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Abstract

This work is part of our continuous research effort to reveal the underlying physics of bubble

coalescence in microfluidics through the GPU-accelerated lattice Boltzmann method. We

numerically explore the mechanism of damped oscillation in microbubble coalescence char-

acterized by the Ohnesorge (Oh) number. The focus is to address when and how a damped

oscillation occurs during a coalescence process. Sixteen cases with a range of Oh numbers

from 0.039 to 1.543, varying in liquid viscosity from 0.002 to 0.08kg/(m · s) correspond-

ingly, are systematically studied. First, a criterion of with or without damped oscillation

has been established. It is found that a larger Oh enables faster/slower bubble coalescence

with/without damped oscillation when (Oh < 0.477)/(Oh > 0.477) and the fastest coales-

cence falls at Oh ≈ 0.477. Second, the mechanism behind damped oscillation is explored

in terms of the competition between driving and resisting forces. When Oh is small in the

range of Oh < 0.477, the energy dissipation due to viscous effect is insignificant, sufficient

surface energy initiates a strong inertia and overshoots the neck movement. It results in

a successive energy transformation between surface energy and kinetic energy of the coa-

lescing bubble. Through an analogy to the conventional damped harmonic oscillator, the

saddle-point trajectory over the entire oscillation can be well predicted analytically.
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1. Introduction

Damped oscillation that switches the major axis between horizontal and vertical direction

with reducing amplitude of the major/minor axis ratio is a unique behavior in microbubble

coalescence. While forced oscillation is specifically induced by various external sources such

as electrostatic force[1], acoustic trap[2], and laser light[3] for the purpose of controlling bub-

ble size and collapse in different engineering and biomedical systems[4, 5, 6], self-oscillation is

inherently driven by imbalance between the driven and resistant forces. While the driving is

from the surface tension at the gas-liquid interface, the resistance is co-contributed by inertial

and viscous effects in the liquid side. Understanding the mechanism of self-oscillation is crit-

ically important to better utilize the forced oscillation in real-world applications. Rayleigh[7]

was the pioneer who studied small-amplitude self-oscillation of an inviscid droplet from a

pure mathematical point of view in 1879. Since then, Rayleigh’s work has been extended

toward physical environments by exploring the density effects of the surrounding fluid [8],

the viscous effects [9], and the initial condition effects [10] on the oscillation. A relationship

between Ohnesorge number(Oh, a dimensionless number that relates the viscous forces to

inertial and surface tension forces) and critical damping (corresponding to the shortest coa-

lescence time), for a droplet i.e. 0.71 < Oh < 0.76 was found [11] in the early 1990s. Stover

et. al[12] were the first to experimentally study the microbubble oscillation and showed the

effects of liquid viscosity and surface tension on the decay of the damped oscillation. Re-

cently, a benchmark study[13] exhibited the different morphological evolutions in the global

coalescence from two equal-size spherical droplets to a stable single droplet with minimal

surface energy when the viscosity ratio of two-fluids is either low or high. In spite of the

efforts in the past one and half centuries, so far the underlying of self-oscillation is still in its

infant stage.

Due to the delicate and ephemeral nature of microbubble coalescence, experimental ex-

ploration of the fundamental physics is still exceptionally challenging. Whereas numerical
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simulation provides a unique and powerful capability to characterize the underlying mechan-

ics of microbubble coalescence through parameterizations and classification. Among different

numerical schemes, the kinetic-based lattice Boltzmann method (LBM)[14, 15] has demon-

strated its physical and computational advantages to simulate multiphase flows[16, 17]. In

the past three decades, several multiphase models using LBM have been developed, including

the color fluid model [18], the pseudo-potential model [19], the mean-field model et al.[20],

the phase-field model [21] based on the free-energy theory [22], and the entropic LBM [23].

These models have been continuously refined and applied to simulate many multiphase flow

problems, (see general LBM reviews [16, 17] and specific multiphase LBM reviews [24, 25],

and therein references). We employ the free-energy modeling approach that has been con-

tinuously developed and refined in the last 10 years by the Lee group [26, 27, 28, 29] and it

has been shown that the parasitic current (an artificial velocity field caused by discretiza-

tion errors in the simulation of multiphase flows) has been eliminated [28] and large density

gradients of up to 1000 [27] across the interface can be handled. As part of the continuous

effort to unveil the underlying physics of microbubble coalescence, in this work, we explore

the mechanism of damped oscillation in microbubble coalescence from initially two touched

equal size microbubbles to finally one coalesced bubble with minimum surface area. The

focus is to address when and how a damped oscillation occurs during a coalescence process

in terms of the Oh number.

2. Lattice Boltzmann Modeling for Fluid-gas Flows

The detail formulation of the lattice Boltzmann model can be found in the paper[30].

For the sake of comprehension and completion, we concisely introduce the main idea and

major equations here. A diffuse interface is applied to separate phases in the modelling of

multiphase flow. There are three governing equations including continuity equation, pressure

evolution and momentum equation as follows. The continuity equation can be written as

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the Cahn-Hilliard equation.

∂C/∂t+ u · ∇C = ∇ · (M∇µ) (1)

∂p1/∂t+ ρc2s∇ · u = 0 (2)

ρ(∂u/∂t+ u · ∇u) = −∇p1 + µ∇C +∇ · η(∇u + (∇u)T ) (3)

Here M(> 0) is the mobility [31] and C is the composition, µ is the chemical potential

defined as µ = µ0 − κ∇2C in which µ0 is the classical part of the chemical potential. In

the vicinity of the critical point, simplification of van der Waals equation of state can be

made[32] for the control of interface thickness and surface tension at equilibrium. In this

case, we assume that the energy E0 takes a form[33] of E0 = βC2(C − 1)2 with β being a

constant. As a result, µ0 = ∂E0/∂C = 2βC(C − 1)(2C − 1). In an interface at equilibrium,

the interface profile is C(z) = 0.5 + 0.5 tanh (2z/D) where z is the distance normal to the

interface and D is the numerical interface thickness, which is chosen based on accuracy

and stability. Given D and β, one can compute the gradient parameter κ = βD2/8 and

the surface tension force σ =
√

2κβ/6. For a binary flow, we introduce the intermolecular

force [28] as F = 1
3
∇ρc2 −∇p1 − C∇µ where p1 is the hydrodynamic pressure, whereas the

thermodynamic pressure p0 is defined by p0 = C∂E0/∂C − E0 = βC2(C − 1)(3C − 1). The

total pressure is p = p0 + p1 − κC∇2C + κ|∇C|2/2.

The lattice Boltzmann equation (LBE) (before the time discretization) including the

intermolecular force reads [20]

∂fα/∂t+ eα · ∇fα = −(fα − f eqα )/λ+
3

c2
(eα − u) · Ff eqα (4)

where fα is the particle distribution function with discrete molecular velocity eα along the

α-th direction and λ is the relaxation time related to the kinematic viscosity ν = 1
3
c2λ. The

equilibrium distribution function is defined as f eqα = ρωα[1 + 3(eα ·u)/c2 + 9(eα ·u)2/(2c4)−
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3u2/(2c2)] where ωα is the weight associated with a particular discretized velocity eα, ρ and

u are macroscopic density and velocity respectively, and c = δx/δt = 1 in lattice units (i.e.,

δt = δx = 1).

Defining a new particle distribution function gα = 1
3
fαc

2 + (p1 − 1
3
ρc2)Γα(0) in which

Γα(u) = f eqα /ρ and taking the total derivative Dt = ∂t + eα · ∇ of gα result in

∂gα/∂t+ eα · ∇gα = −(gα − geqα )/λ+ (eα − u) · [1
3
∇ρc2(Γα − Γα(0))− C∇µΓα] (5)

where the new equilibrium geqα is geqα = ωα[p1 + ρ((e · u) + 3(eα · u)2/2c2 − u2)]

Discretizing Eq. (5) along characteristics over the time step δt, we obtain the LBE for

gα

ḡα(x+eαδt, t+δt)=̄gα(x, t)− 1

τ+0.5
(ḡα−ḡeqα )|(x,t)+

(eα−u)·[1
3
δt∇MDρc2(Γα(u)−Γα(0))−Cδt∇MDµΓα]|(x,t)

(6)

where ∇MD and ∇CD are referred to mixed difference approximation and central difference

approximation respectively [29] and τ(= λ/δt) is the non-dimensional relaxation time. In Eq.

(6), the modified particle distribution function ḡα and the equilibrium distribution function

ḡeqα are introduced to facilitate computation

ḡα = gα +
1

2τ
(gα − geqα )− 1

2
δt (eα − u) ·

[
1

3
∇CDρc2C (Γα (u)− Γα (0))− C∇CDµΓα

]
(7)

ḡeqα = geqα −
1

2
δt (eα − u) ·

[
1

3
∇CDρc2 (Γα (u)− Γα (0))− C∇CDµΓα

]
(8)

The momentum and hydrodynamic pressure are the zeroth and first-order moment of ḡα,

computed as ρu = 3
c2

∑
eαḡα − δt

2
C∇CDµ and p1 =

∑
ḡα + δt

6
u · ∇CDρc2

For the transformation of the composition C, a second distribution function is introduced

in a simple format of hα = (C/ρ)fα and heqα = (C/ρ)f eqα . Similarly, taking the total derivative
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Dt of hα and utilizing Eq. (1) yield

h̄α(x + eαδt, t+ δt) =h̄(x, t)− h̄α − h̄eqα |(x,t)
τ + 0.5

+ δt(eα − u) · [∇MDC − 3C

ρc2
(∇MDp1

+ C∇MDµ)]Γα|(x,t) + δtM∇2µΓα|(x,t)
(9)

where the modified particle distribution function h̄α and h̄eqα are defined as [29]

h̄α = hα +
1

2τ
(hα − heqα )− δt

2
(eα − u) · [∇CDC − 3C

ρc2
(∇CDp1 + C∇CDµ)]Γα (10)

h̄eqα =heqα −
δt

2
(eα−u)·[∇CDC− 3C

ρc2
(∇CDp1+C∇CDµ)]Γα (11)

The composition C is the zeroth-order moment of h̄α computed as C =
∑
α

h̄α+0.5δtM∇2µ.

The density ρ and the dimensionless relaxation frequency (1/τ) are taken as linear functions

of the composition by ρ(C) = Cρ1 + (1− C)ρ2 and 1/τ(C) = C/τ1 + (1− C)/τ2.

3. Numerical Study

The objective of the current study is to address two questions for two equal-size mi-

crobubbles that coalesce. First, when does self-oscillation occur? Second, how is a damped

oscillation driven and developed?

3.1. Computational set-up

As schematized in Fig. 1(a), two equal-size microbubbles are set in the center of a

microfluidic channel with a square domain of 1002(µm2). Subscripts of “h” and “l” denote

the heavy (liquid) and light (gas) fluid respectively. The gas is fixed to air with density

ρl = 1.28kg/m3 and dynamic viscosity ηl = 1.74 × 10−5kg/(m · s). The density of liquid is

fixed as ρh = 1840kg/m3 but varies the viscosity ηh from 0.002 to 0.08kg/(m · s). Constant

surface tension, σ = 7.3× 10−2N/m, is assumed. This physical setting results in a range of

Oh(≡ ηh/
√
ρhσR) numbers from 0.039 to 1.543. The initial bubble radius R is 20µm. Dx

and Dy are the distances between the bubble edge and the mass center O in the horizontal
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Figure 1: A typical microbubble coalescence process with damped oscillation in a microfluidic channel from
(a)initially touched bubbles to (b) neck bridge evolution through (c)-(f) oscillation with damping axis ratio
toward (g) a coalesced bubble with the minimum surface area. ρl/ρh and ηl/ηh are density and dynamic
viscosity of gas/liquid respectively. Dx and Dy are the distances between bubble edge and the mass center O
in the horizontal and vertical directions respectively, and ∆(= Dy/Dx) is the shape factor of the coalescing
bubble.

and vertical directions respectively. A shape factor, defined as ∆ = Dy/Dx, is to track the

interface of the coalescing bubble, starting from 0 (initial touched bubble) and ending at 1

(single coalesced bubble), as schematized in Fig. 1. In our previous study[34], a switching

of the major axis of the coalescing bubble between the horizontal and vertical directions was

observed, when the Oh number is relatively small, in the post-coalescence corresponding to

the period from (c) to (g) in Fig. 1. Since the shape factor ∆ is reducing, this phenomenon

is called damped oscillation. In general, the bubble coalescence can be categorized into three

types of damping: underdamping (with a visible oscillation of ∆), overdamping (invisible

oscillation of ∆) and critical damping (invisible oscillation with the shortest time to reach

∆ = 1). The in-house, GPU-accelerated LBM code based on the free-energy model is used for

all the simulation in this work. The reliability of this LBM model has been demonstrated in

some application studies[30, 35, 34] previously through comparisons with analytical solutions

and experimental/computational results. The spatial resolution was selected 6002 through

a convergence check[34]. The periodic boundary condition is applied in both directions.

3.2. Numerical Results

In this part, we explore when and how a damped oscillation occurs during a coalescence

through a systematic study. Table 1 shows the sixteen cases with identical physical and

computational conditions except for the fluid viscosity ηh and corresponding different Oh

numbers.

Figure 2 shows the time evaluation of the shape factor, ∆(= Dy/Dx), of 5 representative
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Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ηh × 103(kg/m · s) 2.0 3.5 6.5 9.2 13.7 18.0 21.0 24.7 27.5 35.0 40.0 45.0 50.0 55.0 70.0 80.0

Oh× 10 0.39 0.67 1.25 1.77 2.64 3.47 4.07 4.77 5.30 6.75 7.72 8.68 9.65 10.61 13.51 15.43

Table 1: Sixteen cases with identical physical and computational conditions except for the fluid viscosity ηh,
thus different Oh numbers.

cases with Oh = 0.039, 0.177, 0.477, 0.675, and 0.964. The Oh value clearly affects the

coalescence style. On one side when Oh < 0.477, the blue lines with solid symbols exhibit

damped oscillation, indicating the axis switching of the coalescing bubble between horizontal

and vertical directions with reducing the amplitude of ∆ toward a final circular bubble. The

smaller the Oh number, the stronger the oscillation. On the other side when Oh > 0.477,

the green lines with empty symbols show asymptotic growth of the shape factor toward the

end of the coalescence when ∆ = 1.0, implying that the coalescing bubble retains its major

axis on the horizontal direction in the entire process of coalescence with no oscillation. In

between, Oh = 0.477 serves as the dividing edge for the two distinct coalescence styles.

t (µs)

∆=
D

y/D
x

0 50 100 150 200

0.5

1.0

1.5

Oh
0.039

0.477
0.177

0.675
0.964

Figure 2: Time evolution of shape factor (∆ = Dy/Dx) of 5 representative cases during bubble coalescence.
Two distinct coalescence phenomena, with and without oscillations when Oh < 0.477 and Oh > 0.477
respectively, are identified. Oh = 0.477 serves as the dividing edge of them.

Another effect of Oh numbers on bubble coalescence is the coalescence time, denoted

as T in µs, from two equal, initially-touched bubbles to finally one circular bubble when

the minimum surface area, no matter with or without oscillations, as shown in Fig. 3.

When the Oh number is small (in blue) where damped oscillation is involved, increasing
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the Oh number can significantly reduce the coalescence time T . Whereas when the Oh

number is large (in green) with no oscillation, increasing that Oh number causes larger T

meaning longer coalescence process. For the Oh resolution selected in this study, there exists

a critical Oh number, i.e. 0.477 (in red), that corresponds the shortest coalescence time. If

considering a continuous Oh range, the critical Oh number should be identified in the range

from 0.407 to 0.530. To the authors’ best knowledge, such criteria for with and without

oscillation of microbubble coalescence is a first-time finding. A similar criterion for droplets

were previously discovered, from which the critical Oh number is believed to be between

0.71 to 0.76[11].

Oh

T
(µ

s)

0 0.5 1 1.5

100

200

300

400

Figure 3: Effects of Oh on the bubble coalescence time T . Blue/green lines correspond to small/large Oh
ranges. When Oh is small/large, increasing Oh reduces/increases coalescence time. The critical Oh(= 0.477)
corresponds to the shortest coalescence time that distinguishes the two distinct coalescence phenomena.

We now explore the mechanism behind these two distinct coalescence phenomena in terms

of the competition between driving and resisting forces at different Oh ranges. Since, in all

the study cases listed in Table 1, only liquid viscosity varies, causing the variation of the

Oh number while all other parameters remain the same. We only consider the imbalance of

surface tension at interface and viscous resistance from liquid in this part. Surface energy due

to the surface tension can be divided into two parts. One is released to produce kinetic energy

to drive the coalescence, which can be called useful energy. The other part is dissipated due
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to the viscous effect.

First, we focus on the left side (in blue) in Fig. 3. In this regime, the viscosity is

relatively small, thus the coalescence is dominated by surface tension. To better describe the

phenomenon, we stick to the top half of the coalescing bubble and the middle point of the

interface (called the saddle point). Once the neck is formed, see Fig. 1(b), the surface tension

induces a strong acceleration of the saddle point away from the bubble center, converting

surface energy to kinetic energy. When the interface gets flat, the velocity magnitude of the

saddle point reaches the maximum as all of the useful surface energy has been converted to

the kinetic energy for the interface motion. Due to the inertia, Dy continues to increase and

the interface becomes a convex shape, Fig. 1(c), generating surface tension. The velocity

of the saddle point slows down as the kinetic energy is being converted to surface energy.

When all the useful kinetic energy becomes surface energy, Dy reaches its peak and surface

tension gets to the maximum Fig. 1(d). The process from (c) to (d) illustrates the switching

of the major axis from horizontal to vertical directions. The similar transformation between

surface energy and kinetic energy occurs to switch the major axis from vertical to horizontal

directions, Fig. 1(d)-(e), in the opposite direction, completing the first cycle of the oscillation.

Because of the existence of the energy dissipation, useful energy is losing and the amplitude

of Dy is reduced when the saddle point is back to its lowest location. Such cycles repeat

with smaller and smaller amplitudes till it reaches the final stable coalesced bubble. In Fig.

3, it is seen that smaller Oh results in faster growth and a higher peak of ∆. This is because

smaller energy dissipation permits more useful surface energy to drive the bubble to coalesce.

If we consider that the surface tension acts as a restoring force, the surrounding fluid acts as

a mass, and viscosity damps the motion, the 1-D motion of the saddle point can be modelled

as a damped harmonic oscillator [36]

A′ρR3
d2D2

y

dt2
+B′ρνR

dDy

dt
+ C ′σDy = 0 (12)
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where A′, B′, C ′ are dimensionless geometric parameters to be determined. The damped

oscillation of the saddle point can be derived as the solution of the Eq. (12)

Dy = Ae
−Bνt
R2 sin(C

√
σ

ρR3
t) (13)

in which A (integral constant to be determined), B(= B′
2A′ , and C(=

√
C′
A′ − B′

A′
2Oh2

4
) cor-

respond to the amplitude coefficient, decay factor, and the oscillation period respectively.

We select three representative cases of Oh = 0.067, 0.125 and 0.177 and use the numerical

results to determine A, B, and C respectively with the start point Dy = Re. As shown in

Fig. 4, the oscillating trajectories of the saddle point with reduced amplitudes (symbols) are

well-captured by the damped harmonic oscillator model (solid lines).

t (µs)

D
y(

µm
)

0 100 200

20

25

30

35

0.067
0.125
0.177

Oh

Figure 4: The oscillating trajectories of the saddle point, represented by Dy, with reduced amplitudes with
Oh = 0.067 (black), 0.125 (red), and 0.177(green). Symbols: numerical results; solid lines: analytical
solutions of Eq. (13).

Then, we look at the green side in Fig. 3. In this regime, the viscosity is large enough

to resist the coalescence. Each of the green lines in Fig. 2 shows a monotonic growth of

the shape factor from 0 to 1, indicating that no oscillation occurs in the coalescence. When

Oh increases, the coalescence time increases. This is understandable because the larger Oh

means large resistance thus this slows down the coalescence process.
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4. Summary & Future Work

Using the GPU-accelerated LBM simulation, we are able to systematically investigate

the effects of Oh number on the global coalescence process in a microchannel. Sixteen cases

with the Oh number from 0.039 to 1.543, by varying the liquid viscosity from 0.0020 to

0.08 kg/(m · s) while keeping other parameters unchanged, are studied. By tracking the

time evolution of the shaper factor ∆, we identified two distinct coalescence phenomena.

In the region of Oh < 0.477 , damped oscillation is observed. The oscillation is more

intensive when Oh is smaller, and resulting a longer time to complete the global oscillation.

While Oh > 0.477, the shape factor asymptotically increases from 0 to 1 and the global

coalescence time increases with the increase of Oh. The mechanism behind the different

coalescence behavior is explored in terms of the competition of the surface tension driving

and viscous resisting. When Oh < 0.477, the viscous force is small thus energy dissipation

is insignificant. The bubble coalescence is dominated by the surface tension force. The

transformation between the surface energy and kinetic energy with energy dissipation causes

the damped oscillation of microbubble coalescence. Smaller Oh number cases possess more

useful surface energy to drive stronger oscillation, resulting in longer coalescence time. The

damped oscillation can be modeled as a damped harmonic oscillator that has an analytical

solution. The numerical simulation has a good agreement with the analytical prediction.

Whereas in the range of Oh > 0.477, the viscous force becomes significant. The neck growth

is much slower and no overshooting of the bubble interface occurs and the shape factor

asymptotically grows from 0 to 1. It is seen that a larger Oh number corresponds with

longer coalescence time, implying the role of the viscous effect. In between the two regimes,

a critical Oh = (0.477) number is identified, corresponding to the smallest coalescence time.

It should be noted that the observed critical Oh number is based on the discretization of Oh

in the current study. Strictly speaking, when consider a continuous Oh range, the critical

Oh number should fall in the range between 0.407 and 0.530. Such a criterion of with and

without damped oscillation determined by Oh number are consistent to the drop coalescence
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that has presented in open data. To authors’ best knowledge, the finding of the critical Oh

number that separates the two regimes corresponding to the distinct coalescence behavior

for microbubble is believed to be the first. There are further questions to be investigated:

(1) what determines the critical Oh number? (2) what occurs if the initial two microbubbles

are unequal? (3) what will be different if the bubble coalescence occurs on a solid surface?

Some of them are being addressed and the results will be presented in near future.
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