating a deep hierarchical VAE is not the only cause of inactive latent variables, it also occurs
when the parameterization of the decoder gets too powerful (Krishnan et al., 2015; Fraccaro et al.,
2016; Chen et al., 2017). This can be caused by using autoregressive models such as p(x, z) =∏
j p(x

j |x<j , z)p(z). Chen et al. (2017) circumvent this by introducing the Variational Lossy Auto-
Encoder (VLAE) where they define the architecture for the VAE and autoregressive model such that
they capture global and local structures. They also utilize the power of more expressive posterior
approximations using inverse autoregressive flows (Rezende & Mohamed, 2015; Kingma et al.,
2016). In the PixelVAE, Gulrajani et al. (2016) takes a similar approach to defining the generative
model but makes a simpler factorizing decomposition in the variational approximation qφ(z|x) =∏L
i qφ(zi|x), where the terms have some degree of parameter sharing. This formulation results in a

less flexible model.

In Kingma et al. (2016); Gulrajani et al. (2016); Chen et al. (2017) we have seen that VAEs with
simple decompositions of the stochastic latent variables and a powerful autoregressive decoder can
result in good generative performance and representation learning. However, despite the additional
cost of learning a VAE we only see improvement in the log-likelihood over the PixelCNN for small
gray-scale image datasets (Salimans et al., 2017). We propose FAME that extends the VAE with
a top-down variational approximation similar to the LVAE (Sønderby et al., 2016) combined with
spatial stochastic latent layers and an autoregressive decoder, so that we ensure expressive latent
stochastic variables learned in a deep hierarchy (cf. Figure 1).

2.1 TOP-DOWN VARIATIONAL APPROXIMATION

The LVAE (Sønderby et al., 2016) does not change the generative model but changes the varia-
tional distribution to be top-down like the generative model. Furthermore the variational distribution

3

Preliminary draft - To be submitted

shares parameters with the generative model which can be viewed as a precision-weighted (inverse
variance) combination of information from the prior and data distribution. The variational approxi-
mation is defined as:

qφ(z|x) = qφ(zL|x)
L−1∏

i=1

qφ(zi|zi+1, x) . (7)

The stochastic latent variables are all fully factorized Gaussian distributions and are therefore mod-
elled by qφ(zi|zi+1, x) = N (zi|µi,diag(σ2

i)) for layers i = 1, ..., L. Instead of letting q and p have
separate parameters (as in the VAE), the LVAE let the mean and variance be defined in terms of a
function of x (the bottom-up data part) and the generative model (the top-down prior):

µi =
µφ,iσ

−2
φ,i + µθ,iσ

−2
θ,i

σ−2φ,i + σ−2θ,i
(8)

σi =
1

σ−2φ,i + σ−2θ,i
, (9)

where µφ,i = µφ,i(x) and µθ,i = µθ,i(zi+1) and like-wise for the variance functions. This precision
weighted parameterization has previously yielded excellent results for densely connected networks
(Sønderby et al., 2016).

2.2 CONVOLUTIONAL DETERMINISTIC LAYERS AND AUTOREGRESSIVE DECODING

We have seen multiple contributions (e.g. Gulrajani et al. (2016)) where VAEs (and similar models)
have been parameterized with convolutions in the deterministic layers hij , for j = 1, ...,M , and M
is the number of layers connecting the stochastic latent variables zi. The size of the spatial feature
maps decreases towards higher latent representations and transposed convolutions are used in the
generative model. In FAME we propose to add convolutional layers in the lateral architecture in a
similar way:

hM,i = CNN(h<M,i)

µφ∨θ,i = Linear(DENSE(hM,i))

σφ∨θ,i = Softplus(DENSE(hM,i)) ,

where CNN denote a convolutional neural network and DENSE a densely connected layer.

From van den Oord et al. (2016b;a); Salimans et al. (2017) we have seen that the PixelCNN ar-
chitecture is very powerful in modelling a conditional distribution between pixels. In FAME we
introduce a PixelCNN in the input dimension of the generative model pθ(x|z) (cf. Figure 1). During
training we concatenate the input with the reconstruction data in the channel dimension and propa-
gate it through the PixelCNN, similarly to what is done in Gulrajani et al. (2016). When generating
samples we fix a sample from the stochastic latent variables and generate the image pixel by pixel
autoregressively.

3 EXPERIMENTS

We test FAME on images from which we can compare with a wide range of generative models. First
we evaluate on gray-scaled image datasets: statically and dynamically binarized MNIST (LeCun
et al., 1998) and next OMNIGLOT (Lake et al., 2013). The OMNIGLOT dataset is of particular
interest due to the large variance amongst samples. When modelling the gray-scaled images we
assume a Bernoulli B distribution using a Sigmoid activation function as the output. We evaluate
the performance with L5000 (cf. Equation 6).

We use a hierarchy of 5 stochastic latent variables where the stochastic latent layers are dense with
sizes 64, 32, 16, 8, 4 (equivalent to Sønderby et al. (2016)). We apply batch-normalization (Ioffe &
Szegedy, 2015) and ReLU activation functions as the non-linearity between all hidden layers hi,j
and use a simple PixelCNN as in van den Oord et al. (2016b) with 4 residual blocks.

Because of the concatenation in the autoregressive decoder (cf. Figure 1), generation is a cumber-
some process that scales linearly with the amount of pixels in the input image. Therefore we have

4

Preliminary draft - To be submitted

GRAY-SCALED IMAGES 28X28
h:,1 1 X CONV F=5X5, K=32, S=2

1 X CONV F=3X3, K=64, S=1
z1 1 X DENSE D=64

64 FEATURE VECTOR
h:,2 1 X CONV F=3X3, K=64, S=2

1 X CONV F=3X3, K=64, S=1
z2 1 X DENSE D=32

32 FEATURE VECTOR
h:,3 1 X CONV F=3X3, K=64, S=2

1 X CONV F=3X3, K=64, S=1
z3 1 X DENSE D=16

16 FEATURE VECTOR
h:,4 1 X CONV F=3X3, K=64, S=2

1 X CONV F=3X3, K=64, S=1
z4 1 X DENSE D=8

8 FEATURE VECTOR
h:,5 1 X CONV F=3X3, K=64, S=2

1 X CONV F=3X3, K=64, S=1
z5 1 X DENSE D=4

4 FEATURE VECTOR

Table 1: The convolutional layer (Conv), filter size (F), depth (K), stride (S), dense layer (Dense) and
dimensionality (D) used in defining FAME for gray-scaled. The architecture is defined such that we
ensure dimensionality reduction throughout the hierarchical stochastic layers. The autoregressive
decoder is a PixelCNN (van den Oord et al., 2016b) with a mask A convolution F=7x7, K=64,
S=1 followed by 4 residual blocks of convolutions with mask B, F=3x3, K=64, S=1. Finally there
are three non-residual layers of convolutions with mask B where the last is the output layer with a
sigmoid activation function.

NLL
IWAE (BURDA ET AL., 2015A) 82.90
LVAE (SØNDERBY ET AL., 2016) 81.74
CAGEM (MAALØE ET AL., 2017) 81.60
DVAE (ROLFE, 2017) 80.04
VGP (TRAN ET AL., 2016) 79.88
IAF VAE KINGMA ET AL. (2016) 79.10
VLAE CHEN ET AL. (2017) 78.53
FAME NO CONCATENATION 78.73
FAME 77.82

NLL
DRAW (GREGOR ET AL., 2015) 80.97
DVAE (ROLFE, 2017) 81.01
IAF VAE (KINGMA ET AL., 2016) 79.88
PIXELRNN (VAN DEN OORD ET AL., 2016B) 79.20
VLAE (CHEN ET AL., 2017) 79.03
PIXELVAE (GULRAJANI ET AL., 2016) 79.02
FAME 79.30

Table 2: Negative log-likelihood performance on dynamically (left) and statically (right) binarized
MNIST in nats. For the dynamically binarized MNIST results show the results for the FAME No
Concatenation that has no dependency on the input image. The evidence lower-bound is computed
with 5000 importance weighted samples L5000(θ, φ;x).

defined a slightly changed parameterization denoted FAME No Concatenation, where the concate-
nation with the input is omitted. The generation has no dependency on the input data distribution
and can therefore be performed in one forward-pass through the generative model.

For optimization we apply the Adam optimizer (Kingma & Ba, 2014) with a constant learning rate
of 0.0003. We use 1 importance weighted sample and temperature (Sønderby et al., 2016) scaling
from .3 to 1. during the initial 200 epochs. All models are trained using the same optimization
scheme.

3.1 GENERATIVE PERFORMANCE

The MNIST dataset serves as a good sanity check and has a myriad of previously published gen-
erative modelling benchmarks. We experienced much faster convergence rate on FAME com-
pared to training a regular LVAE. On the dynamically binarized MNIST dataset we see a sig-
nificant improvement (cf. Table 2). However, on the statically binarized MNIST, the parame-
terization and current optimization strategy was unsuccessful in achieving state-of-the-art results

5

Preliminary draft - To be submitted

NLL
IWAE (BURDA ET AL., 2015A) 103.38
LVAE (SØNDERBY ET AL., 2016) 102.11
RBM (BURDA ET AL., 2015B) 100.46
DVAE (ROLFE, 2017) 97.43
DRAW (GREGOR ET AL., 2015) 96.50
CONV DRAW (GREGOR ET AL., 2016) 91.00
VLAE CHEN ET AL. (2017) 89.83
FAME 82.54

Table 3: Negative log-likelihood performance on OMNIGLOT in nats. The evidence lower-bound
is computed with 5000 importance weighted samples L5000(θ, φ;x).

(cf. Table 1). In Figure 2a we see random samples drawn from a N (0, I) distribution and prop-
agated through the decoder parameters θ. We also trained the FAME No Concatenation which
performs nearly on par with the previously state-of-the-art VLAE model (Chen et al., 2017) that
in comparison utilizes a skip-connection from the input distribution to the generative decoder:
plocal(x|z) =

∏
i p(xi|z, xWindowAround(i)). This proves that a better parameterization of the VAE

improves the performance without the need of tedious autoregressive generation. There was no sig-
nificant difference in the KL

(
q(z|x)||p(z)

)
between FAME and FAME No Concatenation. FAME

use 10.85 nats in average to encode images, whereas FAME No Concatenation use 12.29 nats.

OMNIGLOT consists of 50 alphabets of handwritten characters, where each character has a limited
amount of samples. Each character has high variance which makes it harder to fit a good generative
model compared to MNIST. Table 3 presents the negative log-likelihood of FAME for OMNIGLOT
and demonstrates significant improvement over previously published state-of-the-art. Figure 2b
shows generated samples from the learned θ parameter space.

(a) (b)

Figure 2: Random samples drawn from aN (0, I) distribution and propagated through the generative
model of FAME for the dynamically binarized MNIST (a) and OMNIGLOT (b) dataset.

From Sønderby et al. (2016) we have seen that the LVAE is able to learn a much tighter L1 ELBO
compared to the VAE. For the MNIST experiments, the L1 ELBO is at 80.11 nats compared to the
L5000 77.82 nats. Similarly the OMNIGLOT L1 ELBO is 86.62 nats compared to 82.54 nats. This
shows significant improvements when using importance weighted samples and indicates that the
parameterization of the FAME can be done in a way so that the bound is even tighter. We also find
that the top-most latent stochastic layer is not collapsing into its prior, since theKL

(
q(z5|x)||p(z5)

)
is 5.04 nats for MNIST and 3.67 nats for OMNIGLOT.

In order to analyze the contribution from the autoregressive decoder we experimented on masking
the contribution from either the concatenated image or the output of the FAME decoder before
feeding it into the PixelCNN layers (cf. Figure 1). In Figure 3a we see the results of reconstructing
MNIST images when masking out the contribution from the stochastic variables and in Figure 3b
we mask out the contribution from the concatenated input image.

6

Preliminary draft - To be submitted

(a) (b)

Figure 3: MNIST reconstructions when masking the output from the FAME stochastic variables (a)
and the concatenated input image (b) prior to feeding them to the autoregressive PixelCNN. It is
interesting to see how the edge information comes from the autoregressive dependency on the input
image.

4 CONCLUSION

We have presented FAME, an extension to the VAE that significantly improve state-of-the-art per-
formance on standard benchmark datasets. By introducing feature map representations in the deter-
ministic layers in addition to top-down inference we have shown that the model is able to capture
representations of image distributions while utilizing a powerful autoregressive architecture as a
decoder.

In order to analyze the contribution from the VAE as opposed to the autoregressive model, we have
presented results without concatenating the input image when reconstructing and generating. This
parameterization shows on par results with the previously state-of-the-art results without depending
on the time-consuming autoregressive generation.

Further directions for FAME is to (i) test it on natural image datasets with convolutions in the
stochastic layers, (ii) expand the model to capture other data modalities such as audio and text, (iii)
combine the model in a semi-supervised framework.

7

Preliminary draft - To be submitted

REFERENCES

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 2013.

S.R. Bowman, L. Vilnis, O. Vinyals, A.M. Dai, R. Jozefowicz, and S. Bengio. Generating sentences
from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance Weighted Autoencoders. arXiv
preprint arXiv:1509.00519, 2015a.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Accurate and conservative estimates of mrf
log-likelihood using reverse annealing. In Proceedings of the International Conference on Artifi-
cial Intelligence and Statistics, 2015b.

Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya
Sutskever, and Pieter Abbeel. Variational Lossy Autoencoder. In International Conference on
Learning Representations, 2017.

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential neural models
with stochastic layers. In Advances in Neural Information Processing Systems. 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems. 2014.

Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. Draw: A recurrent neural network
for image generation. arXiv preprint arXiv:1502.04623, 2015.

Karol Gregor, Rezende Danilo Jimenez Besse, Fredric, Ivo Danihelka, and Daan Wierstra. Towards
conceptual compression. arXiv preprint arXiv:1604.08772, 2016.

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco Visin, David Vazquez,
and Aaron Courville. PixelVAE: A latent variable model for natural images. arXiv e-prints,
1611.05013, November 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by re-
ducing internal covariate shift. In Proceedings of International Conference on Machine Learning,
2015.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980, 12 2014.

Diederik P. Kingma, Danilo Jimenez Rezende, Shakir Mohamed, and Max Welling. Semi-
Supervised Learning with Deep Generative Models. In Proceedings of the International Con-
ference on Machine Learning, 2014.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Advances in Neural Informa-
tion Processing Systems. 2016.

Max Kingma, Diederik P; Welling. Auto-Encoding Variational Bayes. arXiv preprint
arXiv:1312.6114, 12 2013.

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep Kalman filters. arXiv:1511.05121, 2015.

Brenden M Lake, Ruslan R Salakhutdinov, and Josh Tenenbaum. One-shot learning by inverting a
compositional causal process. In Advances in Neural Information Processing Systems. 2013.

Yann LeCun, Lon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 2278–2324, 1998.

Lars Maaløe, Casper K. Sønderby, Søren K. Sønderby, and Ole Winther. Auxiliary Deep Generative
Models. In Proceedings of the International Conference on Machine Learning, 2016.

8

Preliminary draft - To be submitted

Lars Maaløe, Marco Fraccaro, and Ole Winther. Semi-supervised generation with cluster-aware
generative models. arXiv preprint arXiv:1704.00637, 2017.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-
supervised learning with ladder networks. In Advances in Neural Information Processing Systems,
2015.

Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropagation and Approx-
imate Inference in Deep Generative Models. arXiv preprint arXiv:1401.4082, 04 2014.

Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows. In
Proceedings of the International Conference on Machine Learning, 2015.

Jason Tyler Rolfe. Discrete variational autoencoders. In Proceedings of the International Conference
on Learning Representations, 2017.

Tim Salimans, Andrej Karparthy, Xi Chen, and Diederik P. Kingma. Pixelcnn++: Improv-
ing the pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv
preprint:1701.05517, 2017, 2017.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
variational autoencoders. In Advances in Neural Information Processing Systems 29. 2016.

Dustin Tran, Rajesh Ranganath, and David M Blei. Variational Gaussian process. In Proceedings of
the International Conference on Learning Representations, 2016.

Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Ko-
ray Kavukcuoglu. Conditional image generation with pixelcnn decoders. arXiv preprint
arXiv:1606.05328, 2016a.

Aaron van den Oord, Kalchbrenner Nal, and Koray Kavukcuoglu. Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759, 01 2016b.

9

Bibliography

Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; S. Cor-
rado, G.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Goodfellow, I.; Harp,
A.; Irving, G.; Isard, M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Lev-
enberg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.; Olah, C.; Schuster,
M.; Shlens, J.; Steiner, B.; Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke,
V.; Vasudevan, V.; Viégas, F.; Vinyals, O.; Warden, P.; Wattenberg, M.;
Wicke, M.; Yu, Y., and Zheng, X. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

Agakov, F. V.. and Barber, D. An Auxiliary Variational Method. In Neural
Information Processing, volume 3316 of Lecture Notes in Computer Science,
pages 561–566. Springer Berlin Heidelberg, 2004.

Ali, M. H.; Rabhi, A.; H., A. E., and Tina, G. M. Real time fault detection in
photovoltaic systems. Procedia Energy, pages 914–923, 2017.

Alzahrani, Ahmad; Shamsi, Pourya; Dagli, Cihan, and Ferdowsi, Mehdi. So-
lar irradiance forecasting using deep neural networks. Procedia Computer
Science, pages 304–313, November 2017.

Amodei, D.; Ananthanarayanan, S.; Anubhai, R.; Bai, J.; Battenberg, E.; Case,
C.; Casper, J.; Catanzaro, B.; Cheng, Q.; Chen, G.; Chen, J.; Chen, J.; Chen,
Z.; Chrzanowski, M.; Coates, A.; Diamos, G.; Ding, K.; Du, N.; Elsen, E.;
Engel, J.; Fang, W.; Fan, L.; Fougner, C.; Gao, L.; Gong, C.; Hannun, A.;
Han, T.; Johannes, L. V.; Jiang, B.; Ju, C.; Jun, B.; LeGresley, P.; Lin, L.;
Liu, J.; Liu, Y.; Li, W; Li, X.; Ma, D.; Narang, S.; Ng, A.; Ozair, S.; Peng, Y.;
Prenger, R.; Qian, S.; Quan, Z.; Raiman, J.; Rao, V.; Satheesh, S.; Seetapun,
D.; Sengupta, S.; Srinet, K.; Sriram, A.; Tang, H.; Tang, L.; Wang, C.; Wang,

https://www.tensorflow.org/

132 BIBLIOGRAPHY

J.; Wang, K.; Wang, Y.; Wang, Z.; Wang, Z.; Wu, S.; Wei, L.; Xiao, B.; Xie,
W.; Xie, Y.; Yogatama, D.; Yuan, B.; Zhan, J., and Zhu, Z. Deep speech 2:
End-to-end speech recognition in english and mandarin. In Proceedings of the
International Conference on Machine Learning, pages 173–182, 2016.

Bach-Andersen, M. A Diagnostic and Predictive Framework for Wind Turbine
Drive Train Monitoring. PhD thesis, Technical University of Denmark, 2017.

Bach-Andersen, Martin; Rømer-Odgaard, Bo, and Winther, Ole. Deep learning
for automated drivetrain fault detection. Wind Energy, 21:29–41, October
2017.

Bastien, Frédéric; Lamblin, Pascal; Pascanu, Razvan; Bergstra, James; Good-
fellow, Ian J.; Bergeron, Arnaud; Bouchard, Nicolas, and Bengio, Yoshua.
Theano: new features and speed improvements. In Deep Learning and Un-
supervised Feature Learning, workshop at Neural Information Processing Sys-
tems, 2012.

Basu, S.; Banerjee, A., and Mooney, R. J. Semi-supervised clustering by seeding.
In Proceedings of the International Conference on Machine Learning, 2002.

Bengio, Y.; Courville, A., and Vincent, P. Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8), 2013.

Bishop, C. M. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., 2006.

Blundell, C.; Cornebise, J.; Kavukcuoglu, K., and Wierstra, D. Weight uncer-
tainty in neural networks. In Proceedings of the International Conference on
Machine Learning, pages 1613–1622, 2015.

Bowman, S. R.; Vilnis, L.; Vinyals, O.; Dai, A. M.; Jozefowicz, R., and Ben-
gio, S. Generating sentences from a continuous space. In Proceedings of the
Conference on Computational Natural Language Learning, pages 10–21, 2016.

Burda, Y.; Grosse, R., and Salakhutdinov, R. Importance Weighted Autoen-
coders. arXiv preprint arXiv:1509.00519, 2015.

Carlini, N. and Wagner, D. Audio Adversarial Examples: Targeted Attacks on
Speech-to-Text. arXiv preprint arXiv:1801.01944, 2017.

Chapelle, O.; Schlkopf, B., and Zien, A. Semi-Supervised Learning. The MIT
Press, 1st edition, 2010.

Chen, X.; Kingma, D. P.; Salimans, T.; Duan, Y.; Dhariwal, P.; Schulman, J.;
Sutskever, I., and Abbeel, P. Variational Lossy Autoencoder. In International
Conference on Learning Representations, 2017.

BIBLIOGRAPHY 133

Dayan, P. and Hinton, G. E. Varieties of helmholtz machine. Neural Networks,
9(8):1385–1403, November 1996.

Deng, J.; Dong, W.; Socher, R.; Li, L. J.; Li, K., and Fei-fei, L. Imagenet: A
large-scale hierarchical image database. In CVPR09, 2009.

Dieleman, S.; Schlüter, J.; Raffel, C.; Olson, E.; Sønderby, S. K.; Nouri, D.;
van den Oord, A., and Battenberg, E. and. Lasagne: First release., August
2015.

Fraccaro, M.; Sønderby, S. Kaae; Paquet, U., and Winther, O. Sequential neural
models with stochastic layers. In Advances in Neural Information Processing
Systems. 2016.

Gal, Yarin. Uncertainty in Deep Learning. PhD thesis, University of Cambridge,
2016.

Glorot, X.; Bordes, A., and Bengio, Y. Deep sparse rectifier neural networks.
In Proceedings of the International Conference on Artificial Intelligence and
Statistics, 2011.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair,
S.; Courville, A., and Bengio, Y. Generative adversarial nets. In Advances in
Neural Information Processing Systems. 2014.

Goodfellow, I.; Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016.

Gulrajani, I.; Kumar, K.; Ahmed, F.; Taiga, A. A.; Visin, F.; Vazquez, D., and
Courville, A. PixelVAE: A latent variable model for natural images. arXiv
e-prints, 1611.05013, November 2016.

Gumbel, E. J. Statistical theory of extreme values and some practical applica-
tions: a series of lectures. Number 33. US Govt. Print. Office, 1954.

He, K.; Zhang, X.; Ren, S., and Sun, J. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

He, K.; Zhang, X.; Ren, S., and Sun, J. Deep residual learning for image
recognition. IEEE Conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016.

Hinton, G. E. Training products of experts by minimizing contrastive diver-
gence. Neural Computation, 14(8):1771–1800, August 2002.

Hinton, G. E. and Salakhutdinov, R. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, July 2006.

134 BIBLIOGRAPHY

Hinton, G. E. and Zemel, R. S. Autoencoders, minimum description length and
helmholtz free energy. In Advances in Neural Information Processing Systems,
pages 3–10, 1993.

Hinton, G. E.; Osindero, S., and Teh, Y. W. A fast learning algorithm for deep
belief nets. Neural Computation, 18:1527–1554, 2006.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural Compu-
tation, 9(8):1735–1780, November 1997.

Huang, G.; Liu, Z., and Weinberger, K. Q. Densely connected convolutional
networks. IEEE Conference on Computer Vision and Pattern Recognition,
pages 2261–2269, 2017.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In Proceedings of International Con-
ference on Machine Learning, 2015.

Jang, E.; Gu, S., and Poole, B. Categorical reparameterization with gumbel-
softmax. arXiv preprint arXiv:1611.01144, 2016.

Jiang, L. L. and Maskell, D. L. Automatic fault detection and diagnosis for
photovoltaic systems using combined artificial neural network and analytical
based methods. In Proceedings of the IEEE International Joint Conference
on Neural Networks. IEEE Computer Society, 2015.

Jordan, M. I.; Ghahramani, Z.; Jaakkola, T. S., and Saul, L. K. An introduction
to variational methods for graphical models. Machine Learning, 37(2):183–
233, November 1999.

Kalchbrenner, N. and Blunsom, P. Recurrent continuous translation models.
2013.

King, D. L.; Quintana, M. A.; Kratochvil, J. A.; Ellibee, D. E., and Hansen,
B. R. Photovoltaic module performance and durability following long-term
field exposure. Progress in Photovoltaics: Research and Applications, 8(2):
241–256, 2000.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:1412.6980, 12 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational bayes. In Proceedings
of the International Conference on Learning Representations, 2014.

Kingma, D. P.; Rezende, D. J.; Mohamed, S., and Welling, M. Semi-Supervised
Learning with Deep Generative Models. In Proceedings of the International
Conference on Machine Learning, 2014.

BIBLIOGRAPHY 135

Kingma, D. P.; Salimans, T.; Jozefowicz, R.; Chen, X.; Sutskever, I., and
Welling, M. Improved variational inference with inverse autoregressive flow.
In Advances in Neural Information Processing Systems. 2016.

Köntges, M.; Kurtz, S.; Packard, C.; Jahn, U.; Berger, K. A.; Kato, K.; Friesen,
T.; Liu, H., and Van Iseghem, M. Review of failures of photovoltaic modules.
Report, International Energy Agency, March 2014 2014.

Krizhevsky, A.; Ilya, I., and Hinton, G. E. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing
Systems, pages 1097–1105. 2012.

Lake, Brenden M; Salakhutdinov, Ruslan R, and Tenenbaum, Josh. One-shot
learning by inverting a compositional causal process. In Advances in Neural
Information Processing Systems. 2013.

Larsen, A. B. L.; Sønderby, S. K.; Larochelle, H., and Winther, O. Autoen-
coding beyond pixels using a learned similarity metric. In Proceedings of the
International Conference on Machine Learning, pages 1558–1566, 2016.

Laukamp, H.; Schoen, T., and Ruoss, D. Reliability study of grid connected pv
systems, field experience and recommended design practice. Report, Interna-
tional Energy Agency, 2002.

LeCun, Y.; Bottou, L.; Bengio, Y., and Haffner, P. Gradient-based learning ap-
plied to document recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 2278–2324,
1998.

LeCun, Y.; Haffner, P.; Bottou, L., and Bengio, Y. Object recognition with
gradient-based learning. In Shape, Contour and Grouping in Computer Vi-
sion, pages 319–, London, UK, 1999. Springer-Verlag.

LeCun, Y.; Huang, F. J., and Bottou, L. Learning methods for generic object
recognition with invariance to pose and lighting. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
pages 97–104. IEEE Computer Society, 2004.

LeCun, Y.; Bengio, Y., and Hinton, G. E. Deep learning. Nature, 521(7553):
436–444, 2015.

Maaløe, L. and Winther, O. Feature map variational auto-encoders. In To be
submitted, 2018.

Maaløe, L.; Arngren, M., and Winther, O. Deep belief nets for topic modeling.
In International Conference on Machine Learning Workshop on Knowledge-
Powered Deep Learning for Text Mining, 2015a.

136 BIBLIOGRAPHY

Maaløe, L.; Sønderby, S. K.; Sønderby, C. K., and Winther, O. Improving
semi-supervised learning with auxiliary deep generative models. In Neural In-
formation Processin Systems Workshop on Approximate Bayesian Inference,
2015b.

Maaløe, L.; Sønderby, C. K.; Sønderby, S. K., and Winther, O. Auxiliary
Deep Generative Models. In Proceedings of the International Conference on
Machine Learning, 2016.

Maaløe, L.; Fraccaro, M., and Winther, O. Semi-supervised generation with
cluster-aware generative models. In Neural Information Processin Systems
Workshop on Approximate Bayesian Inference, 2017.

Maaløe, L.; Spataru, S. V.; Sera, D., and Winther, O. Condition monitoring in
photovoltaic systems by semi-supervised machine learning. In Submitted to
IEEE Transactions of Industrial Informatics, 2018.

Miyato, Takeru; Maeda, Shin-ichi; Koyama, Masanori; Nakae, Ken, and Ishii,
Shin. Distributional Smoothing with Virtual Adversarial Training. arXiv
preprint arXiv:1507.00677, 7 2015.

Mnih, A. and Gregor, K. Neural variational inference and learning in belief net-
works. In Proceedings of the International Conference on Machine Learning,
pages 1791–1799, 2014.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.; Bellemare,
M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.; Ostrovski, G.; Petersen,
S.; Beattie, C.; Sadik, A.; Antonoglou, I.; King, H.; Kumaran, D.; Wierstra,
D.; Legg, S., and Hassabis, D. Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533, February 2015.

Murphy, K. P. Machine Learning: A Probabilistic Perspective. The MIT Press,
2012.

Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B., and Ng, A. Y. Reading
digits in natural images with unsupervised feature learning. 2011.

Nguyen, A. M.; Yosinski, J., and Clune, J. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 427–436. IEEE
Computer Society, 2015.

Ranganath, R.; Tran, D., and Blei, D. M. Hierarchical Variational Models. In
Proceedings of the International Conference on Machine Learning, 2016.

Ranzato, M. A. and Szummer, M. Semi-supervised Learning of Compact Docu-
ment Representations with Deep Networks. In Proceedings of the International
Conference on Machine Learning, pages 792–799, 2008.

BIBLIOGRAPHY 137

Rasmus, A.; Berglund, M.; Honkala, M.; Valpola, H., and Raiko, T. Semi-
supervised learning with ladder networks. In Advances in Neural Information
Processing Systems, 2015.

Rezende, D. J. and Mohamed, S. Variational Inference with Normalizing Flows.
In Proceedings of the International Conference on Machine Learning, 2015.

Rezende, D. J.; Mohamed, S., and Wierstra, D. Stochastic Backpropaga-
tion and Approximate Inference in Deep Generative Models. arXiv preprint
arXiv:1401.4082, 2014.

Rolfe, J. T. Discrete variational autoencoders. In Proceedings of the Interna-
tional Conference on Learning Representations, 2017.

Ronneberger, O.; Fischer, P., and Brox, T. U-net: Convolutional networks for
biomedical image segmentation. arXiv preprint arXiv:1505.04597, 2015.

Rosenblatt, F. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, pages 65–386, 1958.

Rumelhart, D. E.; Hinton, G. E., and Williams, R. J. Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1. chapter
Learning Internal Representations by Error Propagation, pages 318–362. MIT
Press, Cambridge, MA, USA, 1986.

Salakhutdinov, R. and Hinton, G. E. Semantic hashing. International Journal
Approximate Reasoning, 50(7):969–978, July 2009.

Salakhutdinov, R. and Larochelle, H. Efficient learning of deep boltzmann ma-
chines. In Proceedings of the International Conference on Artificial Intelli-
gence and Statistics, volume 9 of Proceedings of Machine Learning Research,
pages 693–700, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X.,
and Chen, X. Improved techniques for training gans. In Advances in Neural
Information Processing Systems. 2016.

Salimans, T.; Karparthy, A.; Chen, X., and Kingma, D. P. Pixelcnn++: Im-
proving the pixelcnn with discretized logistic mixture likelihood and other
modifications. arXiv preprint:1701.05517, 2017, 2017.

Schmidhuber, J. Deep learning in neural networks: An overview. arXiv preprint
arXiv:1404.7828, 2014.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; van den Driessche,
G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Diele-
man, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T., and Hassabis, D. Mastering the

138 BIBLIOGRAPHY

game of Go with deep neural networks and tree search. Nature, 529(7587):
484–489, jan 2016.

Silvestre, S.; Aissa, C., and Karatepe, E. Automatic fault detection in grid
connected pv systems. 94:119–127, 06 2013.

Sønderby, C. K.; Raiko, T.; Maaløe, L.; Sønderby, S. K., and Winther, O. Lad-
der variational autoencoders. In Advances in Neural Information Processing
Systems. 2016.

Spataru, S. V.; Gavriluta, A.; Sera, D.; Maaløe, L., and Winther, O. Auto-
matic fault detection and diagnosis for photovoltaic systems using combined
artificial neural network and analytical based methods. In Proceedings of the
IEEE Energy Conversion Congress and Exposition. IEEE Computer Society,
2016.

Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I., and Salakhutdinov,
R. Dropout: A simple way to prevent neural networks from overfitting. JMLR,
15(1):1929–1958, January 2014. ISSN 1532-4435.

Srivastava, R. K.; Greff, K., and Schmidhuber, J. Highway networks. arXiv
preprint arXiv:1505.00387, 2015.

Sutskever, I.; Vinyals, O., and Le, Q. V. Sequence to sequence learning with
neural networks. In Advances in Neural Information Processing Systems,
pages 3104–3112, 2014.

Tenenbaum, J. B.; Griffiths, T. L., and Kemp, C. Theory-based Bayesian models
of inductive learning and reasoning. Trends in cognitive sciences, 10(7):309–
318, July 2006.

Tran, D.; Ranganath, R., and Blei, D. M. Variational Gaussian process. In Pro-
ceedings of the International Conference on Learning Representations, 2016.

Vahdat, A.; Macready, W. G.; Zhengbing, B., and Khoshaman, A. Dvae++:
Discrete variational autoencoders with overlapping transformations. arXiv
preprint arXiv:1802.04920, 2018.

van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.;
Kalchbrenner, N.; Senior, A., and Kavukcuoglu, K. Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499, 2016a.

van den Oord, A.; Kalchbrenner, N., and Kavukcuoglu, K. Pixel recurrent
neural networks. arXiv preprint arXiv:1601.06759, 01 2016b.

van den Oord, A.; Kalchbrenner, N.; Vinyals, O.; Espeholt, L.; Graves, A., and
Kavukcuoglu, K. Conditional image generation with pixelcnn decoders. arXiv
preprint arXiv:1606.05328, 2016c.

BIBLIOGRAPHY 139

Vincent, P.; Larochelle, H.; Bengio, Y., and Manzagol, P. A. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the
International Conference on Machine Learning, pages 1096–1103, 2008.

Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y., and Manzagol, P. A. Stacked
denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of Machine Learning Research, 11:
3371–3408, December 2010.

Xiong, W.; Wu, L.; Alleva, F.; Droppo, J.; Huang, X., and Stolcke, A. The
microsoft 2017 conversational speech recognition system. arXiv preprint
arXiv:1708.06073, 2017.

Xu, F. and Tenenbaum, J. B. Word learning as Bayesian inference. Psychological
Review, 114(2):245–272, apr 2007.

Yang, B. B.; Sorensen, N. R.; Burton, P. D.; Taylor, J. M.; Kilgo, A. C.; Robin-
son, D. G., and Granata, J. E. Reliability model development for photovoltaic
connector lifetime prediction capabilities. In 39th IEEE Photovoltaic Special-
ists Conference (PVSC), pages 0139–0144, 2013.

	Summary (English)
	Summary (Danish)
	Preface
	Contributions
	Acknowledgements
	Contents
	1 Introduction
	1.1 Probabilistic Generative Models
	1.2 Semi-Supervised Learning
	1.3 Thesis outline

	2 Deep Neural Networks
	2.1 Supervised Learning
	2.2 Representation learning
	2.3 Unsupervised Learning

	3 Deep Generative Models
	3.1 Variational Inference (VI)
	3.2 VI with Deep Neural Networks
	3.2.1 A High-Variance Gradient Estimator
	3.2.2 Variational Auto-Encoder

	3.3 Towards a Richer Posterior

	4 Deep Generative Models for Semi-supervised Learning
	4.1 Defining a Semi-Supervised VAE
	4.2 Auxiliary Deep Generative Models
	4.3 Cluster-Aware Deep Generative Models

	5 Deep Generative Models for Unsupervised Learning
	5.1 Improving Permutation Invariant Deep Generative Models
	5.1.1 Ladder Variational Auto-Encoders
	5.1.2 Comparing the Deep Generative Models

	5.2 Utilizing Spatial Information in Deep Generative Models

	6 Condition Monitoring with Deep Generative Models
	6.1 Condition Monitoring in Energy Production
	6.2 Evaluating the Condition Monitoring System

	7 Conclusion
	A Auxiliary Deep Generative Models
	B Ladder Variational Autoencoders
	C CaGeM: A cluster aware deep generative model
	D Condition monitoring in PV systems by semi-supervised machine learning
	E Feature map variational auto-encoders
	Bibliography

