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1. Introduction 

Spinal cord injury (SCI) results in control loss of motor, sensory and autonomic function below 

the level of lesion. This is due in large part to the inability of damaged axons to regenerate in the 

CNS environment and to the limited ability of the CNS to replace lost neurons. There are 

currently no effective treatments to improve neurological outcome after SCI in humans.  As 

would be expected, much of the research effort has been devoted to studies to promote axon 

regeneration and re-establishment of damaged circuitry (Borton et al., 2014; Filli & Schwab, 

2015; Kadoya et al., 2016; Lu et al., 2017). In addition, attention has also focused on reducing 

secondary tissue damage that occurs in the days, weeks and months following injury (David et 

al., 2012).  Preventing secondary damage has been shown to improve histological and functional 

outcome in experimental animal models of SCI (Gris et al., 2004; Ghasemlou et al., 2010a; 

Ghasemlou et al., 2010b; Lopez-Vales et al., 2010; Lopez-Vales et al., 2011).  Although several 

factors, including hemorrhage and ischemia (Tator & Koyanagi, 1997; Rathore et al., 2008; 

Kroner et al., 2014) contribute to such damage, the inflammatory response is generally thought 

to contribute importantly to secondary damage after spinal cord trauma.  Evidence that the 

inflammatory response is detrimental after SCI comes from experiments in which anti-

inflammatory treatments show improvement (Mabon et al., 2000; Wells et al., 2003; Gris et al., 

2004; Stirling et al., 2004; Fleming et al., 2008; Kerr et al., 2008; Lopez-Vales et al., 2011).  

These detrimental effects are thought to be mediated in part by macrophages/microglia (Gris et 

al., 2004; Kigerl et al., 2009; Kroner et al., 2014).  However, macrophage/microglia are also 

known to have beneficial and pro-repair effects (Shechter et al., 2009). Factors that influence the 

dual nature of these cells are now beginning to be understood. These include both extrinsic 

factors in the tissue environment (cytokines, growth factors, and others) and intrinsic factors 
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triggered by what these cells phagocytose that influence the activation or polarization state of 

these cells (David & Kroner, 2011; David et al., 2015). However, the control of the plasticity of 

these cells is not yet fully understood. A better understanding of the factors that control the dual 

nature of these cells will help in the development of therapeutic strategies to reduce damage after 

spinal cord trauma.  

Microglia and peripheral macrophages infiltrating into the CNS from the circulation arise 

from different myeloid origins.  Microglia are the resident tissue macrophages of the CNS, which 

differ from macrophages that infiltrate into the CNS after injury or disease, and also from 

macrophages present in the normal CNS in border regions such as the meninges, perivascular 

spaces and choroid plexus (David & Kroner, 2011; Goldmann et al., 2016; Korin et al., 2017). In 

the subsequent section, we will discuss further the origins of the cells. Several recent studies 

have shown that these cell types have distinctly different gene expression signatures. These 

studies have led to the identification of several microglial-specific markers (e.g., P2ry12 and 

Tmem119, which will be discussed below), which are able to recognize microglia under normal 

homeostatic conditions.  However, these markers generally get down-regulated after onset of 

inflammation. We will discuss what we have learned from these studies, and challenges and 

limitations in using these markers to study microglia and macrophage responses after CNS 

damage. We will also discuss the use of other labeling methods to identify peripheral monocyte-

derived macrophages (MDMs) that have entered the CNS, and therefore study these MDMs and 

microglia in various neurological conditions. The early influx of neutrophils after tissue injury is 

a common feature of damage to the CNS as well as other tissues. The role of these neutrophils in 

the inflammatory response after CNS injury has received less attention in SCI. These myeloid 

cells get cleared by macrophages and in the process, have been shown to trigger the release of 
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pro-resolution lipids that actively resolve inflammation (Serhan, 2010). We will discuss the 

insights gained from recent findings about the expression and role of these bioactive lipid 

mediators after spinal cord injury. We have reviewed some of the literature on microglia specific 

gene expression but have not attempted to write a comprehensive review of all the published 

literature on gene expression of microglia and macrophages in the CNS. We will focus attention 

on work we have done in our lab and place it in the context of wider published work in the field.   

 

2. Challenges in identifying and distinguishing different myeloid cell populations in SCI.  

Microglia: When microglia become activated in regions of CNS damage, they withdraw their 

processes, acquire a rounded shape, and become amoeboid and phagocytic (Kreutzberg, 1996).  

In tissue sections, these microglia-derived macrophages cannot be distinguished from monocyte-

derived macrophages (MDMs) infiltrating into the CNS from the peripheral circulation, based on 

their morphology and staining for markers such as CD11b (αM integrin) and Iba-1 (Ionized 

calcium binding adaptor molecule 1).  These cells are therefore often referred to as 

microglia/macrophages.  However, recent studies on gene expression profiling of microglia have 

led to the identification of several potential microglial markers that can distinguish them from 

peripheral MDMs and other tissue macrophages.  However, there still are some limitations to 

their widespread use.   

Microglia and infiltrating macrophages have different origins. Fate mapping studies 

reveal that erythromyeloid progenitor cells that give rise to microglia migrate from the yolk sac 

at embryonic day 8.5 to populate the developing CNS (Ginhoux et al., 2010; Schulz et al., 2012).  

This process is dependent on Csf1r, Pu.1 and Irf8 (Ginhoux et al., 2010; Kierdorf et al., 2013). 

Thereafter, microglial numbers are maintained throughout life by cell proliferation and are not 
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replenished from the circulation (Tay et al., 2017).  Monocytes and MDM found in the CNS 

arise from the bone marrow and are replenished throughout life (Ajami et al., 2011; Mildner et 

al., 2013; Yona et al., 2013). Several microglia-specific genes have recently been identified that 

are selectively expressed in microglia compared to other tissue macrophages and leukocytes 

(Table 1). P2ry12 was first reported to be expressed by microglia but not macrophages 

(Hollopeter et al., 2001; Sasaki et al., 2003).  One of the earliest transcriptome studies that 

looked for microglia selective genes, compared purified adult mouse microglia with 

macrophages from the spleen and monocytes (Bedard et al., 2007).  127 potentially interesting 

genes were identified, of which a small subset of 11 genes coding for signaling molecules were 

selected for further analysis using in situ hybridization comparing tissue sections of brain versus 

spleen. This analysis identified 4 genes that were expressed in microglia-like cells but undetected 

in spleen (P2y12 (GPR12), GPR34, MSR2 and F11R), 4 others were enriched in microglia-like 

cells but also expressed in a subpopulation of spleen cells (Siglec-H, Oflm13, Stab1 and P2y13 

(GPR86)). Analysis combining in situ hybridization combined with immunohistochemistry to 

identify the cell types expressing these genes in the brain and spleen showed that P2Ry12, F11R 

Oflm13, GPR34, MSR2 and Stab1 were enriched in microglia compared to spleen macrophages; 

and Siglec-H and P2y13 being expressed equally in both. When brain and blood Ficoll-separated 

leukocytes were compared by qPCR, all except F11R and GPR84 were expressed more 

abundantly in macrophages in the brain (these are likely to be macrophages associated with 

blood vessels, choroid plexus and meninges), with MSR2, Oflm13 and Stab1 being expressed 

selectively by such cells in the brain (Bedard et al., 2007).  Of the various markers noted in this 

study, P2ry12, Siglec-H and Oflml3 have been further substantiated in other studies as being 

useful as microglial markers.  A crucial point to note here is that the specificity of microglial 
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markers identified in several studies is dependent on which cell type(s) they are being compared 

with. In the context of the normal CNS or in injury or disease, the need is to have markers that 

can distinguish microglia from monocyte-derived macrophages that have infiltrated into the CNS 

parenchyma.  

In the past five years, several other transcriptome studies on microglia have provided 

additional insights and have led to the identification of unique signature genes. An early study 

characterized gene expression of tissue macrophages from various mouse organs (including 

microglia) that distinguished them from dendritic cells (Gautier et al., 2012).  This study showed 

that MerTK, TLR4, TLR7, TLR8 and TLR13, were expressed equally in all types of tissue 

macrophages.  Microglia were unique in that they expressed low levels of hundreds of transcripts 

that were expressed in other tissue macrophages (spleen, lung, peritoneum). Interestingly, 65 

genes were expressed more than three-fold higher in microglia as compared to other tissue 

macrophages, including Trem2, Tmem119, Fcrls, Olfml3, Gas6, Sall1, Cx3cr1, Hexb, Siglec-H 

(Gautier et al., 2012).  Another study using deep RNA sequencing comparing purified microglia 

with other CNS cell types, and other myeloid cell types showed 29 highly specific markers for 

microglia (Chiu et al., 2013). Of these, the three most highly enriched genes were Tmem119, 

Siglec-H and Olfml3 (Chiu et al., 2013). This study also provided flow cytometry evidence that 

Siglec-H and Olfml3 are expressed by microglia but not peripheral macrophages. Recently, 

Siglec-H was also shown by immunofluorescence labeling to be a reliable microglia-specific 

marker in histological sections (Konishi et al., 2017).  It is expressed in almost all Iba1+ cells in 

the CNS parenchyma at all ages starting from E17 to adulthood (Konishi et al., 2017). Using 

CCr2RFP/+ mice, they also showed that Siglec-H was expressed in microglia but not infiltrating 

macrophages in the injured optic nerve and in the spinal cord of mice with Experimental 
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Autoimmune Encephalomyelitis (EAE) (Konishi et al., 2017).  In CCr2RFP/+ mice, infiltrating 

macrophages are labeled with RFP and hence can be distinguished from microglia.  RFP is also 

not expressed in macrophages in the injured peripheral nerve. These experiments were done 7 

days after optic nerve injury or after onset of hind limb paralysis in EAE, so it is not known if 

Siglec-H expression is downregulated at later chronic time points.  

 Another direct RNA sequencing study showed that adult microglia express a unique set 

of genes coding for proteins required to ‘sense’ or recognize endogenous ligands and microbes 

(referred to as the “sensome”) (Hickman et al., 2013). Seven of the 25 most highly expressed 

"sensome" transcripts in microglia as compared to peripheral macrophages include P2ry12, 

P2ry13, Tmem119, Gpr34, Siglec-H, Trem2 and Cx3cr1 (Hickman et al., 2013). Importantly, 16 

out of 22 microglia-selective sensome genes code for proteins that interact with endogenous 

ligands and not pathogens (Hickman et al., 2013).  A later study using RNA sequencing, 

microarray, and quantitative mass spectrometry found 106 genes that were enriched in microglia 

compared to neurons and other CNS glia (Butovsky et al., 2014). This study found that Fcrls, 

P2ry12, Tmem119, Olfml3, Hexb, Tgfbr1, Gpr34 and Sall1 were highly expressed in mouse 

microglia compared to monocytes, other tissue macrophages and a wide range of immune cell 

types (Butovsky et al., 2014).  Sall1, a transcriptional regulator, is expressed only in microglia 

and no other CNS cell types or other mononuclear phagocytes (Buttgereit et al., 2016). Genetic 

inactivation of Sall1 lead to conversion of resting microglia to an reactive phenotype (Buttgereit 

et al., 2016).  Fcrls which is highly expressed in mouse microglia, is not expressed in human 

microglia (Butovsky et al., 2014) but is a good marker for studies in mice.  Not only that, 

microglia from newborn mice and microglial cell lines (N9, BV2) which are widely used, do not 

express the adult microglia signature genes indicated above (Butovsky et al., 2014). This 
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highlights the difficulties in extrapolating results from studies done with neonatal microglia and 

microglial cell lines, to what might be happening in the adult CNS, and the need to use adult 

microglia.  In addition, monocytes recruited into the CNS in amyotrophic lateral sclerosis (ALS) 

or EAE also do not express microglia signature genes (Chiu et al., 2013; Butovsky et al., 2014). 

Another recent study also found seven genes (Tmem119, Fcrls, P2ry12, P2ry13, Gpr34, Gpr84, 

Il1a) highly expressed in microglia-enriched genes in CD45+ cells purified from mouse brain 

(Bennett et al., 2016). These findings confirm several earlier reports (discussed above).  This 

study also found that Tmem119 was expressed in microglia but not other CNS macrophages 

(meninges, perivascular and choroid), and is a highly specific microglial marker (Bennett et al., 

2016). Expression of Tmem119 is developmentally regulated; it is not expressed until postnatal 

day 3-6 and reaches maximum levels by postnatal day 14 (Bennett et al., 2016).  In vivo, 

Tmem119 is microglia specific and stably expressed in the early phases of several inflammation 

models – in the spinal cord, 4 days after sciatic nerve injury; 1 and 3 days after intraperitoneal 

injection of LPS; and 7 days after optic nerve injury (Bennett et al., 2016). Similarities (e.g., 

Cx3cr1, Itgam [CD11b], P2ry12) and differences (e.g., Tal1 and Ifi16) in microglial signature 

genes in human versus mouse has also been reported (Holtman et al., 2015; Galatro et al., 2017) 

and should be borne in mind when extrapolating data from murine models to study human CNS 

injury or pathology.  

Taken together, these studies show that P2ry12, Fcrls, Tmem119, Olfml3 Siglec-H and 

Sall1 are microglia selective and could be potentially good, microglia specific markers. 

However, an important limitation to their wider use is the evidence that these microglial 

signature genes, which are expressed robustly in the normal CNS under homeostatic conditions, 

can be down-regulated in inflammatory/neurodegenerative states (Kassmann et al., 2007; Chiu et 
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al., 2013; Butovsky et al., 2014; Keren-Shaul et al., 2017).  P2ry12 labels normal resting 

microglia very well but its expression is reduced or lost after trauma-induced inflammation 

(Haynes et al., 2006).  This was first reported using neonatal brain slice cultures (postnatal day 

4-7) mice in which P2ry12 staining was barely detectable after 24 hours, and this correlated with 

a change in morphology from process-bearing to amoeboid (Haynes et al., 2006).  The same 

paper also showed a complete loss of P2ry12 staining in vivo 4 days after LPS injection into the 

striatum in adult mice (Haynes et al., 2006). Shorter survival times were not checked. We 

recently reported that P2ry12 labeling is detected in the injured spinal cord at 5 and 28 days after 

contusion injury (Greenhalgh et al., 2016),  although labeling was far less strong and ubiquitous 

in the microglial population than in uninjured animals.  At the onset stage of EAE, activated 

microglia with short processes located adjacent to infiltrating immune lesions express P2ry12 

(Greenhalgh et al., 2016) but this staining is lost at the later peak stage of disease (our 

unpublished observations).  P2ry12 staining of microglia is also lost in active and expanding 

lesions in multiple sclerosis (Zrzavy et al., 2017).  In cerebral ischemia in mice, we found 

process-bearing microglia in the peri-infarct region that were strongly P2ry12-positive (Zarruk et 

al., 2017).  Reduced P2ry12 staining of rounded, activated microglia was detected in the lesion 

core and lesion border at 72h after permanent middle cerebral artery occlusion (Zarruk et al., 

2017).  In addition, some rounded microglia lacked P2ry12 staining, indicating that P2ry12 is 

down-regulated with inflammation in stroke  (Zarruk et al., 2017). In general, P2ry12 staining 

deceases in various inflammatory states, and the level of expression of P2ry12 may vary 

depending on the type and duration of the lesion and the region of the CNS involved.   

Tmem119 is expressed in normal microglia and in microglia in the first 7 days after optic 

nerve (Bennett et al., 2016) or SCI (our unpublished data). It appears to be down-regulated at 
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longer times after CNS injury (unpublished observation) but this needs to be clearly documented. 

We have also found FCRLS to be an excellent FACS marker for microglia in the normal and 

injured CNS, five days after SCI (Greenhalgh et al., 2016) and 72 hours after cerebral ischemia 

(Zarruk et al., 2017) but its expression after longer durations has yet to be established. The same 

is also the case with Siglec-H (Konishi et al., 2017) as mentioned above. The loss of microglial 

homeostatic signature, including genes that are specific to or highly enriched in these cells (such 

as Tmem119 and P2ry12), is associated with neurodegenerative disease (Keren-Shaul et al., 

2017; Krasemann et al., 2017), and referred to as ‘DAMs’ (Keren-Shaul et al., 2017) or 

‘MGnDs’ (Krasemann et al., 2017). These studies highlight the plasticity of microglia in the 

context of disease and inflammation. Therefore, distinguishing activated microglia from MDMs 

at chronic time points after SCI or other forms of CNS damage or disease still poses a major 

challenge. Such tools are needed to identify and distinguish these cells in tissue sections, and to 

purify them by FACS to assess their gene and protein expression profiles. One way to get around 

this problem is to have more stable markers of peripheral MDMs. 

Monocyte-derived macrophages: In the normal CNS, the meninges are a repository of 

infiltrating myeloid cells (Engelhardt et al., 2017; Prinz & Priller, 2017), which recent mass 

cytometry CyTOF (cytometry by time of flight) studies have shown can comprise up to about 

12% of the total leukocyte cell population associated with the normal, resting CNS (Korin et al., 

2017), and that 95% of all CNS leukocytes are in extra-vascular locations (Mrdjen et al., 2018).  

Embryonically derived macrophages that have phenotypic features very similar to microglia are 

located in border regions such as meninges, choroid plexus, and perivascular spaces and referred 

to as border-associated macrophages (BAMs) (Goldmann et al., 2016). Recently, mass 

cytometry and fluorescence cytometry analysis revealed that microglia and BAMs have distinct 
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expression profiles and lack Sall1 (microglial marker), Ly6C (monocyte) and CD11c (dendritic 

cell marker). Sall1 is a key marker that can distinguish between microglia and BAMs (Mrdjen et 

al., 2018).  This study also showed that Siglec-H distinguishes microglia from a population of 

macrophages in the CNS with closely related cell surface expression patterns (Mrdjen et al., 

2018).  

Monocyte-derived macrophages (MDMs) from the circulation that arise from the bone 

marrow are recruited to the CNS after injury or disease (Ajami et al., 2011; David & Kroner, 

2011; Shechter et al., 2013; Greenhalgh & David, 2014).  There are no MDM-specific antibody 

markers that can be used to distinguish these cells from microglia. After SCI, two modes of 

macrophage entry to sites of CNS damage have been reported in mice, one route from the 

circulation via the meninges, and another from the choroid plexus via the central canal (Shechter 

et al., 2013).  The former have been reported to be pro-inflammatory while the latter have pro-

repair properties (Shechter et al., 2013).   

Transcriptome analysis revealed three macrophage-enriched genes - fibronectin, Cxcl13, 

and endothelin B receptor (Hickman et al., 2013). Macrophages also expressed significantly 

higher levels of P2rx4, Ccr1, Cxcr7, Ifitm2, Ifitm3, Ifitm6 and Tlr8 (Hickman et al., 2013).  In 

addition, some microglial sensome genes were expressed more highly in macrophages; these 

include  Itgam, Cd74, Emr1, Itgb2, Cd37, Clec7a, Cmklr1, Ifitm6, Pilra and Fcgr4 (Hickman et 

al., 2013). At sites of CNS injury or disease, fibronectin is often expressed and localized to 

meningeal fibroblasts which infiltrate CNS lesions. It is therefore not a good marker to 

distinguish peripheral macrophages in CNS lesions. The other genes listed above need to be 

rigorously assessed to establish whether they can be used to distinguish MDMs from other cell 

types at sites of CNS damage.  
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Genetic reporter mice to study microglia and infiltrating macrophages after SCI 

The study of microglia cells was revolutionized at the turn of the century by the creation of 

CX3CR1-GFP reporter mice (Jung et al., 2000). Microglia show high expression of the 

fractalkine receptor (CX3CR1), which is involved in their interaction with neurons that express 

the CX3CL1 ligand (Cardona et al., 2006). This reporter mouse was used in the seminal two-

photon microscopy live imaging studies that revealed microglial surveillance and their response 

to injury (Davalos et al., 2005; Nimmerjahn et al., 2005). Despite their importance to the field, 

CX3CR1-GFP mice do not distinguish between microglia and infiltrating monocyte-derived 

macrophages, as CX3CR1 is broadly expressed in circulating monocytes, subsets of peripheral 

mononuclear phagocytes and myeloid progenitors in the bone marrow (Yona et al., 2013). Other 

strategies using genes common to microglia and macrophages include Csf1r-EGFP mice 

(Sasmono et al., 2003).  Therefore, the use of these mice to distinguish microglia and infiltrating 

macrophages after traumatic SCI is limited. To circumvent this, CX3CR1-GFP/+ reporter mice 

were crossed with CCR2-RFP/+ mice that labels circulating monocytes utilizing the CCR2 

chemokine receptor which is thought to mediate the trafficking of Ly6Chi cells (Saederup et al., 

2010; Mizutani et al., 2012). CCR2 is not expressed in resident microglial cells, however, upon 

infiltration of CCR2-rfp/+ monocytes into the CNS, the receptor can be downregulated, leading 

to a loss of reporter expression. This must be considered when investigating later time points 

after CNS injury.  

Cx3cr1Cre:R26-yfp animals, harboring the latent Cre recombinase and exposed to 

tamoxifen at 5 to 7 weeks of age showed that almost 90% of microglia were YFP+ after two 

weeks, which was maintained for up to 14 weeks (Goldmann et al., 2013). Importantly, four 
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weeks after the end of tamoxifen treatment, circulating monocytes were negative for YFP. This 

genetic approach, therefore, provides a window of time after tamoxifen treatment when the 

reporter is only expressed in resident microglia, distinguishing them from infiltrating MDMs 

(Goldmann et al., 2013). The transcription factor Sall1 is expressed exclusively in microglia, and 

thus Sall1GFP reporter mice are also a good tool to identify microglia (Buttgereit et al., 2016; 

Mrdjen et al., 2018). 

Using a different approach, we and others have recently used the LysM-EGFP knock-in 

mice to identify MDMs.  In these mice, EGFP is inserted into the lysozyme M locus (Faust et al., 

2000), and labels mature myelomonocytic cells that include macrophages and neutrophils but not 

microglia (Faust et al., 2000; Mawhinney et al., 2012; Fenrich et al., 2013; Greenhalgh & David, 

2014; Greenhalgh et al., 2016). This system must not be confused with the LysM-Cre mouse, 

which uses the LysM promoter to target gene deletion in microglia (Goldmann et al., 2013; 

Wang et al., 2015a). Unlike the EGFP knock-in mice in which robust and continuous expression 

of the LysM promotor is required for EGFP expression, Cre mediated gene targeting requires 

only low-level transient expression. Unlike the robust expression in myelomonocytic cells, 

microglia express the LysM promoter partially, and at a low level (Lein et al., 2007), including 

during development which results in Cre-mediated targeting of between 25–45% of microglia 

(Goldmann et al., 2013; Wang et al., 2015a).  Such low-level expression is not sufficient to 

induce expression of EGFP in microglia. We assessed this rigorously by quantifying the 

expression of LysM-EGFP in microglial in mouse models of SCI, EAE and cerebral ischemia.  

In SCI, using flow cytometry, we found LysM-EGFP expressed in only about 2.5% of FCRLS+ 

microglial at 5 days post-injury (Greenhalgh et al., 2016).  In the permanent middle cerebral 

artery occlusion model, LysM-EGFP expression was seen in only 3% of P2ry12+ microglia in 
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tissue sections (Zarruk et al., 2017).  Also, very few P2ry12 microglia expressed LysM-EGFP in 

and around EAE lesions at the onset stage of the disease (Greenhalgh et al., 2016).  These studies 

show that LyM-EGFP is a very good tool to distinguish peripheral myeloid cells (MDMs and 

neutrophils) from microglia.  Neutrophils which are also LysM-EGFP+ can be distinguished 

from MDMs easily in FACS by the expression of Ly6G, and in tissue sections by their 

characteristic polymorphonuclear morphology, and their small size (Greenhalgh et al., 2016; 

Zarruk et al., 2017). LysM-EGFP knock-in mice can therefore be used to separate MDMs from 

microglia and neutrophils by FACS for gene and protein expression profiling. We have shown 

that infiltrating MDMs can also be easily identified and distinguished from microglia using 

LysM-EGFP knock-in mice combined with one of the microglia-specific markers (P2ry12, 

Tmem119) in tissue sections and flow cytometry (Greenhalgh et al., 2016; Zarruk et al., 2017).   

Differential expression of CD45 as assessed by FACS is still widely used in the field 

along with a panel of other antibodies to CD11b (myeloid cells), Ly6G (neutrophils) and Ly6C 

(monocytes) to isolate microglia. The key being that microglia express CD45 at a distinguishably 

lower level than macrophages. Caution is often needed when using such isolation as the 

expression of CD45 in microglia and MDMs may change in the inflamed CNS. However, we 

and others have found that CD11b+, CD45low, Ly6G- Ly6C- represent the vast majority (>95%) 

of microglia when assessed alongside newer, more specific markers microglial, even after CNS 

injury (Greenhalgh & David, 2014; Zarruk et al., 2017). These antibody tools are restricted to 

flow cytometry and may miss small subpopulations of cells. These are therefore valuable tools to 

identify and purify microglia until stable microglia-specific markers become available to identify 

microglia in acute and chronic inflammatory states.  

 



16 
 

3. Plasticity of microglia and macrophage phenotype after CNS injury.  

Microglia and macrophages have a highly plastic phenotype that can change rapidly in vitro and 

in vivo in response to a variety of factors. These cells can transform from resting to pro-

inflammatory or anti-inflammatory states, and from cytotoxic to pro-repair phenotypes and vice 

versa. After CNS injury microglia respond within 5-15 minutes via P2Y12 receptor - ATP-

dependent mechanisms to extend cytoplasmic processes towards CNS lesions (Davalos et al., 

2005; Hines et al., 2009).  Two photon-microscopy studies have shown that inactivating or 

ablating these microglia result in enlargement of the size of the lesion, suggesting that this early 

microglial response is protective (Hines et al., 2009). Depending on the histological features of 

the region, microglial cell bodies can also translocate towards the lesion (Dibaj et al., 2010). 

Microglia also proliferate in response to CNS perturbations. Damaged associated molecular 

patterns (DAMPs) released immediately at the site of injury stimulate microglia and other CNS 

cells (glia and neurons) via toll-like receptors to release chemokines, cytokines inducible nitric 

oxide synthase (iNOS) and matrix metalloproteinases (Pineau & Lacroix, 2007; Piccinini & 

Midwood, 2010; Heiman et al., 2014; Katsumoto et al., 2014) that act to recruit neutrophils and 

MDMs from the circulation into the CNS. The microglia and MDMs recruited to the site of 

injury are influenced by a variety of factors in their immediate environment (that include 

chemokines, cytokines, growth factors, bioactive lipids, etc) that are constantly changing with 

time after injury.  

 Extensive work done on macrophages in vitro has shown that stimulation with pro-

inflammatory stimuli such as LPS or IFNγ induce a proinflammatory, cytotoxic phenotype, while 

stimulation with IL-4 or IL-13 induce an anti-inflammatory, pro-repair phenotype. These 

activation states are generally referred to as polarization states, with the former referred to as M1 
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and the latter anti-inflammatory state being referred to as M2 cells (with several additional M2 

states) (Gordon, 2003; Martinez et al., 2008; David & Kroner, 2011).  However, it has become 

apparent that this simplified in vitro classification is inadequate to describe the activation states 

in many in vivo conditions (Murray et al., 2014).  In vitro, culture and stimulation conditions can 

be defined, however, many factors with antagonistic pro and anti-inflammatory properties act 

simultaneously on macrophages and microglia at any given time in vivo. Moreover, these factors 

and their concentrations change continually after injury. As a result, clean M1 and M2 

phenotypes likely do not exist in vivo. Instead one sees mixed phenotypic states that may be 

skewed at any given time towards more pro-inflammatory, cytotoxic or anti-inflammatory, pro-

repair states, depending on the ever-changing mix and concentrations of factors in the cellular 

environment. A network analysis of transcriptome data of macrophages stimulated in vitro with 

either IL-4 or IFN-γ results in a network existing along a somewhat bipolar axis; however, the 

network is oriented away from this axis when macrophages are stimulated with a variety of other 

factors (Xue et al., 2014). This was further illustrated by the complex 3-dimensional matrix 

distribution of the network of the transcriptome data obtained from macrophages stimulated with 

a cocktail of factors (Xue et al., 2014).  

 The heterogeneity in MDM and microglia populations at different times at the site of SCI 

can now be studied by single cell RNA-sequencing using FACS sorted cells. In addition, 

information at the protein level can also be obtained by mass cytometry CyTOF of several dozen 

markers (Korin et al., 2017). For the latter, markers useful for mouse SCI analysis might include: 

P2ry12, FCRLS, Tmem119, Sal1, Siglec-H, MHC II  TNF, IL-1β, IL-10, TGFβ, iNOS,STAT1, 

STAT6, STAT4, SOCS1, SOCS3, Arg-1, CD206, CD16/32, CD86, IL-12 (Kigerl et al., 2009; 

Shechter et al., 2013; Kroner et al., 2014; David et al., 2015; Korin et al., 2017).   
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 In addition to soluble factors, the activation or polarization state of macrophages and 

microglia is also modulated by phagocytosis. Among the debris and cells that macrophages and 

microglia phagocytose in the injured spinal cord is the large amount of myelin debris as well as 

red blood cells (RBCs) (resulting from hemorrhage) present in the tissue. We have shown by 

flow cytometry and Q-PCR analysis that macrophages and microglia stimulated in vitro with 

LPS and IFNγ to acquire a pro-inflammatory (M1-like) state, will switch to an anti-

inflammatory, pro-repair (M2-like) state upon phagocytosis of myelin. This switch includes 

marked reduction in expression of TNFα, Ly6C and iNOS; and in addition, these cells produce 

soluble factors that promote increased neurite outgrowth and inhibit NF-κB signaling (Kroner et 

al., 2014).  Phagocytosis and internalization of myelin is essential for changes in expression of 

these molecules as determined by the uptake of pHrodo-red tagged myelin which fluoresces 

upon change in pH after entering into lysosomes (Kroner et al., 2014).  It was surprising 

therefore that despite microglia and macrophages in the injured spinal cord phagocytosing 

myelin in the first 7-10 days after injury (Greenhalgh & David, 2014) they still express a 

predominantly pro-inflammatory M1-like phenotype (Kigerl et al., 2009; Kroner et al., 2014).  

We questioned whether this lack of appearance of an anti-inflammatory phenotype after myelin 

phagocytosis in vivo in SCI might be do the presence of pro-inflammatory cytokines in the 

tissue. Several lines of evidence indicate that the presence of TNFα is likely to be the key factor 

in keeping the macrophages and microglia in a pro-inflammatory M1-like state in the first two 

weeks after SCI when myelin phagocytosis is occurring: (i) LPS stimulated macrophages that 

phagocytose myelin can be prevented from acquiring an anti-inflammatory and pro-repair M2- 

like phenotype by co-treatment with recombinant TNFα; (ii) LPS-stimulated BMDMs from TNF 

knockout mice showed reduced expression of M1 markers (CD86, iNOS and IL-12), which were 
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further markedly reduced by myelin phagocytosis; (iii) after SCI in TNF knockout mice there 

was greater expression of M2 markers, and a remarkable improvement in locomotor recovery 

(Kroner et al., 2014).  

 In contrast to this, macrophages and microglia stimulated in vitro with IL-4 to acquire an 

anti-inflammatory phenotype will rapidly switch to a pro-inflammatory state upon phagocytosis 

of senescent RBCs, resulting in a rapid and marked increase in expression of TNFα and iNOS 

(Kroner et al., 2014). RBCs likely mediate this effect in part by heme and the iron contained in 

heme, as each RBC contains over a billion atoms of iron. Interestingly, the uptake of iron-

dextran by macrophages in vitro reduced expression of M2 markers (CD206, Ym1) but did not 

have an effect on M1 phenotype markers (TNFα, iNOS, CD16, CD86). However, after these 

cells were transplanted into the injured spinal cord macrophages that were fed iron-dextran 

showed a marked increase in expression of TNFα and CD16/32, similar to the levels seen in 

macrophages that phagocytosed RBCs. These studies indicate that factors in the injured CNS 

tissue can drive macrophages that have taken up iron-dextran to robustly acquire a pro-

inflammatory state. In fact systemic injections of iron dextran into mice for 7 days after SCI led 

to a 3.5-fold increase in TNFα expression by ELISA and a worsening of locomotor recovery 

(Kroner et al., 2014).  In other work, we have also shown that insufficient levels of M2 factors, 

such as IL-4, in contused spinal cord tissue also hampers microglia and macrophages from 

acquiring an anti-inflammatory phenotype (Francos-Quijorna et al., 2016). We found that 

administration of IL-4 at the lesion site resulted in increased numbers of microglia and 

macrophages expressing Arg1 and CD206. This is especially evident when IL-4 was injected at 2 

days after injury, corresponding with the massive recruitment of MDMs into the lesioned cord. 

Importantly, administration of IL-4 markedly improved functional outcomes and reduces tissue 
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damage after contusion injury (Francos-Quijorna et al., 2016). These studies show some of the 

reasons why macrophages and microglia in the injured spinal cord remain in a pro-inflammatory 

state for prolonged periods that can then impact on poor recovery. Differences in the polarization 

state of microglia and macrophages have also been reported to influence remyelination in the 

CNS. Both cell types (microglia and peripheral infiltrating macrophages) showed a switch from a 

M1 to a more M2-like state during remyelination following focal demyelination induced by 

injection of lysophosphatidylchoine (LPS) into the mouse corpus callosum (Miron et al., 2013).  

Interestingly, M2 cell conditioned medium augmented oligodendrocyte differentiation in vitro; 

while depletion of M2 cells from corpus callosum lesions in vivo impaired oligodendrocyte 

differentiation (Miron et al., 2013).  Additionally, coupling of young and aged mice by 

parabiosis was able to rescue the remyelination defect in aged mice with concomitant increase in 

M2 cell density in demyelinated lesions. These experiments underscore the role of macrophage 

polarization on oligodendrocyte differentiation and remyelination in the adult CNS.  These M2 

cell mediated effects were shown to be mediated via activin-A - a member of the TGF-β 

superfamily (Miron et al., 2013). These studies also highlight how the activation state on bipolar 

continuum of polarization, in restricted in vitro conditions, may be reversed by the addition of 

just one or two factors. This emphasizes the sensitivity of microglial cells to multiple, often 

antagonistic, stimuli acting concurrently, and reinforces the importance of complexity of their in 

vivo microenvironment in modulating their activation or polarization states (Ransohoff, 2016).  

 

4. Heterogeneity of the response of microglia and infiltrating macrophages. 

After SCI microglia respond immediately via P2ry12-ATP signaling and TLR signaling as 

mentioned above. The chemokines and cytokines produced (Pineau & Lacroix, 2007) recruit 
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peripheral circulating myeloid cells that include neutrophils and MDM after SCI (Fleming et al., 

2006; Kigerl et al., 2006; Stirling & Yong, 2008; David et al., 2012). Neutrophils are recruited 

within 6 hours and are found in the injured spinal cord for the first couple of weeks.  On the 

other hand MDMs from the circulation begin to infiltrate into the spinal cord at about 3 days, 

reach peak numbers at 7-10 days after injury, and remain in the tissue for prolonged periods 

(Fleming et al., 2006; Kigerl et al., 2006; David et al., 2012). It appears that several weeks after 

injury many of these cells in the core of the lesion show signs of decreased viability (Rathore et 

al., 2008). Since microglia and macrophages are both found in the injured spinal cord, we 

assessed if there are differences in their phagocytic response. Using evidence of axonal or tissue 

debris we found that microglia contain phagocytic material in the first three days after injury, 

which is the time before the entry of MDMs from the circulation (Greenhalgh & David, 2014). 

Phagocytosis of axons was assessed by labeling the axons with Fluororuby.  After the entry of 

MDMs, the proportion of microglia with phagocytic material decreases while increasing number 

of infiltrating peripheral macrophages identified using LyM-EGFP took over phagocytosis from 

microglia (examined for up to 42 days) (Greenhalgh & David, 2014).   Interestingly, infiltrating 

macrophages are more susceptible to cell death after phagocytosis than are microglia. Moreover, 

microglia proliferate much more than infiltrating macrophages after SCI (Greenhalgh & David, 

2014). These findings indicate that these two myeloid cell populations differ remarkably in their 

responses to CNS injury.  

 The time course of infiltration of peripheral circulating myeloid cells (neutrophil and 

MDMs) is also somewhat similar after permanent cerebral ischemic lesions as compared to SCI 

but slightly earlier. We used LysM-EGFP knock-in mice to study the expression profile of 

inflammatory genes after permanent middle cerebral artery occlusion. There was significant 
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infiltration of EGFP+ myeloid cells into the lesioned cortex by 72 hours (Zarruk et al., 2017).  

Taking advantage of the EGFP labeling of myeloid cells in these mice, we used FACS to collect 

microglia (CD11b+, CD45lo, Ly6G-, LysM-EGFP-) and infiltrating macrophages (CD11b+, 

CD45hi, Ly6G-, LysM-EGFP+) at 72h post-lesion. The RNA obtained from these cells was used 

to screen a PCR array for changes in mRNA expression of 84 immunity and inflammation 

related genes. Of all the mRNAs that were changed, 12 were up-regulated in macrophages while 

only 3 were up-regulated in microglia; and only 1 down-regulated in macrophages while 7 down-

regulated in microglia (Zarruk et al., 2017). Genes that are highly upregulated in infiltrating 

macrophages include those involved in neutrophil and macrophage recruitment (Spp1 

(osteopontin) and cxcl2), recruitment of monocytes and other immune cells (ccl2, ccr5, and il1b), 

and immune cell activation (tlr2, il1b) (Wolpe & Cerami, 1989; Diab et al., 1999; Lund et al., 

2009; Conductier et al., 2010; Rittling, 2011; Hammond et al., 2014). On the other hand, 

microglia down regulated several key genes involved in inflammation (tlr4, tlr7, tlr9, and ccr5). 

This gene expression pattern in microglia suggests the acquisition of a quiescent phenotype. 

Infiltrating macrophages on the other hand express cytokines that recruit and direct the influxing 

cells (neutrophils and MDMs) into the core the lesion. The two cell types therefore can act to 

contain the infiltrating myeloid cells to the core of the lesion and thus prevent their spread to 

surrounding intact tissue. This may be a way to self-limit and contain the expansion of the lesion 

and contribute to the natural mechanisms to resolve inflammation in stroke. Our double 

immunofluorescence labeling showed a striking increase in expression of TNFα in microglia in 

the peri-infarct region. Further, our flow cytometry analysis showed that up to 22% of microglia 

express TNFα at 3 days after permanent cerebral ischemia (Zarruk et al., 2017). Similar findings 

about microglial TNFα expression in other animal model systems have also been reported 
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previously at different time points after permanent cerebral ischemic lesions (Lambertsen et al., 

2009). Interestingly, the size of the stroke lesion is markedly increased (60% ) in mice in which 

microglia lacked TNFα expression (Lambertsen et al., 2009). The striking expression of TNFα 

we see in microglia in the peri-infarct region could therefore serve to protect neurons and glia 

from damage likely via TNFR2 and thus limit the expansion of the lesion.   

 A gene expression profiling of microglia and macrophages from mice with experimental 

autoimmune encephalomyelitis (EAE) showed that monocyte-derived macrophages are highly 

phagocytic and inflammatory (Yamasaki et al., 2014). In contrast, microglia at onset of disease 

showed global suppression of cellular metabolism genes (Yamasaki et al., 2014).  Interestingly, 

electron microscopy revealed that unlike microglia, MDMs are located at nodes of Ranvier and 

where they may initiate demyelination (Yamasaki et al., 2014). Recent evidence from work in 

experimental autoimmune encephalomyelitis (EAE) also show a dichotomy in the response of 

microglia and infiltrating macrophages (Gao et al., 2017).  These studies showed that deletion of 

TNF receptor 2 (TNFR2) in microglia leads to worsening of inflammation and EAE pathology 

and clinical symptoms, while ablating TNFR2 in monocytes/macrophages resulted in reduced 

inflammation and improved EAE (Gao et al., 2017). There is therefore mounting evidence from 

a number of lesion models that after the acute phase after CNS damage, microglia have a 

protective anti-inflammatory phenotype, while infiltrating macrophages are more inflammatory. 

Whether such differences in microglia and macrophage functions also occur after SCI is not fully 

known at present.  On the other hand, prolonged microglial neuroinflammation and dysregulation 

in chronic neurodegenerative disease are deleterious to the CNS (Colonna & Butovsky, 2017). 

Both beneficial and detrimental roles for MDMs have also been described. As the role of 

microglia and MDMs in spinal cord injury are considered critical to pathological processes, more 
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work into the kinetics of microglia and MDM responses need to be better understood in order to 

effectively target these cells to improve outcome after SCI. 

 

5. Neutrophil-macrophage responses and the generation of Specialized Pro-Resolving  

The early cellular and molecular events of the inflammatory response have been studied 

extensively and is characterized by plasma extravasation, infiltration of leukocytes, and 

production of different bioactive mediators. Acute inflammation is a fundamental physiological 

process to clear pathogens, dead cells and debris from damaged tissue, and also mediates tissue 

repair and paves the way for repair and restoration of tissue homeostasis. However, excess or 

uncontrolled inflammation leads to chronic changes and tissue damage (Serhan, 2014; Serhan et 

al., 2015b). For many years, the termination of inflammation was thought to be a passive event 

associated with the dissipation of the inflammatory challenge and the reduction of factors 

involved in leukocyte tracking, such as chemoattractant mediators and cell adhesion molecules. 

It is now known that resolution of inflammation is an actively orchestrated process (Serhan, 

2014; Serhan et al., 2015a).  

 To our knowledge, the first study describing the resolution of inflammation was done by 

Eugene L. Opie (Opie, 1907). He showed that intrapleural injection of turpentine, a fluid 

obtained by the distillation of resin and highly irritating, caused infiltration of 

polymorphonuclear that peaked at 2-3 days, disappearing after 5 days. He also showed that the 

clearance of polymorphonuclear cells (PMN) coincided with the presence of macrophages, 

linking for the first time the clearance of the PMN cells and resolution of inflammation. PMN 

cells, also known as granulocytes, arise from granulo-monocytic progenitors in bone marrow 
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characterized by poly-lobulated nucleus and by their cytoplasmic granules. Commonly, the term 

PMN often refers specifically to neutrophil, the most abundant of the granulocytes in the injured 

spinal cord; the other types (eosinophils, basophils, and mast cells) are not noticeable (Neirinckx 

et al., 2014). After infection or traumatic lesion, neutrophils migrate across endothelial barriers 

to reach the inflammatory site, being highly sensitive to chemoattractant signals such as 

CXCL12-CXCR4, CXCL1/2-CXCR2 and IFN. Indeed, neutrophils are the firsts circulating 

leukocytes that enter into the injured spinal cord, and reach maximal counts by 24 hours (Kigerl 

et al., 2006; Stirling & Yong, 2008; Francos-Quijorna et al., 2017). Once neutrophils reach the 

lesion site they release a variety of toxic mediators such as oxidative enzymes and proteases, to 

clear the lesioned tissue and/or microbes (Brinkmann et al., 2004). These molecules released by 

neutrophils do not act specifically in microbes or cell debris, but also non-specifically on healthy 

neighboring cells. This is especially relevant in the CNS due to the failure of axons to regenerate 

and the poor capacity for replacement of dead neurons (David et al., 2012). Neutrophils also 

release pro-inflammatory mediators such as cytokines and eicosanoid that are crucial for the 

recruitment of circulating MDMs into the lesion site, leading to greater accumulation of immune 

cells. This has led to neutrophils being thought of as unfavorable actors in the pathophysiology 

of SCI and other CNS conditions, and thus, different neuroprotective approaches have focused 

on targeting neutrophil migration into the spinal cord. Indeed, there is persistent presence of 

neutrophils in the injured spinal cord in mice up to at least 28 days (Francos-Quijorna et al., 

2017) that could lead to prolonged bystander effects. 

 Not all the products released by neutrophils have detrimental effects. Indeed, we 

previously described that neutrophils are the main cellular source of secretory leukocyte protease 

inhibitor (SLIPI), which mediates beneficial actions in SCI, in part, by decreasing inflammation 
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(Ghasemlou et al., 2010a) but also by promoting axon regeneration (Hannila et al., 2013). 

Moreover, they also release oncomodulin, a growth factor that induces axon regeneration 

(Kurimoto et al., 2013). An interesting study revealed that depletion of circulating neutrophils by 

administration of the Gr1 blocking antibody increased neurological deficits after SCI in mice 

(Stirling et al., 2009). This study also showed that with the lack of neutrophils there was greater 

levels of cytokines, such as CXCL1, CCL2 and CCL9, reduced expression of healing factors, 

and greater tissue scarring, a sign of greater resolution failure (Stirling et al., 2009). These 

studies therefore suggested for that although neutrophils may release toxic factors, their presence 

in the injured spinal cord is crucial for the proper control of the inflammatory response and tissue 

repair.  

 Once the physiological function of neutrophils has been fulfilled in the inflamed tissues, 

they undergo spontaneous apoptosis (Fox et al., 2010). This is a programmed cell death that 

occurs to preserve membrane integrity and prevent uncontrolled release of the harmful cell 

contents (Kolb et al., 2017). Apoptotic cells are recognized by macrophages by "find-me' signals 

and "eat-me" signals that then lead to their phagocytosis (also known as efferocytosis) (Elliott et 

al., 2017). In the injured spinal cord these apoptotic cells are phagocytosed by macrophages and 

microglia. We and other research groups have shown that LPS-stimulated macrophages switch 

off the release of pro-inflammatory cytokines (i.e TNFα and IL-12) and down-regulated the 

expression of M1 markers upon phagocytosis of apoptotic neutrophils (Kroner et al., 2014). 

Others have shown that this is accompanied by the release of anti-inflammatory cytokines such 

as IL-10 and TGFβ (Byrne & Reen, 2002) and the up-regulation of arginase-1 and suppression of 

nitric oxide synthesis by macrophages (Freire-de-Lima et al., 2006). These observations suggest 
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that engulfment of apoptotic neutrophils evokes different signaling changes in macrophages that 

results in their redirection towards an anti-inflammatory state. 

 One of the most important changes evoked by efferocytosis of neutrophils by 

macrophages is the production of bioactive lipids that induce resolution of inflammation. The 

family of these bioactive lipids, are also known as 'specialized pro-resolving mediators' (SPMs), 

that include: lipoxins, which are generated from arachidonic acid; E-series resolvins from 

eicosapentaenoic acid (EPA); and D-series resolvins, neuroprotectins, and maresins from 

docosahexaenoic acid (DHA) (Serhan, 2010; 2014; Serhan et al., 2015a). SPM actively turn off 

the inflammatory response by acting on distinct G protein coupled receptors expressed on 

immune cells that activates dual anti-inflammatory and pro-resolution programs (Buckley et al., 

2014; Serhan, 2014; Serhan et al., 2015a). Among the anti-inflammatory actions of SPMs 

include the induction of anti-inflammatory cytokines or inflammatory scavenging molecules 

such as IL-10, IL-1 decoy receptors and IL-1 receptor antagonists (Buckley et al., 2014; Serhan, 

2014). Importantly, SPMs activate specific mechanisms that trigger the resolution of 

inflammation, which include: (i) down-regulation of pro-inflammatory cytokines; (ii) abrogation 

of intracellular pathways that lead to inflammation; (iii) clearance of inflammatory cell detritus 

(such as apoptotic neutrophils) by macrophages and (iv) normalization of immune cells counts to 

basal levels also referred to as catabasis (Buckley et al., 2014; Serhan, 2014; Serhan et al., 

2015a). Failure to produce adequate amounts of SPMs or failure to bind to their receptors could 

lead to the persistence of inflammation leading to chronic inflammation. Several reports have 

shown that there is defective synthesis of SPMs in the cerebrospinal fluid (CSF) of individual 

diagnosed with Alzheimer disease or multiple sclerosis (Pruss et al., 2013; Wang et al., 2015b). 

We have also reported defective production of SPMs in the spinal cord after contusion injury in 
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mice. It is therefore quite plausible that the defective synthesis of SPMS could contribute to the 

persistent inflammatory response after SCI.  

 We have recently reported lipidomics analysis showing delayed synthesis of SPMs in the 

injured spinal cord. In this study we assessed the effects of maresin-1 (a member of the SPM 

family) treatment given 1 hour after spinal cord contusion injury in mice.  We assessed the 

effects of maresin-1 on inflammatory responses and recovery after SCI. We found that although 

exogenous administration of maresin-1 (MaR1) did not affect the recruitment of neutrophils and 

macrophages, it induced fast and enhanced neutrophil clearance from the lesioned spinal cord 

(Francos-Quijorna et al., 2017). This included greater engulfment of neutrophils by 

macrophages, as well as, faster elimination of the inflammatory signals, as revealed by the 

reduction of pro-inflammatory cytokines (i.e. CXCL1, CXCL2, IL-6) and signaling pathways 

(JAK-STAT and MAPK) (Francos-Quijorna et al., 2017). Interestingly, macrophages displayed 

less pro-inflammatory (M1-like) markers after MaR1 treatment, as revealed the reduced 

expression of LyC6 and iNOS (Francos-Quijorna et al., 2017). These observations suggest that 

despite the enhanced phagocytic activity of macrophages they may be less cytotoxic.  

Importantly, the biological effects induced by MaR1 in SCI led to significant improvement in 

locomotor function and protection against secondary tissue damage (Francos-Quijorna et al., 

2017). The role of other SPMs in SCI needs to be examined.  Similar protective actions have 

been also described after the administration of MaR1 and other SPMs such as Neuroprotectin D1 

and Lipoxin A4 (LXA4) following cerebral ischemia (Marcheselli et al., 2003; Wu et al., 2010; 

Ye et al., 2010).  These finding suggest that inappropriate biosynthesis of SPMs, which it likely 

due to an inefficient crosstalk between neutrophils and macrophages and microglial can 

contribute to persistent inflammation after CNS trauma.  
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6. Challenges and future directions.  

Enormous progress has been made in our understanding of microglia in the past two decades. 

These include an understanding from fate mapping studies of their origins from the yolk sac 

during early embryonic development, and their subsequent renewal by proliferation in situ 

throughout life. One of the major challenges in studying microglial responses in CNS injury and 

disease is being able to distinguish them from infiltrating MDM. This need led to a large number 

of transcriptome studies comparing microglial gene expression with macrophages from a variety 

of different sources. The results of these wide-ranging studies revealed a number of microglia-

enriched genes (summarized in Table 1).  Although many of these markers are useful in 

identifying resting microglia from MDMs, their expression is generally downregulated after 

onset of inflammation in injury or disease making them less useful to clearly distinguish 

microglia from infiltrating MDMs in the damaged CNS.  Better markers are therefore needed to 

isolate and purify microglial populations from other myeloid cell derived macrophages to study 

their functional differences and potential interactions in injury and disease. There is now 

evidence that microglia display regional differences in gene expression profile indicating that 

their immediate cellular environment dictates their expression profile. It is therefore likely that 

the microglia and also macrophages infiltrating the site of injury and disease from the peripheral 

circulation may also show a range of differences in expression profile that reflect different 

functions within the injured tissue. Identifying such differences will require doing single cell 

RNA sequencing of microglia and macrophage populations. The heterogeneity of the microglia 

and macrophage populations in the injured spinal cord can then be evaluated and the changes in 

their profiles monitored over time after injury.  We know already that microglia and peripheral 
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macrophages are highly plastic in their inflammatory profiles and that this is influenced by 

chemokines, cytokines and other factors including bioactive lipids, as well as by what they 

phagocytose. After injury, the entire microglia and macrophage populations at the site of injury 

are not going to change “en masse”, e.g., there will be subpopulation that phagocytose myelin 

that become anti-inflammatory, while other subgroups that phagocytose RBC would display a 

proinflammatory profile.  In addition, the mix of bioactive factors that can modulate their 

expression and phenotype patterns change over time. The use of mass cytometry (CyTOF) (40+ 

heavy metal isotope tagged antibodies) and multi-color (20+ antibodies) fluorescence cytometry 

to study such changes at the protein level needs to be better exploited in the future. Implicit in 

this is the idea that microglia and macrophage may serve different roles and these roles may 

change over time after injury. The ultimate goal of these studies is to be able to modulate the 

heterogenous and plastic nature of microglia and macrophages in the injured CNS to reduce their 

cytotoxic functions while promoting their pro-repair properties.        
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Gene Protein Method  Speci
es 

Compared 
to  

Referenc
es 

P 2R y12  purinergic 
receptor 
P2Y12 

microarray 
mRNA 
sequencing 
mass 

spectro
metry 

in  situ  
hybridiz
ation 

mouse peripheral 
macrophag
es 
(including 
spleen), 
glial cells, 
neurons 

(Bedard 
et  al. , 
2007) 
(Hickman 
et  al. , 
2013) 
(Bennett  
et  al. , 
2016) 
(Butovsky 
et  al. , 
2014) 

S iglec - H  sialic acid 
binding Ig-
like lectin 

microarray 
mRNA 
sequencing 
in  situ  
hybridization 
histology 

mouse peripheral 
macrophag
es 
(including 
spleen), 
myeloid 
cells 

(Bedard 
et  al. , 
2007) 
(Gautier 
et  al. , 
2012)  
(Chiu et  
al. , 2013) 
(Hickman 
et  al. , 
2013) 
(Konishi 
et  al. , 
2017) 
 

Of lm 13  olfactomedin-
like protein 3 

microarray 
mRNA 
sequencing 
mass 

spectro
metry 

 

mouse peripheral 
macrophag
es 
(including 
spleen), 
dendritic 
cells,  
glial cells, 
neurons 

(Bedard 
et  al. , 
2007) 
(Gautier 
et  al. , 
2012)  
(Chiu et  
al. , 2013) 
(Butovsky 
et  al . , 
2014) 
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Tm em 1
19  

transmembra
ne protein 
119 

mRNA sequencing 
histology 
mass 

spectro
metry 

microarray 
in  situ  hybridization 

mouse peripheral 
macrophag
es, 
dendritic 
cells,  
myeloid 
cells, 
glial cells, 
neurons 

(Gautier  et  
al . , 2012) 

(Chiu et  
al. , 2013) 

(Hickman  
et  al . , 
2013) 
Konishi  et  
al . , 2017 
(Butovsky 
et  al . , 
2014) 
(Bennett et  
al . , 2016) 

Fcrls  
(Msr 2)  

Fc receptor-
like S, 
scavenger 
receptor  

mRNA sequencing 
mass 

spectro
metry 

microarray 
in  situ  hybridization 

mouse peripheral 
macrophag
es 
(including 
spleen), 
dendritic 
cells,  
glial cells, 
neurons 

(Gautier  et  
al . , 2012) 
(Butovsky 
et  al . , 
2014) 
(Bennett et  
al . , 2016) 
(Bedard et  
al . , 2007) 

GP R 34  G protein-
coupled 
receptor 34 

microarray 
mRNA 
sequencing 
mass 

spectro
metry 

in  situ  
hybridization 

mouse peripheral 
macrophag
es 
(including 
spleen), 
glial cells, 
neurons 

(Bedard 
et  al. , 
2007) 
(Hickman 
et  al. , 
2013) 
(Butovsky 
et  al. , 
2014) 
(Bennett  
et  al. , 
2016) 

F11R  junctional 
adhesion 
molecule A 

microarray 
in  situ  
hybridization 

mouse spleen 
macrophag
es 

(Bedard 
et  al. , 
2007) 

S tab1  stabilin 1 microarray 
 

mouse spleen 
macrophag
es 

(Bedard 
et  al. , 
2007) 

P 2y1 3  
(GPR 86
) 

purinergic 
receptor 
P2Y13 

microarray 
 

mouse peripheral 
macrophag
es 

(Bedard 
et  al. , 
2007) 
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(including 
spleen), 

(Hickman 
e t  al. , 
2013) 
(Bennett  
et  al. , 
2016)  

Trem 2  triggering 
receptor 
expressed 
on myeloid 
cells 2 

mRNA sequencing mouse various 
tissue 
macrophag
es, 
dendritic 
cells  
 

(Gautier  et  
al . , 2012)  
(Hickman  
et  al . , 
2013) 

Gas6  growth arrest 
specific 6 

mRNA sequencing mouse tissue 
macrophag
es, 
dendritic 
cells  

(Gautier  et  
al . , 2012) 

C x3cr1  chemokine 
(C-X3-C 
motif) 
receptor 1 

mRNA sequencing mouse tissue 
macrophag
es, 
dendritic 
cells  

 

(Gautier 
et  al. , 
2012) 
(Hickman 
et  al. , 
2013) 

 

S all1  spalt like 
transcription 
factor 1 

mRNA sequencing 
mass 

spectro
metry 

microarray 

mouse tissue 
macrophag
es, 
dendritic 
cells,  
glial cells, 
neurons 

(Gautier  et  
al . , 2012) 
(Butovsky 
et  al . , 
2014) 

H exb  hexosaminid
ase B 

mRNA sequencing 
mass 

spectro
metry 

microarray 

mouse tissue 
macrophag
es, 
dendritic 
cells,  
glial cells, 
neurons 

(Gautier  et  
al . , 2012) 
(Butovsky 
et  al . , 
2014) 
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