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RESUMO 

 
A epilepsia é uma doença do foro neurológico caracterizada pela predisposição duradoura 

para gerar crises epilépticas. Cada crise é uma perturbação transitória da atividade neuronal 

que se torna síncrona e excessiva, interrompendo, momentaneamente, a função normal do 

cérebro. Calcula-se que, em Portugal, 1 em cada 200 pessoas tenha esta disfunção do sistema 

neurológico. Não existe cura para a epilepsia, no entanto, existem fármacos antiepilépticos 

(FAEs) que previnem a ocorrência de crises epilépticas. Os FAEs são prescritos de acordo com o 

tipo de epilepsia e com os fatores individuais de cada pessoa. Por vezes são necessárias várias 

tentativas e/ou politerapia para encontrar a medicamentação adequada para controlar as 

crises. Contudo nem todas as pessoas reagem aos FAEs. Estima-se que 30-40% das pessoas em 

todo o mundo sofrem de epilepsia refratária, ou seja, não têm a doença controlada. 

Uma vez que a epilepsia refratária pode ser incapacitante em algumas vertentes pessoais e 

profissionais e existe um elevado número de pessoas a sofrer desta doença, é necessário uma 

melhor compreensão da epilepsia e do processo de epileptogénese. Este processo é 

responsável por tornar um cérebro normal num cérebro com atividade neuronal anormal. 

Além disso, também é imprescindível testar novas terapias antiepileptogénicas que 

possibilitem uma melhor qualidade de vida a estes doentes. 

A maioria dos FAEs modula os mecanismos excitatórios e inibitórios relacionados direta ou 

indiretamente com a neurotransmissão. No entanto, tem havido um crescente interesse no 

estudo de moléculas/ fármacos anti-inflamatórios como terapias antiepileptogénicas. Além 

dos neurónios, as células gliais, ou seja, os astrócitos e a microglia, têm um papel importante 

no processo de epileptogénese. Estas células gliais estão envolvidas no processo de 

neuroinflamação produzindo diversas citocinas e outras moléculas que irão potenciar a 

inflamação. Atualmente sabe-se que existe um circuito positivo entre a epilepsia e a 

inflamação. A atividade epiléptica promove a libertação de fatores inflamatórios e a 

inflamação, por sua vez, potencia a atividade epiléptica. Uma das citocinas pro-inflamatórias 

mais estudada no âmbito da epilepsia é a interleucina-1β (IL-1β). Estudos recentes 

demonstraram que a expressão desta molécula está aumentada em modelos animais de 

epilepsia, bem como em pacientes com esta patologia.  

A IL-1β é produzida por um complexo multiproteico associado à imunidade inata 

denominado de inflamassoma NLRP3. Este complexo é ativado na presença de agentes 

patogénicos ou perigosos ao organismo, tais como os lipopolissacarídeos (LPS) e a adenosina 

trifosfato (ATP). Os LPS são moléculas que estão presentes na membrana exterior de bactérias 

gram-negativas, enquanto o ATP é uma molécula que transporta energia e é essencial às 

células. Ao ser ativado, o inflamassoma NLRP3 promove a clivagem da pro-IL-1β (forma inativa) 

em IL-1β, através da ativação da capase-1. Na forma ativa, a IL-1β sai da célula e promove a 

inflamação nas células vizinhas. 

Diversos estudos têm-se focado na modulação do mecanismo de ação desta interleucina, 

através de anticorpos anti-IL-1β ou através de antagonistas do seu recetor. Medicamentos que 

contêm substâncias como Anacinra (antagonista do recetor humano da interleucina-1) ou 

Canacinumab (anticorpo anti-IL-1β monoclonal totalmente humanizado) têm sido amplamente 

utilizados no tratamento de doenças relacionadas com o inflamassoma NLRP3, tal como a 

artrite reumatóide. No entanto, até 2016 ainda nenhum destes medicamentos tinha sido 

testado em doentes epilépticos. Casos clínicos reportados recentemente têm demonstrado a 
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eficácia destes medicamentos em doentes com epilepsia refratária. Até então, apenas se 

tinham realizado estudos com substâncias similares em modelos animais.  

Adicionalmente, também foram desenvolvidos estudos para inibir a caspase-1, que tiveram 

sucesso na supressão de atividade epiléptica em modelos animais, mas não foram aprovados 

nos ensaios clínicos, ficando apenas na fase II. 

O presente estudo teve como principal objetivo modular a ativação do inflamassoma NLRP3 

e avaliar o impacto na atividade epiléptica de fatias organotípicas. 

As fatias organotípicas são um ótimo modelo ex vivo, uma vez que preservam a arquitetura 

tridimensional, as conexões neuronais e as interações entre os neurónios e células gliais, por 

longos períodos. Além disso, também permitem testar potenciais fármacos de modo mais 

rápido, menos doloroso e menos dispendioso do que aconteceria em modelos animais. 

Inicialmente foi estabelecido o modelo de ativação do inflamassoma NLRP3 em fatias 

organotípicas de hipocampo e córtex preparadas a partir dos cérebros de ratos Sprague-

Dawley com 6/7 dias de vida, por exposição a diferentes concentrações de LPS (5, 10 e 

20ng/mL) durante 3 e 6h ou a LPS (10ng/mL) e ATP (1mM) simultaneamente. Após uma pré-

incubação apenas com LPS durante 3h, o ATP foi co-incubado com o LPS durante mais 3h. De 

modo a escolher a melhor condição de ativação do inflamassoma, estudou-se a expressão 

proteica da αII-espectrina, para avaliar a morte celular, de componentes do inflamassoma 

(NLRP3 e ASC), e de marcadores das células gliais (Iba1 e GFAP). Adicionalmente foram 

quantificados, no tecido e no meio de cultura, os níveis de duas citocinas pro-inflamatórias: a 

IL-1β e os Fatores de Necrose Tumoral Alfa (TNF-α). Verificou-se que a exposição das fatias 

organotípicas ao LPS/ATP promoveu a diminuição de necrose, bem como a potenciação da 

libertação de citocinas para o meio extracelular. Uma vez que estes processos são 

característicos da ativação do inflamassoma, optou-se por utilizar esta condição. 

Posteriormente foi verificado o efeito da ativação do inflamassoma, pelo LPS/ATP, nas 

células gliais e na atividade epileptiforme. Através da técnica de imunohistoquímica foi 

possível observar a migração da microglia em direção ao meio de cultura. Na presença de 

LPS/ATP, a secção da fatia mais próxima do meio de cultura apresentava maior densidade 

celular, relativamente ao controlo, e maior ativação da microglia. Estas características 

correspondem a um processo de microgliose. Uma vez que existia elevada produção de IL-1β e 

microgliose nas fatias expostas a LPS/ATP antecipou-se um aumento na atividade 

epileptiforme nestas fatias. No entanto, tal não foi observado. As fatias expostas aos 

ativadores do inflamassoma apresentaram um número de bursts por fatia e características 

intrínsecas dos bursts semelhantes aos observados em fatias controlo. Os bursts são conjuntos 

de atividade neuronal excessiva que representam a fase ictal (correspondente à crise 

epiléptica). 

Após uma avaliação cuidada verificou-se que as fatias controlo, não sujeitas à adição de 

fármacos, exibiam uma elevada atividade epileptiforme. As fatias denominadas controlo neste 

estudo sofreram apenas uma mudança do meio de cultura, processo este que já havia sido 

descrito por diversos estudos. Durante os primeiros 14 dias in vitro, as fatias foram cultivadas 

num meio que continha soro de cavalo (meio Opti-MEM). Como este soro não é quimicamente 

definido, ou seja, varia de lote para lote, o meio de cultura foi alterado para um meio sem soro 

(meio Neurobasal A) no dia antes da adição dos fármacos. No entanto, verificou-se que as 

fatias controlo apresentavam claramente mais atividade epiléptica, que as fatias cultivadas 

sempre em meio Opti-MEM. 
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Posteriormente foi avaliado o impacto da inibição do inflamassoma NLRP3 na produção da 

IL-1β e na microgliose, uma vez que tinham sido potenciadas na presença de LPS/ATP. De 

modo a inibir o inflamassoma, utilizou-se um inibidor seletivo deste complexo multiproteico 

denominado de MCC950 (10μM). Na presença dos ativadores do inflamassoma, o MCC950 não 

foi capaz de reverter a libertação da citocina pro-inflamatória nem a microgliose. 

Por estudos electrofisiológicos verificou-se que na presença dos ativadores do 

inflamassoma, o MCC950 não foi capaz de reverter a atividade neuronal excessiva. No entanto, 

quando o MCC950 foi incubado sozinho, observou-se uma clara diminuição da atividade ictal 

nas fatias organotípicas. Conclui-se que a atividade epileptiforme induzida nas fatias 

organotípicas pela mudança do meio de cultura era dependente do inflamassoma, dado que 

foi revertida por incubação com o seu inibidor. 

Em suma, os nossos resultados demonstram que o inflamassoma NLRP3 está relacionado 

com a indução e potenciação da atividade epileptiforme. Adicionalmente, também sugerem 

que o MCC950 é um potencial agente terapêutico para a epilepsia e que o inflamassoma 

NLRP3 deve continuar a ser meticulosamente estudado como potencial alvo terapêutico para a 

epilepsia. 

 

 
Palavras - chave| Atividade epileptiforme, inflamassoma NLRP3, MCC950, neuroinflamação, 
fatias organotípicas. 
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ABSTRACT 

 
Extensive evidence has supported the involvement of neuroinflammation in epileptic 

seizures. Recently, analysis of serum blood samples of epileptic patients revealed an increased 

production of several pro-inflammatory cytokines, namely interleukin-1β (IL-1β).This protein is 

produced by NLRP3 inflammasome, a cytosolic multiprotein complex involved in innate 

immune response. The canonic activation of NLRP3 inflammasome involves a priming signal (as 

lipopolysaccharides – LPS), which upregulates the expression of NLRP3 and pro-IL1β; and an 

activating signal (as adenosine triphosphate – ATP), which promotes the assembly of the 

complex.  

The goals of this study were to enhance epileptiform activity of organotypic slices through 

LPS/ATP – activated NLRP3 inflammasome and to reduce this activity by selectively inhibiting 

the inflammasome.   

Organotypic cortex-hippocampus slices of Sprague-Dawley rats with 6/7 days were exposed 

to different LPS concentrations (5, 10, 20ng/mL) at 3 or 6h or LPS (10ng/mL) plus ATP (1mM) to 

choose the best condition to activate the NLRP3 inflammasome. In order to inhibit the 

inflammasome, a selective inhibitor, MCC950 (10μM), was added 1h before co-incubation with 

LPS and ATP. Negative controls with each compound alone were carried out in some assays. 

Regarding inflammasome activation, LPS and ATP together decreased necrosis (assessed by 

ratio SBDP120/α-IISpectrin) and potentiated the release of pro-inflammatory cytokines 

(interleukin-1β (IL-1β) and tumor necrosis factor α). These events are characteristics of NLRP3 

inflammasome activation. Expression of inflammasome components (NLRP3 e ASC) and glial 

cells markers (Iba1 e GFAP) were also evaluated, but did not show differences. 

In LPS/ATP presence, slices presented microgliosis in the layers near the culture medium. 

However, they depicted a similar epileptiform activity when compared with control slices, 

which were not exposed to drugs. In this study was possible to verify that control slices, that 

only underwent culture medium exchange, had an exacerbated synchronous neuronal activity, 

when compared with slices that did not undergo this process. 

In slices treated with MCC950 in the presence of LPS/ATP, neither IL-1β release nor 

microgliosis were reversed by MCC950. Moreover, NLRP3 inflammasome inhibitor did not 

affect epileptiform activity in the presence of LPS/ATP. Nevertheless, when MCC950 was 

incubated alone, the epileptiform activity was dramatically reduced. That is, MCC950 reversed 

the epileptiform activity induced by medium exchange, suggesting that this process involved 

the NLRP3 inflammasome.   

Our findings demonstrate the important role of NLRP3 inflammasome in the promotion of 

epileptiform activity and begin to unravel a potential target for antiepileptic therapy.  

 

 
Keywords| Epileptiform activity, NLRP3 inflammasome, MCC950, neuroinflammation, 
organotypic slices. 
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1. INTRODUCTION 

1.1. Epilepsy 

 

Epilepsy is a neurological disease characterized by the occurrence of at least one epileptic 

seizure. This epileptic event is transient and happens due to abnormal and prolonged 

synchronization of neuronal electric activity in the brain (Fisher et al., 2014). The official 

definition of epilepsy formulated by a Task Force of the International League Against Epilepsy 

(ILAE) includes the occurrence of at least two seizures with more than 24h apart; one seizure 

and a risk comparable to those who have had two unprovoked seizures (at least 60%); or the 

diagnosis of an epilepsy syndrome (a clinical condition that is defined by a group of signs and 

symptoms such as type of epileptic seizure, age of onset, electroencephalogram pattern, and 

family history)(Fisher et al., 2014). 

This brain disease is one of the most prevalent and disabling neurological disease affecting 

around 65 million people worldwide (Ngugi et al., 2010). In Portugal, according to Liga 

Portuguesa Contra a Epilepsia (LPCE), 40 to 70 thousand people may suffer from epilepsy, in a 

ratio of 1:200 (http://static.lvengine.net/epilepsia/Imgs/GENERALIDADES(1).pdf seen at 

22.12.2017). Recent data showed that the number of patients, both adults and children, with 

active epilepsy (under treatment or with recent seizures) is rising, probably due to population 

growth (https://www.cdc.gov/media/releases/2017/p0810-epilepsy-prevalence.html seen at 

22.12.2017).  

After the patient has a first epileptic seizure it is important to know the cause of epilepsy. It 

is critical for the treatment to know if the epilepsy origin is structural, infectious, metabolic, 

immune, yet unknown or with more than one etiology (Scheffer et al., 2017).  

 
1.1.1.  Mesial Temporal Lobe Epilepsy and the hippocampus 

 

Mesial temporal lobe epilepsy (MTLE) is an epilepsy syndrome characterized by 

epileptogenic abnormalities in mesial temporal lobe, especially in hippocampus. This is the 

most common form of resistant epilepsy to antiepileptic drugs. Only by surgical treatment is 

possible to abolish the disabling seizures. The histopathological hallmark of MTLE is 

hippocampal sclerosis that occurs due to pyramidal cell loss of Cornu Ammonis (CA), part of 

hippocampus, mainly in CA1 and CA4 (Blümcke et al., 2013) (Fig. 1). Associated with this 

neuronal cell loss is a severe pattern of astrogliosis (explained in the next chapters) that causes 

shrinkage and hardening of tissue (Chang and Lowenstein, 2003). In addition to these 

morphological features, neurogenesis (Brooks-Kayal et al., 1998) and alterations in the 

gamma-aminobutyric acid type A (GABAA) receptors on the surface of hippocampal dentate 

granule cells (Parent et al., 1997) also occur. 

In a normal hippocampus, excitatory inputs from entorhinal cortex go directly to dentate 

gyrus (DG), which in turn projects to CA3. However, in abnormal hippocampus, as a result of 

neuronal cell loss in CA3, mossy fiber axons from dentate granule cells start to sprout 

aberrantly and to synapse on dendrites of neighboring dentate granule cells, resulting in a 

excitatory feedback loop (Chang and Lowenstein, 2003). Moreover, there is a loss of inhibition 

due to death of interneurons (de Lanerolle et al., 1989). All these events, promote the 

appearance of hypersynchronous neuronal discharges that are responsible for generating 

spontaneous seizures. 

http://static.lvengine.net/epilepsia/Imgs/GENERALIDADES(1).pdf
https://www.cdc.gov/media/releases/2017/p0810-epilepsy-prevalence.html
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Patients with MTLE normally have a history of febrile seizures (Choy et al., 2014) or injuries, 

such as head injury or infections, within the first 5 years of life, which suggest that during 

development brain insults play a major role in epileptogenic hippocampal damage (Engel, 

2001). The time between a brain insult and onset of spontaneous recurrent seizures (i.e., the 

latent period) is highly variable, ranging from months to years. In this latent period a normal 

brains starts to develop epilepsy in a process called epileptogenesis (Herman, 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Experimental models of Epilepsy 

 

To develop therapeutics that can interfere with epileptogenesis it is crucial to study the 

alterations that occur in the brain before epilepsy develops. It is not possible to determine 

these changes in human tissue because the only human samples derive from brain surgeries of 

refractory epilepsy patients, which means that at this point epilepsy is already very well 

establish. For this reason, over the last decades, experimental models of epilepsy have been 

developed, which have been crucial to improve the knowledge of the basic mechanisms of 

epileptogenesis and seizure generation. 

Epilepsy consists of multiple heterogeneous syndromes with many etiologies and different 

age of onset. Therefore, experimental models, in vivo or in vitro, mimic different types of 

epileptic seizures, syndromes or just specific aspects of the disease.  

In vivo animal models have been categorized into different seizure models: chemical or 

pharmacologic (induced by pilocarpine or kainic acid, for example); electrical stimulation (such 

as the kindling model); genetic (knock-out of genes related with dysfunction of ion channels, 

receptors, enzymes or transporters); developmental (like the febrile seizures model) and 

trauma (such as cortical undercut model) (Kandratavicius et al., 2014; Löshcer, 2002; Raol and 

Brooks-Kayal, 2012). The most commonly used models to mimic human temporal lobe epilepsy 

(TLE) are pilocarpine (an acetylcholine receptor agonist) model, kainate (a glutamate analogue) 

model and kindling model, a process that triggers epileptic seizure through repeated low-

intensity electrical stimulation in a given brain region. All of them are used to study the 

mechanism of epileptogenesis, cognitive deficits and develop therapies (Raol and Brooks-Kayal 

2012). Although there are many similarities between human epilepsy and these models, the 

research of epileptogenic mechanisms and antiepileptic drug screening is accomplish at the 

expense of high mortality of animals (rats or mice) and high variability in the spontaneous 

Fig. 1 - The neural circuitry in the hippocampus (Deng et al., 2010). 
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seizures frequency and severity. Moreover, they are costly and time-consuming procedures, 

mainly the kindling model (Kandratavicius et al., 2014). 

The mechanistic features of epilepsy can also be studied through in vitro models. Reduced 

biological systems, like brain slices, allow to detail cellular and molecular processes related 

with epileptogenesis. These systems maintain their tridimensional structure, allowing the 

preservation of neuronal circuits necessary for the development of spontaneous seizures 

(Wong, 2011). Brain slices can be acute, which means that they are maintained for several 

hours ex-vivo, mainly for electrophysiological activity recordings or release experiments after 

short incubation with stimuli. However, studies of chronic actions resulting from 

pharmacological intervention are not possible in these preparations (Humpel, 2015; 

Sundstrom et al., 2005). For longer studies is essential to use organotypic brain slices, which 

can be maintained in culture from one week up to 6 months (Gogolla et al., 2006). 

 

 1.2.2. Organotypic Hippocampal Slice Cultures (OHSC) 

 

Organotypic slice cultures were established using the roller tube technique (Gähwiler, 

1981), that later was modified and optimized by Stoppini et al. (1991), who developed the 

interface method. This last approach allows slices to be cultured on semipermeable 

membraned in a semi-three dimensional structure where as the original technique only 

generates a quasi-monolayer slice.  

Both culturing techniques can be used to prepare organotypic slices from different parts of 

the brain, such as cerebellum (Ghoumari et al., 2003), thalamus (Molná and Blakemore, 1998) 

or striatum (Becq et al., 1999), but hippocampal slices, either from rats or mice, are the most 

used (Organotypic Hippocampal Slice Cultures - OHSC). The age of the animal from which the 

brain tissue is removed varies. Early postnatal pups with 6 or 7 days are easier to dissect. 

Cytoarchitecture is already established and nerve cells survive better to explantation (A De 

Simoni et al., 2006; Gähwiler et al., 1997). Moreover, slices obtained from animals between 

birth to 5 days, for mice, and to 15 days, for rats, show more reproducibility, survival, and 

morphological organization (Muller et al., 2001). 

OHSC has a well-defined cellular architecture of the hippocampus and therefore preserves 

the in vivo organizational features. The neuronal connectivity, the glial-neuronal interactions, 

the synaptic circuitry, chemical signaling and neurotransmitter receptors distribution remain 

intact in this type of culture (Gähwiler, 1981; Gähwiler et al., 1997; Stoppini et al., 1991). The 

deafferentation and deefferentation occurring during tissue slicing is known to cause cell 

death. However, after 2 weeks in culture, slices recover from the altered metabolic state and 

dead cells are washed away. The surface cells are healthy, receiving and sending inputs from 

intact axons (A De Simoni et al., 2006; Gähwiler, 1981). It is worth noticing that as an ex vivo 

preparation, OHSC does not have a functional vascular compartment, so effects of blood flow 

or recruitment of inflammatory cells from peripheral nervous system cannot be considered 

(Sundstrom et al., 2005; Q Wang and Andreasson, 2010). 

These preparations need to be cultured for at least 10 to 14 days to guarantee that they are 

not activated by endogenous release of calcium or glutamate and that reactive astrogliosis is 

minimized (Humpel, 2015). During this period, slices mature and intrinsic axonal projections 

become stabilized, while nerve cells continue to differentiate and to develop a tissue 
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organization that closely resembles that observed in situ (A De Simoni et al., 2006; Gähwiler et 

al., 1997). 

These features, closely related to in vivo, enable the study of central nervous system 

(CNS) function and dysfunction and understand a variety of processes over time, like 

neurogenesis, synaptogenesis, neuronal loss, calcium homeostasis and epileptogenesis. OHSC, 

as a complex multicellular model that reflects the environment present in vivo, also allows to 

study a selection of compounds and to identify their mode of action for use in in vivo tests. 

 

1.2.2.1. OHSC as a model of epileptogenesis  

 

OHSC show many epileptogenic alterations that are also observed in human epileptic 

tissue. Studies of neuronal activity in these slices showed that CA1 and DG have higher 

percentage of cell death, but CA3 is spared (Laake et al., 1999; Noraberg et al., 1999; Vornov et 

al., 1991). As a consequence of this neuronal death, partly due to deafferentation occurring 

during tissue slicing, axons from mossy fiber pathway start to sprout leading to aberrant 

connections (Frotscher and Gähwiler, 1988) and consequentially to hyperexcitability. 

Additionally, there is a loss of inhibition due to death of interneurons (Cossart et al., 2001). 

Together these two events promote the development of spontaneous seizures. Nevertheless, 

it should be noted that cultures up to 30 days in vitro (DIV) with well-preserved inhibitory 

interneurons have been described (Dyhrfjeld-Johnsen et al., 2010). 

Dyhrfjeld-Johnsen et al. showed, in slices cultured in serum-free medium, the appearance 

of epileptiform activity related with slices age (Dyhrfjeld-Johnsen et al., 2010). This activity 

exhibit interictal discharges, which occur among seizures, or ictal discharges, which appear 

during a seizure. According to this study, epileptiform activity starts to develop after 7 DIV. 

Between 14 and 17 DIV, interictal-like spikes and bursts appear, preceding increasingly ictal-

like discharges after 21 DIV. This resembles the latent period that occurs between an initial 

event of an injury and the appearance of spontaneous recurrent seizures that is characterized 

in MTLE patients (Herman, 2002). This peak of seizure-like activity at 14 DIV is coincidence with 

a later secondary peak of cell death, being the first after slicing (Berdichevsky et al., 2012). It is 

widely accepted that severe and prolonged seizures (i.e. status epilepticus) result in neuronal 

death even in humans (Dam, 1980; Henshall and Meldrum, 2012). Hippocampal volume loss is 

proportional to the duration of epilepsy (Henshall and Meldrum, 2012). 

Recent in vivo studies in mice have shown that under epileptic seizures neuronal stem cells 

start to divide symmetrically and undergo a conversion into reactive astrocytes (Sierra et al., 

2015). In OHSC, a reactive astrocytic response during culturing process is described (Coltmann 

and Ide, 1996). This appearance of astrogliosis strongly influence the generation of new 

granule cells (a process called neurogenesis). Immediately after preparation, slices have a 

neurogenesis rate equivalent to in vivo condition. However, after one week of cultivation the 

rate of neurogenesis decreases dramatically (80-90%) (Namba et al. 2007; Alberi et al. 2016). 

Both these morphologic features, severe pattern of astrogliosis and loss of neurogenesis are 

observed in MTLE-patients. 
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1.3. Neuroinflammation related to Epilepsy  

 

Neuroinflammation is classically a beneficial process that protects central nervous system 

by removing pathogens and helping in tissue healing. Nevertheless, when extent or duration of 

inflammation exceeds the homeostatic threshold, the beneficial effects turn into toxic and 

harmful effects, contributing to a range of disorders including Alzheimer’s disease, Parkinson’s 

disease and epilepsy (Lénárt et al., 2016; Vezzani et al., 2013). 

Pre-clinical and clinical studies reinforce the idea of a positive feedback loop between 

epilepsy and inflammation (Ravizza and Vezzani, 2006; Turrin and Rivest, 2004; Xu et al., 2013). 

Epileptic seizures increase the production of pro-inflammatory cytokines, like interleukin-1β (Il-

1β) and tumor necrosis factor-alpha (TNF-α), by glial cells (microglia and astrocytes). Also 

induce an upregulation of pro-inflammatory molecules such as chemokines, prostaglandins 

and toll-like receptors (TLRs). These inflammatory mediators, in turn, can trigger neuronal 

hyperexcitability, through modulations of ion channels in neurons and glutamate release in 

glial cells, decrease seizure threshold and induce the breakdown of the blood-brain barrier 

(BBB) (Shimada et al., 2014).  

 

1.3.1. Microglia 

 

Microglia are the innate immune cells in the CNS. These glial cells are the resident 

macrophages in the brain and spinal cord and its major function is the body defense against 

injury, infections and diseases. 

The distribution of these cells differs between species and brain structures. In mouse brain, 

the number of microglial cells varies between 5 and 12% of total neural cells (Lawson et al., 

1990) and, in human brain, its ranges between 0.5 and 16% (Mittelbronn et al., 2001). 

Regarding brain structures, hippocampus has one of the most densely populated regions of 

microglia. Particularly, DG appears to have more microglia than CA (Lawson et al., 1990). 

With their macrophage capacity for phagocytosis, microglia destroy damaged and dying 

neurons who suffered excitotoxicity to protect the nearby healthy cells. These cells also 

facilitate local tissue repairing and the recovery of injured neurons through release of 

proinflammatory mediators, neuroprotective and trophic factors (Mirrione and Tsirka, 2011). 

Besides neuroprotective function, microglia can also be neurotoxic, since inflammatory 

molecules, when released for too long or in high quantities, are toxic to neurons and have a 

negative impact in their function. Moreover, microglia release other toxic factors (as nitric 

oxide) which leads to oxidative stress and, consequently, to extensive neuroinflammation and 

recruitment of peripheral immune cells into the damaged brain, compromising the BBB 

(Mirrione and Tsirka, 2011). 

Unlike macrophages of the peripheral immune system elsewhere, microglia have a 

specialized phenotype. The microglia resting, or quiescent ramified state, is characterized by 

cells with elongated processes. When the microglia detect a potentially danger insult to the 

CNS (as inflammation, altered neuronal activity, trauma), retract their processes and change to 

a rounded amoeboid morphology, thus becoming activated. In that phase, microglia become 

phagocytic, proliferative and migratory, moving to the lesion site, exhibiting the capacity to 

release chemokines, cytokines, neurotrophic factors and to present antigens (Kettenmann et 
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al., 2011; Mirrione and Tsirka, 2011). Sometimes when this activation is too extensive is called 

‘microgliosis’. 

Evidences suggest that microglial activation is heterogeneous. In a way to simplify, its 

activation has been categorized into two groups: M1 (“classical”) or M2 (“alternative”), 

depending on the nature of the triggered stimulus. M1 produces pro-inflammatory mediators, 

developing a classical inflammatory reaction, whereas M2 produces anti-inflammatory 

mediators, being associated to tissue repairing and homeostasis restoration (Tang and Le 

2017; Sousa, et al. 2017).  

Although not able to differentiate between microglia phenotypes, ionized calcium binding 

adaptor molecule 1 (Iba1) is one of the most used markers to detect all forms of microglia both 

in rodents and humans (Sousa et al., 2017). However, it should be noted that Iba1 does not 

differentiate microglia from macrophages, neutrophils or monocytes upon infiltration of these 

cells into the CNS (Kettenmann et al., 2011; Sousa et al., 2017). 

 

1.3.2. Astrocytes 

 

Astrocytes are the major glial cell population within the CNS. In the cortex of the rodents 

there is one astrocyte for three neurons and in human cortex this proportion is 1.4 astrocytes 

for every neuron (Nedergaard et al., 2003), which means that there is an increasing number of 

these glial cells with brain evolution.  

In XIX century, astrocytes were seen as supportive cells of neural tissue, they were just the 

glue of the brain and a sensitive marker of diseased tissue. The word “glial” originates from the 

word “gliok”, which means “glue” or slime in Greek. However, over the past 25 years it has 

become clear that astrocytes are a specialized type of cells responsible for a wide variety of 

complex and essential functions in the healthy CNS. These glial cells regulate blood flow, 

release energy substrates directly in node of Ranvier and other substances, like transmitters 

and growth factors, into synapses, participating in synaptic function and plasticity. Also 

maintain extracellular balance of ions, fluid balance and cellular transmitters (Nedergaard et 

al., 2003; Perea et al., 2009; Sofroniew, 2009; Sofroniew and Vinters, 2010).  

Besides these functions, astrocytes have a major role in the response to CNS insults 

(infection, trauma, neurodegenerative disease and ischemia), which involves changes in their 

molecular expression and morphology (Sofroniew, 2009, 2015). 

Astrocytes are a very heterogeneous group of cells but they can be divided in two main 

subtypes, protoplasmic or fibrous, depending on cellular morphology and anatomical 

locations. Protoplasmic astrocytes are localized in gray matter, such as CA and DG in the 

hippocampus, and exhibit numerous fine processes in a uniform globoid distribution. Fibrous 

astrocytes are found throughout all white matter, like Schaffer collateral in hippocampus, and 

exhibit fewer and longer processes than protoplasmic ones (Andriezen, 1893). 

In CNS, astrocytes are orderly and well organized, in a non-overlapping manner. 

Nevertheless, when these glial cells detect an insult they start to proliferate and to extend 

their process beyond their own individual domain, resulting in a highly overlapping net of 

processes. Additionally, astrocytes’ cell body hypertrophy also occurs. This modification, called 

reactive astrogliosis, is not an all-or-none phenomenon, is a set of gradual changes depending 

on the type of insult. Sometimes, when this reactive astrogliosis is too severe there is a glial 

scar formation, which is a narrow and compact scar that can act as neuroprotective barrier to 
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inflammatory cells and infectious agents (Sofroniew and Vinters, 2010; Sofroniew, 2015). It is 

noteworthy that recently, Liddelow suggested the existence of two (or more types) of reactive 

astrocytes, one type being helpful and the other being harmful (Liddelow and Barres, 2017). 

Nevertheless, this division is still poorly understood and is not yet widely used. 

The morphological changes can be perceived through immunohistochemical techniques. 

Glial Fibrillary Acidic Protein (GFAP), an intermediate filament protein, is the most used marker 

for astrocytes. When astrocytes are hypertrophic, an upregulation of this protein occurs (Ben 

Haim et al., 2015). However, it is now clear that not all astrocytes express GFAP and not all 

cells in the CNS that express GFAP are astrocytes (Oberheim et al., 2012; Sofroniew and 

Vinters, 2010).  

 

1.3.3. Cytokines  

1.3.3.1.  Interleukin -1β (IL-1β) 

 

IL-1β is a proinflammatory cytokine rapidly synthesized and released primarily by microglia 

(Giulian et al., 1986) and later by astrocytes (W Zhang et al., 2000) under pathological 

conditions. High levels of IL-1β were detected in epileptic patients (Uludag et al., 2015). After 

precipitating events like infections or inflammation, the systemic host, especially young 

children, responds with fever. Sometimes, this fever provokes convulsions (febrile seizures) by 

a mechanism that involves IL-1β but is not fully understood. It is known that IL-1β intracerebral 

administration in immature rodents decreases the threshold for induction of experimental 

febrile seizures (Dubé et al., 2005). Moreover, in mice, the ablation of the gene for IL-1β 

receptor, type 1 IL-1 receptor (IL-1R1), gave them resistance to experimental febrile seizures 

(Dubé et al., 2005).  

In pharmacologic or kindling models, the rapid increase of IL-1β levels during acute seizures 

subsisted after seizure reduction (MG De Simoni et al., 2000; Ravizza et al., 2008). 

Furthermore, these levels did not return to basal levels during epileptogenesis or in chronic 

epileptic tissue, which prompted the development of spontaneous seizures. These long-lasting 

high levels of IL-1β were expressed by astrocytes and not by microglia, which also happens in 

human TLE tissue. The chronic IL-1β expressing astrocytes suggest that astrocytes and IL-1β 

play a predominant role in sustaining chronic inflammation underlying the spontaneous 

seizures onset (Ravizza et al., 2008). 

When seizures evoke rapid production of this cytokine, the expression of endogenous IL-1R 

antagonist (IL-1RA) should rapidly increase and occlude the activation of the IL-1R1, which is 

what happens in typical peripheral inflammatory reactions. Nevertheless, in this pathologic 

situation IL-1RA is upregulated to a far lower extent and with a substantial delay (MG De 

Simoni et al., 2000; Oprica et al., 2003; Vezzani and Baram, 2007). Thus, the brain is less 

efficient in shutting down the effects of a sustained rise in endogenous IL-1β once IL-1R1, 

expressed in hippocampal neurons, is activated repetitively. 

IL-1β promotes excitability and excitotoxicity in hippocampal pyramidal cells through a 

pathway that also involves another proinflammatory cytokine, the high-mobility group box- 1 

(HMGB1). Interaction between IL-1R1 and Toll-like receptor 4 (TLR4), a receptor activated by 

HMGB1, enhances calcium influx athwart phosphorylation of N-methyl-D-aspartate (NMDA) 

receptor subunit 2B (NR2B). This increased calcium permeability of NMDA receptor plays a role 

in neuronal excitability (Shimada et al., 2014; Vezzani et al., 2011). Also, in vivo experiments 
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clearly demonstrate IL-1β-induced hyperexcitability. Intracerebrally administration of IL-1β in 

pharmacological models exacerbates seizures (Vezzani et al., 1999) and administration of IL-

1R1 antagonist reduces them (Vezzani et al., 2000). Besides, IL-1β inhibits GABAA inhibitory 

receptor functions in hippocampal neurons (S Wang et al., 2000). 

IL-1β also plays a role in BBB permeability. When this cytokine is produced by seizures 

promotes neuronal cell death and the breakdown of BBB. This breakdown leads to BBB 

leakage and increases the permeability to different molecules (Shimada et al., 2014; Vezzani 

and Granata, 2005). One of them is albumin. This type of proteins, upon entrance into the 

brain, induces an upregulation in inflammatory mediators and reduces the potassium and 

glutamate uptake of astrocytes, leading to enhancement of neural excitability (Shimada et al., 

2014). Although, both albumin and IL-1β inhibit the astrocytic reuptake of glutamate, IL-1β 

also increases its astrocytic release via TNF-α induction (Shimada et al., 2014; Vezzani et al., 

2008). 

Taken together, several lines of evidences support the role of IL-1β as an epileptogenic 

cytokine, enhancing hippocampal neurons hyperexcitability and decreasing seizure threshold. 

 

1.3.3.2.  Tumor Necrosis Factor-α (TNF-α) 

 

TNF-α is another inflammatory factor scattered by glial cells, mainly by microglia (Chung 

and Benveniste, 1990; Welser-Alves and Milner, 2013). This cytokine acts as a proinflammatoy 

stimulus inducing the expression of the inactive IL-1β proform. However, IL-1β maturation and 

release are not related to TNF-α, but rather to protein complexes named inflammasomes 

(Schroder and Tschopp, 2010) (explained in the next chapter). 

A number of studies, both clinical and pre-clinical, have revealed an increased expression of 

TNF-α in the brain of human epileptic patients (Sinha et al., 2008) and in mice with pilocarpine-

induced seizures (Turrin and Rivest, 2004). 

TNF-α and IL-1β act synergistically to promote neuronal hyperexcitability. IL-1β-induced 

TNF-α stimulates astrocytes to release glutamate, which will lead to increased levels of 

extracellular glutamate. This high concentration depolarizes the membrane potential of 

glutamatergic neurons, thus promoting their stimulation (Shimada et al., 2014). In addition, 

TNF-α regulates neuronal circuit homeostasis by modulating the frequency of different 

receptors. When this cytokine binds to one of its receptor, tumor necrosis receptor 1 (TNFR1), 

causes a rapid exocytosis of AMPA receptors, which have a high affinity to glutamate, in 

hippocampal pyramidal cells. Many of these newly exocytosed AMPA receptors lack GLUR2 

subunit. As this subunit render the channel impermeable to Ca2+, the lacking of it will make 

AMPA receptor more permeable to this cation (Stellwagen et al., 2005). Simultaneously, TNF-α 

can cause an endocytosis of GABAA receptors, promoting a decrease in inhibitory synaptic 

strength (Stellwagen et al., 2005). Summing up, this proinflammatory cytokine is able to alter 

the balance between excitation and inhibition in a manner that potentiates the appearing of 

spontaneous epileptic seizures. 

It should be noted that TNF-α has been also associated with neuroprotective mechanisms. 

In OHSC prepared from mice, a high concentration of TNF-α enhanced excitotoxicity, however 

in lower concentrations promoted neuroprotection against AMPA-induced neuronal death 

(Bernardino et al., 2005). The TNF-α-induced mechanisms are mediated by its receptors. 
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TNFR1 is involved with toxicity, whereas tumor necrosis receptor 2 (TNFR2) is involved with 

neuroprotective effect. 

 

1.4. Inflammasomes 

 

The inflammasome concept was first described in 2002 by Tschopp and colleagues 

(Martinon et al., 2002). The authors identified a caspase-1 activating complex and called it 

inflammasome, stating that it was an important arm of the innate immunity. 

An inflammasome is a cytosolic multiprotein complex that triggers the activation of 

inflammatory caspases, mainly caspase-1, allowing the cleavage and release of pro-

inflammatory cytokines and subsequently an inflammatory response. The signaling cascades 

that are induced by cytokines promote immunopathogenic conditions that lead to neuronal 

death and a pro-inflammatory cell death known as pyroptosis (Bergsbaken et al., 2010). 

Therefore, inflammasomes play a pathogenic role in neurological diseases such as Alzheimer’s 

disease, traumatic brain injury, multiple sclerosis (Freeman et al., 2017; Freeman and Ting, 

2016), vascular disease (Lénárt et al., 2016) and epilepsy (Edye et al., 2014).  

Each inflammasome contains a pattern recognition receptor (PRR) that senses the presence 

of microorganisms by recognizing invariant microbial motifs, which are called pathogen-

associated molecular patterns (PAMPs), and endogenous molecules released from damaged 

cells, entitle danger-associated molecular patterns (DAMPs) (Takeuchi and Akira, 2010). Thus, 

these complexes direct the responses of the innate immune system to pathogenic stimuli. 

These PRR, expressed by different cell types (microglia, astrocytes, monocytes, macrophages 

and others), can be subdivided in two major classes according to their subcellular localization 

(Fig. 2A). Toll-like receptors (TLRs) and C-type lectin receptors (CTLs) are transmembrane 

proteins which sense extracellular milieu or endosomal signals. The second class, composed by 

intracellular proteins including RIG-I-like receptor (RLR), the AIM2-like-receptor (ALR, also 

called PYHIN or HIN200) and the nucleotide-binding domain and leucine-rich repeat containing 

(NLR) proteins (also called non-officially as NOD (nucleotide-binding oligomerization domain) - 

like receptor) (Ting et al., 2008), senses intracellular signals and are the only receptors involved 

in inflammasome formation. 

The NLRs is a family of cytosolic receptors subdivided in two types depending on which N-

terminal molecule they contain. If the member of NLR family contains an N-terminal pyrin 

domain (PYD) then is subcategorized into the NLRP family (previously also called “NALPs”). But 

if it possess a caspase activation and recruitment domain (CARD) in N-terminal end, is 

subcategorized as NLRC (previously also called NOD) (Ting et al., 2008). Beyond the N-terminal 

effector PYD or CARD, NLRs also contain a C-terminal leucine-rich repeat (LRR) domain and in 

the middle a conserved central nucleotide-binding and oligomerization domain (NACHT; also 

called with the broader name of NBD) (Ting et al., 2008)(Fig. 2B). The PYD or CARD domain 

mediates downstream signal transduction. The NACHT domain has ATPase activity and it is 

essential for forming oligomeric structures that are required for inflammasome assembly. 

Lastly, the LRR repetition has autoregulatory functions and it is involved in ligand interaction 

(Schroder and Tschopp, 2010).  
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A)                                                                                                 B) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Normally, each inflammasome is composed by one sensor protein (like NLRP3), which gives 

it the name, an adaptor apoptosis-associated speck-like protein containing a CARD (ASC, also 

termed PYCARD) and a pro-caspase-1 (Fig. 2B). Nevertheless, there are some variations in the 

structure depending on the inflammasome (Lamkanfi and Dixit, 2014; Schroder and Tschopp, 

2010). ASC is composed of two domains: a PYD and a CARD; and acts as a central adaptor 

between the PYD of the sensor protein and the CARD of pro-caspase-1.  

Upon activation of inflammasome sensors mediated by PAMPS and DAMPS, ASC proteins 

assemble into multiple filamentous structures which form a platform termed ASC speck or 

pyroptosome (Hoss et al., 2017; Lu and Wu, 2015). When this ASC aggregate binds to sensor 

protein oligomers, ASC is able to recruit pro-caspase-1, leading to autoproteolytic conversion 

of the pro-enzyme into caspase-1. This active enzyme mediates the production of IL-1β and 

interleukin-18 (IL-18) pro-inflammatory cytokines and the initiation of a pro-inflammatory cell 

death named pyroptosis (Latz et al., 2013; Martinon et al., 2002). This type of cell death also 

requires cleavage of gasdermin D, which forms pores in the plasma membrane, and can be 

activated either by caspase-1 (W-T He et al., 2015; J Shi et al., 2015) or caspase-11 (Kayagaki et 

al., 2011).  

There are different inflammasomes clearly identified, such as NLRC4, NLRP1, NLRP3 or 

AIM2, which respond to different priming stimuli (Place et al., 2018; Schroder and Tschopp, 

2010). NLRP1 is activated by Bacillus anthracis anthrax lethal toxin, where as NLRC4 responds 

to a protein appendage (called type three secretion system-T3SS) found in several Gram-

positive and to flagellin proteins of Gram-negative bacteria. Moreover, AIM2 detects bacterial 

and viral dsDNA as well as self-DNA. Finally, the NLRP3 is activated by a wide and varied range 

of stimuli, which will be discussed later. It should be noted that the mechanisms associated 

with the activation of inflammasomes are still under debate. 

 

1.4.1.  NLRP3 Inflammasome 

 

The NLRP3 inflammasome is the most studied inflammasome, since it was described in 

2004 (Agostini et al., 2004), and has gathered attention in neuroscience. nlrp3 gene is defined 

as NLR family pyrin domain containing 3, while NLRP3 protein is usually designated as NATCH, 

LRR and PYD domains-containing protein 3. Before this nomenclature, nlrp3 gene was 

previously approved by RGD (from NHLBI, NIH) and HUGO Gene Nomenclature Committee 

(HGNC) as CIAS1 (Hoffman et al., 2001), C1orf7 and “cold autoinflammatory syndrome 1”. 

Fig. 2 - (A) Schematic organization of pattern recognition receptor (PRR) family. (B) Composition depiction of 
inflammasome components. Example of NLRP3 and NLRC4 as sensor proteins. 
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There are others aliases for nlrp3 gene, at least more sixteen. The most common are: 

cryopyrin, NALP3, Nucleotide-Binding Oligomerization Domain, Leucine Rich Repeat and Pyrin 

Domain Containing, PYRIN-Containing APAF1-Like Protein 1, FCAS1. 

Mutations in the inflammasome sensor NLRP3 is related with inherited cryopyrin-

associated periodic syndromes (CAPS), which include familial cold autoinflammatory syndrome 

(FACS), Muckle-Wells syndrome (MWS) and neonatal-onset multisystem inflammatory disease 

(Abderrazak et al., 2015; Ozaki et al., 2015). Furthermore, deregulation of NLRP3 

inflammasome activation underlies other multifactorial diseases, including gout, type 2 

diabetes mellitus, atherosclerosis, Parkinson’s Disease, Alzheimer’s Disease, multiple sclerosis, 

traumatic brain injury and amyotrophic lateral sclerosis (ALS) (Abderrazak et al., 2015; Baroja-

Mazo et al., 2014; Freeman and Ting, 2016; Ozaki et al., 2015). 

Regarding NLRP3 inflammasome localization in the brain, it is still a debated subject and 

needs further studies to confirm it. Although there are a countless number of articles looking 

at NLRP3 inflammasome, there are few that address the thematic of its location. It seems 

widely accepted that NLRP3 inflammasome is expressed in microglia (Edye et al., 2014; Song et 

al., 2017; Walsh et al., 2014). However it remains controversial whether astrocytes and 

neurons express it. Nevertheless is necessary to understand that inflammasome components 

and active inflammasome are expressed differently.  

In microglia, there are evidences that NLRP3 is not constitutively expressed in healthy 

conditions. It is only upregulated after priming or in disease models (Gustin et al., 2015; 

Zendedel et al., 2016). Although, it seems not to be expressed in mice models of  ALS (Debye et 

al., 2018; Johann et al., 2015). Contrariwise, caspase-1 and ASC are constitutively express 

without any stimuli. ASC is also expressed in microglia in animal models of spinal cord injury 

(Zendedel et al., 2016) and ALS (Debye et al., 2018; Johann et al., 2015). Altogether, these 

evidences indicate that microglia, in need of defending the body, has all the necessary 

components for a functional NLRP3 inflammasome (Gustin et al., 2015; Heneka et al., 2013). 

In astrocytes, NLRP3 expression depends on stimuli. In cell culture from C57BL/6JOlaHsd 

mice primed with LPS or cytokines mix, very weak levels of NLRP3 transcript and almost no 

protein were detected (Gustin et al., 2015). However, there are a minor expression of this 

inflammasome component in a spinal cord injury model (Zendedel et al., 2016) and a strongly 

expression in ALS (Debye et al., 2018; Johann et al., 2015) and in primary cultured astrocytes 

treated chronically with ethanol (Alfonso-Loeches et al., 2014). ASC resembles NLRP3 in these 

cells. Caspase-1 is expressed at low levels in healthy astrocytes (Alfonso-Loeches et al., 2014; 

Gustin et al., 2015), but at higher levels in primary cultured astrocytes treated chronically with 

ethanol (Alfonso-Loeches et al., 2014). In short, there are contradictory evidences on the lack 

of inflammatory components in these glial cells. Further understanding about when or if all 

NLRP3 components are present in astrocytes will enlighten its function in these cells. NLRP3 is 

related to many disorders, but lipopolysaccharides (LPS) still is the stimulus par excellence of 

this inflammasome.  

Lastly, there are reports congruently showing the presence of NLRP3 in healthy (Gustin et 

al., 2015) and non-healthy neurons (Debye et al., 2018; Zendedel et al., 2016). ASC and 

caspase-1 (Gustin et al., 2015) are weakly expressed in healthy primary cortical neurons and 

neuronal ASC expression is also described in disease models (Debye et al., 2018; Zendedel et 

al., 2016). Altogether, these results appear to point to the presence of all inflammasome 
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components in neurons, albeit in small amounts, indicating that the inflammasome may be 

functional in these cells. 

In summary, under certain conditions, astrocytes and neurons may also express a functional 

NLRP3 inflammasome. Nevertheless, it is unclear whether the inflammasome is expressed 

equally by all cells containing its components, regardless of the activating stimulus. Co-

localization and mRNA studies of these proteins have recently started and will help to 

understand the relevance of NLRP3 inflammasome in each type of brain cell. 

Beyond the cellular location of this multiprotein complex, a subcellular characterization of 

each inflammasome component has also started and it is controversial. Although further 

studies are required, each protein has been found in different organelles, which make this 

inflammasome assembly highly regulated, in addition to the fact that each protein is auto-

inhibited in the absent of stimulation  (Place et al., 2018). 

Under resting conditions NLRP3 localizes at the cytoplasm, but not within mitochondria, in 

primary cultured astrocytes treated chronically with ethanol (Alfonso-Loeches et al., 2014) and 

in human embryonic kidney cells and bone marrow derived macrophages (Subramanian et al., 

2013). Another study suggest that endoplasmic reticulum structures are the sites containing 

this protein in human monocytic cell line (Zhou et al., 2011). Regarding basal location of ASC, it 

is dispersed in the cell, either in the nucleus or in the cytoplasm in mouse macrophages (Y 

Wang et al., 2013). Finally, it is very well known that inactive proform of caspase-1 is located in 

the cytosol (Miao et al., 2011). 

In the presence of NLRP3 activators, all the components need to assembly to form a 

functional inflammasome. There are two theories: one suggests that NLRP3 inflammasome has 

an organelle-free cytoplasmic localization in nigericin or ATP-primed macrophages (Baroja-

Mazo et al., 2014; Y Wang et al., 2013), and the other reiterates that both NLRP3 and ASC co-

localize with endoplasmic reticulum and mitochondria organelle clusters in nigericin-primed 

human monocytic and embryonic kidney cells (Subramanian et al., 2013; Zhou et al., 2011) and 

in ethanol-primed astrocytes (Alfonso-Loeches et al., 2014). Supporting this last theory, it was 

described, in bone marrow-derived macrophages, that microtubules are responsible to drive 

the approximation of mitochondria to endoplasmic reticulum facilitating the NLRP3/ASC 

assembly and subsequent recruitment of pro-caspase-1 (Misawa et al., 2013). However, as a 

confounding factor, all inflammasome components were found in the extracellular mileu 

functioning as a danger signaling that amplifies the inflammatory response (Baroja-Mazo et al., 

2014).   

Overall, further studies are needed to understand the dynamics of NLRP3 inflammasome 

since the first triggering signal. Perhaps these subcellular locations are not mutually exclusive 

or vary depending on the upstream trigger or cell type. To my knowledge, these studies were 

never conducted in microglia, which would be interesting. 
 

1.4.1.1.  Activation and assembly of NLRP3 inflammasome 

 

NLRP3 inflammasome is activated by a wide variety of microbe or host derived triggers. The 

exact mechanism by which different stimuli activate NLRP3 remains unclear. However, it is 

widely accepted that NLRP3 can be activated through canonical or non-canonical pathways. 

Recent studies also include an alternative pathway of NLRP3 inflammasome activation (Y He, 

Hara et al., 2016). 
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Canonical pathway 

In the canonical pathway, NLRP3 activation is highly regulated and demands two 

independent signals (Fig. 3). The first signal, such as TLR ligands or endogenous molecules, 

drive the upregulation of NLRP3 and pro-IL-1β through the activation of nuclear factor kappa B 

(NF-kB) (Lamkanfi and Dixit, 2014; Ozaki et al., 2015; Place et al., 2018). Subsequently, post-

transcriptional changes occur in NLRP3 protein. Although these regulatory mechanisms are 

poorly understood, it is known that TLR4 adaptors, such as MYD88, are involved and NLRP3 is 

deubiquitinated by K63-specific deubiquitinase BRCC3 in order to become active (Y He, Hara et 

al., 2016; Place et al., 2018). Bacteria and bacterial components like LPS, viruses, TNF-α and 

others PAMPs and DAMPS can act as first trigger (Franchi et al., 2009; Y He, Hara et al., 2016; 

Ozaki et al., 2015). 

Once primed, a second signal allows assembly and activation of the NLRP3 inflammasome. 

A range of molecules act as NLRP3 activators, among them extracellular adenosine 

triphosphate (ATP), uric acid crystals, β-amyloid (Aβ), free fatty acids, cholesterol crystals, 

bacterial pore-forming toxins, bacteria, viruses, fungal or protozoan pathogens (Y He, Hara et 

al., 2016; Ozaki et al., 2015; Place et al., 2018). Without interacting directly with 

inflammasome, these stimuli induce one or more downstream cellular events that lead to 

NLRP3 inflammasome activation. The most consensual events among the scientific community 

are potassium efflux (Muñoz-Planillo et al., 2013; Rivers-Auty and Brough, 2015), generation of 

mitochondrial reactive oxygen species (ROS) (Zhou et al., 2011), cathepsin release as a result of 

phagolysosomal membrane destabilization (Hornung et al., 2008), release of mitochondrial 

DNA or cardiolipsin (Nakahira et al., 2011) and changes in osmotic pressure and cell volume 

(Compan et al., 2012). 

Focusing only on potassium efflux model, it has been proposed that extracellular ATP that 

activates P2X purinergic receptors 7 (P2X7) ATP-gated ion channels results in potassium efflux 

and simultaneously sodium influx through the cell membrane (Kahlenberg and Dubyak, 2004). 

Also, low potassium ion concentrations results in ASC speck formation (Fernandes-Alnemri et 

al., 2007) and spontaneous NLRP3 inflammasome assembly (Pétrilli et al., 2007). In recent 

studies (Y He, Zeng et al., 2016; Schmid-Burgk et al., 2016; H Shi et al., 2016) a novel protein 

has emerged as an essential regulator of NLRP3 inflammasome activation downstream of 

potassium efflux. This protein is Nek7 (never-in-mitosis A-related kinase 7), a kinase related 

with mitotic progression and DNA damage response, which binds to LRR of NLRP3 and it is 

necessary for the recruitment of ASC by NLRP3 and the formation of ASC oligomers. 

P2X7 receptors are also linked to a hemichannel protein, called pannexin-1, which 

stimulates the formation of a large pore, allowing the entry of inflammasome activators 

(Pelegrin and Surprenant, 2006). Extracellular ATP-derived catabolism products also play a role 

in NLRP3 inflammasome activation. Adenosine diphosphate (ADP) through purinergic receptor 

P2Y1 activate phospholipase C-β, which modulates Ca2+ and K+ flux, and consequently activate 

the inflammasome. Adenosine also promotes this event by activating P1 receptors (A2A, A2B 

and A3) and modulating cyclic adenosine monophosphate (Baron et al., 2015). Although 

adenosine is often described as anticonvulsant agent when coupled with receptor A1 (Boison 

and Dow, 2012), extracellular catabolism of ATP is associated with the activation of A2A 

receptors rather than  A1 receptors (Cunha et al., 1996). 
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Non-canonical and alternative pathways 

 

In non-canonical pathway, caspase-11 (caspase-4 and caspase-5 in humans) is activated 

resulting in NLRP3-dependent release of IL-1β/IL-18 and in NLRP3-independent pyroptosis 

through gasdermin D N domain (Y He, Hara et al., 2016; Kayagaki et al., 2015). Additionally, 

activated caspase-11 cleaves pannexin-1 which also promotes P2X7-mediated pyroptosis (Yang 

et al., 2015).  

Most gram-negative bacteria, but not gram-positive bacteria, activate caspase-11; however 

the signaling mechanism upstream of caspase activation remains controversial (Y He, Hara et 

al., 2016). Studies suggest that LPS has also a role in this pathway. Cytosolic LPS binds 

selectively to CARD domain of caspase-11 (Hagar et al., 2013; J Shi et al., 2015), whereas, in 

canonical NLRP3 inflammasome pathway, extracellular LPS binds to TLR4. 

The activation of NLRP3 inflammasome can also occur in response to TLR ligands alone, in 

the alternative pathway. Although not often mentioned, this pathway was described in human 

monocytes (Gaidt et al., 2016) and mouse bone marrow-derived dendritic cells (Y He et al., 

2013). In this pathway cell death-related molecules like Receptor-interacting serine/threonine-

protein kinase  (RIPK1), Fas-associated protein with death domain (FADD) and caspase-8 are 

involved (Gaidt et al., 2016). Moreover, there is no evidence for ASC speck formation or 

pyroptosis (Gaidt et al., 2016). 

 

1.4.1.2.  NLRP3 inflammasome inhibition – a particular case of  MCC950 

 

Given the evidence that NLRP3 inflammasome mediates several inflammatory diseases, it 

makes sense to think of its inhibition and inhibition of its components or end products. In fact 

targeting IL-1 has been proved to be a successful method for CAPs treatment. Current 

treatments used are: anakinra, a recombinant IL-1RA; canakinumab, a fully humanized IL-1β 

antibody; or rilonacept, a soluble decoy IL-1 receptor (Ozaki et al., 2015). These biological 

Fig. 3 - Priming and activation signals of the NLRP3 inflammasome. 
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agents can also be used in other NLRP3-related disorders (H Zhang, 2011). Recently, clinical 

cases of patients with refractory epilepsy who had their seizures controlled by anakinra 

treatment have been reported (DeSena et al., 2018; Jyonouchi and Geng, 2016; Kenney-Jung 

et al., 2016) . 

In animal models of epilepsy, modulation of IL-1β production pathway also interfered with 

seizures. Administration of IL-1RA, either peripherally or intracerebrally, reduced the incidence 

of seizures (Marchi et al., 2009; Vezzani et al., 2000). In the same way, administration of 

caspase-1 inhibitor (VX-765) reduced seizures and delayed their onset in rodents models of 

acute seizures induced by electrical stimulation or kainate (Maroso et al., 2011; Ravizza et al., 

2006). However, VX-765 (also called Belnacasan) was tested in clinical trials for treatment-

resistant partial epilepsy, but only reached phase II and was subsequently terminated. 

Besides targeting the main pyrogenic product of NLRP3 inflammasome, alternative 

methods of inhibiting NLRP3 inflammasome activation are being proposed as a possible 

therapeutics for epilepsy. The administration of small interfering RNAs (siRNA) to knock out 

NLRP3 and caspase-1 in the brain of status epilepticus rat models showed a clearly reduction of 

hippocampal neuronal loss and attenuated the severity of spontaneous recurrent seizures 

(Meng et al., 2014). 

NLRP3 inflammasome is also inhibited, indirectly, by a sulfonylurea drug called glyburide. 

This compound, used in the treatment of type 2 diabetes mellitus, acts downstream of P2X7 

receptor but upstream of NLRP3 activation. However, this drug is being associated with 

hypoglycemia in vivo, thus excluding its use in the treatment of other diseases (Ozaki et al., 

2015).  

Identification of a novel class of sulfonylurea containing compounds has revealed cytokine 

release inhibitory drugs (CRIDs). CRID3 (CP-456,773) belongs to this family of 

diarylsulfonylurea-containing compound. CRID3, also known as MCC950, was recently been 

described, by Coll et al. and colleagues, as a selective inhibitor of NLRP3 inflammasome (Coll et 

al., 2015). It inhibits both canonical and non-canonical activation of NLRP3 inflammasome, by 

blocking NLRP3-induced ASC oligomerization. This synthetic small molecule is capable of 

inhibiting NLRP3, but does not block other inflammasomes, such as AIM2, NLRC4 or NLRP1. 

Therefore, antimicrobial responses may remain intact, reducing the immunosuppressive 

effects that occur in drugs like canakinumab. 

Evidences suggest that MCC950 attenuates the severity of experimental autoimmune 

encephalomyelitis (EAE) in mouse (a model of human multiple sclerosis), and effectively 

inhibits NLRP3 inflammasome activation in a mouse model of Muckle-Wells syndrome and in 

cells from subjects with the same disease (Coll et al., 2015). Moreover, MCC950 reverses 

hypertension in mice (Krishnan et al., 2016), preserves cardiac function in animal myocardial 

infarction model (Van Hout et al., 2017), improves blood–brain barrier integrity in mice with 

intracerebral hemorrhage (Ren et al., 2018) and ameliorates the behavioral and molecular 

dysfunctions related to diabetic encephalopathy in a mice model of type 2 diabetes mellitus 

(Zhai et al., 2018). 

Pharmacokinetic and pharmacodynamic studies of MCC950 have already been performed 

(Coll et al., 2015). MCC950 is a stable compound, remaining more than 70% after 60 minutes in 

liver microsomes. The five major cytochrome P450 enzymes were only <15% inhibited. 

MCC950 has a half-live of 3.27h and an oral bioavailability of 68%. As MCC950 has a shorter 

half-life compared with canakinumab or rilonacept, it can be withdrawn if infections occur.  
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Like MCC950, ketone metabolite β-hydroxybutyrate (BHB) also selectively inhibits NLRP3 

inflammasome activation (Youm et al., 2015). BHB is a molecule exploited by heart and brain 

as an alternative energy source during exercise or caloric deficiency. Nevertheless, this 

metabolite only blocks canonical NLRP3 activation and inhibits potassium efflux from 

macrophages (Shao et al., 2015). 

A recently described compound, CY-09, appears to be promising for the therapy of 

inflammatory diseases. It blocks NLRP3 ATPase activity, resulting in the inhibition of assembly 

and activation of NLRP3 inflammasome. CY-09 showed therapeutic effects in mouse models of 

CAPS and type 2 diabetes (Jiang et al., 2017). 

Several additional biological or synthetic molecules may provide other ways for inhibiting 

the NLRP3 inflammasome in different inflammasome-related diseases (Dorfleutner et al., 

2015; Haneklaus et al., 2013; Ozaki et al., 2015; Shao et al., 2015).  

 

1.5. Treatment options in Epilepsy 

 

People with epilepsy face cognitive and learning problems, work and driving limitations, 

sleeping problems, symptoms of depression, anxiety or mood changes. This disease can also 

affect relationships and motherhood. The risk of death in these patients is higher if not 

appropriately treated. Although it’s necessary to make medication adjustments, the use of 

antiepileptic drugs (AED) allows an improvement of the life quality of these patients. In the 

majority of the cases, these drugs can effectively suppress the seizures. It is noteworthy that 

AED are purely symptomatic, they are neither preventive nor curative. Classical AED are mainly 

based on three mechanisms of action: modulation of voltage-gated ion channels, increase of 

inhibitory neurotransmission mediated by GABA, or decrease of excitatory neurotransmission 

mediated by glutamate (Shimada et al., 2014). 

Nevertheless, despite of more than 30 AED on the market (Basic, 2016), about 30-40% of 

patients with epilepsy remain resistant to pharmacotherapy, continuing to experience 

incapacitating seizures (Basic, 2016; Klein et al., 2018). According to ILAE, drug-resistant 

epilepsy is defined as failure of adequate drug trials of two tolerated and appropriately chosen 

and used AED regimens to achieve seizure freedom, whether as monotherapy or in 

combination (Kwan et al., 2009). 

Therefore, there is an urgent need for new therapies that prevent or modify the 

epileptogenic process and not only stop seizures. This means that antiepileptogenic drugs are 

needed instead of antiepileptic (also called anticonvulsant or anti-seizure) drugs. Moreover, it 

is necessary to drive the attention to glial cells and not focus exclusively on neurons. Literature 

has clarified that the pathogenesis of epilepsy is more than a neuronal disorder; it is also 

associated with glial cells and inflammatory processes. Furthermore, the treatment of 

pediatric epilepsies with corticosteroids and adrenocorticotrophic hormone (ACTH) was one of 

the first clinical evidences of an immune inflammatory presence in epilepsy (Xu et al., 2013). 

In the last decade, there has been a growing interest in understanding the anti-

inflammatory effects of AED already on the market. The non-classical anti-seizure drug 

vinpocetine and the classical anti-seizure drug, carbamazepine, whose mechanisms of action 

involve the sodium channels, reduce inflammatory IL-1β and TNF-α expression in rat 

hippocampus (Gómez et al., 2014). Vipocetine also inhibits NF-kB-dependent inflammation 

(Jeon et al., 2010). Another epileptic drug that has been extensively studied for its anti-
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inflammatory effects is levetiracetam. It modulates the gene expression and secretion of 

cytokines, like IL-1β and transforming growth factor beta 1 (Haghikia et al., 2008), and 

normalizes the resting membrane potential of astrocytes (Thöne et al., 2012). However, these 

AED have only a minor anti-inflammatory effect. 

As a new potential strategy to prevent the onset or progression of the disease, it is 

necessary to focus on immunomodulatory drugs, which present more anti-inflammatory 

effects than the current AED. 

Emerging research highlighting the relationship between IL-1β and epileptic patients raises 

a new inflammation pathway as a possible therapeutic target. Modulating the pathway of IL-

1β production dependent of inflammasome NLRP3 has been a constant bet for the discovery 

of new therapeutics. Nevertheless, the effect of the inflammasome NLRP3 inhibition is still 

poorly studied. To my knowledge, only one study explored the effect of NLRP3 inhibition, 

through siRNA against NLRP3 and caspase-1, in rats with status epilepticus (Meng et al., 2014). 

Therefore, further studies are needed to clearly understand the impact of NLRP3 

inflammasome inhibition in epilepsy models. 

In an era of growing drug development targeting the inflammasome as a potential 

treatment for a wide range of severe diseases with an inflammatory component, it is exciting 

to study its use also as antiepileptogenic therapy. 
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2. AIM OF THE WORK 

 

In the current study, we aimed to understand the outcome of NLRP3 inflammasome 

modulation upon the epileptiform activity of organotypic cortex-hippocampus slice cultures, 

an ex vivo model of epileptogenesis. 

In order to accomplish this main objective, the project was divided in three tasks:  

 

 Establish a NLRP3-mediated inflammation model, through: 

 Cell death assessment; 

 Expression of inflammatory markers. 

 

 Assess the effect of NLRP3 inflammasome activation on epileptogenesis progression, 

through: 

 Morphology of glial cells; 

 Co-localization of NLRP3 in astrocytes; 

 Extracellular recordings; 

 CTL slices in serum-free medium (Neurobasal A) vs CTL slices in serum-containing 

medium (Opti-MEM): best control condition. 

 

 Evaluate the impact of NLRP3 inflammasome inhibition on epileptogenesis 

progression, by: 

 IL-1β production; 

 Morphology of glial cells; 

 Extracellular recordings. 
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3. MATERIALS AND METHODS 

3.1. Animals  

 

Pregnant female Sprague-Dawley rats were acquired from Charles River Laboratories 

(Barcelona, Spain). Pregnant rats had a period of one week for acclimatization before the birth 

of the offspring. Pups were housed with their dams at constant temperature (20 ± 2ºC) and 

relative humidity (60%) with a fixed 14h light–10h dark cycle (lights on between 7a.m. and 

9p.m.) and free access to food and water ad libitum. 

All experimental procedures were conducted in compliance with the current Portuguese 

Laws and with the Directive 2010/63/EU of the European Parliament and of the council on the 

protection of animals used for scientific purposes. Experiments were approved by the Ethical 

Committee of the Faculdade de Medicina da Universidade de Lisboa. All efforts were made to 

use the minimum number of animals and to minimize animal suffering. 

 

3.2. Organotypic cortex-hippocampus slice cultures 

 

Organotypic slice cultures were prepared according to the modified interface culture 

method described by Stoppini et al. (Stoppini et al., 1991). Slices were a combination of 

hippocampus and cortex (Magalhães et al., 2018). 

Postnatal day 6–7 (P6– P7) Sprague-Dawley rat pups (Fig. 4A) 

were decapitated, and the brains (Fig. 4B) were rapidly dissected 

and placed in a 60mm cell culture dish with cold Gey’s balanced 

salt solution (GBSS) (Biological Industries, Israel) supplemented 

with 25mM D-(+)-glucose (Sigma-Aldrich, Missouri, USA). Under 

sterile conditions, a sharp forceps was inserted into the eye 

sockets to hold the head. Using thin scissors, the skin/scalp was 

cut along the midline from the vertebral foramen towards the 

frontal lobes and removed. Then, the skull was cut in the same 

way and along the cerebral transverse fissure (space between 

brain and cerebellum). After taking apart the skull, the olfactory 

bulbs were discarded using a spatula and the brain was removed 

to a cell culture dish with cold GBSS.  

Under a dissecting microscope, cerebellum was used to hold 

the cerebrum while the hemispheres were separated along the 

midline. After individualizing each hemisphere, the main meninge 

over the hippocampus was removed. Both hemispheres were 

placed with hippocampus facing up and parallel to each other 

onto a filter paper. Hemispheres were placed perpendicular to blade and were sliced 

transversely at 350μm using a McIlwain tissue chopper (Fig. 4C). Sliced hemispheres were 

placed in cold GBSS. It is noteworthy that GBSS was always cold and renewed throughout all 

process.  

Slices were individualized with round-tipped glass micropipette electrodes (Fig. 4D) so as 

not to damage them. The first four/five slices were discarded until the hippocampus displayed 

its typical cytoarchitecture. Usually 6-9 slices with intact hippocampal cytoarchitecture were 

collected per hemisphere. Well defined and undamaged slices were placed onto porous 

Fig. 4 - Preparation of organoty-
pic cortex-hippocampus slices 
cultures. (A) P7 rat. (B) Intact 
brain from a pup. (C) McIlwain 
tissue chopper used for cutting 
the tissue. (D) Slices individual-
lization with round-tipped elec-
trodes. (E) The six well culture 
plate with inserts carrying four 
slices per insert. (F) Incubator. 

D 

A 

B 

C 

E 

F 
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(0.4μm) insert membranes (EDM Milipore, Massachusetts, USA) in six-well culture trays 

(Corning, New York, USA) (Fig. 4E). Each well contained four slices and 1mL of Opti-MEM 

culture medium (Table 1) (Bernardino et al., 2005, 2008). 

The six-well culture trays with culture medium were placed overnight into an incubator 

(37ºC, 5% CO2 and 95% atmospheric air) (Fig. 4F) to enable the medium to warm up and 

condition before plating. Slices were maintained at these conditions for the following 2 weeks. 

The culture medium was changed every 2-3days with Opti-MEM medium pre-heated at 37 ºC. 

The day before the treatment, at 14 DIV, the Opti-MEM medium was changed to a 

chemically defined medium, Neurobasal A (NBA) medium (Table 1), to avoid potential 

variability due to different lots of heat-inactivated horse serum (Bernardino et al., 2005, 2008). 

At 15 DIV, in the end of the treatment, the slices were either stored for further processing or 

analyzed. If stored at –80°C, cortex and hippocampus from each slice were separated and 

collected in cryogenic vials (Corning). Tissue was pooled from one well (with four slices) per 

experimental group. The respective culture media were collected in duplicate for 0.5 ml in the 

cryogenic vials. For immunohistochemistry assays slices were fixated at the end of the 

experiment. Electrophysiology recordings, which require fresh tissue, were performed at 15-17 

DIV. 

 

Table 1 - Culture medium composition. 

Opti-MEM Medium Reference Neurobasal A (NBA) Medium Reference 

50% OPTIMEM™ I Reduced Serum 
Medium 

31985-047* Neurobasal™- A medium 10888-022* 

25% Hank’s Balanced Salt Solution 
(HBSS) 

24020-091* 2% B27 serum-free supplement 17504-044* 

25% heat-inactivated horse serum 26050-088* 1mM L-Glutamine solution [200 
mM] 

25030-024* 

25 mM D-(+)-Glucose solution, 
45% in water 

G8769** 30 µg/ml Gentamycin solution [50 
mg/mL] 

15750-037* 

30 µg/ml Gentamycin solution [50 
mg/mL] 

15750-037*   

(*)Thermo Fisher, Massachusetts, EUA (**) Sigma-Aldrich.                                                                                                                                                                           
Note: penicillin and streptomycin (100 μg/ml) (15140-122(*)) were also used in some cultures instead of 
Gentamycin solution. 

 

3.3. Model of inflammation driven by LPS 

 

LPS is used to induced inflammation either in OHSC (Huuskonen et al., 2005) or in in vivo rat 

models. In vivo, LPS decreases the seizure threshold (Sayyah et al., 2003), thus promoting 

febrile convulsions, which is a trigger of MTLE (Heida et al., 2004; Zhang et al., 2014). 

At 15 DIV, with slices embedded in NBA medium, pro-inflammatory drugs were added 

directly into the culture medium. 

To establish the inflammation model in organotypic cortex-hippocampus slices and 

determine whether LPS had an effect on NLRP3 inflammasome activation, a time and 

concentration study was performed. LPS (Escherichia coli serotype 055:B5) (Table 2) was 

incubated alone at final concentrations of 5, 10 and 20ng/mL over 3 or 6h (Fig. 5). 

 Although there is endogenous ATP in the slice, we decided to add ATP as a second stimulus 

for inflammasome activation (Y He, Hara et al., 2016). Thus, another condition was added. 

https://www.google.pt/search?rlz=1C1NHXL_pt-PTPT686PT686&biw=1366&bih=638&q=millipore+&stick=H4sIAAAAAAAAAOPgE-LSz9U3MKoyLjMtUuIAsUuqqjK0tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUA5Ax-ikQAAAA&sa=X&sqi=2&ved=0ahUKEwiNg-74iITVAhUKthoKHUpYBnQQmxMIkwEoATAQ
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After 3h of incubation with LPS (10ng/mL) alone, 1mM of ATP (Table 2) was co-incubated with 

LPS for another 3h. Control slices were maintained in drug-free NBA medium.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
3.4. Pharmacological inhibition of NLRP3 inflammasome 

 

After choosing the best condition for NLRP3 inflammasome activation, a pharmacological 

approach with an inhibitor of this multiprotein complex was performed. The aim of this 

experiment was to ascertain if inflammation promoted epileptiform activity through NLRP3 

inflammasome or through another mechanism.  

At 15 DIV, slices were incubated with MCC950, a NLRP3 inflammasome selective inhibitor, 

in the established inflammatory context, LPS (10ng/mL) with ATP (1mM). In this way, all the 

activating stimuli were present and if there was no inflammation and/or epileptiform activity, 

it would not be due to lack of triggers, but rather by the action of the inhibitor. MCC950 

(10μM) was added to the culture medium. 1h after incubation with MCC950 only, LPS 

(10ng/mL) was added followed by ATP (1mM), 3h after LPS being added. Thus, slices were in 

MCC950 presence for a total time of 7h. A negative control condition, the MCC950 vehicle, 

dimethyl sulfoxide (DMSO; 0.1% in NBA medium), was incubated alone for the same time (Fig. 

6, Table 2).  

 

 

 

 

 

 

 

 

Fig. 5 - Schematic representation of the protocol for LPS-driven inflammation. 

Fig. 6 - Schematic representation of the pharmacological approach for NLRP3 inflammasome inhibition. 



22 
 

3.5. Tissue lysates and protein quantification 

 

The hippocampal tissue was homogenized in 130μL of RIPA (Ristocetin Induced Platelet 

Aggregation) buffer containing 50mM Tris pH 8.0 (EDM Milipore), 1mM Ethylenediamine 

tetraacetic acid (EDTA; Sigma-Aldrich), 150mM NaCl (EDM Milipore), 1% Nonyl 

phenoxlpoylethanol (NP-40; Fluka Biochemika, Switzerland) and 10% glycerol (Sigma-Aldrich). 

Protease inhibitors were also added to lysis buffer, namely protease inhibitor cocktail 

(Complete Mini-EDTA free, Roche, Germany) and 1mM phenylmethylsulfonyl fluoride (PMSF; 

Sigma-Aldrich), to prevent protein degradation by endogenous proteases, mainly serine and 

cysteine proteases, released in cell disruption processes. 

After adding the complete RIPA, the tissue was dissociated with a pipette tip and then with 

a needle through up and down movements, for 5-6 times. Subsequently, the samples were 

incubated at 4°C with slow agitation for 15 min, followed by centrifugation at 13000 rpm for 

10 min (4°C).  Finally, the supernatant was collected into a new eppendorf tube and stored at -

20°C, until further use. 

Total protein was quantified using the Bio-Rad DC Protein Assay Kit (Bio-Rad, California, 

USA), which is a colorimetric assay for protein concentration following detergent solubilization.  

Briefly, 10μl of protein standard and samples were added in duplicate in a 96 well flat bottom 

plate (Corning). Bovine Serum Albumin (BSA; NZYtech, Lisbon, Portugal) was used as protein 

standard. Ten dilutions of protein standard containing from 0mg/mL to 1mg/mL protein were 

prepared in Milli-Q water. Samples were also diluted 1:5 in Milli-Q water. Later, 25μl of 

reagent A’ (20μl of reagent S per each ml of reagent A) was added followed by 200μl of 

reagent B. The plate was covered and gentle agitated to mix all reagents. If there were 

bubbles, they were ruptured with a clean needle. After 15 min, absorbance was read at 750nm 

in Infinite M200 (Tecan, Switzerland). 

 

3.6. Western Blot  

 

Samples were mixed with 6x sample buffer (12% sodium dodecyl sulfate-SDS, 0.015% 

bromophenol blue, 36% glycerol, 720mM dithiothreitol, 420mM Tris pH 6.8) and boiled for 10 

min. Subsequently, samples (40μg total protein/well) and protein size marker (Protein Marker 

II, NZYtech) were resolved on 12% SDS-PAGE gel, at 80 volts, until marker starts to separate 

and then at 120 volts during approximately 1h.  

SDS-PAGE-separated proteins were transferred to PVDF membrane (Immun-Blot®PVDF 

Membranes for Protein Blotting, Bio-Rad) using a semi-dry transfer system (Bio-Rad) at a 

constant current of 300 Amps for 1h.  After the blotting step, the membranes were stained 

with Ponceau S (Sigma-Aldrich), which is an acidic solution that identifies the presence of 

protein bands directly on the membrane. Ponceau solution was thoroughly removed with 

distilled water. 

Membranes were then blocked in 5% (wt/vol) nonfat-dried milk (Nestlé, Portugal) in TBS-T 

(200mM Tris/HCL pH7.6, 1.5M NaCl and 0.1% Tween-20 (Sigma-Aldrich)) for 1h at room 

temperature (RT). Milk proteins cover the entire membrane surface ensuring non-specific 

binding of the antibodies. 

Later, membranes were incubated overnight, at 4ºC, on a rotating shaker with primary 

antibodies (Table 3) diluted in 3% (wt/vol) BSA in TBS-T and then with the appropriate 
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Fig. 7 - Schematic draw of ELISA. 

horseradish peroxidase (HRP)-conjugated secondary antibodies (Table 4) diluted in 3% (wt/vol) 

BSA in TBS-T for 1h at RT.  

Between blocking, first and second incubation, the blot was rinsed in TBS-T (3 times x 10 

min), in sufficient volume to keep the membrane submerged and with gentle agitation to 

remove unspecific bonds. 

Chemiluminescence signals were developed using ECL (enhanced chemiluminescence) 

detection (Western Lightening® Plus-ECL, PerkinElmer, Massachusetts, USA). For ECL 

detection, the substrate luminol is oxidized by HRP in the presence of H2O2 and an enhancer, 

producing 3-aminophthalate that emits light. The emitted light was detected by exposing the 

membrane to ChemiDoc™ MP Imaging System (Bio-Rad). The exposure time was defined for 

each protein analysed. 

Band intensities were measured with Image J software (National Institutes of Health, 

Maryland, USA). The image before signal saturation has appeared was used to quantitatively 

analyze relative expression. To account for possible loading errors, the intensity of each 

protein band was normalized against the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

(Table 3) band intensity. 

 

3.7. Enzyme-Linked Immunosorbent Assay (ELISA) 

 

IL-1β was measured in tissue sample and culture medium by using an ELISA kit (R&D 

System, Minnesota USA) containing a selective antibody against murine IL-1β that recognizes 

both pro-Il-1β and Il-1β. This cytokine was measured accordingly to manufacturers’ suggested 

protocol. 

Briefly, the wells were coated with the capture antibody and incubated overnight at RT. 

This step allows immobilization of antigens to the surface of polystyrene microplate wells. 

After removing the antibody, washing the plate three times and patting the plate on a paper 

towel, blocking buffer (reagent diluent) was added to cover all unsaturated surface-binding 

sites. Incubation lasted 2h at RT and then the plate was washed again. Washing the plate with 

wash buffer (phosphate buffered saline (PBS) plus Milli-Q water) between steps allowed 

removal of unbound materials.  

Subsequently, 50μl of serial dilutions of protein 

standards and samples were added to each well for 1h at 

RT, and thus any analyte present was bounded by the 

immobilized antibody. Standards were diluted in NBA 

medium, for the antigen quantification in culture medium, 

and in reagent diluent for quantifications in tissue 

samples. Medium samples were not diluted and tissue 

samples were diluted 1:10 in reagent diluent, except 

control condition that was not diluted. 

After antigen incubation, a second HRP-labeled 

antibody (detection antibody) was incubated over 2h, at RT, to binds to the captured analyte 

(Fig. 7). 

After rinsing with wash buffer again, the prepared solution of streptavidin protein 

conjugated with HRP was added and incubated over 1h at RT followed by washing and addition 

of tetramethylbenzidine (TMB) substrate solution. When this solution is added to the wells a 
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blue color develops in proportion to the amount of analyte present in the sample. The reaction 

is stopped by sulfuric acid, which turns the solution in the wells to yellow. 

The optical density was detected at 450nm and 540nm in a microplate reader - Infinite 

M200 (Tecan). Readings at 540nm were substract from the readings at 450nm to correct 

optical imperfections in the plate. The detection limit was < 4 pg/mL.  

A standard curve was prepared from the data produced from the serial dilutions on each 

plate with concentration on the x axis (log scale) versus absorbance on the Y axis (linear). The 

concentration of each sample was calculated with GraphPad Prism 6.0 (GraphPad Software 

Inc., California, USA) from the four-parameter logistic regression (4PL equation) which derived 

from the standard curve of known concentrations of the cytokine. 

 

3.8. Cytometric bead array immunoassay  

 

The cytometric bead array (CBA) technique is a method that captures a set of chemical 

substances, known as analytes, with beads of known size and fluorescence, making it possible 

to detect analytes using flow cytometry. 

For the CBA measurements, the BD™ CBA Mouse Inflammation Kit (BD Biosciences, 

California, USA) was used to quantitatively measure Interleukin-6 (IL-6), Interleukin- 10 (IL-10), 

Monocyte Chemoattractant Protein-1 (MCP-1), Interferon-γ (IFN-γ), Tumor Necrosis Factor 

(TNF), and Interleukin-12p70 (IL-12p70) protein levels in a single sample. The assay was 

performed according to an adjusted manufacturer’s protocol.  

Briefly, each capture bead conjugated with a specific antibody was mixed in a single tube. 

The standard curve for each protein covered a defined set of concentrations from 0 to 5000 

pg/mL. Inside the 96-well plate, 10μl of capture beads mixture was added to the same amount 

of recombinant standards or unknown samples and then incubated in the dark with 10μl of 

phycoerythrin (PE) - conjugated antibodies at RT for 2h. This PE detection reagent provides a 

fluorescent signal in proportion to the concentration of a specific cytokine, which is quantified 

from a calibration curve. Posteriorly, each well was washed with wash buffer and the plate was 

centrifuged at 400g for 5 minutes. After discarding the supernatant, each pellet was 

resuspended.  

These sandwich complexes formed by capture bead plus analyte plus detection reagent 

were measured using a BD™ FACS Calibur flow cytometer (BD Biosciences) either through the 

96-well plate or 12 × 75-mm tubes. Each tissue lysate or medium sample was quantified three 

times in different days. 

Data were obtained and analyzed by FCAP Array software in dot-plot FL-2 channel vs. FL-3 

channel. FL-2 detects PE, which emits at 585 nm, and FL-3 detects the particles that were dyed 

with six different fluorescence intensities and has a maximal emission wavelength of 

approximately 650 nm. The six FL-3 particles dyed to different intensities were distributed 

along the y-axis. The concentration of the cytokine calibrators was expressed (y-axis) vs. 

medium fluorescence intensity (FL-2) in the standard curves. The concentrations of cytokines 

that were below the limit of detection of the assay were given zero value of concentration. 
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3.9. Immunohistochemistry 

 

Immunohistochemistry demonstrates the presence and location of proteins in an intact 

tissue. In this sensitive technique, a primary antibody recognizes specifically the target protein. 

This interaction can be later detected by a fluorochrome-conjugated secondary antibody and 

visualized using fluorescence microscopy. 

Slices were fixed after treatment at 15 DIV. The NBA culture medium was removed and 1mL 

of 4% paraformaldehyde (PFA; VWR, Pennsylvania, USA) diluted in PBS (137mM NaCl, 2.1mM 

KCl, 1.8mM KH2PO4 and 10mM Na2HPO4.2H2O, at pH 7.40) was added beneath and above the 

slices in each well of the culture tray. Later, slices were sequentially incubated for 1h in 

increasing concentrations of sucrose in PBS (10%, 20% and 30%), to cryoprotect the tissue. 

Slices were maintained (for a maximum of one week) at 4ºC soaked in 30% sucrose until 

further use. 

In the beginning of the immunohistochemical staining procedure, the insert membrane was 

cut with a scalpel to individualize each slice and then each slice was transferred to a 

microscope slides (Thermo Fisher). In each slide, two individual slices were surrounded by a 

hydrophobic pen, DAKO pen (Dako, Glostrup, Denmark), to protect slices from drying out. Also 

to prevent the tissue from drying out, all incubations were carried out in a humidified 

chamber. Drying at any stage promotes non-specific binding and high background staining. 

After 3 times of PBS washes, 10min each, slices were permeabilized with 1% Triton X-100 

(Sigma-Aldrich) in PBS for 1h at RT and then blocked with 20% Donkey Serum (D9663, Sigma-

Aldrich) and 1% BSA in Milli-Q water for 3h at RT. Serum raised in donkey was chosen since it 

was the host of all secondary antibodies, thus minimizing the cross reactions with endogenous 

immunoglobulins in the tissue. BSA was also included to reduce non-specific binding caused by 

hydrophobic reactions. Primary antibodies (Table 3) diluted in PBS were applied and incubated 

overnight at 4ºC. 

In the ensuing day, after washed 3 times for 10min with PBST (PBS with 0.1% Tween-20), 

slices were incubated with the fluorophores-labeled secondary antibodies (Table 4) in PBS for 

5h at RT. Following rinse again with PBST (3 times) in the dark to avoid photobleaching, DAPI 

(D9564, Sigma-Aldrich) solution (1:1000 dilution in PBS) was added over 40 min at RT to stain 

the nuclei. To finalize, slices were rinsed 3 times with PBST and one with PBS and then 

mounted in Mowiol Solution (2,4g Polyvinylalcohol 4-88, 600 mM glycerol, 200mM tris, pH 8.0, 

in Milli-Q water).  It is noteworthy to state that in the wash, the sections were wiped around 

with a tissue paper to drain the excess liquid. 

  Slices were observed in a confocal laser scanning microscope (Zeiss LSM 710, Carl Zeiss 

MicroImaging, Germany), using either an EC plan-NeoFluar 10x, a Plan-Apochromat 20x or a 

Plan-Apochromat 63x, with a frame size of 1024 x 1024 pixels. Furthermore, the imaging-

settings were kept constant for all images. 

To determine the co-localization between NLRP3 and astrocytes a rough analysis was 

carried out. Due to the lack of negative control, without primary antibody, in these 

immunofluorescence conditions to set a threshold in Alexa Fluor 568 channel (which shows 

NLRP3 staining), a threshold below the most saturated pixels was applied. The percentage of 

co-localization was calculated by the area of NLRP3 saturated pixels which co-localized with 

GFAP divided by the area of the all saturated pixels in a confocal image. The threshold was set 

at 100 for the red channel and at 30 for the green channel. 
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3.10. Electrophysiology – extracellular recordings 

 

At 15-17 DIV, slices were removed from the incubator and placed in a petri dish with 

heated NBA medium. To individualize one slice at a time, the insert membrane was cut with a 

scalpel and the slice was transferred to an interface recording chamber with a humidified 95% 

O2/5% CO2 atmosphere at 37° C. Unlike the immersion chamber, this interface chamber allows 

the medium to pass under the slice as it was in the incubator. The NBA medium was 

superfused and recirculated at a rate of 2mL/min. 

Recordings were obtained with an Axoclamp 2B amplifier (Axon Instruments, Foster City, 

California, USA), digitized and continuously stored on a personal computer with the WinLTP 

software (WinLTP Ltd., Bristol, UK)(Anderson and Collingridge, 2001). The pCLAMP Software 

Version 10.7 (Molecular Devices Corporation, California, USA) was used for data analysis. All 

recordings were band-pass filtered (eight-pole Bessel filter at 60 Hz and Gaussian filter at 600 

Hz). 

As the entorhinal cortex is included in these slices and its 

projections are intact, ictal discharges are originated in 

entorhinal cortex and propagate through DG to CA3 and 

CA1. Also, interictal discharges initiate in the CA3 and 

propagate via CA1 and subiculum to the entorhinal cortex 

and return to the hippocampus through the DG (Barbarosie 

and Avoli, 1997; Rutecki and Yang, 1998; Walther et al., 

1986). As discharges can lose power in CA1 and this 

hippocampal region has more percentage of neuronal 

death in OHSC, the extracellular recordings to monitor the 

electrical activity of neurons were made in CA3 pyramidal 

cell region (Fig. 8). The viability of slices was routinely 

tested by recording population spikes from CA3 pyramidal 

cell population (Fig. 8). 

 

3.10.1. Population spikes  

 

Population spike is the synchronous discharge of neuron populations (Dyhrfjeld-Johnsen et 

al., 2010). Mossy fiber projections to CA3 pyramidal cells were electrically stimulated for the 

purpose of recording a biological response in the form of a population spike. 

Extracellular recordings of population responses in the CA3 area were made using glass 

micropipettes electrode (2–4 MΩ) filled with artificial cerebrospinal fluid (ACSF) composed by: 

124mM NaCl, 3mM KCl, 1.2mM NaH2PO4, 25mM NaHCO3, 10mM glucose, 2mM CaCl2, 1mM 

MgSO4 with pH 7.4.  

A bipolar concentric wire stimulating electrode was placed on mossy fibers and rectangular 

pulses of 0.1ms duration at every 15s were evoked. The average of 8 consecutive population 

spikes was obtained for representative purposes. Slices were stimulated with intensity 

between 1 and 4 volts. If there was no response, the recording or stimulating electrode was 

repositioned. After this second attempt if there was still no response the slice was discarded. 

WinLTP 2.20b Reanalysis software (WinLTP Ltd., Bristol, UK)(Anderson and Collingridge, 

2001) was used to visualize the population response. 

Fig. 8 - Extracellular recording of one 
organotypic cortex-hippocampus slice. 
Bipolar concentric wire stimulating elec-
trode was placed onto mossy fibers. 
Recording electrode (glass micropipette) 
was placed onto CA3 region. 

https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwixjqvv-vzXAhWD1RQKHTjuAEoQFggvMAE&url=https%3A%2F%2Fmdc.custhelp.com%2Feuf%2Fassets%2Fcontent%2FRelease%2520Notes.pdf&usg=AOvVaw1MLfh46Xilw1_8YbDftoqD
https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwixjqvv-vzXAhWD1RQKHTjuAEoQFggvMAE&url=https%3A%2F%2Fmdc.custhelp.com%2Feuf%2Fassets%2Fcontent%2FRelease%2520Notes.pdf&usg=AOvVaw1MLfh46Xilw1_8YbDftoqD
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3.10.2. Epileptiform activity 

 

Extracellular recordings of epileptiform activity in the CA3 pyramidal cell region were 

performed using the same glass micropipette electrode used to record the population 

response, without changing the place (Fig. 8). The activity was recorded for at least 40 

minutes.  

In this study, interictal epileptiform discharges were defined as individual paroxysmal 

discharges clearly distinguished from the baseline, with an abrupt change in polarity occurring 

within several milliseconds (Berdichevsky et al., 2012). Ictal-like discharges were defined as 

continuous discharges lasting more than 6s (bursts). The end of a burst was defined when 

inter-spike interval was longer than 600ms. Continuous spike activity with duration lower then 

6s was not accounted as burst activity. Slices with this type of activity and interictal discharges 

were classified as slices with interictal activity. 

To quantify the epileptiform activity different parameters were assessed. The number of 

burst per slice was evaluated manually in slices with interictal-like discharges and in slices with 

mixed interictal-like and ictal-like discharges. To further characterize the bursts of the latest 

slices, the frequency of events within burst and the average positive peak amplitude (this is the 

amplitude between the baseline and the peak of the spike) was evaluated. The number of 

events per burst, the duration of each burst and the positive peak amplitude were auto-

detected by pCLAMP Software, which allows a more reliable and automatic detection of 

events. The baseline used to detect these events was specific to each recording and was 

settled right above the end of noise oscillations.  

 

3.10.3. Experimental conditions recorded in electrophysiology 

 

In a first set of experiments, recording conditions included the drug free control condition 

(CTL), the inflammasome activation condition (LPS/ATP) and the inflammasome inhibition 

condition in an inflammatory context (MCC950/LPS/ATP). As negative controls, slices 

incubated with LPS (10ng/mL) alone over 3h or with ATP (1mM) alone over 3h were also 

evaluated (Fig. 9).  

 After these initial electrophysiological recordings, it was hypothesized that the change in 

culture medium on the day before the treatment was an inflammatory trigger of epileptiform 

activity. Therefore, studies were performed on slices maintained in Opti-MEM medium, 

without undergoing the change to NBA, and on slices exposed only to MCC950, incubated in 

NBA for 7h (Fig. 9).  It should be noted that the neuronal electrical activity of the slices was 

recorded on time or 1h after the end of incubation, since more than one slice per insert was 

recorded.  
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3.11. Drugs and antibodies 

 

Table 2 - Drugs used for slices treatment. 

Drugs Vehicle 
Stock 

concentration 

Final 

concentration 
Reference Supplier 

Lipopolysaccharide (LPS) 
Milli-Q 

water 
5mg/ml 

5, 10 or 20 

ng/mL 
L6529 

Sigma-

Aldrich 

Adenosine 5′-
triphosphate disodium 

salt hydrate (ATP) 

NBA 50mg/mL 1 mM A7699 
Sigma-

Aldrich 

MCC950 DMSO 10mM 10 μM 17510 

Cayman 

chemical 

company 

Dimethyl sulfoxide 

(DMSO) 
- 

Density: 

1.10 g/mL 
0.1% D2650 

Sigma-

Aldrich 

 

Table 3 - Primary antibodies used in western blot and immunohistochemistry assays. 

Protein Antibody 
Technique and 

Dilution 
Reference Supplier 

αII-Spectrin  Mouse monoclonal WB - 1:500 sc-48382 Santa Cruz Biotechnology 

ASC Rabbit polyclonal WB - 1:1000 AL177 AdipoGen Life Sciences 

GAPDH Mouse monoclonal WB - 1:1000 AM4300 Invitrogen 

GFAP Rabbit polyclonal WB - 1:5000 G9269 Sigma-Aldrich 

GFAP Mouse monoclonal IHC - 1:500 MAB360 EDM Milipore 

Iba1 Goat polyclonal WB - 1:1000 ab5076 Abcam 

Iba1 Rabbit polyclonal IHC – 1:250 ab108539 Abcam 

NLRP3 Rabbit polyclonal 
WB - 1:300 

IHC - 1:500 
ab214185 Abcam 

Fig. 9 - Schematic representation of the conditions used in electrophysiology. 
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Table 4 - Secondary antibodies used in western blot and immunohistochemistry assays. 

Secondary Antibodies 
Technique 

and Dilution 
Reference Supplier 

Donkey anti-Goat IgG -HRP WB - 1:10000 sc-2020 Santa Cruz Biotechnology 

Goat anti-Mouse IgG -HRP WB - 1:10000 sc-2005 Santa Cruz Biotechnology 

Goat anti -Rabbit IgG -HRP WB - 1:10000 1706515 Bio-Rad 

Donkey anti-Rabbit Alexa Fluor® 488 IHC - 1:500 A21206 Invitrogen 

Donkey anti-Mouse Alexa Fluor® 

488 
IHC - 1:500 A21202 Invitrogen 

Donkey anti -Rabbit Alexa Fluor® 

568 
IHC - 1:750 A10042 Invitrogen 

 
 
3.12. Statistical Analysis 

 

All statistical analyses were performed with GraphPad Prism 6.0. Statistical significance was 

determined by using one-way analysis of variance (ANOVA) followed by Tukey’s test for 

multiple comparisons, with p<0.05 considered to represent statistical significance. Data were 

expressed as means ± standard error of mean (SEM), except when n=2. 
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4. RESULTS  

4.1. Establishment of NLRP3-mediated inflammation model  

 

LPS is a potent bacterial endotoxin widely used to establish inflammation models. LPS is an 

excellent trigger of inflammation either in CNS or peripheral nervous system (PNS) and it has 

been used in different models, both in vitro and in vivo. Moreover, LPS was already described 

as an enhancer of seizure susceptibility (Sayyah et al., 2003) and an activator of NLRP3 

inflammasome in in vivo models (F Zhang et al., 2016; Z-T Zhang et al., 2016).  

In our study we aimed to establish an inflammatory phenotype in organotypic slices, but 

without damaging extensively the slices. Inflammation induction was tested with several LPS 

concentrations, ranging from 5 to 20ng/ml, over two-time periods, 3h and 6h. Furthermore, 

because NLRP3 inflammasome activation is described as a two-step process which requires 

two triggers, an extra condition which included ATP, was added to ensure that NLRP3 

inflammasome was activated in our system.  

Therefore, at 14 DIV, organotypic slices were exposed to 5, 10 and 20ng/mL of LPS over 3h 

and 6h, or to 10ng/mL of LPS alone for 3h followed by 3h co-incubation with 1mM of ATP. 

 

4.1.1. Cell death assessment 

 

Cell death was characterized through the expression of αII-Spectrin, a structural protein of 

the cell cytoskeleton mainly found in neurons (J He et al., 2016; Riederer et al., 1986).  αII-

Spectrin is a substrate for two cysteine proteases: calpains, which are related with necrosis 

and excitotoxicity, and caspase-3, which is the main effector caspase for apoptosis. Spectrin 

catabolism products are known as spectrin breakdown products (SBDP) and have distinct 

molecular sizes according to the enzyme responsible for the cleavage. Proteolysis by calpains 

forms fragments with 145kDa (SBDP145), whereas proteolysis by caspase-3 produces 

fragments with 120kDa. Another fragment with 150kDa (SBDP150) is produced by both 

proteases (Z Zhang et al., 2009).  

Western blot analysis of tissue lysates from slices exposed to different LPS concentrations 

and to different time of exposure showed no differences in αII-Spectrin expression within 

conditions (Fig. 10A and B). Absence or presence of ATP also did not influence αII-Spectrin 

expression in these slices (Fig. 10C). 

The effect of these different conditions in calpain-mediated necrosis was assessed through 

the ratio between SBDP145 and αII-Spectrin. It is important to note that SBDP150 and 

SBDP145 were analyzed as a single fragment. There were no differences in necrosis within 

slices exposed to the different concentrations of LPS and distinct exposure time (Fig. 10D). 

However, ATP significantly decreased the ratio SBDP145/αII-Spectrin (0.8925±0.1586, n=4), 

when compared with slices incubated with the same concentration of LPS but in the absence 

of ATP (1.368±0.1692, n=4, #p<0.05, Fig. 10E). This decrease can be due to the occurence of 

another form of cell death, called pyroptosis, in slices exposed to LPS/ATP, which is closely 

related with NLRP3 inflammasome activation and release of IL-1β (Bergsbaken et al., 2010). 

Regarding the effect of LPS in different conditions or in presence of ATP in caspase-3-

mediated apoptosis, the ratio SBDP120/αII-Spectrin remained unchanged between conditions 

(Fig. 10F and G). 
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Fig. 10 - Expression profiles of αII-Spectrin and SBDPs in organotypic cortex-hippocampus slices following LPS 
exposure in presence or absence of ATP. (A) Representative immunoblots for αII-Spectrin, SBDPs and GAPDH after 
3h or 6h of LPS incubation at different concentrations, and co-incubated with ATP (1mM). (B-G) Western blot 
analysis of αII-Spectrin [n=2-6] (B), ratio SBDP145/αII-Spectrin [n=2-6] (D) and ratio SBDP120/αII-Spectrin [n=2-4] 
(F) of different concentrations of LPS in distinct timepoints, or co-incubated with ATP [n=4-5] (C), [n=4] (E), [n=2-4] 
(G), respectively. GAPDH was used as the loading control. Data are presented as mean ± SEM (except when 
n=2).

#
p<0.05 LPS vs LPS+ ATP by one-way ANOVA followed by Tukey’s test. 
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4.1.2. Expression of inflammatory markers 

4.1.2.1.   NLRP3/ ASC 

 

NLRP3 inflammasome is a multiprotein complex formed by three distinct proteins: NLRP3 

itself, ASC and pro-caspase-1. NLRP3 and ASC are the first to assembly together and 

subsequently recruit pro-caspase-1 (Hoss et al., 2017). Therefore, to evaluate NLRP3 

inflammasome activation, the expression of NLRP3 and ASC subunits were assessed. 

Contrariety to expected, there were no statistical differences in NLRP3 and ASC expression, 

neither between different LPS concentrations at 3h or 6h (Fig. 11B and Fig. 12B, respectively), 

nor between presence or absence of ATP (Fig. 11C and Fig. 12C, respectively). However, 

although the results do not confirm the NLRP3 inflammasome activation, they are also not 

sufficient to sustain that the inflammasome is not activated. Moreover, if we look carefully to 

the western blotting representative bands (Fig. 11A) it is possible to observe a similar 

expression of control conditions when compared with the others. Data described elsewhere 

has shown less NLRP3 expression in basal conditions (Meng et al., 2014; F Zhang et al., 2016).  
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Fig. 11 - Expression profile of NLRP3 in organotypic cortex-hippocampus slices following LPS exposure in presence 
or absence of ATP. (A) Representative immunoblots for NLRP3 and GAPDH after 3h or 6h of LPS incubation at 
different concentrations, and co-incubated with ATP (1mM). Western blot analysis of NLRP3 expression in slices 
exposed to different concentrations of LPS at 3h and 6h [n=6-8] (B) and in presence of ATP [n=7-8] (C). GAPDH was 
used as the loading control. Data are presented as mean ± SEM. 
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4.1.2.2.   Iba1/GFAP 

 

Under dangerous or pathogenic conditions, glial cells are the key mediators of 

neuroinflammation. Therefore, activation of microglia and astrocytes is considered a hallmark 

of neuroinflammation. Changes in the activation state of microglia and astrocytes are known 

to increase the expression of their markers, Iba1 and GFAP, respectively (Bederson et al., 2001; 

Ben Haim et al., 2015). Thus, a western blotting analysis was performed to evaluate Iba1 and 

GFAP expression within the various conditions tested. 

After 3h or 6h of exposure to different concentrations of LPS, slices did not have alterations 

in Iba1 or GFAP expression in relation to control condition (Fig. 13B and Fig. 14B). 

Furthermore, by comparing slices incubated with LPS in absence or presence of ATP, there 

were also no differences in expression of glial cells markers (Fig. 13C and Fig. 14C). Similarly to 

NLRP3 and ASC discussed in the previous section, Iba1 and GFAP expression in control 

condition was identical to the other conditions (Fig. 13A and Fig. 14A). In summary, the 

conditions tested did not induce an upregulation in microglia and astrocytes markers. 
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Fig. 12 - Expression profile of ASC in organotypic cortex-hippocampus slices following LPS exposure in presence or 
absence of ATP. (A) Representative immunoblots for ASC and GAPDH after 3h or 6h of LPS incubation at different 
concentrations, and co-incubated with ATP (1mM). Western blot analysis of ASC expression in slices exposed to 
different concentrations of LPS at 3h and 6h [n=3-5] (B) and in presence of ATP [n=3-5] (C). GAPDH was used as the 
loading control. Data are presented as mean ± SEM. 
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Fig. 13 - Expression profile of Iba1 in organotypic cortex-hippocampus slices following LPS exposure in presence or 
absence of ATP. (A) Representative immunoblots for Iba1 and GAPDH after 3h or 6h of LPS incubation at different 
concentrations, and co-incubated with ATP (1mM). Western blot analysis of Iba1 expression in slices exposed to 
different concentrations of LPS at 3h and 6h [n=2-6] (B) and in presence of ATP [n=4-6] (C). GAPDH was used as the 
loading control. Data are presented as mean ± SEM (except when n=2). 

C 

Fig. 14 - Expression profile of GFAP in organotypic cortex-hippocampus slices following LPS exposure in presence or 
absence of ATP. (A) Representative immunoblots for GFAP and GAPDH after 3h or 6h of LPS incubation at different 
concentrations, and co-incubated with ATP (1mM). Western blot analysis of GFAP expression in slices exposed to 
different concentrations of LPS at 3h and 6h [n=3-7] (B) and in presence of ATP [n=4-7] (C). GAPDH was used as the 
loading control. Data are presented as mean ± SEM. 
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4.1.2.3.   IL-1β production 

 

Il-1β is the main pyrogenic product from NLRP3 inflammasome activation. It is well 

established that LPS through Nf-kB upregulates Il-1β gene resulting in the increase of pro-Il-1β, 

the inactive form. In the presence of ATP, the second stimulus, caspase-1 is activated to 

process pro-Il-1β, forming an active and mature form which can be released into the medium. 

Therefore, to further assess the activation of NLRP3 inflammasome, Il-1β levels were 

quantified. 

Fig. 15A shows that hippocampal Il-1β levels increased with increasing concentration of LPS. 

Slices exposed for 3h to 10ng/mL (3229±721.0, n=3, *p<0.05) or 20ng/mL (3504±663.04, n=3, 

*p<0.05) of LPS had higher expression of this cytokine when compared with control slices 

(371.8± 162.0, n=3). Similarly, slices exposed for 6h to any concentration of LPS (5ng/mL: 

4964±354.0, n=3; *p<0.05; 10ng/mL: 6038±444.4, n=3; *p<0.05; 20ng/mL: 11824±1826, n=5; 

****p<0.0001) presented significantly higher Il-1β levels when compared with control 

(305.9±63.0, n=7). Moreover, exposure to 20ng/mL over 6h induces the highest levels of Il-1β 

when compared with 5ng/mL (##p<0.01) and 10ng/mL (#p<0.05) of LPS. However, it should be 

noticed that Il-1β levels in the tissue quantified by an ELISA kit are mostly represented by pro-

IL-1β ( Ravizza et al., 2006).                                 
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Fig. 15 - Effects of LPS exposure and LPS/ATP co-exposure on Il-1β levels. (A, B) Il-1β levels in organotypic slices 
exposed to different concentrations of LPS at 3h and 6h [n=3-7] (A) and co-incubated with ATP (1mM) [n=3-7] (B).  
(C, D) Il-1β released to the culture medium from slices exposed to different concentrations of LPS at 3h and 6h 
[n=3-6] (C) and co-incubated with ATP [n=6-7] (D). Data are presented as mean ± SEM. *p<0.05, **p<0.01, 
****p<0.0001 vs control; 

#
p<0.05, 

##
p<0.01 vs other treated condition, by one-way ANOVA followed by Tukey’s 

test. 
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Although LPS induced Il-1β (and pro-Il-1β) levels in the tissue, this increase was not 

accompanied by increased Il-1β release. None of the LPS treated conditions was able to 

increase the levels of mature and released Il-1β (Fig. 15C). In fact, exposure to 20ng/mL of LPS 

during 3h reverted the release of Il-1β (67.76±18.58, n=4, *p<0.05) when compared with 

control (212.6±28.94, n=4). 

In slices exposed to LPS (6038±444.4, n=3, **p<0.01) or co-exposed to LPS/ATP 

(6566±1174, n=6, ****p<0.0001), increased Il-1β levels in a similar extent were observed, 

when compared with control (305.9±63.0, n=7) (Fig. 15B). However, a significant release of Il-

1β was only observed in slices co-exposed to LPS/ATP (Fig. 15D).  

These results demonstrate that ATP is required for inducing maturation and release of Il-1β 

in the presence of LPS, as described before (Bernardino et al., 2008; Ravizza et al., 2006). LPS 

alone can also increase Il-1β release in a less potent manner in other similar models 

(Bernardino et al., 2008; Ravizza et al., 2006). Nevertheless, the basal level of this cytokine in 

the reported models was barely or not detectable, contrary to what was obtained in our 

model.   

 

4.1.2.4.   TNF-α production 

 

During inflammatory process, different mediators are produced to promote inflammatory 

responses in order to fight against dangerous or pathogenic agents, or to defend the organism 

itself by controlling the pro-inflammatory response. Among these inflammatory mediators are 

small molecules like cytokines and chemokines.  

To better characterize the LPS-induced inflammation in organotypic cortex-hippocampus 

slices, in presence or absence of ATP, a large range of inflammatory mediators was assessed 

through CBA assay. This technique was performed in Tarja Malm’s Lab at the University of 

Eastern Finland, Kuopio, Finland. The anti-inflammatory cytokine interleukin-10 (IL-10), the 

chemokine monocyte chemoattractant protein-1 (MCP-1), as well as, pro-inflammatory 

cytokines interleukin-6 (IL-6), interferon-γ (IFN-γ), TNF-α, and interleukin-12p70 (IL-12p70) 

were evaluated using a CBA mouse inflammation kit. All of these small molecules can be 

produced by microglia and/or astrocytes under certain conditions (Kawanokuchi et al., 2006; 

Lau and Yu, 2001; Lobo-Silva et al., 2016; C Wang et al., 2016; Welser-Alves and Milner, 2013). 

Moreover, these molecules were already related with epilepsy in different studies (Alsharafi et 

al., 2015; Sinha et al., 2008; Strauss and Elisevich, 2016; Turrin and Rivest, 2004). 

Not all cytokines tested in the tissue and in the medium of slices exposed to LPS, in 

presence of absence of ATP, were detected. This mouse inflammation kit was able to recognize 

TNF-α, although the sample had a distinct origin. Mouse TNF-α bears a high degree of 

homology (94%) with rat. 

Fig. 16 shows the effect of LPS or LPS co-incubated with ATP on TNF-α levels in tissue and 

culture medium. The quantification of TNF-α levels in slices exposed to different LPS 

concentrations was not performed. Co-incubation with LPS and ATP increased the TNF-α levels 

in the tissue (154.8±51.37, n=3, *p<0.05), when compared with control slices (3.141±1.088, 

n=3, Fig. 16A). LPS was able to increase the release of TNF-α, comparing with basal levels 

(4.200±0.070, n=3), both in absence (631.8±27.03, n=3, **p<0.01) or presence of ATP 

(1157±157.7, n=3, ***p<0.001, Fig. 16B). However, ATP further enhanced the release of this 

pro-inflammatory cytokine when compared to LPS alone (#p<0.05, Fig. 16B). 
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4.2. Effect of NLRP3 inflammasome activation  

 

Taking in account the results demonstrated in the previous section, the co-incubation 

LPS/ATP was selected, in detriment of the remaining, to induce the NLRP3-mediated 

inflammasome model. LPS incubated alone did not promote IL-1β release, at any of the 

concentrations or time of exposure used. These results suggested that in this model and at the 

concentrations used LPS acts only upstream of NLRP3 inflammasome activation. Whereas, ATP 

in presence of LPS was able to potentiates the release of the pro-inflammatory cytokines IL-1β 

and TNF-α. As described by others, an increased in the release of these cytokines, mainly of IL-

1β, is indicative of the NLRP3 inflammasome assembly and activation. 

Therefore, in all subsequent experiments, co-incubation with 10ng/ml of LPS and 1mM of 

ATP was used as an activating condition of NLRP3 inflammasome. 

 

4.2.1. Morphology of glial cells  

 

Glial cells activation can be evaluated by increased expression of microglia and astrocytes 

markers (Iba1 and GFAP, respectively), and by changes in their morphology.  

The results obtained by western blot showed that at the conditions tested, Iba1 and GFAP 

expression was not altered. But this does not discard the activation of glial cells. Indeed, the 

expression of the glial markers may not change when the hippocampal lysate is analyzed as a 

whole, as in the western blotting technique. 

In order to fully address this subject, an immunohistochemical assay was performed, which 

allows to compare the morphology of microglia and astrocytes between control slices and 

treated ones. 

In slices with Iba1 positive cells, different microglia distribution was observed between 

distinct layers from the same slice (Fig. 17). Less microglia was observed on the top of the 

slices than on the bottom of the slices, which is nearest the culture medium. This gradient 

distribution suggests that these glial cells move towards the culture medium. The microglia 

movement is observed in different hippocampal regions (DG, CA3 and CA1) of control slices 

and LPS/ATP-treated slices, being more accentuated in the last ones (Fig. 17A, B and C). 

 In both conditions, the microglia furthest from the culture medium has a ramified 

morphology (a small soma with fine cellular processes) corroborating a resting state. However, 

A        B 

Fig. 16 - Effects of ATP co-exposure with LPS on TNF-α levels. (A, B) TNF-α levels in slices exposed to LPS in absence 
or presence of ATP [n=3] (A) and in the culture medium [n=3] (B). Data are presented as mean ± SEM. *p<0.05, 
**p<0.01, ***p<0.001 vs control; 

#
p<0.05 LPS vs LPS plus ATP, by one-way ANOVA followed by Tukey’s test. 
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microglia closer to the culture medium has retracted coarse processes that resemble reactive 

state. In treated slices this reactive state indicative of microglial activation is more prominent 

when compared with control slices, since there are more and less dispersed cells. Therefore, it 

is plausible to affirm that LPS/ATP promote microgliosis in the hippocampal subregions and in 

the layers closer to the culture medium. 
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Fig. 17 – Microglia migration across organotypic cortex-hippocampus slices. Representative immunohistochemical 
staining for Iba1 (green) and DAPI (blue) fluorescence of control slices and slices exposed to LPS/ATP in DG (A), CA3 
(B) and CA1 (C). Confocal images represent three optical sections from the same slice obtained with Plan-
Apochromat 20x/0.8 M27 objective and 0.6 zoom. DG, Dentate gyrus. CA3, Cornu ammonis 3. CA1, Cornu ammonis 
1. Scale bar, 150μm. 
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Regarding GFAP positive cells, no morphological differences were observed between 

astrocytes from control or treated slices, neither between different hippocampal regions (Fig. 

18). In both conditions, astrocytes have large soma and thick processes forming a network 

which extends beyond the individual domain. This morphology is representative of a mild 

astrogliosis. Without quantitative measurements it was not possible to recognize the effect of 

LPS/ATP in organotypic slices. Contrary to microglia, astrocytes do not move towards culture 

medium (data not shown). 
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Fig. 18 - Astrocytes in organotypic cortex-hippocampus slices. Representative immunohistochemical staining for 
GFAP (green) and DAPI (blue) in hippocampal regions of control slices (A, B, C) and slices co-exposed to LPS/ATP (D, 
E, F).  Confocal images represent maximum intensity projections of optical sections obtained with EC Plan-Neofluar 
10x/0.30 M27 objective and 1.0 zoom. DG, Dentate gyrus. CA3, Cornu ammonis 3. CA1, Cornu ammonis 1. Scale 
bar, 150μm. 
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4.2.2. Co-localization of NLRP3 in astrocytes  

 

It is well established that microglia express all NLRP3 inflammasome components and is 

therefore capable of producing a functional multiprotein complex. However, it is not clear if 

NLRP3 is expressed by astrocytes or whether they produce a functional NLRP3 inflammasome. 

The expression appears to vary depending on the disease involved. In a way to clarify if 

astrocytes express NLRP3 in our organotypic slices a double-staining with GFAP and NLRP3 was 

performed. 

The immunohistochemistry protocol of slices double labeled with GFAP and NLRP3 has 

been optimized. Changes in permeabilization and blocking solutions allowed to fully identify 

NLRP3 staining. Further optimizations must be performed, especially in antibody 

concentration, but a rough analysis was carried out to understand if NLRP3 co-localizes with 

astrocytes in these slices. 

Preliminary results showed that NLRP3 is co-localized with astrocytes (Fig. 19). Even with 

the threshold chosen (which was not optimized, as explained in section 3.9) it was possible to 

observe co-localization in control slices and in slices incubated with LPS/ATP.  The maximum 

percentage of NLRP3 and GFAP co-localization found in one layer of the slice was similar in 

both conditions, around 28%. The percentage of co-localization in 11 layers was 16.52±2.398 in 

control condition and 14.64±2.348 in LPS/ATP condition. NLRP3 expression differs between 

layers.  

These preliminary results anticipate that NLRP3 is located in astrocytes processes and cell 

body. Moreover, this rough analysis means that with a lower threshold, that would be given by 

a negative control slice, the percentage of co-localization would be higher.  
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Fig. 19 - Co-localization of NLRP3 with astrocytes. Representative immunofluorescence staining for control slices 
(A, B) and LPS/ATP-treated slices (C, D). Double immunofluorescence of NLRP3 (red) and GFAP (green) in control 
slice (A) and in LPS/ATP-treated slice (C). White dots represent the points above the threshold that co-locate in the 
two channels. NLRP3 (red), GFAP (green) and DAPI (Blue) staining alone in control slice (B) and in LPS/ATP-treated 
slice (D). Confocal images were obtained with a Plan-Apochromat 63x/1.40 Oil DIC M27 objective and 1.0 zoom. 
Scale bar, 20 μm. 
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4.2.3. Extracellular recordings  

 

In order to investigate the consequences of NLRP3 inflammasome activation in epileptiform 

activity, field potential recordings from CA3 region of organotypic slices were performed. Each 

slice was primarily stimulated in mossy fibers to ensure the occurrence of a biologic response. 

With the recording electrode placed in CA3 was possible to record population spikes (Fig. 20A). 

When no response was detected, the slice was discarded (see Methods).  

After this screening, epileptiform activity was recorded continuously during 40 min. 

Organotypic slices revealed activity with no population discharges (Fig. 20B), activity with 

interictal-like discharges (Fig. 20C), or mixed activity with interictal-like and ictal-like discharges 

(Fig. 20D). These three types of activity were already described by others (Dyhrfjeld-Johnsen et 

al., 2010).  

In inflammasome activation conditions, all slices displayed mostly mixed interictal-like and 

ictal-like activity. In slices incubated with LPS/ATP, the number of burst per slice was similar to 

that counted in control slices (Fig. 21A). Moreover, slices incubated with LPS or ATP alone 

behaved similarly. It should be noted that in slices incubated with LPS alone, this bacterial 

compound was exposed to slices for only 3h, instead of 6h. Regarding the bursts inner 

parameters, both frequency and amplitude of events per burst were also similar between 

control and treated slices (Fig. 21B and C).  

Surprisingly, these results suggest that under the conditions evaluated, NLRP3 

inflammasome manipulation is not increasing epileptiform activity when compared with 

control condition. Thus, this issue was further pursued. 
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Fig. 20 - Extracellular recordings in organotypic cortex-hippocampus slices. (A) Representative population spike 
recorded after stimulation. (B-D) Field potential recordings of neuronal activity from CA3 region, which displayed 
no population discharges (B), interictal-like discharges (C) and mixed interictal and ictal discharges (D). 
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4.2.4. Slices in serum-free medium vs slices in serum-based medium: the best 

control condition 

 

To fully understand if NLRP3 inflammasome manipulation did not affect epileptiform 

activity in relation to control condition, a careful assessment of control condition was 

performed. 

Control slices were incubated throughout the whole culture time in a serum-containing 

medium (Opti-MEM), once horse serum allows the attachment of the slice on the membrane 

insert and the recovery from the explantation trauma (Gogolla et al., 2006; Muller et al., 2001). 

However, literature refers that this medium is not chemically well defined and should be 

exchange to a serum-free medium, like NBA. Therefore, the day before the experiments, all 

slices underwent a medium exchange, as described by others (Bernardino et al., 2008; Ravizza 

et al., 2006). Thus, the epileptiform activity of slices maintained in serum-based medium (CTL 

in Opti-MEM) was evaluated and compared with that of slices which underwent medium 

exchange to NBA (throughout this thesis denominated CTL). 

CTL slices depicted a greater predominance of mixed interictal-like and ictal-like activity, 

when compared with slices incubated only in Opti-MEM medium (CTL in Opti-MEM) (Fig. 22 A). 

In slices that did not undergo medium exchange, the predominant activity was interictal-like. 

Only one slice out of 4 displayed mixed activity. Also, slices CTL in Opti-MEM (0.750±0.750, 

Fig. 21 - Analysis of epileptiform activity parameters in organotypic cortex-hippocampus slices under incubation 
with LPS or ATP alone, and LPS/ATP co-incubation. Number of bursts per slice [n=3-11] (A), frequency [n=2-10] (B) 
and positive peak amplitude [n=2-10] (C) of events per burst are shown. Data are presented as mean ± SEM, except 
when n=2. 
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n=4) had lower number of burst per slice than CTL slices (10.09±2.387, n=11, *p<0.05) (Fig. 22 

B). 

These results suggest that medium exchange at 14 DIV promotes epileptiform activity in 

these organotypic slices. In summary, our control condition already exhibited an exacerbated 

epileptiform activity when LPS and ATP were added. 
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4.3. Impact of NLRP3 inflammasome inhibition  

 

In the previous sections, NLRP3 inflammasome activation through LPS/ATP mediated the 

release of the pro-inflammatory cytokines, IL-1β and TNFα, and the activation of microglia. 

But, NLRP3 effect in epileptiform activity was not visible. 

To verify if the inhibition of NLRP3 inflammasome decreased or reversed the parameters 

already evaluated, the slices were incubated with a selective inhibitor of this inflammasome, 

the MCC950. 

 

4.2.1. IL-1β production  

 

Fig. 23 shows the effect of MCC950 co-incubated with LPS/ATP upon Il-1β levels in 

organotypic slices and released to the culture medium. 

 In tissue samples, Il-1β levels increased both in absence (6566±1174, n=6, **p<0.01) and 

presence (8091±2218, n=4, **p<0.01) of MCC950, when compared with control slices 

(305.9±63.00, n=7, Fig. 23A). This result is in accordance with the literature once LPS 

potentiates the upregulation of pro-IL-1β, which is also detected by ELISA Kit as referred 

before. Moreover, MCC950 acts downstream LPS-mediated pro-IL-1β production, blocking 

only Il-1β production and not pro-Il-1β.  

 Furthermore, MCC950 had no effect upon Il-1β release (Fig. 23B). Although there was a 

downward trend MCC950 was not able to inhibit the LPS/ATP-mediated inflammasome 

activation and consequently the production and release of IL-1β. 

Fig. 22 - Differences in epileptiform activity of organotypic cortex-hippocampus slices according to culture media. 
(A) Activity probability of mixed interictal and ictal-like discharges or interictal-like discharges in control slices 
incubated only in serum-containing medium (CTL in Opti-MEM) and slices that underwent medium change (CTL). 
(B) Number of bursts per slice analysis between the two control conditions [n=4-11]. Data are presented as means 
± SEM. *p<0.05by unpaired t-Test. 
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4.2.2. Morphology of glial cells  

 

Fig. 24 shows that in slices incubated with MCC950 in inflammatory context and in slices 

treated with DMSO, the MCC950 vehicle, microglia distribution is different across the same 

slice in distinct hippocampal regions.  

In slices co-incubated with MCC950/LPS/ATP, all hippocampal regions presented 

microgliosis in the layer nearest the insert membrane (Fig. 24). This inflammatory process did 

not appear to be qualitatively different from that observed in slices treated with the NLRP3 

inflammasome activators. Therefore, MCC950 did not reverted LPS/ATP-induced microgliosis.  

MCC950 vehicle was also evaluated to understand whether it could influence the action of 

MCC950. DMSO did not have an effect in microglia morphology or distribution. Microglia in 

DMSO-treated slices is similar to microglia found in control slices in DG and CA1 (Fig. 24A and 

C). In CA3 area is possible to observe more microglial cells in DMSO-treated slices that in 

control slices (Fig. 24B). However, this result has to be confirmed in more slices and 

quantitative measurements have to be performed. 

Regarding astrocytes, no morphological differences were observed in these glial cells from 

slices co-exposed to LPS/ATP in absence or presence of NLRP3 inflammasome selective 

inhibitor (Fig. 25D-I).  MCC950 does not appear to affect DG, CA3 and CA1 astrocytes (Fig. 25G-

I). Neither did DMSO (Fig. 25J-L). In this ex vivo model of epileptogenesis, a mild astrogliosis 

seems to be always present at 15 DIV.  

 

 

  

Fig. 23 - Effects of the NLRP3 inflammasome selective inhibitor, MCC950, on Il-1β levels produced and release by 
organotypic cortex-hippocampus slices. Il-1β levels in slices exposed to inflammasome activators, alone or together 
with MCC950 [n=4-7] (A) and in their culture medium [n=5-7] (B).  Data are presented as mean ± SEM. **p<0.01 vs 
control, by one-way ANOVA followed by Tukey’s test. 
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Fig. 24 - Microglia migration across organotypic cortex-hippocampus slices. Representative immunohistochemical 
staining for Iba1 (green) and DAPI (blue) of different conditions in DG (A), CA3 (B) and CA1 (C). Control slice, slice 
co-exposed to LPS/ATP, in absence and presence of MCC950, and a slice exposed to DMSO are shown. Confocal 
images represent three optical sections from the same slice obtained with Plan-Apochromat 20x/0.8 M27 objective 
and 0.6 zoom. DG, Dentate gyrus. CA3, Cornu ammonis 3. CA1, Cornu ammonis 1. Scale bar, 150μm.  
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Fig. 25 - Astrocytes in organotypic cortex-hippocampus slices. Representative immunohistochemical staining for 
GFAP (green) and DAPI (blue) in hippocampal regions of control slice (A, B, C), one slice co-exposed to LPS and ATP 
(D, E, F), one slice exposed to MCC950 in inflammatory context (G, H, I) and one slice exposed to DMSO, MCC950 
vehicle (J, K, L). Confocal images represent maximum intensity projections of optical sections obtained with EC 
Plan-Neofluar 10x/0.30 M27 objective and 1.0 zoom. DG, Dentate gyrus. CA3, Cornu ammonis 3. CA1, Cornu 
ammonis 1. Scale bar, 150μm. 
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4.2.3. Extracellular recordings  

 

In order to investigate the effect of NLRP3 inflammasome inhibition, epileptiform activity 

was recorded in slices incubated with MCC950 alone or in an inflammatory context (LPS/ATP). 

Fig. 26A shows that slices incubated with LPS/ATP in the presence or absence of MCC950 

had a similar number of bursts per slice. Moreover, bursts inner characteristics also did not 

change significantly between these two conditions (Fig. 26B and C). Although a significant 

reduction in frequency and amplitude of events was not observed, there was a decreasing 

tendency in slices co-incubated with MCC950 and NLRP3 inflammasome activators. These 

results suggest that MCC950 was not able to decrease epileptiform activity at the 

concentrations used. 

Comparing control slices with slices incubated only with MCC950, a decrease in the number 

of burst and in the frequency and amplitude of events was detected (Fig. 26A, B and C). Similar 

to slices incubated only in a serum-containing medium, the majority of the slices exposed to 

MCC950 had interictal-like activity instead of mixed interictal-like and ictal-like activity as in 

control slices (Fig. 26D and E). Moreover, the epileptiform activity induced by medium 

exchange in control slices was reverted by the NLRP3 selective inhibitor (Fig. 26F). Altogether, 

a new hypothesis rises up suggesting that epileptiform activity induced by serum withdrawal is 

NLRP3 dependent in these organotypic cortex-hippocampus slices. 
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Fig. 26 - Extracellular recordings in organotypic cortex-hippocampus slices. (A-E) Analysis of epileptiform activity in 
NLRP3 inflammasome inhibition-related slices. Number of burst per slice [n=4-11] (A), frequency [n=1-10] (B) and 
positive peak amplitude [n=1-10] (C) of events per burst were assessed. (D) Activity probability of mixed interictal 
and ictal-like discharges or interictal-like discharges in control slices and slices exposed only to MCC950. (E) 
Representative epileptiform activity recorded in control slice (upper image) and in MCC950-exposed slices (bottom 
image). (F) Number of bursts per slice in slices incubated only in serum-containing medium (CTL in Opti-MEM), in 
slices that underwent medium change (CTL) and in MCC950-exposed slices [n=4-11]. Data are presented as mean ± 
SEM, except when n=1. *p<0.05 by one-way ANOVA followed by Tukey’s test. 
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5. DISCUSSION 

 

The main finding of this study is that activation of NLRP3 inflammasome is related with the 

enhancement of epileptiform activity. Although co-incubation with LPS and ATP did not 

influence epileptiform activity in our organotypic cortex-hippocampus slices (Fig. 21), culture 

medium exchange was able to increase this activity (Fig. 22). The transition, at 14 DIV, from a 

serum-containing medium to a serum-free medium potentiated the increasing of neuronal 

population discharges that were later reversed by MCC950 (Fig. 26F), a selective inhibitor of 

NLRP3 inflammasome. This result indicates that medium exchange triggered the activation of 

NLRP3 inflammasome, which in turn promoted epileptiform activity. 

Through electrophysiological recordings it was possible to uncover the exacerbated 

epileptiform activity of our control slices when compared to slices incubated only in serum-

containing medium. Thus, the use of control slices incubated in serum-free medium was not 

the most suitable condition, once NLRP3 inflammasome was already activated. This activation 

might have been triggered by the production of ROS caused by the serum removal from 

culture medium. It is described that ROS can also trigger the activation of NLRP3 

inflammasome, working as a second stimulus (Zhou et al., 2011). Nevertheless, this theory still 

has to be tested. If ROS production is involved, then another compound should be working as a 

priming signal. It is noteworthy that medium composition is unlikely to be the cause of this 

epileptiform activity (Liu et al., 2017). 

Knowing this, some of the results obtained throughout this study that appeared to be 

inconsistent with literature can now be understood and discussed. 

 

Expression of different proteins in slices treated with LPS, in presence or absence of ATP 

 All proteins assessed through western blotting technique had a similar expression between 

control slices and treated slices. However, it was expected that control condition had lower 

levels of the proteins evaluated.  

Although control slices had a similar expression of αII-spectrin when compared with treated 

slices, it was still possible to observe a lower SBDP145/ αII-spectrin ratio in slices co-incubated 

with LPS/ATP (Fig. 10). Both triggers promoted the decrease of necrosis, suggesting that they 

were able to further potentiate the NLRP3 inflammasome activation, which has been 

associated with a pro-inflammatory cell death called pyroptosis. It is thus plausible to 

speculate that cells were mainly dying by this form of cell death instead of necrosis. A less 

likely theory is that LPS and ATP under these conditions had protective actions that decreased 

premature cell death by autolysis. 

Both NLRP3 and ASC expression did not change at different LPS concentrations and distinct 

timepoints or in presence of ATP (Fig. 11 and Fig. 12). Although changes can be masked by the 

high expression levels in the control condition, a decrease in NLRP3 and ASC expression in the 

presence of ATP can be observed (Fig. 11B). A similar decrease is also detected in ASC levels in 

the slices exposed to the highest concentrations of LPS (Fig. 12B). This tendency can yet reveal 

two hypotheses that need to be further studied. The first one is that NLRP3 and ASC are 

coupled to each other. It is described that this two proteins are linked by homotypic 

interactions between PYD domains (both NLRP3 and ASC have one PYD) (Oroz et al., 2016). If 

this bond has not been denatured during the preparation of the samples, PYD from ASC and 

PYD from NLRP3 are still linked and the antibodies against NLRP3 and ASC are not able to 
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recognize each PYD. The other hypothesis is that part of NLRP3 and ASC was released to 

extracellular medium. A study performed by Baroja-Mazo showed that 15 minutes after NLRP3 

inflammasome activation, NLRP3, ASC, and other related proteins start to be released into the 

medium. Indeed, the majority of pool of NLRP3 was in tissue, but the highest levels of ASC 

were found in the medium (Baroja-Mazo et al., 2014).  

NLRP3 inflammasome activation can be better studied using different techniques such as: 

size exclusion chromatography (SEC), co-immunoprecipitation (Co-IP), fluorometric caspase-1 

activation assay or crosslinking (Coll et al., 2015; Khare et al., 2016). SEC allows the separation 

of the native protein complexes according to their size. Co-IP is a powerful technique used to 

identify protein-protein interactions. It targets a specific protein (like NLRP3) and allows the 

capture of others bound to it (as ASC). These proteins can be later separated by SDS-PAGE and 

detected by immunoblotting. The recruitment of ASC is used as the readout for inflammasome 

assembly. Fluorometric caspase-1 activation assay is used as complement to measure caspase-

1 activity. In crosslinking technique, the crosslinking reagents bind to specific functional groups 

from, per example, ASC and capture with high sensitivity and stability the oligomeric state of 

this protein. ASC oligomerization is also used as the readout for NLRP3 inflammasome 

activation. 

Regarding microglia and astrocytes markers assessed by western blotting, it was not 

possible to observe any alterations when comparing treated slices with control slices (Fig. 13 

and Fig. 14). Once more, these results may have been masked by the use of control slices that 

underwent medium exchange. Beyond that, this ex vivo model is described to have a basal 

astrogliosis at the time of sampling. It is described that in organotypic hippocampal slices 

incubated in a serum-containing medium, a high hypertrophic astrocytic response takes place 

from 4 to 10 DIV, contrasting with the reduced number of GFAP-positive astrocytes observed 

at 2 DIV (Coltmann and Ide, 1996). These results were also corroborated by fluorescent 

intensity assessment of GFAP signal from slices incubated in serum-free medium (Gerlach et 

al., 2016). 

Conversely, microglia has a mostly reactive morphology at 2 DIV (Coltmann and Ide, 1996; 

Gerlach et al., 2016) that, later, between 4 to 10 DIV, gives rise to a resting phenotype. These 

changes can be observed in slices incubated both in serum-containing (Coltmann and Ide, 

1996) or serum-free medium (Czapiga and Colton, 1999). Nevertheless, microgliosis was 

already described at 15 DIV (Gerlach et al., 2016). The activation of the glial cells will be 

discussed again later. 

 

Release of cytokines in slices treated with LPS, in presence or absence of ATP 

Pro-inflammatory cytokine IL-1β is normally used as a readout of NLRP3 inflammasome 

activation once it is the main pyrogenic product produced by it. Comparing the IL-1β levels of 

slices that underwent medium exchange with slices incubated only in serum-containing 

medium, it was possible to verify higher levels of this cytokine in the first ones. IL-1β tissue 

levels, quantified in our laboratory in the same type of slices, but with different operator, was 

77.08±6.842 pg of IL-1β/mg total protein in slices incubated only in serum-containing medium, 

at 14 DIV (Cláudia Cavacas’ master thesis). These levels are around 4 times lower than that 

obtained in the control slices of this study. This confrontation also corroborates the results 

obtained in electrophysiological recordings.  
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Although NLRP3 inflammasome was already activated in control slices, it was possible to 

verify a further activation of this complex in slices co-exposed to LPS and ATP. With the results 

obtained in this study was possible to verify that LPS alone was not able to further potentiate 

IL-1β release in these slices (Fig. 15B), not even in a lower potent manner as described by 

others (Bernardino et al., 2008; Ravizza et al., 2006). Nevertheless, in ATP presence, both were 

able to potentiate further IL-1β production, corroborating the results obtained before in 

organotypic hippocampal cortex-free slices (Fig. 15B) (Bernardino et al., 2008; Ravizza et al., 

2006). 

In accordance with these results, another pro-inflammatory cytokine, TNF-α, was also 

increased in slices co-incubated with LPS and ATP (Fig. 16). To our knowledge, it was the first 

time that TNF-α levels were quantified in organotypic hippocampal slices incubated with LPS 

and ATP.  

The close relationship between these two cytokines is known. IL-1β induces glutamate 

astrocytic release via TNF-α (Shimada et al., 2014; Vezzani et al., 2008) and this cytokine, in 

turn induces the expression of the inactive pro-IL-1β (Schroder and Tschopp, 2010). Both IL-1β 

and TNF-α promotes neuronal hyperexcitability and are increased in the brain of human 

epileptic patients (Sinha et al., 2008; Uludag et al., 2015). 

 

Effect of LPS and ATP co-incubation in organotypic slices 

The exposure of LPS and ATP, activators of NLRP3 inflammasome, promoted microgliosis in 

these organotypic cortex-hippocampus slices (Fig. 17). It was showed that microglia migrate 

from the top of the slice to the layers nearest the insert membrane, that is microglia move 

towards the culture medium. This process can be observed in control slices, especially in CA1, 

and in treated slices. In these last slices, it was possible to verify a severe microgliosis in the 

layers closest to the LPS/ATP-containing medium of all hippocampal regions. On the contrary, 

in presence of LPS and ATP, organotypic hippocampal slices exhibited reactive microglia 

randomly over the whole slice (Bernardino et al., 2008).  

Microglial cells activation should be further investigated in this study. The quantitative 

analysis by counting the number of microglia was attempted through the Image J software. 

However, in the nearest layers of the insert membrane it was difficult to individualize and 

count the number of cells labelled with Iba1 due to its hyper-reactive morphology. Double 

immunolabeling for Iba1 and CD68 (a marker for activated microglia cells) could be performed 

to assess the percentage of resting microglia (Iba1+/CD68-) versus activated microglia 

(Iba1+/CD68+) (Gerlach et al., 2016). This method would also allow a better understanding of 

microglia activation state in control slices. 

Regarding astrocytes, the exposure of LPS and ATP did not potentiate astrogliosis, since 

control slices already manifested this inflammatory process (Fig. 18). As mentioned before, it is 

known that astrogliosis is present in this type of slices in 15 DIV (Gerlach et al., 2016). A 

quantitative analysis of GFAP fluorescence intensity, as described by Gerlach et al., was 

thought but not implemented (Gerlach et al., 2016). Fluorescence intensity quantification is 

not a consensual method in the scientific community. Another analysis could be performed to 

better evaluate the astrocytes activation. Reverse transcription quantitative polymerase chain 

reaction (RT-qPCR) analysis of nestin and ciliary neurotrophic factor (CNTF) trancripts could 

also complement the immunohistochemical analysis. These two proteins are expressed by 

activated astrocytes (Gerlach et al., 2016). 
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Microgliosis and astrogliosis are associated with IL-1β production which has been related 

with epileptogenesis for some time (Vezzani et al., 2008; Vezzani and Baram, 2007). In the 

control slices used in this study, high levels of IL-1β were found and an unexpected high 

incidence of epileptiform activity was recorded, corroborating the relationship between these 

two. Slices co-exposed to LPS and ATP, which have had higher IL-1β levels when compared to 

control slices, did not display an increased epileptiform activity. The epileptiform activity 

recorded in the treated slices was similar to that recorded in the control (Fig. 21). No statistical 

differences were found in the number of burst per slice or in the bursts inner parameters. 

Therefore, LPS and ATP were not able to potentiate further the existing epileptiform activity. 

These results raise two theories: either epileptiform activity cannot be further potentiated 

once it reached the maximum level, or the concentrations of LPS and ATP used were not 

appropriate given the epileptiform basal state of the control slices. 

The analysis carried out to evaluate epileptiform activity in these organotypic slices was 

developed by us. Articles demonstrating the presence of epileptiform activity in organotypic 

hippocampal slices used custom softwares for a sophisticated data analysis (Berdichevsky et 

al., 2012; Dyhrfjeld-Johnsen et al., 2010).  In this study, bursts (ictal-like discharges) were 

defined as continuous discharges lasting more than 6 seconds. The threshold used to define 

ictal-like activity and interictal-like activity differs between models of epilepsy. Berdichevsky, in 

organotypic hippocampal cortex-free slices, defined bursts as paroxysmal discharges lasting 

more than 10 seconds or sequences of at least 20 paroxysmal spikes in 10 seconds 

(Berdichevsky et al., 2012). Rutecki, in acute hippocampal slices incubated with pilocarpine, 

defined bursts as discharges lasting more than 3s (Rutecki and Yang, 1998). 

Taken together, NLRP3 inflammasome activators were not able to further potentiate 

astrogliosis and epileptiform activity displayed by control slices. However, they were able to 

promote microgliosis, a feature barely observed in control slices. 

 

Co-localization of NLRP3 in astrocytes  

This study showed, for the first time, co-localization between NLRP3 and astrocytes in a 

model of epileptogenesis (Fig. 19). To my knowledge until now there is no published article 

studying NLRP3 co-localization with other proteins in any model of epilepsy. The co-

localization analysis performed was tight once it had a high threshold for the red channel, the 

one used for NLRP3. To the naked eye it was possible to see that there were still areas of co-

location that were below the threshold. However, this threshold was suggested by iMM 

Bioimaging Unit, since there was no negative control without primary antibodies prepared 

under the same conditions and with the same fluorescence intensities. 

Nevertheless, these preliminary results demonstrated that NLRP3 indeed co-localized with 

GFAP. If astrocytes express NLRP3 protein or produce a functional NLRP3 inflammasome is still 

controversial. In C57BL/6JOlaHsd mice primed with LPS or cytokines mix almost no NLRP3 

protein were detected (Gustin et al., 2015), although it was detected in rat models of spinal 

cord injury model (Zendedel et al., 2016) and ALS (Debye et al., 2018; Johann et al., 2015). 

However, if astrocytes actually express nlrp3 mRNA and produces a NLRP3 protein or if they 

capture this protein from the extracellular medium it is still unclear. Our experiment also failed 

to elucidate this paradigm.  

It would also be interesting to study the cellular co-localization between NLRP3 and ASC in 

order to understand in which cells it co-localizes. ASC-NLRP3 co-localization within a specific 
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cell would be used as readout for NLRP3 inflammasome activation. Yet, performing 

immunolabeling with NeuN (a neuronal specific nuclear protein) or Iba1 and NLRP3 

inflammasome components would also be newsworthy in order to confirm a functional NLRP3 

in these cells. 

 

Impact of MCC950 co-incubated with LPS and ATP in organotypic slices 

The treatment with MCC950, NLRP3 inflammasome selective inhibitor, did not attenuate 

the IL-1β release from organotypic slices in response to stimulation with LPS and ATP, at the 

concentrations tested (Fig. 23). Although MCC950 co-incubation with LPS and ATP has never 

been studied in organotypic slices, Coll et al. reported a decrease of IL-1β production from 

 bone marrow derived macrophages (BMDMs), human monocyte–derived macrophages 

(HMDMs) and human peripheral blood mononuclear cells (PBMCs) stimulated with LPS and 

ATP and treated with MCC950 (Coll et al., 2015). Moreover, decrease of IL-1β levels in the 

serum was also verified in in vivo models of EAE exposed to MCC950 and LPS (Coll et al., 2015). 

In vitro models have reported different concentrations of MCC950. In cells treated with LPS 

and ATP up to 1μM of this drug was applied, where as in cells treated with LPS and nigericin 

the maximum concentration applied was 10μM (Coll et al., 2015). Organotypic slices are a 

more robust model than isolated cells, thus the highest concentration of MCC950 described by 

Coll et al. was used in our slices. MCC950 at 10μM was diluted in 0.1% DMSO. This vehicle can 

be toxic to cells, but as the concentration used is considered to be safe for them. 

Corroborating the results of LPS/ATP-induced IL-1β production, MCC950 did not affect 

LPS/ATP-promoted microgliosis neither epileptiform activity (Fig. 24). Although it is necessary 

to quantitatively evaluate the number of microglial cells to confirm these results, NLRP3 

inflammasome selective inhibitor did not potentiate a clear reverse of microgliosis. At the 

time, it was the first time that this evaluation was carried out. A recent report showed that 

MCC950 attenuated Aβoligomers-evoked microglia reactivity in a mouse model of Alzheimer ’s 

disease, but IL-1β levels were not quantified in this study (Fekete et al., 2018).  

In relation to epileptiform activity, MCC950 when co-incubated with LPS and ATP did not 

reduce the exacerbated neuronal activity (Fig. 26). As shown, control slices already depicted an 

exacerbated activity, and MCC950 was not able to attenuate the epileptiform activity 

generated by further activation of the inflammasome by LPS/ATP. 

 Taken together, these results suggests that, at the concentrations studied, MCC950 is not 

capable of ameliorate the effect of NLRP3 inflammasome activators in microglial cells and their 

related-cytokines. Furthermore, is not capable of decreasing epileptiform activity in an 

inflammatory context in these organotypic cortex-hippocampus slices. Nevertheless, if we look 

carefully for data depicted in the graphs related with IL-1β secretion and epileptiform activity 

analysis, it is possible to observe a consistent decrease in the MCC950 condition in 

inflammatory context. This raises a question about the concentrations used for each 

compound (MCC950, LPS and ATP), which certainly deserves further attention.  

 

Slices treated with MCC950 alone resemble slices incubated in serum-containing medium and 

reverse the epileptiform activity 

This discussion has already addressed the effect of exchanging culture media on neuronal 

activity in control slices. It was observed that slices that did not undergo this process, that is 

slices always incubated in serum-containing medium (Opti-MEM medium), have little or 
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almost no epileptiform activity (Fig. 22). The interictal discharges appear to be the most 

predominant in these slices. This small activity resembles that recorded from slices incubated 

with MCC950 alone. After medium exchange, slices depicted an exacerbated epileptiform 

activity, and the selective inhibitor was able to attenuate the effect of serum removal, 

obliterating almost all ictal-like discharges (Fig. 26F).  

In organotypic hippocampal slices displaying ictal-like discharges, phenytoin suppressed 

ictal activity but not interictal activity (Berdichevsky et al., 2012; Dyhrfjeld-Johnsen et al., 

2010). Phenytoin is an anticonvulsant drug widely used around the world to suppress some 

types of seizures. It is reported that this effect of phenytoin on organotypic slices is 

comparable to the effect observed in electroencephalogram (EEG) of patients with epilepsy 

(Berdichevsky et al., 2012; Dyhrfjeld-Johnsen et al., 2010). Nevertheless, this drug prevents 

seizures but does not prevent epileptogenesis. Phenytoin exerts an acute and reversible 

anticonvulsive effect. It would be interesting to address this issue in our model of 

epileptogenesis and evaluate the epileptiform activity of the slices upon MCC950 withdrawal. 
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6. CONCLUSION AND FUTURE PERSPECTIVES 

 
Our study affirmed that NLRP3 inflammasome activation, which is associated with a 

massive release of IL-1β, is required for exacerbation of epileptiform activity and possible for 

epileptogenesis process.  

It was the first time that a study reported that MCC950, a selective inhibitor of NLRP3 

inflammasome, reversed epileptiform activity. In 2014, a study reported that inhibition of this 

particular inflammasome, through NLRP3 mRNA silencing, provided neuroprotection in rats 

following SE (Meng et al., 2014). However, this treatment was only effective in 44% of the rats 

from the treated group, contrasting with the 75% possible efficacy in this study. Although it is 

necessary to increase the number of experiments, these preliminary results unveil a potential 

antiepileptogenic therapy. 

 

Future studies should focus on disentangling the NLRP3 inflammasome endogenous 

activator responsible for the epileptiform activity induced by serum withdrawal. Moreover, 

LPS/ATP concentrations should be increased to understand if this exacerbated neuronal 

activity has reached the maximum level by only medium exchange. It would also be interesting 

to observe the effect of LPS and ATP in organotypic slices maintained in serum-containing 

medium (Opti-MEM). 

Future work could further detail the effect of MCC950 in organotypic slices. For instance 

increasing the MCC950 concentration in slices treated with LPS/ATP can enlighten the 

mechanism of action of this selective inhibitor. Also, evaluation of Il-1β secretion and 

microgliosis in slices treated with MCC950 alone would be helpful.  

Furthermore, adding the AED phenytoin to organotypic slices and testing MCC950 in a wash 

in /wash out system would provide a better knowledge about its epileptogenic properties. 

In a long-term future, it would also be exciting to assess the action of MCC950 beyond BBB 

and to evaluate its effects in in vivo models of epilepsy. 
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