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Abstract

Literature on change point analysis mostly require a sudden change in the data
distribution, either in a few parameters or the distribution as a whole. We are in-
terested in the scenario that the variance of data may make a significant jump while
the mean of data changes in a smooth fashion. It is motivated from a liver procure-
ment experiment with organ surface temperature monitoring. Blindly applying the
existing change point analysis methods to the example can yield erratic change point
estimates since the smoothly-changing mean violates the sudden-change assumption.
In this paper we propose a penalized weighted least squares approach with an iterative
estimation procedure that naturally integrates variance change point detection and
smooth mean function estimation. Given the variance components the mean function
is estimated by smoothing splines as the minimizer of the penalized weighted least
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squares. Given the mean function, we propose a likelihood ratio test statistic for
identifying the variance change point. The null distribution of the test statistic is
derived together with the rates of convergence of all the parameter estimates. Sim-
ulations show excellent performance of the proposed method. Application analysis
offers numerical support to the non-invasive organ viability assessment by surface
temperature monitoring.

Keywords: Variance change point; Smoothly-changing mean trend; Hypothesis testing in
nonparametric smoothing; Change point consistency; Asymptotic null distribution.



1 Introduction

Change point detection is a classical topic that has attracted a lot of attention for decades.
Efforts have mostly focused on detection of sudden changes in a few parameters, such as
the mean and/or variance, of the underlying distribution, or the distribution itself as a
whole entity. In this paper, we are concerned with variance change point detection under a
smoothly-changing mean trend. Particularly, the constantly changing mean trend violates
the assumptions of most existing change point detection methods. As demonstrated in
the paper, a naive application of these existing methods to such kind of data would yield
erratic change point estimates.

Our method is motivated from an experiment about the procurement of transplant
livers. Quality/viability evaluation is a key issue in the procurement of transplant organs.
Currently, such evaluations are mostly performed through visual inspection by surgeons
or biopsy image assessment by pathologists. Both approaches are subjective judgements.
Biopsy is more accurate than surgeons’ visual inspection, but it is also invasive and damages
the part of the organ where the biopsy sample is collected. And the viability status of the
biopsy sample may not represent that of the whole organ. In the experiment considered in
the paper, surface temperature of a severed porcine liver was constantly monitored upon
the infusion of the perfusion liquid to the organ. The measurements consisted of surface
temperatures measured every 10 mimites on a dense grid covering the whole organ for a
span of 24 hours. The left panels in Figure 1 were the temperature profiles for three spots
on the surface. The temperature of the perfusion liquid was often slightly different from
the body temperature. So the temperature of the organ changed in a slow fashion and
displayed an overall smooth mean trend. The high oscillations in the first half reflected the

resistance of the organ to the abrupt temperature change in the environment. Around the



10th hour, the organ started to lose its viability and this change was reflected in a sudden
drop in the variance of the temperature, as shown in the plot of residuals versus time in
the right panels of Figure 1. Our goal is to design a testing procedure for identifying the

variance change point of the residuals after removing the smoothly changing mean trend.
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Figure 1: Raw temperature profiles (left panels) and detrended temperature profiles (right
panels) at three spots of the liver. The x-axis labels in both panels represent 24 hours.

Note that this phenomenon of having a variance change point underlying a smooth
mean trend actually occurs in many other settings besides the liver procurement experi-
ment considered here. For example, seismic activity monitoring often sees a smooth mean
trend with small variation and a sudden change in variation could be the early sign of an
earthquake; the EEG signal for an epilepsy patient generally shows a smooth mean trend

and a sudden variation change in the signal might mean the onset of a seizure; the stock



price for a big company often shows a smooth mean trend and a sudden increase in vari-
ation could mean a turmoil on the stock market or stock holders’ rising panic about the
company’'s health. So the change point detection procedure proposed here is a new method
that arises naturally from our motivating example on liver procurement and can be also
applied to many other areas.

The existing literature on change point analysis can be roughly divided into two cat-
egories. In the domain of parametric change point analysis, researchers assume that the
underlying distribution belongs to some known family and sudden shift changes in the
mean, variance, or both are considered. For example, when change of variance is the
only concern, two representative approaches are the cumulative sum of squares approach
in Incldn and Tiao (1994) and the Schwartz information criterion in Chen and Gupta
(1997). When simultaneous shifts in mean and variance are considered, Horvath (1993)
and Pan and Chen (2006) studied the theoretical properties of likelihood ratio test and
modified information criterion respectively. One can refer to Chen and Gupta (2012) for
a comprehensive list of publications in parametric change point analysis. In the domain
of nonparametric change point analysis, the assumption is that there is a sudden change
in the probability distribution of the data. Various measures for such change have been
developed in the literature to describe the differences between probability distributions.
For example, Hariz et al. (2007) developed a semi-norm to measure the difference between
empirical probability distributions and estimated the change point as the position where a
weighted version of such difference is maximized. Matteson and James (2014) used hierar-
chical clustering to estimate the number of change points and their positions simultaneously
for multivariate data. However, none of these existing methods in these two domains can
address the problem in our experiment where the variance change happened underneath a

smoothly-changing mean trend. Particularly, a smooth mean trend implies that the mean,



and thus the distribution of the data, are constantly changing over time besides the sudden
change in variance. Neither the parametric nor the nonparametric change point analysis
methods can capture the gradually changing mean trend. As demonstrated in our numeri-
cal experiments, erratic behavior occurs when blindly applying these methods to such kind
of data ignoring the underlying smooth mean trend.

Nonparametric smoothing and change point detection are often viewed as two conflict-
ing issues in statistics since the former emphasizes on continuity and the latter represents
discontinuity. The variance change point detection method proposed here naturally inte-
grates these two domains in both numerical and theoretical senses. There has been other
work combining nonparametric regression with change point detection. For example, both
Loader (1996) and Grégoire and Hamrouni (2002) considered the problem of detecting
jump points in smooth curves. However, they both focused on jumps in the mean curve
whereas our application clearly showed a jump in the variance. So the method proposed
in this paper is uniquely suited to tackling the change point problem found in our liver
procurement experiment.

Our variance change point detection method is formulated under the framework of
penalized weighted least squares estimation. Particularly, the estimates of the mean func-
tion, the change point, and the variances are a local minimizer of a penalized weighted least
squares score whose global minimizer may not exist. This objective functional consists of
three parts: the weighted sum of squared errors represents the goodness-of-fit, the rough-
ness penalty on the mean function estimate enforces smoothness on the mean, and the
smoothing parameter balances the tradeoff. The optimization of the objective functional is
carried out in an iterative fashion starting with a consistent initial mean estimate. When
the mean function is given, the variance change point and the corresponding variances are

estimated through a testing procedure generalizing the one in Chen and Gupta (1997).



When the variance change point and the variances of two subsequences of data are given,
the mean function is estimated by smoothing splines through the standard optimization of
the penalized weighted least squares with known weights. The initial mean estimate is the
minimizer of the penalized least squares under the working independence assumption.

For theoretical properties, we derive the asymptotic null distribution of our test statistic
for the variance change point and we show that our change point estimate is consistent when
the function space for the mean function is a periodic Soblev space. We note that these
results have their own theoretical values too. Testing procedures under nonparametric null
and alternative hypotheses are very difficult problems since both the null and alternative
spaces are of infinite dimensions. They become even harder in the penalized estimation
scenario since the smoothing parameter in the penalty adds additional complexity to the
derivation of asymptotic theory. For example, the rigorous theory for statistical inference
with smoothing spline regression under the constant variance assumption was established
by Shang and Cheng (2013) only a few years ago. And their work focused on the inference
of the mean function. But our work studies hypothesis testing on the variance component.
Our consistency result on the mean and variance component estimates is also new. Recog-
nizing that the global minimizer of the penalized weighted least squares may not exist, we
have proved the consistency of the estimates obtained from an iterative algorithm starting
with a consistent initial mean estimate. This opens a new venue for studying the asymp-
totic theory of a nonparametric regression model when the random errors are not IID. So
the theoretical developments here are novel and nontrivial.

In our simulations, we first demonstrate the pitfall of blindly applying the existing
change point procedures without removing the smoothly-changing mean trend when such
a trend is present. Then we show the excellent performance of our method in estimating

the variance change point, the mean functions and the variances. The application of our



method to the temperature profiles collected in the liver procurement experiment yield
critical information about the viability status of the organ. In summary, our method has
the following distinguishing features: (1) it is uniquely qualified to address the scientific
hypothesis raised in our application experiment; (2) it is an innovative addition to the
existing rich literature on change point analysis, (3) it naturally integrates smoothing and
change point analysis in a way distinct from others, and (4) its theoretical development
opens new fronts for the inference theory of nonparametric smoothing.

The rest of the paper is organized as follows. In Section 2, we introduce in the order:
the notation and model, the iterative algorithm, the mean estimation given the variances
and change point, the test procedure for variance change point give the mean function,
and the theoretical properties of the proposed method. In Section 3 we present all the
simulations. We analyze the liver procurement data in Section 4. Discussion in Section 5

concludes the paper. Proofs of the theorems are collected in the Appendix.

2 Method

2.1 Notation and Model

Suppose that y; are independent observations generated from the following model
Y; = foli/n) +e,i=1,...,n, (1)

where f; is an unknown smooth function, ¢, ~ N(0,07) with 0; = oy when i < 7
and 0; = &, when i > 7y, 07 # &7 are unknown variances, and 7, is the unknown
variance change point. Assume that f; belongs to a reproducing kernel Hilbert space
H = {f|f : [0,1] — R, J(f) < oo}, where J is a semi-norm on H. For example, we
consider J(f) = ful{ f™)(t)}*dt in this paper for some positive integer m. We propose to
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estimate ( fy, 7p, 03, 3) through the minimization of the penalized weighted least squares
1
—(vy =0T s (v — D)+ (), )

where f is a function in H, ¥y = (y1,....9.)" and f = (f(1/n), f(2/n),..., f(1))T are re-
spectively the vectors of observed responses and fitted values, ¥, ; ;5 is a diagonal matrix
with the first 7 diagonals equal to o2 and the rest equal to 4%, J(f) acts as a roughness
penalty, and A > 0 is the smoothing parameter balancing the tradeoff between the smooth-
ness of the mean function estimate and the goodness-of-fit represented by the weighted
sum of squared errors.

We note that the global minimizer of (2) does not exist since it approaches zero as ¢?
goes to infinity. Hence, we propose the estimates {ﬁ T, 02, 32} as the local minimizer of (2)
obtained through the following iterative algorithm. We shall show in Section 2.4 that the

estimates are consistent with proper rates of convergence.
Algorithm.

1. Initialize f( with the mean function estimate assuming constant variance. That is,
19 minimizes

Ly~ BTy~ )+ AI(). 3)

Note that when o = 4%, the covariance matrix in (2) reduces to ¢ and o can be

absorbed into the smoothing parameter A.
2. Each iteration consists of two steps. At the tth iteration,

(a) given the mean estimate ff""lz'? we first use the testing procedure in Section 2.3
to find an estimate 7* for 7;. Then we estimate the variance parameters respec-

tively by the maximum likelihood variance estimates, [¢2)® and [§2]®), of the
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subsequences of residuals, {y;— Y (i/n) ;i =1,...,79} and {y;— F*V(i/n) :
i=70+1,...,n}

(b) Now given the estimates 7, [6%]® and [6%]®), we update the mean estimate
by the minimizer of (2) where T, o® and 4% are replaced respectively by their

current estimates.

3. Iterate until the algorithm converges.

2.2 Mean Estimation Given 7, o2, and 42

When 7,0? and &% are given, the mean function fp is estimated as the minimizer of the
penalized weighted least squares (2) in a reproducing kernel Hilbert space ‘H of functions
on the domain 7. A reproducing kernel Hilbert space (RKHS) is a Hilbert space H where
the evaluation functional [t] : H — R, f — f(t) is continuous for every t € T. The Riesz
Representation Theorem then indicates that for all ¢ € T there exists a unique function
R, € H with the reproducing property (Ry, f) = [t](f) = f(t), where {(-,-) is the inner
product on H. Now the reproducing kernel R of ‘H is defined as a function R : 7T xT = R
such that R(s,t) = (R,, R;). One can show that each RKHS is uniquely associated with a
reproducing kernel and vice versa.

Note that the penalty functional J in (2) is a squared semi-norm on H. The null space of
J, namely Ny = {f : J(f) = 0}, induces a direct sum decomposition H = N; & H s, where
H; is the complement of A’y in H. This then yields a decomposition of the reproducing
kernel R = Ry + R;, where Ry and R; are respectively the reproducing kernels on the
subspaces Ny and H;. See, e.g., Gu (2013, Chapter 2) for more details on RKHSs.

We now introduce an example of cubic smoothing splines to illustrate these concepts.

We shall use the cubic smoothing splines in all the numerical studies of the paper.
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Example 2.1 (Cubic Smoothing Splines). Without loss of generality assume T = [0,1].
A choice of J(f) is J"Dl (f™Mdt, which yields the popular cubic splines. If the inner product
in Ny is (f) fdo)(fy gdt) + (fy f'dt)(fy ' dt), then Hy = HON; = {f : [} fdt =
ful fldt = 0, J(f) < oo} and the reproducing kernel R;(s,t) = ka(s)ka(t) — ka(|s — £]),
where k,(t) = B,(t)/v! are scaled Bernoulli polynomials for t € [0,1]. The null space N
has a basis {1,k1(t)} of 2 functions, where ki(t) =t — 0.5 fort € [0,1]. See Gu (2013,
Section 2.3.3). U

The RKHS H is of infinite dimensions, so a direct optimization of (2) on ‘H seems
infeasible. However, since the weighted least squares part in (2) depends on f only through
its evaluations at the observation points t;,i = 1, ..., n, the Representer Theorem (Wahba,
1990) guarantees that the exact minimizer of (2) actually resides in a finite dimensional
subspace of ‘H, namely, N; & span{R;(t;,-),..., R;(t,,-)}. Let ¢, = 1,...,m be the
basis functions of N; and & = R,(t;,-),7 = 1,...,n. Write f = dTd + £Tc, where ¢
and d are the corresponding coefficient vectors. Also note that J(f) can be written as a
quadratic form J(f) = ¢TQc, where @ is the n x n matrix with the (i, j)th entry equal to
R;(ti,t;). So for a fixed A, the objective function (2) is reduced to a quadratic function
of the coefficient vectors ¢ and d. Its minimizer can be obtained analytically. To select
the smoothing parameter A, an outer loop for minimizing the generalized cross-validation

(GCV) score is sufficient for the job; see Gu (2013, Chapter 3).

2.3 Variance Change Point Detection Given f

Given f, we now introduce a testing procedure to find an estimate T for the variance change

point 7p. Then we compute the maximum likelihood estimates for o2 and 4° respectively

by 2 = 7' {w — f(i/n)}? and = (n —F) ' 0., {v: — f(i/n)}>. We propose a
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testing procedure that generalizes the one introduced by Chen and Gupta (1997) for the
parametric case of normal data with a fixed mean.

We want to test the hypothesis

2

m

versus Hy 0] =--- =02 # 02y =--- = 0o (4)

!

c 2 —
Hﬂ*'Jl_"'_

for a potential change point position 7. Let

B 1 T B - 5 B 1 i B - 9
{(r) = Tlog [~ ;{m F&/m)y?) + (n—7)log | — i;I{y.i flamy).
Note that £(n) = —2Lo(52) — n — nlog 2 and £(1) = —2L,(32,62) — n — nlog 2r, where
Ly and L; are respectively the log likelihood functions under the null and alternative
hypotheses of (4). So we define the test statistic to be A2 = maxy,.{f(n) — £(7)}.
To gain further insight for the test statistic A2

Tl

we recap the motivation illustrated
in Chen and Gupta (1997) by referring to the Schwartz information criterion (SIC) from
Schwarz (1978). As a criterion for model selection, the SIC is defined as —2log L{ﬁ}—i—p logn,
where L(8) is the likelihood function for the model, 8 is the maximum likelihood estimate
of the parameter #, and p is the dimension of #. In our case, given f and 7 we have
two models corresponding to the null and alternative hypotheses with their SICs respec-
tively defined by SIC(n) = —2Lo(7?%) + logn and SIC(7) = —2L, (5%, 8%) + 2logn. By the
principle of minimum information criterion, we do not reject Hp if SIC(n) < min, SIC(7),
or equivalently £(n) < minj.,., £(7), and reject Hy if SIC(n) = SIC(7) for some 7, or
equivalently £(n) = #(7) for some 7. In the case of rejection(s), we estimate the position
of change point by T = argminj.,., £(7). So our test statistic can also be written as
A2 =logn — ming., o {SIC(7) — SIC(n)}. We shall present the asymptotic distribution of
A2 under the null hypothesis in Section 2.4.
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2.4 Theoretical Properties

In this section we present the asymptotic theories for the proposed method. For simplicity,
we only consider the special case when H is the mth order Sobolev space of periodic

funetions on [0, 1] with period 1, namely,

H=—S5m= {f () = i fui0,(t) with ¢ € [0,1] and i 2 < oo},
r=1

r=1

where for k =1,2,..., pay_1(t) = V/2cos(2mkt), pu(t) = +/2sin(2rkt), and Yor_; = Yo =
(@rk)?™. Note that J(f) = [ {f™ ()2t = Y0, f2y, for f € S™ and Ry(s,t) =
(2rm)~2m 3" | 2cos{2mv(s — t)}/(2mmu)®™.

Let h = AV . = /logn/(nh)+h™ 12 and 7, = r2+(nh)~**+(log n)5(loglog n)?/n+
n—1/2. We shall first show the consistency of the estimates (f,7, 52, 82).

Theorem 2.1 (Consistency of Parameter Estimates). Under Conditions 1-3 in the Ap-
pendiz, the estimates {}?, T, 02, Bﬁ] from the algorithm in Section 2.1 are consistent with the

following rates of convergence:

If = fol2 = Op(A + (rh) ' + h~'72), |7 — 70| = Op((logn)*(loglog n)?),
5% — 02| = Op(Fn),  |8° — 83] = Op(Fa),

where || fln = /31y f(i/n)2/n is the empirical norm of a function f.

Note that when m > 1 and A = ﬂ‘g"‘*'r':g’“H}, it can be verified that 7, = G{n_”z}.
Then this implies that 5 and 52 are v/n-consistent, and that ||f— folln = Op(n—™/(m+1))
or f achieves the optimal convergence rate of a spline function estimate.

We then derive the asymptotic sampling distribution of the test statistic A2 under the
null hypothesis Hy in (4).
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Theorem 2.2 (Asymptotic Null Distribution of Test Statistic). Suppose that as n — 0,
h — 0 and f'fi logn — 0. Under Hy in (4) and Conditions 1, 2, and 3’ in the Appendiz,
foranyt € R,

P(a,(logn)"?A,, — b,logn < t) — exp(—2exp(—t)),
where a, = (2loglogn)'/?/logn, and b, = {2loglogn + 3 logloglogn — log'(1/2)}/logn.

The limit distribution turns out to be an extreme value distribution. Based on this

result, we propose the following testing rule at the significance level 1 — ac

Reject Hp < an(logn)' /A, — b, logn > —log{—log(1 — a)/2}.

3 Simulations

We compared the change point estimation performance of the proposed variance detection
method with two existing change point detection methods, one from the parametric do-
main and the other from the nonparametric domain. The parametric method is the SIC
approach in Chen and Gupta (1997) hereafter denoted by the CG method. We used the
implementation in the changepoint package of R. The nonparametric method is the hier-
archical clustering approach in Matteson and James (2014) hereafter denoted by the MJ
method. We used the authors’ implementation in their R package ecp. Furthermore, we
examined the performance of the proposed method in estimating the mean curve and the
variances.

We considered two mean functions fy;(t) = 20 + 12¢(1 — t) and fgs(t) = sin(t) + t° —
8t* 4+ 10t + 6. The first function f; had a trend similar to the mean temperature profile

in the liver procurement study and the second function fy represented a more complex
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smooth trend. Two sample sizes n = 130 and 500 were used. The true variance change
point was set at 75 = 65 when n = 130, and 7; = 250 when n = 500. The true variances
were oz = 0.219 and J; = 0.057 when fp; was the true mean function, and o7 = 9 and
43 = 2 when fp was the true mean function. We simulated 1000 data replicates for each
combination of mean function and sample size.

For each data replicate, we applied the three variance change point detection methods
to obtain the change point estimate. These estimates were divided by n to rescale them to
the range of (0, 1) for easier comparison. For the proposed method, we also obtained the
mean function estimate and the two variance estimates. To evaluate their performances,
we computed the mean squared error MSE = n—! E:;l{f{t?fﬂ) — fo(i/n)}? and the log
ratios log(32/02) and log(82/62).

Figure 2 displayed the boxplots of change point estimates from the three methods. We
can clearly see that both the CG and the MJ methods suffered when blindly applied to
the data without removing the mean trend. On the other hand, the proposed method did
a decent job in estimating the location of the change point. And the estimation accuracy
clearly improved as the sample size n increased from 130 to 500.

Figure 3 assesses the performance of mean estimation. The top panels plotted the mean
estimates that attained the 25th, 50th and 75th percentiles of the M5SEs for sample sizes
n = 130 and 500. The mean function estimates all matched well with the true functions.
The 75th percentile estimate for the true function f;; with n = 130 was slightly off in the
area around the change point, which was reasonable considering the fluctuations in that
area. Also, the estimation accuracies improved as the sample size increased.

Figure 4 uses the log ratios of variance estimates versus true variances to assess the
estimation performance for both variances. We can see that both variances were accurately

estimated with the accuracies also improved as the sample size increased.
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Figure 2: Boxplots of change point estimates. Left panel: Simulations with the true mean
function= fy;; Right panel: Simulations with the true mean function= f. The three plots
on the left in each panel were the change point estimates with n = 130 respectively for
the methods in Matteson and James (2014) (MJ), Chen and Gupta (1997) (CG), and the
newly proposed method (New). The rightmost plot in each panel was the proposed method
with n = 500 (New500). The red dashed line is the true change point 75/n = 0.5
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Figure 3: Plots for assessing mean estimation performance. Left panels: Simulations with
the true mean function= fy;; Right panels: Simulations with the true mean function= fgs.
Top: True mean function (solid black) versus the mean estimates with n = 130 whose MSE
were the 25th (dashed green), 50th (dotted rﬁ:l), and 75th (dot-dashed blue) percentiles of
the 1000 MSEs obtained in each setting. Middle: same as top but with n = 500. Bottom:
boxplots of the 1000 MSEs in each setting.
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Figure 4: Boxplots of the log ratios of variance estimates versus true variances. Left
panels: Simulations with the true mean function= f;;; Right panels: Simulations with the
true mean function= fy;. Red: n = 130; Blue: n = 500. Filled boxes: o?; Unfilled boxes:
8.

18



4 Application: Temperature Monitoring in Liver Pro-
curement

Viability assessment is a critical step in organ transplant procedures. The current assess-
ment procedure purely relies on visual inspection of physicians or biopsy. While the former
suffers from subjective judgement, the latter is an intrusive approach that destroys the part
of organ where the biopsy sample is collected. Aimed to find a new noninvasive way of
assessing the viability of organs, a biomedical engineering team at Virginia Tech designed a
temperature monitoring system such that the surface temperature of a perfused organ can
be densely and continuously monitored. In the experiment considered in this paper, a lobe
of porcine liver, as shown in Figure 5, was perfused in a standard kind of perfusion fluid.
Its surface temperature was intensively monitored for a continuing period of 24 hours. The
liver lobe was divided into a dense grid of 36,795 spots with each spot producing a 24-
hour temperature profile. The temperature measurements were collected every 10 minutes,
yielding a total of 145 points in each profile. The first 2.5 hours of data were discarded
since it took about one to two hours for the perfusion fluid to completely soak the liver.
The data before the liver getting soaked were not of interest. So we had n = 130 points
left in each profile.

We applied the proposed variance change point detection method to the 36,795 temper-
ature profiles in the data. Since a large number of hypothesis tests were involved here, we
considered the Benjamini-Hochberg-Yekutieli (BHY) procedure (Benjamini and Yekutieli,
2001) to address the multiple comparison issue with the control of false discovery rate. This
procedure is an extension of the well-known Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995) to the case of dependent tests. Due to the positive correlation between our

temperature profiles, we used the positive dependency version of the procedure with the
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false discovery rate controlled at level 0.05. The largest p-value among all the 36,795 tests
of variance change points was 0.019. Hence all the change points were legitimate following
the principle of the BHY procedure.

The heat map of all the estimated change points were plotted in Figure 5. Note that an
earlier change point in variance meant an earlier drop in the viability of the cells around
the spot. We can see that the top half and the middle bottom parts of the liver mostly
failed around 12 hours while the bottom left and right portions of the liver lasted beyond 14
hours. There were also a couple of clearly visible straight-line type of boundaries between
the early and late failure areas. These might be the part where the porcine liver lobe was
bent between the time of severing and perfusion.

Figure 6 plotted the mean estimates and variance change point estimates at three
randomly selected spots, imposed respectively on the raw and de-trended temperature
profiles. All the mean estimates matched well with the trends shown in the data. As we
can see, the mean temperature increased at different paces at the three spots in the first 12
hours or so and shared a common trend of a quicker drop in the second half of the 24-hour

period. The variance change points at the three points were all between 12 and 15 hours.

5 Conclusion

In this article, we have presented a new variance change point detection method when the
underlying mean trend changes smoothly. Motivated from a liver procurement experiment,
the proposed method naturally integrates the seemingly conflicting goals of estimating a
smooth mean and detecting a jump point in variance under the framework of penalized
weighted least squares. As demonstrated in the simulations, this is not something that can

be handled by the existing change point detection methods. Furthermore, the testing pro-
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Figure 5: The heat map of estimated variance change points of temperatures on the lobe

of liver in the procurement experiment.

21



Temperature] 1)
| |
Residual

Timeihr)

Residual

Temparatura| 1)
230
|

Timeihr)

Residual

Temparature| "C}
240
]

Timeihr)

Figure 6: Mean and variance change point estimates imposed respectively on the raw and

de-trended temperature profiles at three randomly selected spots.
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cedure under our nonparametric smoothing setting is shown to have theoretical properties
similar to that under a parameter model. The consistency result also has its own innova-
tion in the perspective of nonparametric regression with non-IID errors. The application
of our method to the liver procurement experiment provided critical information about
the viability status of the liver lobe at different locations. A direction that merit further
investigation is the development of an online version of our procedure. This can be derived

with a combination of a proper characterization of in-control data.

SUPPLEMENTARY MATERIAL

The supplementary material collects all the conditions and technical proofs for the
theoretical results in Section 2.4.

A.1 Conditions and Technical Lemmas
Conditions:

1. Suppose that when there is a variance change point the true change point 7 €
[en/logn,n — en/logn] for some ¢ > 0. And assume that 7p/n — g € (0,1) as

mn — o0.

2. The true mean function fp € 5™, the mth order Sobolev space of periodic functions
on [0, 1] with period 1.

3. The random errors ¢;,i = 1,...,n are independent normal random variables with

mean 0 and variance .:rf, where o; = gp when 7 < 7y and o; = &y when 1 > .

3". The random errors ¢;,i = 1, ..., n are independent and identically distributed normal

random variables with mean 0 and variance o2.
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Condition 1 is common in change point analysis literature. It basically ensures that

the change point is away from the boundaries. Condition 2 restricts our theory to the case

when H = S§™. A more general function space H is possible, but the matrix calculation

involved in the technical proof would be much harder. Condition 3 spells our assumption

about the error distribution and variances. The normality assumption in not necessary

here. Any distribution with sub-Gaussian tails would be sufficient but the proof would be

more tedious, though not necessarily harder. Condition 3’ is the corresponding assumption

about the error distribution under the null hypothesis that there is no variance change

point.

We first show two technical lemmas that will be used in the proofs of our main theorems.

Let 6; = f(i/n) — E{f®}(i/n) and 6? = E{f™}(i/n) — fo(i/n).
Lemma A.1. There exists constant c,,, (depending only on m) s.t.
IE{F®} = follown < emy/T(fo) (B2 + (nh) /%),

Lemma A.2. Suppose hypothesis Hy holds true. Then it holds that

ka
— —-1/2 2 2411
fax (k= ki) '-;H[E" E(&)]| = Op(logn),
i=k1

max |Ze (FOi/n) — foli/n))| = Op(n~/*h~3/%),
- i=1

&:(f(i/n) — fo(i/n))| = Op(n~h=%/1),

lriﬂfé{" F i—k+1
max |fO(i/n) — fo(i/n)| = Op(y/logn/(nk) + h™1/2).

I{k{

The above results (7), (6), (8) also hold true under hypothesis Hy.
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Proof of Lemma A.1. Since f% is the minimizer of (3), we have
3= FOG/m)R(i/m, ) + AT =0, (10)
i=1

where R; is the reproducing kernel associated with 5™ (and J), and R;(z,-) denotes the
univariate function derived from R with its first argument fixed at x. Taking expectations,
we get that

%gj{fwn} — foli/m)Ro(i/n, ) + Af =0, 1)
where f = E{f®}. Therefore, f is the minimizer to the following functional

1) = 3 3 /m) = folif )" + AT,
Since E'n{f) < fo( fo), we get

%Zif{im] — fo(i/n))* + AJ(f) < M (fo)-

i=1
This means that J(f) < J(fq). Let g(t) = (f(t) — fo(t))®. Meanwhile, by Eggermont and
LaRiccia (2009, Lemma (2.24), pp. 58) we get that
1 n ) 1 1 1
‘— > am - [ g{t)dz‘ < o [ e
n 0  Jo

i=1

1
%/; |F'(2) — fa(e)] > | F(t) — fo(t)|dt

2 _ _
< —lIf' = follzzpallf = follzzon
2 - 8
< SN = £ Mg g < I (fo)- (12)

In the meantime, (11) leads to

i=1
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so that

If = fol*> = |If — follzz + AJ(F — fo)
1 n
= —M(fo, f— fo) +.£ g(t)dt — % Eg[z’fn)

i=1

< 2J(fo)A+8J(fo)/n = 2J(fo)(A + 4/n).

It follows from Eggermont and LaRiccia (2009) that

1f = follswe < b ™ 2I1f = foll < em/T(F) (W12 + (mh)7'12),

where ¢, ¢, are positive constants depending only on m. Thus (5) holds. ([l

Proof of Lemma A.2. Let 02 = E(e2). Without loss of generality, assume ¢ = g} = .-+ =
2

2 — g2 are independent centered sub-exponential

O3y < Okgs1 = --- = 02 = 6°. Since €
random variables, by Vershynin (2012), there exist constants c,d > 0 such that, for any
1 E‘ kﬁ = kﬂ ':_: .,

ko
P (| S [E-of > VR —F logn-)

i=k1+1

[

2exp (—cmin { C2(ky — k) (logn)?/(d(k; — k1)), C/ks — Ky logn/d} )
< 2exp(—emin{C?/d* C/d}logn) < 2exp(—3logn) = 2/n’,

where C' = max{/3d?/¢,3d/c} > 0. Hence, as n — oo,

ka2
P ( max_(ky—ki)7? Y [ —0f]| 2 Clﬂgﬂ) <2/n — 0.

1<ki<kz<n
- - i=ky+1

This shows (6).
Next we show (7). We only prove the results under H;. The results under Hp can be
proved similarly. Define 2 = (QF, ..., QT)T with O; = (Rs(1/n,i/n),...,Ri(n/n,i/n))/n.
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Then by the representer theorem (Wahba, 1990) it can be shown that (f19(1/n),..., f@(n/n))T =
Q2+ ML) y.
From Wahba (1990) we know that

R;(z,y) = Z —%{ﬂ%{y] = 22 Cm{?;ri;; y})? ryel
= v k=1

For 0 <1 <n-—1,let ¢ =2/nYy -, cos(2rkl/n)/(2rk)*™. Since ¢ = ¢, for | =

1,2,...,n—1, {1 is symmetric circulant of order n
Let { = exp(2m/—1/n). The normalized eigenvectors of () can be specified as

= %(1, ¢k, T k=0,1,...,n— 1.
Let M = (x0,X1,...,Xn—1). Denote M* as the conjugate transpose of M. Clearly, MM* =
I, and € admits the decomposition 2 = MAM?* where A = diag(Ag, M, ..., An—1) with
M=co+eilt+ ...+ ey (DL
Direct calculations show that
M:{ 255 1 gy 1=o,

=] 1 oo 1
D ket Bren—D= T+ 2 o EmEr 1<l<n—1
It is easy to examine that Ag = 26,(2mn)~>™ where &, ==Y ;- k2™, and for 1 <[ <

n—1,
N = ! P
YT Rrm—=DpP T (202
= 1 = 1
+ ; arn =D | ; Rk + P (13)

Let ¢,, = 3 1o, k=?™. Then

m{Zﬂ'n)_zm < Z [2?1’[}.:‘-'1 NES < Em{gﬂﬂ}_h

¢ (2mn)~?m < Z [gﬂ(kn1+ 5 < < Gn(2mm) 2
=1

a7



Let e ~ N(0, I,,) be a vector of independent standard normal random variables such that
we can write € = (1,...,¢,)7 = Dye, where D, is the square-root of the true covariance
matrix ¥y of €, that is, [Jy is a diagonal matrix with the first 7y diagonals equal to ap
and the remaining diagonals equal to d. Let §x) = (61,...,8)7, Quy = (O, ..., 00)7,
€y = (€1, -, &), €apnt) = (Ektty- -1 En)T, €y = (€1, .. k)T, Capni) = (Eht1, ..., ).
Then

Oy = ﬂ{k)(ﬂ—i-}ufn)—le
= (Xp,...,Xp_1)TAM*M(A + M) ' M*e
= (xo,... ,xk_l}Tﬁ{ﬂ + AI,,,}‘IM*E
= (Xgy..- Xp1)TAA 4+ ML) (X, .. X k—1)€(k)

+ (X0, - Xpeo ) TAA + AL) T (i, - - K1) Ex i

where X, is the conjugate of x,.

Define, for k < 7y, Dy = diag(oy,...,0); for k > 7y, Dy = diag(og,...,00, §,...,90 ).

k items 70 items k — 7 items
Define, for k < n—m, D, = diag(dy, ..., &) fork = n—my, D, = d.iag@rn, cee sy Og, O, .. ,E[ﬁ.
k tems k—:-l-rr.} n:.-'m

It is easy to see that E(k} = Dkﬂ{k) and Et(k} = DtkE-t(k}~ Let ;{i;; = (]{[]1, ‘e ?]{k_l]'ri’l(ﬂ +
Afn]_l(iu, - :ik—l} and Ek = {]{D, B ?]{k_l]'rﬂ{f‘l + }kfn)_l'l:]_{k, can :in—l}' Define A, =
DA, D, and B, = DB, D,, ;. Then

Eﬂ;ﬁ(k} = Eﬂjﬂk‘e(k} + Eﬂjﬂkﬂ*{n—k)-

By the Hanson-Wright inequality, for any k=1,...,n,

P (|E?;r)!"‘lk€(k} - E{Ea}ﬂkeikjﬂ > Con/ kf{nh}) < 2exp (_ min {Czﬁﬁl{;h)? C[Tirl,f:ﬁ:h) }) |
(14)
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where || - ||z and || - ||, respectively denote the Frobenius norm and operator norm of
a matrix, and €, > 0 is a constant depending only n and ¢ > 0 is a constant. Let
I' = A(A+ AIL,)"L. Since I is a diagonal matrix, we can write I' = diag(yo,...,Yn_1). Let

Mg = (xo,...,xk_1)T. Since M*M = I,, M, M) < I,.. Let ap = max{0?,62}. We know
that

A} < adTr(ApAy) = adTr(My I My, My T Mp,)
E—1

ag Te (M T*Mpy) = a5 ) X[ diag(3,- .., Ta_1)X:
=0

[

2 n—1
agk 9 k :

= _E = O(—-), uniformly for k.
2 7. {ﬂh}?un ormly for

This also shows that || Ax||sp < || Ax||lF = O(y/k/(nh)) uniformly for k. So for C,, = 1, (14)
becomes

P (lefiyAreq) — E{elyAve H = Co/E/(nR) ) < 2exp(—cC,).
This shows that

el Arew) — E{el, Are
P max e Arew) lew Avem} > C, | < 2nexp(—cC,).
i<k<n v/ k/(nh)

Taking Cy, = (2/¢) log n, we have shown that

o ey Aren) — E{ef, Arep ]

= Op(logn).

In the meantime,

p (m:{ | el > g) <nP(|Z| > C) = O(nexp(—C*/2)),

ks \ Ef:l{&il.} 0;)?
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which implies

|2 i Ol = Op(y/logn).
ELI{EEU;]?

So by Lemma A.1 and conditions h(logn)? = o(1) and nh*™+!(logn)? = o(1), we have

Ze,(& + 8%y

1—1

1—1

1<k<n

= {E(k}AkE(k] + E{j_.:,-BkEt{n w) +—= Z €:0;
Vf_ i=1

( lﬂgﬂ J ‘-1.I' )( +14/ n?;f) + y/logn(h™1/2 + {n_h]—lfij)

= (f’l—h l\'j,g_ﬂ + (n:ﬁ)m + /log n(hm™—1/2 + {nh]‘”ﬂ))

— Gp(ﬂ_lfdh-_g'm)?

where the Op term is uniformly valid for 1 < k < n.

Next we will handle ||ﬁ”} — fllsup- It can be seen by the representer theorem that
fO — f = (Rs(1/n,-)...., Ri(n/n,))(Q+ Al,)~'e/n. It is easy to see that, with ; being
the ith row of Q, & = Q:(Q + AL)"le ~ N(0, (2 + AL,) 20T 02). Note that

171 a2 1
Q4 ML) 20T =xT AN+ ML) AR == — T = —
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Therefore, as n — oo,
P (113;?5:( |d:| = G’-,,;’lcrgnhfﬂh.) < nP(|d;] = Cy/logn/vnh) < nexp(—Clogn) — 0.

This shows that maxi<r<n |8 = Op(y/logn/(nh)). The result follows from Lemma A.1.
H

A.2 Proof of Theorem 2.1

The consistency result in Theorem 2.1 is proved in three steps: (1) the consistency of the
initial mean function estimate, (2) the consistency of variance change point estimate and
variance estimates given a consistent mean function estimate, and (3) the consistency of
the mean estimate given consistent variance change point estimate and variance estimates.

Particularly, we shall prove the following results.

1. maxicicn |fO(i/n) — fo(i/n)| = Op(rn).

2. Given that max,;, | f“" " (i/n) — fo(i/n)| = Op(r,), we have
7 — 70| = Op((log n)*(loglog n)?), [6%]® = 03 + Op(F,) and [3%|) = & + Op(F,).

3. Given that |7 — 1| = Op((logn)*(loglogn)?), [62]® = 02 + Op(F,) and [32]®) =
62 + Op(F,), we have maxi<i<n | f1V(i/n) — fo(i/n)| = Op(ra).

These results, combined together, immediately puarantees the consistency result in
Theorem 2.1. For simplicity of notation, we shall drop the superseripts (¢ — 1) and (¢) in
this section of proof.

STEP 1. Consistency of the initial mean function estimate fi%.

This follows directly from Lemma A.2.

STEP 2. Consistency of the estimates of 79, of and 47 given a consistent mean estimate.
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Without loss of generality assume o7 < &3. The idea is to show that, £(k) > £(m)
uniformly for k € [en/logn,n — en/logn] with |k — 15| > (logn)!(loglogn)?. We only
consider cn/logn < k < 1 — (logn)*(loglogn)? since the case for n — en/logn > k >
70 + (logn)*(loglog n)? is similar. Define n; = f(i/n) — fo(i/n) and let

n 1 ™
Z (m: + €)% B = p— Z (m: + ).

i=m+1 i=k+41

1
n—To

T
=13 (m+e)? 02 =
To i=1

It follows by Lemmas A.1 and A.2 that ﬁzzﬂlﬂifi = Op(ray/Togn) uniformly for

k < 75— (logn)*(loglog n)?. Hence we have

» 1 T ) 9 To 1 T )
o, = Tu—kzﬂi+mzmﬁ+?h—szi

i=k+1 i=k+1 i=k+1

= 0>+ O0p (rﬁ + rny/logn 4+ (log nlog log n.)_l)

= >+ 0p(ri,),
where 7, = r2 +r,/Togn + (log nloglog n)~! which is o(1) by assumptions. Meanwhile,
using similar argument we have 53 = 2 + Op(ri,), @2 =6+ Op(ri,).

Therefore, with probability approaching one, uniformly for k < 15 — (log n)*(loglog n)?,

[6%/57 — 0%/8% = Op(ri,), [65/% — 0*/8%| = Op(r,),

4 o —]
o 05— 0
1—_‘=‘= k| = Op(r2)
=3 =3 P\l il
‘ Tp Tp

It is easy to see that

m—k 5 .o
{JI} —Ok)s

k k
F o= Jm) =g 36+ e =03+
1

1 0=k o
P (Ok —

kZ{yi—ﬂif“]f:mZfﬁi-Ffi}?:ﬁi"‘;_k nl-

i=k+1 i=k+1
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Therefore,

£(k)
k n—k To—k
- _ =2 ] =3 0 =3 =9
ﬂog(c.rn Jk)-i- - Dg(g“-l_n—}.: a;; f:rn])
k 2 n—k o — k [ T2 k o — k a2
= ¢ ——1 0 log 1 = 1 Zlog (1 1—-—=%1).
o == os () + 25 (14 25 (5 1)) s (2 (- 3))
Note that
n—k o—k (GF
22 (-)
n—k o—k (52 g — 72
= lug(1+n_k(f€—1+ 52
n—k w—k (53 To )
= —ﬂ lﬂg (1 + P— (G%ﬁ - 1)) + Dp{rln]
Therefore, with probability approaching one, uniformly for k < 15 — (log n)!(loglog n)?, we
have
£(k) — f{’ru)
’TD —

= lcrg

k(7
( ) log(l—i-ﬂ] k(
- Db~ lcrg(
n

A,
_ T“_k; (1 ﬂ) [1—(2::) +

;fi%l S8 ;fi%l S8

JRRCTENCTE
|
L
RS
R
+

—k
2 —=0p(r3,)

w—k a; W To—k 9
> —
= 271 1= ﬁﬂ) %t Or(rin)
> DR 00521 — go) + 0p(s2,)] > 0,

where the last inequality follows by r? = o(1). This means that T > 75— (log n)*(log log n)*
with probability approaching one. Similarly, it can be shown that with probability ap-
proaching one, £(k) — £(1p) > 0 uniformly for k > 75 + (log n)*(loglog n)?, which implies
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7 < 19 + (log n)*(log log n)%. Therefore,
|7 — 70| = Op((log n)*(loglog n)?). (15)

To show the consistency of 2 and 39, note that by Lemma A.2 we have that

~ 17 5 7 17
7 = %é?ﬁ'i_%;ﬂm'i_?;t_?

logn Im—1 —-3/4 1 2
— op( —— + 1"+ (nh) +$Ze,-

i=1

i=1 i=1 i=1

By Lemma A.2 and (15), we have

1 g 2 - 2
=DILED I

i=1 i=1

T+ 14+|F—7a|

Z 2
Ei'-

i=mo+1—|7F—mu|

|
=l =

= Hl4fF—
_ 2w+l 1 ™ Z’i”' 2
7 27 — 0] + 1 *

i=rp+1—|F—m|

B 2|?—’Tu|+1xﬂ ( VT — ol logn)
7

[T — 1| +1

= Gp{(lﬂgﬂ}‘”'(lﬂglogn-)zz’ﬂ}?
o

R 2 —1/2
E= = TTHE -_.:rﬂ.+0|[n ).

Therefore, we have proved that

"1}|'—‘

52 = 03 + Op(r2 + (nh)™** + (logn)*(loglog n)? /n + n= %) = a3 + Op(7,).
The proof for 62 = 85 + Op(7,) is similar.
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STEP 3. Consistency of the mean function estimate given the consistent estimates of
To, 05 and &3.

Recall from the proof of Lemma A.2, we write € = [Dye, where [)p is the square-root of
the true covariance matrix of € and e is a vector of n independent standard normal random

variables. By the representer theorem, the estimates fm) and fhave explicit expressions
FO = Q4+ AL fo + Q2+ A1 Dge,

F=Q0+ Aewd) Lo + QUL+ Aewl) ' Dye.
Without loss of generality, assume o2 < 82. Let @ = 62/62 and ¢y = 6%/02 By
consistency of 72, 3‘2? and 7, with probability approaching one, &, = {7° < 32, |¢ — e <
C7,} holds, where £ > 0 is arbitrarily small. Let 1; be a vector of k 1’s and 0, be a vector

of k 0°s. It is easy to see that on &,

Aewd = Adiag(éls, 1, 5)
= )"dlag(cﬂl?: ]-ﬂ—'?] + }"(A_ Cﬂ]dla'g{l?a Dn—?)
AT + AE—co)E,

where I' = diag(eyls, 1,_7) and EF = diag(1:,0,_z). Then by the Sherman-Woordbury

formula,

(2 + Apewd) L — (2 4+ AD) !
= —(E—co)MQ+AD)E(I + (E— ) AE(Q+ AD)'E)'E(Q+ AD)~' = —(Z— ¢o) A,

where A = ANQ + AD)1E(I + (2 — ¢g)AE(S2 + A)1E)1E(Q2 + A')~!. Hence, on &,,
0<ASA(Q+AD)2< L (Q+ AN
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Notice that A\I < A, 5 < Aél. Hence, it holds that

(F— fo) (F — fo)
< 2+ M) w2 ) A+ Ao ) " o + 267 Do(2 + A 2) 1O + Ao 8) ' Doe
< @A+ A2 fo + 4eT Do(Q + AL) ' Q2(Q + A) "' Doe + 4(F — co)%e” DoAQ?A Dge.

We will handle the three terms respectively. The first term is bounded by 262(E{f®} —
FfoV(E{f} — fo) = Op(n)) by Wahba (1990). To handle the second term, note that

E{e" Do(Q+ AT)10%(Q + AT)'Dge} = Tr(Do(Q + AT)~1Q%(Q + AT) ' Dy)
Tr(Q(Q + AT) ' DX(Q + AI)'Q)
< SUTH(Q(Q + AT)20)

< FTr(QQ+ A7) = O™,
so the second term is Op(h~!). As for the third term, notice that
e DA ADge < el eTr(Dy AP ADy)
< §eleTr(NA%Q)
1
E 154'ET'E x mtﬂ'{ﬂ{ﬂ‘l‘ AI)_EH) = Op(ﬂ-h_l],

hence the last term is Op(nh~'72). Therefore, ||f— foll2 = Op(A+ (nh)™' + A7172).

A.3 Proof of Theorem 2.2

Under Hp, the samples ¥; come from conventional nonparametric model with Gaussian
errors of equal variance. Without loss of generality, assume that the variance of ¢; is one.

Note that the mean function estimate under Hy is 1.
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Recall that &; = f(i/n) — E{f”}(i/n) and & = E{f®}(i/n) — fo(i/n). Let 5, =
o; —I—L‘Ff = fm' (i/n) — fo(i/n). For any 1 < k < n, we have by Taylor's expansion and results
from Lemmas A.1 and A.2 that

£(k) —£€(n) = nlog (1 + Y€ -1+ ggll M€ + ) 0y ﬂf)

_klog (1 L@ -2 e+ B, ﬂ?)
k
—(n —k)log (1 + D€ — D230 e+ "'??)
n—~k

] n n 2
= —% (Z{Ef—l}+iz?}i5i+2y}?)
e TG
tor (Z{E?_1}+EZ?}§E§+Z?}’?)
1 i=1 i=1

n n n 2
1
+2{n—k} (Z (€ —1)+2 Z Ti€: + Z ﬂf)
. i=k+1 i=k4+1 i=k41
+G’J:'{’H[E?:l{E""2 D23 e+ Y, ?1?]3)
!
+Up(k[2f=l(fg —1)+2 ZLI M€ + Zf=1 "'??]3]
k

Z?=k+1{'5? —1)+2 Z?=k+1 M€ + Z?=k+l ﬂfla}
n—k

+0p((n— k)|

a7



n k
_ _%[Z(Eg_n]u;—k[zie?—1Jl+2 Z{f el

i=1 i _ﬁ:+1

——Z(f —U[EZW#Z?}?H;QZ(E —1][22%&4‘2??]

i=1 i=1

2 Z Ti€; + Z m;

i—k+1 i—k11 i—k11
k k
——[2211,,5 +Zm [EZmEﬁZn?FJr 2 Z 7€ + Z U
i=1 i=1 i=1 i=k+1 i=k+1

+0p {ﬂ[z (€] — 1) +2 Ei=1 Mi€i + 3 i ﬂ?]g)

+Gp{k[2i=l{fi2 — 1] +2 %?:1 Mi€i + Ef:l ?I?]B]

(& =D 230 mEa+ YL 0
+Gp{{ﬂ—.li§][z k41 RE_;;:_H E k1 ]3}

_ die ELI € _ Dokt &
= n]og( - + klog 3 +(n—£k)log B

+0p(logn(n~Y4h=3 + n~12p 1 log n + n}/2p2™1))

= SIC(k) — SIC(n) + Op(ra),

where the Op term holds uniformly for k and r, = logn(n~'/*h=3* + n=12h1logn +
n!/2p?m=1)_ Tt then follows

Efj;{ [£(k) — £(n)] = mkax [SIC(k) — SIC(n)] + Op(r,).
By Chen and Gupta (1997) we have for any = € R,

P(an(logn)'2\,, — by logn < ) — exp(—2exp(—1)).
Since r,, satisfies r, log®n = o(1), we have a,(logn)(An, — Aun) = 0p(1). Therefore,

P(an(logn)'2\, — b, logn < x) — exp(—2exp(—1)).
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subsequences of residuals, {y;—f*V(i/n) ;i =1,...,79} and {y;— F*V(i/n) :
i=74+1,...,n}

(b) Now given the estimates 7, [6%] and [6%]®), we update the mean estimate
by the minimizer of (2) where T, o® and 4% are replaced respectively by their

current estimates.

3. Iterate until the algorithm mrmarges@

2.2 Mean Estimation Given 7, ¢2, and §2

When 7,02 and &° are given, the mean function fp is estimated as the minimizer of the
penalized weighted least squares (2) in a reproducing kernel Hilbert space ‘H of functions
on the domain 7. A reproducing kernel Hilbert space (RKHS) is a Hilbert space H where
the evaluation functional [t] : H — R, f — f(t) is continuous for every t € T. The Riesz
Representation Theorem then indicates that for all £ € T there exists a unique function
R, € H with the reproducing property (R, f) = [t](f) = f(t), where {(-,-) is the inner
product on H. Now the reproducing kernel R of ‘H is defined as a function R: 7T xT = R
such that R(s,t) = (R,, R;). One can show that each RKHS is uniquely associated with a
reproducing kernel and vice versa.

Note that the penalty functional J in (2) is a squared semi-norm on H. The null space of
J, namely Ny = {f : J(f) = 0}, induces a direct sum decomposition H = N; & H s, where
H; is the complement of A’y in H. This then yields a decomposition of the reproducing
kernel R = Ry + R;, where Ry and R; are respectively the reproducing kernels on the
subspaces ANy and H ;. See, e.g., Gu (2013, Chapter 2) for more details on RKHSs.

We now introduce an example of cubic smoothing splines to illustrate these concepts.

We shall use the cubic smoothing splines in all the numerical studies of the paper.
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Fan Yang
Sticky Note
The above algorithm is general which allows multiple iterations. As will be demonstrated in Theorem 2.1, the updated estimators will satisfy desirable convergence properties, as long as the estimator from previous step is "good" enough. A simplified version is based on one-iteration which will satisfy Theorem 2.1 if the initial estimator $\widehat f^0$ converges sufficiently fast.




