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Abstract 

Lead is a toxic metal which widespread use has resulted in environmental contamination and 

significant health problems. It is a cumulative toxicant that affects multiple body systems, including the 

cardiovascular, hematopoietic, reproductive, and renal systems. Lead is also a well-known neurotoxin, 

inducing changes in neurogenesis, neurodegeneration and changes on glial cells. These changes in the 

molecular and cellular processes lead to cognitive and behaviour alterations, particularly during 

developmental phases, persisting throughout the lifetime.  

Most of the studies that have been performed in both humans and animals were focused in a 

continuous chronic exposure to lead. This lead exposure causes behavioural changes, cognitive 

impairment and hypertension associated with sympathoexcitation, baroreceptor reflex hyposensitivity 

and increased chemoreceptor reflex sensitivity. But the effects of an intermittent lead exposure are 

scarse and standardized animal models are non-existent. This pattern of exposure has been increasing 

in the last years due to migrations, implementation of school exchange programs and/or residential 

changes.  

Therefore, the overall purpose of this work was to evaluate lead effects on mammal’s 

physiology along different profiles of lead exposure, including a new animal model of intermittent low-

level lead exposure.  

Animal models of lead exposure were developed by replacing the tap water of seven-day 

pregnant Wistar females with 0.2% (p/v) solution of lead acetate. After being weaned at 21 days, rat 

pups, both sexes, were divided into 3 groups of lead exposure: long-term (exposure from foetal period 

until 28 weeks of age), short-term (exposure from foetal period until 12 weeks) and intermittent 

(exposure from foetal period until 12 weeks, lead-free period until 20 weeks and a second exposure 

between 20 and 28 weeks of age).  

At 12, 20 and 28 weeks of age, behavioural tests were performed for anxiety (Elevated Plus 

Maze Test), locomotor activity (Open Field Test), spatial working memory (Y-Maze) and episodic long-

term memory (Novel Object Recognition test) assessment. Blood pressure (BP), electrocardiogram 

(ECG), heart rate (HR) and respiratory frequency (RF) were recorded at the same timepoints in the acute 

experiment. Baroreflex gain (BRG), chemoreflex sensitivity (ChS), cardiovascular variability were also 

evaluated.  

Immunohistochemistry studies for neuronal nuclear antigen (NeuN), Synaptophysin (Syn), 

ionized calcium binding adapter molecule-1 (Iba-1) and Glial fibrillary acidic protein (GFAP) stainings 

were performed in brain slices, and confocal imaging acquired and stainings quantified at dentate gyrus 
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(DG) of the hippocampus. Blood lead levels were assessed by atomic absorption spectroscopy and 

metabolic evaluation of all groups was done using metabolic cages. A control group of Wistar rats 

without lead exposure, of both sexes, with the same number of individuals, underwent the same 

protocol and were evaluated in the same time points. Student T-test and one-way ANOVA with Tukey’s 

multiple comparison between means were used (significance p<0.05) for statistical analysis. 

Our data showed a clear association between lead exposure, hypertension and 

cardiorespiratory reflexes impairment, without heart rate changes, independently of the type of lead 

exposure profile. We also demonstrated for the first time that lead intermittent exposure causes 

adverse health effects, i.e, hypertension, sympathetic overactivity, increased chemoreflex sensitivity 

and baroreflex impairment, similar to a chronic exposure, however less pronounced. In fact, at 28 

weeks, PbI group, the intermittent animal model of lead exposure developed, had a less severe 

hypertension when compared to the long-term exposure group (PbP), which might suggest that the 

duration of Pb exposure is more relevant than the time of exposure. Moreover, the effect on diastolic 

blood pressure produced by lead exposure was more evident than that of systolic blood pressure.  

Lead exposure from foetal period until 12 weeks of age causes long lasting hypertension and 

chemoreceptor reflex dysfunction even after a 16 weeks period without exposure. However, the 

clearance of lead promoted an improvement in baroreceptor reflex function, with repercussions on 

blood pressure values, since these values decreased, but did not reached the normotensive values.  

Regarding the autonomic data, in our study, the overactivity of the sympathetic nervous 

system, evaluated by the LF band, is concomitant with baroreceptor reflex impairment and/or 

hypertension. This means that the sympathetic nervous system may be involved in the modulation of 

the baroreceptor reflexes responses or in the hypertension development due to lead exposure.  

Concerning the effect of lead at behavioural level, all groups exposed to lead, evaluated in the 

three different time points, had behavioural changes, namely anxiety, hyperactivity and/or long-term 

memory impairment and molecular changes in the hippocampus region, more specifically, reactive 

astrogliosis and microgliosis were detected, indicating the presence of neuroinflammation. However, 

these alterations seem to reverse after lead abstinence for a certain period (single exposure) and are 

enhanced when a second exposure occurs (intermittent exposure), along with a synaptic loss.  

In summary, this study shows, that exposure to lead during the developmental phase can alter 

the normal course of development, with lifelong health consequences. Since all exposed Pb groups had 

the same route of exposure (i.e. exposure to lead by water) and the same dose and, despite the 

different time of exposure, all were exposed to lead since foetal period until adulthood, the most 
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susceptible period to adverse health effects. Therefore, we can conclude that the different effects of 

lead toxicant between groups mainly depends on the total duration of lead exposure.  

This comparative study brings new insights on the environmental factors that influence nervous 

and cardiovascular systems during development, which can help creating public policy strategies to 

prevent and control the adverse effects of Pb toxicity. 

Key-words: lead toxicity; autonomic dysfunction; hypertension; behavioural and cognitive 

changes; gliosis  
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Resumo 
A identificação de agentes potencialmente tóxicos e a avaliação dos seus efeitos sobre o 

organismo humano constituem um tema importante de saúde pública. O chumbo encontra-se neste 

grupo de agentes, sendo bastante utilizado em todo o mundo, devido às suas propriedades únicas, 

como a alta maleabilidade, baixo ponto de fusão, suavidade, ductilidade e resistência à corrosão. O 

vasto uso deste metal pesado em indústrias, como a automóvel, cerâmica, de tintas e do plástico levou 

ao aumento da quantidade de chumbo livre no ambiente e a sua ocorrência nos sistemas biológicos, 

devido à sua natureza não biodegradável. 

A toxicidade do chumbo, como resultado da sua ingestão, inalação ou por contacto direto, 

mesmo em pequenas quantidades, pode evocar efeitos adversos irreversíveis em várias funções do 

corpo, afetando principalmente os sistemas cardiovascular (sendo uma das causas da hipertensão, 

promovendo aterosclerose, trombose, arteriosclerose e doenças cardiovasculares), hematopoiético, 

reprodutivo e renal. O chumbo é também uma neurotoxina já bem estudada, que induz alterações na 

neurogénese, nas células gliais e neurodegeneração. Estas alterações nos mecanismos celulares e 

moleculares, quando ocorrem durante as fases de desenvolvimento, provocam alterações cognitivas e 

comportamentais, que persistem durante toda a vida.  

Em termos de classificação, dois tipos de toxicidade de chumbo podem ser definidos: a 

toxicidade aguda, que geralmente ocorre pela exposição ocupacional a níveis elevados de chumbo, 

sendo esta bastante incomum, e a toxicidade crónica, uma exposição a níveis baixos de chumbo, mais 

comum no ambiente familiar. A maioria dos estudos realizados até à data em seres humanos e animais, 

focam-se na exposição crónica contínua e/ou permanente ao chumbo e nas consequências adversas 

na saúde deste tipo de exposição. Existem já, vários modelos animais descritos para a exposição 

contínua a níveis baixos de chumbo. No entanto, em determinadas situações, como nas migrações, nos 

programas de intercâmbio escolar e/ou nas mudanças residenciais, a exposição intermitente ao 

chumbo pode ocorrer, mas os estudos disponíveis em seres humanos são escassos e os modelos 

animais padronizados inexistentes para este tipo de exposição, que tem vindo a crescer 

exponencialmente nos últimos anos. 

Posto isto, o objetivo geral deste trabalho consistiu em avaliar os efeitos de diferentes perfis 

de exposição a níveis baixos de chumbo na fisiologia de ratos Wistar, incluindo o desenvolvimento de 

um novo modelo animal de exposição intermitente a chumbo. 

Os modelos animais de exposição ao chumbo foram desenvolvidos substituindo a água dos 

biberões das fêmeas Wistar grávidas de sete dias por uma solução de acetato de chumbo a 0,2% (p/v). 
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Após os 21 dias de desmame, as crias, de ambos sexos, foram divididas em 3 grupos de exposição ao 

chumbo: de longo prazo (PbP - exposição do período fetal até às 28 semanas de idade), de curto prazo 

(Short-term  PbS - exposição do período fetal até às 12 semanas, com abstinência ao chumbo até às 

28 semanas) e intermitente (PbI - exposição do período fetal até 12 semanas, seguida por um período 

sem chumbo até 20 semanas e uma segunda exposição entre 20 e 28 semanas de idade). Em três 

diferentes pontos temporais (12, 20 e 28 semanas de idade), os diferentes grupos de animais foram 

sujeitos a testes comportamentais, para a avaliação dos níveis de ansiedade (EPM), da atividade 

locomotora (OFT), da memória espacial de trabalho (Y-Maze) e da memória episódica de longo prazo 

(NOR). Para avaliação dos parâmetros fisiológicos nos diferentes pontos temporais, os animais foram 

sujeitos a uma experiência aguda, onde foram registados os seguintes parâmetros: pressão arterial 

(PA), eletrocardiograma (ECG), frequência cardíaca (FC) e frequência respiratória (FR). Nesta 

experiência também se avaliaram os reflexos baro- e quimiorrecetores e obtiveram-se registos para a 

análise da variabilidade da FC e da PA sistólica. Após o término da experiência aguda, os animais foram 

sacrificados e os cérebros extraídos para estudos de imunohistoquímica em secções coronais, nas quais 

se analisou a morfologia das células e se quantificou a perda neuronal (neuronal nuclear antigen - 

NeuN), a astrogliose (Glial fibrillary acidic protein – GFAP) e a microgliose (ionized calcium binding 

adapter molecule-1 - Iba-1), bem como alterações na transmissão sináptica (Synaptophysin – Syn) no 

girus dentado do hipocampo. Os níveis de chumbo no sangue foram avaliados por espectroscopia de 

absorção atómica e a avaliação metabólica realizada através do uso de gaiolas metabólicas. Um grupo 

controlo de ratos Wistar sem exposição ao chumbo, de ambos os sexos e com o mesmo número de 

indivíduos, foi submetido ao mesmo protocolo e foi avaliado nos mesmos pontos temporais (12, 20 e 

28 semanas de idade). Para a análise estatística foi utilizado o teste T de Student e a análise de Variância 

(ANOVA) unidirecional com o teste post-hoc de Tukey, considerando-se significativas diferenças com p 

< 0,05. 

Os resultados deste estudo mostram que, independentemente do tipo de perfil de exposição 

ao chumbo, existe uma associação clara entre exposição a chumbo, hipertensão e diminuição do ganho 

do barorreflexo, sem alterações de frequência cardíaca.  

Também demonstramos, pela primeira vez, que uma exposição intermitente a chumbo 

provoca efeitos adversos para a saúde, como hipertensão, hiperatividade simpática, aumento da 

sensibilidade quimiorreflexa e diminuição do ganho do barorreflexo, efeitos adversos semelhantes ao 

de uma exposição crónica permanente (PbP), porém menos pronunciada. De facto, às 28 semanas, o 

grupo PbI, o modelo animal intermitente de exposição ao chumbo desenvolvido, apresentou uma 

hipertensão menos grave em relação ao grupo de exposição de longo prazo (PbP), o que pode sugerir 

que a duração da exposição ao chumbo é mais relevante do que o tempo de exposição. Além disso, o 
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efeito da exposição ao chumbo sobre a pressão arterial diastólica foi mais evidente do que sobre a 

pressão arterial sistólica. A exposição ao chumbo, desde o período fetal até as 12 semanas de idade, 

provoca hipertensão e disfunção quimiorreflexa duradoura, mesmo com um período de 16 semanas 

sem exposição. No entanto, a abstinência do chumbo promoveu uma melhoria na função barorreflexa, 

com repercussões nos valores da pressão arterial, uma vez que estes valores diminuíram, apesar de 

não atingirem os valores de normotensão. 

Em relação à avaliação autonómica, os dados indicam que quando existe um aumento do tónus 

simpático, avaliado pela banda LF, este é concomitante com disfunção barorreflexa e/ou hipertensão 

arterial. Isso significa que o sistema nervoso simpático deve estar envolvido na modulação da resposta 

barorreflexa ou no desenvolvimento da hipertensão decorrente da exposição ao chumbo.  

Relativamente ao efeito do chumbo a nível comportamental, todos os grupos expostos ao 

chumbo, avaliados nos diferentes pontos temporais, apresentaram alterações comportamentais, 

nomeadamente ansiedade, hiperatividade e / ou défices de memória a longo prazo, bem como 

alterações moleculares, mais especificamente, astrogliose e microgliose reativa, que indicam a 

presença de neuroinflamação. No entanto, estas alterações parecem reverter após a abstinência do 

chumbo durante um determinado período (PbS - exposição de curta duração), sendo mais evidentes 

quando ocorre uma segunda exposição a chumbo (PbI - exposição intermitente), levando mesmo a 

perda sináptica mais pronunciada. 

Em resumo, este estudo mostra, que exposições a chumbo durante as fases de 

desenvolvimento podem alterar o seu curso normal, com consequências adversas para a saúde que 

podem persistir para toda a vida. Uma vez que todos os grupos expostos a chumbo tiveram a mesma 

via de exposição (isto é, exposição ao chumbo através da água) e a mesma dose e, apesar do tempo de 

exposição diferente, todos foram expostos ao chumbo desde o período fetal até a idade adulta, período 

em que são mais suscetíveis a efeitos adversos na saúde. Portanto, podemos concluir que os diferentes 

efeitos tóxicos do chumbo entre os grupos dependem principalmente da duração total da exposição ao 

chumbo. 

As novas evidências obtidas por este estudo comparativo permitem-nos contribuir para o 

esclarecimento sobre os fatores ambientais que influenciam os sistemas nervoso e cardiovascular 

durante o desenvolvimento, o que pode ajudar a criar estratégias de políticas públicas para prevenir e 

controlar os efeitos adversos da toxicidade do chumbo. 

Palavras-chave: toxicidade do chumbo; disfunção do sistema nervoso autónomo; hipertensão; 

alterações comportamentais e cognitivas; gliose 
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1  INTRODUCTION 

Lead 1 (Pb, from the Latin plumbum) is a post-transitional metal which compounds are mostly 

found in the +2-oxidation state.  

The low melting point and ductility, the high density and the inertness to oxidation, combined 

with the relative abundance, easiness of extraction and low cost2 justifies its leading position in human 

usage for more than 8000 years. In 2014, ten million tonnes of lead have been handled, over half of it 

in recycling processes3. Lead is heavily used in batteries production, pewters, construction, bullets and 

shotguns, plumbing, ceramics, weights, solders, fusible alloys, radiation shielding and leaded gasoline3 

but also in jewellery, pigments, stained glass, lead crystal glassware, toys, cosmetics, pesticides and 

traditional medicine, all of which have resulted in substantial introductions of free lead into the 

environment forming leaded dust and soils, contaminating water and air1,3,4and, overall, generating 

significant environmental pollution together with human and public health issues in many parts of the 

world5,6 (Figure 1). In fact, and regarding human and animal health, the particle size and the route of 

exposure are the impact factors of lead absorption that is inversely proportional to these features. 

Nevertheless, the nutritional status (fat and caloric intakes; phosphorus, copper, zinc and especially 

iron and calcium levels, all affecting lead absorption), fasting/fed status (fasting humans or animals 

absorb much larger fractions than their fed counterparts), health, and age of the individual also account 

for lead negative biological effects1,5,7.  

There are also intraspecies differences regarding lead toxicology. For human subjects, children 

absorb more lead into the blood when compared to adults1,8 In fact, adults, typically absorb up to 20% 

of ingested inorganic lead after a meal and up to 60-80% after a big period of hunger while children 

absorb about 50% of ingested lead after a meal and up to 100% on an empty stomach1. Exposure to 

lead dust (by the respiratory route) may elicit an increased level of absorption, when compared to the 

lead that has been ingested, usually, in larger sizes (digestive route), like lead chips in leaded paint.  

Despite the main important routes of human exposure are inhalation or ingestion, the dust and 

soil that contain lead can also be absorbed by the skin. However, it is unlikely to happen at the present, 

since lead gasoline has been banned, which was the main source of lead to be absorbed by the skin1,3,4,8. 

Moreover, only a little amount of the absorbed lead can pass through skin to the blood. Although, if 

hands are contaminated, lead can be ingested whilst eating, drinking, smoking, or applying cosmetics9.   
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Figure 1 - Environmental lead exposure cycle and its biological effects  
(extracted and adapted from Wani et.al, 201510) 

 

Occupational lead exposure can be defined as high levels of exposure to lead during a short 

period of time, targeting a specific group of subjects, usually at their working premises11. Environmental 

lead exposure5 involves a long-lasting exposure of large populations to lower levels of lead, of various 

sources, present in their living environment. Thus, the first can be considered a synonym of acute lead 

exposure, being of rare prevalence in developed countries where regulatory and safety procedures 

have been implemented, whereas the second, may represent a chronic contact to lead, being a public 

health issue in non-developed countries with high levels of lead emissions and the usage of old working 

methods in the industry and agriculture1,2,5,8.  

During an exposure, after entering the body and being absorbed, lead is primarily distributed 

among blood, mineralizing tissue, and soft tissues and organs (which include the liver, muscles, lungs, 

brain, kidneys spleen, and heart)1,12. Lead is not changed in the body and the metabolization of 

inorganic lead does not happen in the liver1. Approximately 99% of lead taken into the body in adult 

subjects will be excreted within a couple of weeks in the urine as the half-life of lead in adult human 

blood has been estimated as 28 days to 36 days. The fraction which is not absorbed will be excreted, 

via the bile, in the faeces1,4,5. Excretion of lead through sweat is of minor importance. However, only 
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about 32% of the lead taken into the body of an infant is excreted. Blood lead levels (BLL; µg/dL) and 

urine lead levels (not as usual) are measures used for diagnosis and treatment of lead toxicity13,14. A 

continuous exposure usually results in accumulation of lead in bone regions undergoing the most active 

calcification at the time of exposure. It is known that adults store about 94% of lead in bones and teeth 

whereas, in children, the amount is of around 73%1. It can stay there for decades, but can also re-enter 

the body circulation under certain circumstances (e.g., when a bone is broken, pregnancy and breast 

feeding or in osteoporosis cases in advancing age)1,10. In this condition, bone and kidney lead levels are 

usually used as greater measures of lead in the body15,16. Table 1 shows the differences between chronic 

and acute poisoning. 

The US Centre for Disease Control17, Prevention Centre and the World Health Organization 

(WHO)5,6,18 guidelines indicate that BBL´s ≥10 μg/dL are a cause for concern; however, lead may impair 

development and have harmful health effects even at lower levels19,20 as 5 μg/dL suggesting  that all 

lead levels may represent a danger to human health. 

Table 1 –Acute and chronic lead intoxication features.  
Main differences between acute and chronic exposure to lead regarding BBL’s, health effects and associated clinical 

symptoms. 

 Exposure Type of 
exposure 

Blood Lead 
levels  Health effects Clinical 

symptoms 

Acute 
poisoning 

Intense 
exposure 
of short 
duration 

Occupational 
(workspace) 

100-120 
µg/dL 

- Loss of appetite 
- Headache 
- Hypertension 
- Arthritis 
- Hallucinations 
- Vertigo 
- Haemolytic anaemia 

- Muscle pain 
- Fatigue 
- Abdominal pain 
- Headache 
- Vomiting 
- Seizure 
- Coma 

Chronic 
poisoning 

Low-level 
lead 

exposure 
of long 

duration 

Environmental 
and domestic 

10-60 
µg/dL 

- Mental retardation 
- Birth defects 
- Psychosis 
- Autism 
- Allergies 
- Dyslexia 
- Weight loss 
- Hyperactivity 
- Paralysis 
- Muscular weakness 
- Brain damage 
- Kidney damage 
- Frank anaemia 
- Hypertension 
- Cardiovascular disease 

- Persistent 
vomiting 

- Encephalopathy 
- Lethargy 
- Delirium 
- Convulsions 
- Coma 
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PREVALENCE AND EPIDEMIOLOGY OF LEAD TOXICITY 

Lead poisoning accounts for about 0.6% of the global burden of disease. The highest burden 

was estimated in low- and middle-income countries. Based on 2015 data, the Institute for Health 

Metrics and Evaluation (IHME) has estimated that lead exposure has accounted for 494 550 deaths and 

loss of 9.3 million disability-adjusted life years (DALYs) regarding the long-term effects on health. IHME 

also estimated that lead exposure accounted for 12.4% of the global burden of idiopathic 

developmental intellectual disability, 2.5% of the global burden of ischaemic heart disease and 2.4% of 

the global burden of stroke4. 

In USA, the Centre for Disease Control21, identified, in 2010, that approximately 24,000 children 

aged <6 years presented blood lead levels (BLLs) ≥10 µg/dL and approximately 243,000 children aged 

<6 years had BLLs ≥5 µg/dL. Regarding European countries, the prevalence of lead poisoning was 

addressed in the 2004 WHO Report22. Data from 24 studies and population surveys conducted between 

1996 and 2000 in children between 0 and 4 years allowed to divide European country into 3 categories:  

- EUR A: prevalence of 0.1%, comprising Croatia, the Czech Republic, Finland, France, Germany, 

Greece, Italy, Portugal, Spain, Sweden and the United Kingdom. 

- EUR B: prevalence of 2%, consisting of Armenia, Bulgaria, Poland, Turkey and Yugoslavia. 

- EUR C: prevalence of 17%, consisting of Russia and Hungary.  

In 2014, the European Environmental Agency (EEA) has performed a surveillance study on lead in 

the environmental air of EU countries. The results showed that ~97% of the surveillance stations 

detected levels of lead under 0.25 µg/m3 in the analysed air without stations sensing values of 0.5 

µg/m3. However, the area of extent of the exceedances of critical loads was more that 12% of the 

European Union ecosystem area23. 

The World Health Organization (WHO) and the International Programme on Chemical Safety have 

been concerned about the adverse health effects of environmental lead exposures for more than 35 

years. They convened working groups to evaluate human health risks and health-based guidance values 

of lead in water, workplace and air 4,5,8,24.  

Lead toxicity is one of the most common and well-recognized childhood diseases from 

environmental toxins and  children around the world, nowadays, are at risk of exposure to lead from 

multiple sources 4,24. Therefore, some countries developed robust programmes for monitoring levels of 

lead in blood and in the environment, as well as strong programmes for primary and secondary 

prevention of developmental lead toxicity. These countries have imposed bans on certain uses of lead, 

have set environmental standards and have arranged screening programmes4,5,8,24. In the other 
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countries where lead poisoning has not yet been recognized, there are no screening or surveillance 

programmes and, as a result, public health authorities have little or no knowledge of the existence of a 

childhood lead-poisoning problem. Thus, the contribution of lead poisoning to the global burden of 

disease and its effects on the global economy and human development are still underestimated1,5,7. 

MECHANISMS OF LEAD TOXICITY  

The mechanism of lead toxicity is not yet fully understood. Nevertheless, studies carried out 

reported various cellular, intracellular and molecular mechanisms behind toxicological manifestations 

resulting from lead exposure.  

Oxidative stress  

Oxidative stress is characterized as an imbalance between free radical production and the 

systems’ ability to detoxicate from reactive intermediates. This has been reported as the main 

mechanism of lead toxicity2,25,26.  

Two pathways are simultaneously activated at the onset of oxidative stress provoked by lead 

exposure. One is production of reactive oxygen species (ROS) occurs leading to a depletion of the 

antioxidant reserves headed by glutathione. Glutathione is the primary antioxidant in cells and it exists 

in both reduced (90%) and oxidized (10%) forms 25 which are interchangeable according to the cell 

environmental condition. The other pathway is related to lead’s ability to share electrons through 

covalent bonds between lead moiety and the sulfhydryl groups of the antioxidant enzymes which are 

lead main target. These enzymes may be inactivated by lead that binds to their sulfhydryl groups 

eliciting the synthesis of glutathione and forces the replacement of the enzyme zinc ions26. Lead has 

also the ability to inactivate other enzymes, which further reduce the glutathione levels26,27 such as 

super oxide dismutase and catalase. In addition, lead also promotes lipid peroxidation, haemoglobin 

oxidation, which directly causes haemolysis25,27,28. All these mechanisms make the cell extremely 

vulnerable to oxidative stress and may lead to cell death. Figure 2 schematically illustrates the oxidative 

stress mechanism due to lead toxicity. 
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Figure 2 – Lead-induced oxidative stress and subsequent mechanisms leading to cell death 

(extracted and adapted from Flora, G., 2012 2) 

 

Ionic changes 

Lead also replaces various bivalent cations (calcium - Ca2+, magnesium - Mg2+, iron - Fe2+) and 

monovalent cations (such as sodium - Na+) by itself, which defines the ionic mechanisms of action of 

lead toxicity. These ionic changes may affect fundamental organic processes of the body29 impairing 

both intra and extra cellular processes such as intra and intercellular signalling, protein folding and 

maturation, cell adhesion, enzyme regulation, apoptosis, release of neurotransmitters and ionic 

transportation30. 

The ionic mechanisms of lead toxicity are the main contributor to lead neurological impairment 

as, after its replacement by calcium ions, lead has the ability to cross the blood-brain barrier and 

accumulate in astrocytes. Therefore, toxic effects of lead are more prominent in the developing nervous 

system, comprising immature astroglial cells that lack lead binding proteins. Lead effortlessly damages 

the immature glial cells and blocks the formation of myelin sheath, both factors involved in BBB 

development30–32. Even at picomolar concentration, lead replaces calcium, consequently affecting key 

neurotransmitters, like protein kinase C, which regulates long term neural excitation and memory 

storage. It also affects the concentration of sodium ions, which plays a major role in several vital 
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biological activities, like generation of action potentials in the excitatory tissues for cell to cell 

communication, retention of calcium by synaptosomes, uptake and regulation of uptake of 

neurotransmitters. Therefore, this interaction between lead and sodium extremely impairs the normal 

functioning of the sodium dependent processes 30–33. 

Activation of brain inflammatory pathways 

Microglia and astrocytes are the two main types of glial cells involved in the regulation of the 

immune response to pathological processes in the brain. Activation of both microglia and astrocytes 

result in neuroinflammation, associated with infection, autoimmunity, and pathogenesis of 

neurodegenerative diseases. Lead exposure leads to the insufficient supply of energy from astrocytes 

to neurons. Also, following lead exposure, astrocytes secrete various inflammatory cytokines, such as, 

TNF-α, IL-6, and IL-10 into surrounding tissues. These cytokines further mediate the immune response, 

including activation of microglia and macrophages, and induce other adverse reactions, which might 

eventually result in the destruction of BBB tight junctions. Overexpression of inflammatory stimuli in 

the brain neurovascular unit may start a response to clear antigenic material, leading to destruction 

and increase of BBB permeability together with neuronal damage34–37. In summary, the mechanisms 

related to microglia and astrocytic activation are schematically presented in Figure 3. 

 

Figure 3 - Neuroinflammation as lead induced toxicity mechanism  
Microglial and astroglial cells function in the generation of inflammatory cytokines and neuronal injury. Lead may contact 
and trigger microglial and astrocytic activation, enhancing inflammatory cytokines and their response, increasing ROS and 

oxidative stress, resulting in BBB dysfunction, long‑term potentiation inhibition and inflammatory neuronal injury.  
(extracted from Liu, J., 2015 34) 
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LEAD EFFECTS ON HUMAN HEALTH  

Lead toxicity has the potential to cause irreversible health effects interfering with a wide number 

of body functions. 

Lead and the cardiovascular system 

Population studies have demonstrated that lead toxicology is associated with cardiovascular 

disease38–41. Studies from the early 1920s showed that long-term and high dose lead exposure 

correlates with an increased incidence of hypertension and brain stroke. More recently, several 

epidemiological studies evidenced that increased lead absorption, even at relatively low levels, is also 

consequent with significant elevation in blood pressure across general populations with no 

occupational exposure to lead 40,42. Other studies in human subjects and in experimental animal models 

also identified a dose-dependent relationship between lead exposure and higher blood pressure 40,42. 

Beyond hypertension, few studies in general populations have identified a positive association between 

exposure to lead and clinical cardiovascular events (mortality due to cardiovascular disease, coronary 

heart disease and stroke and peripheral arterial disease), some of them observed at blood lead levels 

≤5 μg/dL. 40,43. 

Molecular studies have shown that chronic lead exposure promotes oxidative stress, limits nitric 

oxide availability impairing nitric oxide signalling, increases adrenergic activity, raises vasoconstrictor 

prostaglandins lowering the vasodilator ones, promotes inflammation, increases endothelin 

production, alters renin-angiotensin signalling, disturbs calcium signalling in smooth muscle vessels, 

diminishes endothelium-dependent vessels relaxation and modifies the vascular response to vasoactive 

agonists causing HTN 25,42,44. Additionally, it was shown that lead causes endothelial injury, prevents 

endothelial repair, inhibits angiogenesis, supresses proteoglycan production, stimulates vascular 

smooth muscle cell proliferation and phenotypic transformation, reduces plasminogen activator and 

raises plasminogen activator inhibitor-1 production.  All these actions, and others not yet known, 

caused by lead exposure, are the key mechanisms that cause HTN and promote atherosclerosis, 

thrombosis, arteriosclerosis and cardiovascular disease40,42,44.  

Lead and the autonomic nervous system 

Autonomic function is not known to be primarily affected by chronic lead exposure. However, 

the parasympathetic nervous system has been described as being affected by Pb-poisoning causing 

autonomic dysfunction45. Additionally, it was shown that lead increases the co-inhibition of sympathetic 

and parasympathetic activation during psychological stress and, also, reduces the baroreflex sensitivity, 
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vagal parasympathetic tone and increases sympathetic activity by mechanisms that include impairment 

of dopamine and acetylcholine transmission and oxidative stress43. 

Baroreflex hyposensitivity, sympathetic overexcitation and decreased parasympathetic tone are 

associated to several pathologies, such as, hypertension, acute cardiac ischemia or even heart failure. 

The mechanisms underlying those pathological effects have not yet been fully clarified, but it is thought, 

that there is an initial protective reaction that turns into deleterious sympathoexcitation with the 

passing time45. Studies have shown that chronic lead toxicity produces an increase in sympathetic 

activity that underlies alterations, namely high blood pressure, tachypnoea, decrease in baroreflex 

function and increased chemoreflex sensitivity 43. Until last year, there were no evidences of 

chemoreflex function changes, but a recent work has shown that there is an increase in chemoreceptor 

reflex sensitivity, suggesting that chemoreceptor reflex could be involved in oxygen homeostasis 

maintenance in a similar way to hypertensive patients that exhibit an augmented ventilatory response 

to hypoxia and an increased sympathetic nerve activity43,45. 

Apparently, lead toxicity interferes with brainstem cardiorespiratory network function which, in 

turn, could account for the higher sympathetic tone5,43,45. Data shown in a recent study strongly 

indicates that both carotid body reflex, a protective sympathoexcitatory reflex, and the central 

autonomic network are involved in the augmented chemoreflex response and, this involvement, may 

contribute to the increased baseline sympathetic activity that was observed45. The mechanisms 

underlying those changes are yet unknown, but it has been hypothesised that those linking the 

hypothalamus with lower brainstem nuclei, especially, the PVN-NTS axis may be involved in the 

observed functional changes46. In addition to those mechanisms, the baroreflex impairment that has 

been described in lead poisoning and in other pathologies is one of the major consequences of 

persistent increase of sympathetic tone and arterial blood pressure 43,45,46. 

The most recent studies (from 2017) of low-level and sub-chronic lead exposure in rodents 20,47 

have shown that arterial hypertension in animals was accompanied by an increase in sympathetic tone 

and decrease in vagal tone, baroreflex impairment without changes on cardiopulmonary reflex.  The 

changes went together with an increase in the renin-angiotensin system mediated by the AT1receptor 

activation and decrease in nitric oxide (NO) bioavailability. As a compensatory mechanism of the 

changes found in the sympathetic tone, a downregulation of β1- adrenoceptors in the heart was 

described. These studies have shown that levels of lead below BLL cut-off for lead toxicity promote 

alterations in autonomic and cardiovascular system and should be considered as a risk factor for 

cardiovascular disease. 
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Neurological effects of lead  

Brain is considered to be the most sensitive organ to lead exposure. Research in the past decades 

for characterizing lead toxicology has shown lead as a potent neurotoxicant, especially during nervous 

system development37,48. Various deleterious effects have been described, including cognitive 

impairment49–52 in children that persists in adults, even with low BBLs (<5µg/dL). Also, a positive 

correlation between lead exposure and the increase of neuropsychiatric disorders, such as attention 

deficit hyperactivity disorder and antisocial behaviour has been described. Other researchers reported 

that violent crimes in adulthood are correlated to lead exposure in prenatal and early childhood 

periods19,53,54. Due to the ability of lead to bypass BBB by replacing calcium ions and being taken up by 

calcium-ATPase pumps, lead can interfere with synapse formation (in particularly in children), 

production of neurotransmitters and organization of ion channels30.  

Novel findings in this area of research also include advances in understanding the mechanisms 

and cellular specificity for Pb. Studies have shown that stress alters Pb effects that are mediated by 

modifications in glucocorticoids, a brain mesocorticolimbic dopamine system which is involved in 

several pathologies. Lead-induced cognitive impairments have been studied in cellular models of 

learning and memory by examining the long-term potentiation in rodent hippocampus by increasing 

threshold, decreasing magnitude and shortening retention times of synaptic plasticity37,50. Hippocampal 

modifications may be the main reason for lead interference with learning, particularly in children, at 

molecular and morphofunctional levels of neurons and glial cells52,55,56. Lead exposure also impairs 

structural plasticity in adult neurogenesis in the hippocampus, causing perturbations in synaptic 

plasticity by acting on glutamate release, NMDA receptor function and structural plasticity and thus, 

contributing to learning impairments 30,54,57 .  

In vitro models also evidenced that lead binds to 78-kDa molecular chaperone glucose-regulated 

protein (GRP78), inducing its aggregation and, consequently, blocking IL-6 secretion in astroglial cells. 

In the long term, chaperone deficiency could trigger protein conformational diseases, such as, 

Alzheimer’s Disease (AD) and Parkinson’s Disease (PD)37,54,58. These results are in contradiction with 

others from studies on the mechanisms of lead toxic effects where IL6 levels are increased. 

Furthermore, lead exposure in early life has been implicated in subsequent progression of 

amyloidogenesis in elder rodents. This exposure resulted in an increase in proteins associated with AD 

pathology, beta-amyloid precursor protein (β-APP), and beta-amyloid (Aβ)59. 
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PREVENTION, TREATMENT AND REDUCTION OF LEAD TOXICITY 

The first step in treating lead poisoning is to remove the source of the contamination. For 

children and adults with relatively low lead levels, simply avoiding exposure to lead might be enough to 

reduce blood lead levels. However, when levels are high, oral therapy with chelating agents 

(dimercaprol and succimer60) is proposed to promote lead urinary excretion. This therapeutic algorithm 

is essentially recommended for children with circulating levels ≥45 µg/dL or adults with symptoms of 

lead poisoning. The use of injectable EDTA as a chelating agent is particularly used in adults with serious 

lead levels (≥45 µg/dL) and for children who do not tolerate oral chelating agents. Antioxidants have 

been also described as promising agents for lead poisoning treatment and removing its related 

compounds mainly through nanoencapsulation2. 

Although, the availability of various treatments, they only ameliorate the deleterious effects 

already caused by lead poisoning. Considering the toxic effects of lead, preventive measures are 

preferred over the treatment regimens as, once lead enters the body, it is almost impossible its 

complete removal and the reversal of its damaging effects. A preliminary preventive approach towards 

lead toxicity is defined as a three-way plan which includes individual intervention, preventive medicine 

strategy and public health strategy61. To each individual at risk it is recommended to frequently wash 

their hands, to discourage putting contaminated hands in the mouth and to increase the intake of 

calcium and iron, other mineral elements, flavonoids and vitamins 1,2,10,62,63. Preventive medicine 

strategy aims mainly at screening children whom are at risk of lead exposure61. Various preventive 

strategies have been suggested by the public health services for controlling lead4,18,64. The most 

important of them include the prohibition of setting up industries dealing with lead close to habitable 

areas and the complete banning of lead usage whenever appropriate like as happened with the leaded 

gasoline and leaded paint banning. 
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TRANSLATION FROM ANIMAL TO HUMAN STUDIES 

Choosing the animal specie 

Various population studies have been carried out since lead has been a concern for the human 

health. However, due to the vast variability of health effects that has been reported, mainly because of 

the diversity of human exposures, environmental confounders and genetic backgrounds of the 

populations, animal and molecular studies were performed over the years to study specific health 

effects that were observed in the human populations and mechanisms underlying those effects.  

Studies in rodents and nonhuman primates have demonstrated the same cardiovascular8,42,45, 

haematological41,65,66, neurodevelopmental31,48,55,58,67–69, and renal lead adverse effects66,70 , that have 

been observed in humans, providing insights into possible mechanisms underlying the health changes 

that low-level lead exposure provokes. These studies also provided the support for the concept of blood 

lead concentration as a metric of internal dose for use in dose-response assessments in humans.  

Rodents are the most used animals in different types of research. Lead exposure health effects 

have been vastly studied in rodents as well33,65,68,71–74. However, comparing rats and mice, rats are a 

better animal model comparing to mice for numerous reasons. First, the rat is genetically, 

physiologically and morphologically closer to humans than mice75,76. Its large body and brain size 

facilitates drug administration, in vivo electrophysiology, as well as neurosurgical/stereotaxic and 

neuroimaging approaches. Second, the mouse represents a less complex behavioural repertoire and 

much less flexibility in dealing with novel situations. Moreover, the rat appears to be more 

advantageous in its use in neurobehavioral research, presenting a higher level of behavioural 

functioning complexity, when compared to mice. These behavioural variations may be accounted since 

rats, like humans, and opposed to mice, have a post-natal brain development that might result in an 

extra wide variety of synapses76. Therefore, the rat, as an animal model of disease and toxicology, 

including low-level lead exposure animal models allow a more state-of-the-art characterization of 

behavioural and physiological changes in the body, permitting a better translation of the alterations to 

humans. 
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Experimental protocols to mimic human chronic low-level lead exposure  

Due to the importance of animal models in toxicological studies, chronic low-level lead 

exposure animal models have been developed and used for over 40 years. In 1976, Kostas and her 

collegues77 exposed Long-Evans dams and pups to different concentrations of lead (5%; 0,5%; 0,05% - 

by weight), mixing lead acetate in the chow that was fed to animals. At 21 days of age of the pups, the 

concentration was reduced (25, 2.5 and 0.25 ppm). At 45 days after birth of pups, animals underwent 

behavioural evaluation for memory and locomotor activity assessment. This type of lead exposure is 

representative of an exposure to lead by ingestion in children from foetal period and until early ages of 

life. In the same year, other authors78 exposed Sprague-Dawley pregnant female rats to high lead 

acetate solution and low lead acetate solution diluted in water. The pups, after birth, underwent the 

same exposure until 30 days of age. After exposure, animals were tested with open field test for 

locomotor and exploratory activities. The authors of both studies, although using different routes of 

lead exposure with different concentrations, only assessed the general behavioural alterations in the 

animals, without performing other analysis, for a more complete evaluation of toxicological effects of 

lead. 

In 1980, Grant. and collegues72 also performed a study in Sprague-Dawley animals. Females 

were exposed to increasing concentrations of lead diluted in water and divided in two groups (Group A 

- 0, 0.5, 5.0, 50, and 250 ppm and Group B - 0, 5, 25, and 50 ppm) 6-7 weeks before mating with non-

exposed males. Pups were exposed to the same lead solution and were evaluated at different 

timepoints from day 1 after birth until 9 months. General health observations, physical development 

landmarks, pre and post weaning behavioural evaluations were performed in this study. These authors 

performed a more complex study than the previous ones, testing different physiological and 

behavioural parameters and various concentrations of lead exposure through a long period of time. 

Cory-Slechta, in 198579, exposed Long-Evans hooded rats to 25 ppm lead acetate dissolved in distilled 

water from 20 days after birth until 50 days. At 50 days of age, authors performed behavioural 

evaluation using operant chambers. This was a simple study with a short exposure to low-levels of lead 

in animals during development. 

Boscolo and Carmingani , in 198844, performed a more complex study in Sprague-Dawley rats 

that received 0, 15, 30, and 60 ug/mL of lead acetate dissolved in deionized drinking water for 18 

months. Authors evaluated various physiological parameters in anaesthetized animals, assessing 

cardiac inotropism, pressor, inotropic and chronotropic responses. Blood and organ lead levels were 

determined by atomic absorption spectrophotometry. Some years later, in 1993, Altmann and 

colleagues56 completed a study in Wistar animals. Female Wistar rats were fed diets containing 0 and 

750 ppm lead acetate, for 50 days prior to mating, during gestational period and until 16 days after 
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birth. Animals were tested for active avoidance learning and LTP was measured in hippocampal slices 

and brain and blood lead levels were determined. Such a study is an example of a complex 

neurotoxicological assessment of lead exposure which includes behavioural and electrophysiological 

evaluation, comparing the effects to lead levels. 

In 1996, Bielarczyk80 published a new animal model of chronic low level lead exposure, in which 

the authors exposed pregnant Sprague-Dawley animals (7 days before parturition) with 0.2% lead 

acetate solution. After birth, pups were exposed until weaning at 28 weeks of age, after which animals 

were maintained at normal drinking diet. Unilateral superior cervical ganglionectomy and partial 

bilateral transection of fimbria-fornix were performed and cholinacetyltransferase and tyrosine 

hydroxylase activities and blood lead levels were assessed. In the same year, Lasley and Gilbert81 

exposed Long-Evans dams at 14-15 days of gestation to 0.2% lead solution and the pups from day 1 to 

135 after birth. Blood lead levels were determined, intracerebral dialysis, chromatography for GABA 

and glutamate quantification and electrophysiological evaluations were performed. Zawia and Harry71 

in the same year, used Long-Evans animals and exposed pups to 0.2% lead solution from postnatal day 

1 until 20 days through dams. Total RNA isolation and estimation, Northern analysis and specific mRNA 

quantification were performed. All these authors established the developmental lead exposure animal 

models, however, Bielarczyk80  characterized lead health effects during foetal and developmental 

periods.   

One year after, in 1997, three studies were published. Kuhlmann57 exposed male Long-Evans 

rats animals to a pelleted Pb-containing diet (750ppm) during different stages of development for 

reference memory (Morris Water Maze) and blood lead levels assessment at 100 days of age. Jett et 

al.82 published a different kind of lead exposure protocol. Ten days prior to breeding and through 

gestation and lactation, female Long-Evans rats were fed diets containing 250 ppm of Pb acetate. Pups 

were exposed from day 1 until day 91. Behavioural evaluation with Morris Water Maze and Pb levels in 

the hippocampus were assessed in this study. These studies are complementary, being published by 

the same research group, evaluating the memory deficits in an animal model that mimics lead exposure 

through contaminated food ingestion by pregnant females and their children. However, only the 

behavioural alterations were considered on both these studies, without any neuropathological 

evaluations. The third study was published by Bourjeily and Suszkiw83. These authors exposed timed-

pregnant Sprague-Dawley rats with 0.2% lead acetate solution diluted in water from gestational day 16 

until weaning pups at post-natal day 21 (P21). Rats (females’ pups) were sacrificed at P1, P7, P21, P81, 

P112 and P200 for biochemical and morphological measurements. This study presents a similar lead 

exposure animal model to that described before by Bielarczyk80 but without developmental post-

weaning exposure and with an evaluation of the animals made after a long non-exposure period (8, 12 
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and 24 weeks). Even though this is a complex study, only molecular changes of lead exposure were 

considered, without describing any physiological or behavioural changes. The same protocol of 

exposure was published some years after (in 2007) by Han et al84, to study the protective effects of 

ascorbic acid in lead toxicity. This type of studies is crucial as an attempt of finding a treatment or 

prevention of lead toxicity in humans by performing animal experimentation. 

Moreira85 and others published, in 2001, a wide-ranging behavioural study on lead-exposed 

animals. For that, researchers exposed pregnant Wistar rats with 500pm Pb acetate solution during 

pregnancy and lactation. Pups, at 23 and 70 days of age, were assessed by elevated plus maze and open 

field tests, holeboard and shuttle-avoidance tasks, social interaction test and rotarod for a broad 

behavioural characterization upon lead exposure during development. Also, Pb levels in brain and blood 

were determined in both dams and pups. Such a study is very important for a wide characterization of 

an animal model, however, only the behavioural changes during development of the brain in foetal 

period and during lactation were considered, without any molecular or physiological evaluation. In 

2003, Yang86 developed, using Wistar rats, a gestational lead exposure animal model, without taking 

into account the developmental phase and evaluated only the cognitive impairment induced by lead 

exposure by Morris Water Maze test.  

In 2005, Virgolini87 and colleagues published a long-term study of chronic low-level lead 

exposure (50 and 500ppm drinking lead solution), starting at day 21 after birth and until 9 months of 

age of male Long-Evans rats. Animals were assessed for behavioural changes by fixed interval 

performance test, stress challenges and locomotor activity chambers and catecholamine, 

corticosterone and glucocorticoid receptor levels were determined, as well as blood lead levels, 

through lifetime. This study is an example of an overtime research for toxicological lead effects upon 

behaviour of the animals and, therefore important for results translation humans, although not taking 

into account the foetal period of exposure and only evaluating the changes in male animals. Also, the 

molecular changes that underlie the behavioural changes observed were considered and assessed for 

a wider examination of lead effects. 

A group of scientists from Poland, led by Struzynska, in 200788 described a completely new way 

of lead exposure in animals. Wistar rats of both sexes were injected daily with lead acetate (15 mg/kg, 

ip) for 2 weeks starting at day 15 after birth. Animals were sacrificed 24 hours after the last injection 

and brains removed for a broad inflammatory study of glial and neuronal cells. Blood and brain lead 

levels were also estimated. Although this a very complex study of mechanisms of lead toxicity in the 

brain, the type of exposure to lead is not well translated to human environmental exposure. Even 

though, this type of studies is important to characterize the molecular mechanisms underlying lead 

neurotoxicity. Other studies with injectional lead exposure animal model were published after the 
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previously described. In 2014, Silveira et al89 published a study in which authors exposed male rats to 

lead acetate (first dose 4mg/100g, subsequent doses 0.05mg/100g,im) for 30 days, in animals that 

weighted between 250–300g. Vascular reactivity experiments in thoracic aortas were performed, 

indirect systolic blood pressure was measured weekly using tail-cuff plethysmography and molecular 

studies for oxidative stress assessment, as well as blood lead levels were determined. Another study, 

of 201690, was performed in two months old female Wistar rats that were exposed to lead acetate 0.5 

mg/kg by intraperitoneal injection for 60 days. The authors performed some histopathological and 

immunohistochemistry analysis for lead effects assessment on molecular level. Also, in 2017, Simões47 

and collaborators published a very broad study of physiological and autonomic dysfunctions in Wistar 

rats, exposing adult male Wistar rats to lead acetate by intramuscular injection (first dose of 4 µg/100 

g body weight and subsequent doses of 0.05 µg/100 g/day for 30 days). Haemodynamic recordings in 

conscious rats were performed for BP changes assessment and systolic arterial pressure and pulse 

interval variability calculated for autonomic evaluation using Fast Fourier Transform (by LF, HF and 

LF/HF calculations), baroreceptor and Bezold–Jarisch Cardiopulmonary Reflexes were also determined. 

This is a very wide-raging study of cardiorespiratory and autonomic changes in animal model that could 

be translated to children that are exposed to lead in early stages of life, however, the type of exposure 

that have been chosen by the authors is not the type of exposure that happens in the normal conditions 

with humans.  

Some studies have been focused in the relationship of lead exposure and neurodegenerative 

diseases, such as Alzheimer’s disease. New animal models have been developed to investigate the 

association. Bihaqi69et al in 2014, described the first double lead exposure animal model, exposing 

C57BL/6 mice to 0.2% Pb acetate through drinking water from day 1 to 20 after birth and between 9 

and 9 months of age. Brains were removed in different timepoints of the study (post-natal days 20, 180, 

270, 540, and 700). Behavioural assessments were performed by Morris Water Maze and elevated plus 

maze, western blotting and real-time PCR to trace Alzheimer’s biomarkers. The same group of 

researchers, published another study in 201691 in which only the developmental lead exposure profile 

was evaluated (C57BL/6 mice exposed to 0.2% Pb-acetate from PND 1 to PND 20 through the drinking 

water of the dam) with similar testing protocol of the previous study. Both these studies, and others 

that have been performed, have shown a strong relationship between lead exposure in early stages of 

life and the development of Alzheimer’s and other neurodegenerative diseases in elder stages of life, 

although, using a simpler animal species for evaluation. 

In the most recent years, other studies with animal models have been developed. Sobin et al68 

published, in 2017, their work that was performed in female and male C57BL/6J mice exposed to low 

(30ppm) and high (430ppm) lead acetate solution from day 0 to day 28 after birth. Behavioural 
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evaluation by OIP task (object-in place) for spatial and visual object memory retrieval in preadolescence 

mice. No molecular or physiological assessments were performed. Although, the study mimics the 

human exposure in the early stages of life, no broad evaluation of the lead effects has been performed. 

Another study was performed in 2017 by Toscano and collaborators20, focused in the physiological 

alterations provoked by lead, in which two months old male Wistar rats were exposed to lead acetate 

(100ppm) for 30 days. Systolic blood pressure (SBP) was assessed weekly by tail plethysmography and, 

after 30 days of lead exposure, haemodynamic measurements were taken (sBP, dBP and HR), blood 

pressure reactivity, baroreflex stimulations were performed and heart was withdrawn for western blot 

analysis of β1 adrenergic receptor expression. This is a more complex study with a broader evaluation 

of lead exposure effects during developmental stages, in which, not only the physiological parameters 

have been assessed, but also, the neural regulation system dysfunction that underlies the physiological 

changes evaluated and described. 
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2  AIM OF THE WORK 

Lead exposure can be highly variable in both intensity and frequency inducing, during 

developmental stages and through lifetime, adverse health effects including behavioural changes, 

cognitive impairment, tachypnoea, hypertension and autonomic dysfunction. Most of these adverse 

effects have been described in the course of a continuous chronic exposure to lead in both humans and 

animals. In fact, various animal models have been described for continuous low-level lead exposure and 

health effects assessed. Yet, there are situations eg, migrations, implementation of school exchange 

programs and/or residential change, where intermittent lead exposure occurs and may leading to 

functional damage. However, the available studies in human subjects and standardized exposure 

protocols mimicking human intermittent exposure to lead are scarce.  

Therefore, the overall purpose of this Master thesis is to evaluate lead effects on mammal’s 

physiology along different profiles of lead exposure, including a new protocol of intermittent low-level 

lead exposure.  

 

For that, 

- three different protocols of lead exposure were developed; 

- leading functional parameters, critical for cardio-respiratory and autonomic homeostasis, were 

characterized; 

- behavioural changes and cognitive impairment produced by lead exposure were assessed; 

- morphofunctional parameters as neuronal degeneration, gliosis and synaptic alterations in the 

hippocampus (dentate gyrus), upon different low-level lead exposure protocols, were 

evaluated. 
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3 MATERIALS AND METHODS 

3.1 ETHICS STATEMENT 

All described procedures were carried out in agreement with the European Community 

legislation on animal experimentation (Directive 2010/63/ EU) and were approved by the Ethical 

Committee of the Academic Medical Center of Lisbon (CAML).  

3.2 DEVELOPMENT OF LEAD EXPOSURE PROTOCOLS  

By taking into account that ingestion is one of the three main intake routes for body lead 

absorption, animal models of lead poisoning were developed as described previously 16,45. Briefly, seven 

days pregnant Wistar rats (n=8; Charles River Laboratories, France) were divided into Pb-treated and 

control groups. In Pb-treated group, the tap drinking water was replaced by 0.2% (p/v) lead acetate (II) 

solution dissolved in deionized water (Acros Organics, New Jersey, USA). After weaning at 21 days, rat 

pups of both sexes were divided into two groups following the previous exposure: Pb-exposed pups 

(Pb) and tap water for control pups (Ctl-rats).  

These two groups were themselves sub-divided into the following ones (Figure 4): 

• Long-term Exposure (PbP)   Wistar rats (n=30) of both sexes were exposed to lead 

permanently and evaluated at 12, 20 and 28 weeks of age;  

• Short-term Exposure (PbS)  Wistar rats (n=30), of both sexes, exposed to lead solution until 

12 weeks of age without any adult lead exposure, evaluated at 12, 20 and 28 weeks of age;  

• Intermittent Exposure (PbI)  Wistar rats (n=30), of both sexes, exposed to intermittent lead 

intake (two periods of exposure): until 12 weeks of age and between 20 to 28 weeks. 

Animals underwent a period of lead abstinence for 8 weeks, between 12 and 20 weeks of 

age and were evaluated at 12, 20 and 28 weeks of age; 

• Without exposure to Pb (Control - CTL) Wistar healthy rats (n=30), of both sexes, not 

exposed to lead were evaluated at three different time-points: 12 week, 20 weeks and 28 

weeks.  

All animals were subjected to the same experimental protocol at three distinct time-points (T= 12, 

20 and 28 weeks of age) for a broad functional and morphological characterization of lead exposure 

profiles. 
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Figure 4 - Timeline of the study, discriminating the development of different low-level lead exposure protocols (PbP, PbI and 
PbS) and the matching control (Ctl).  

Numbers represent different evaluations performed at relevant time-points of the study: 1 - Behavioural tests and 
Functional evaluation; 2 - Behavioural tests, Functional evaluation and Immunofluorescence studies; 3 - Behavioural tests, 

Functional evaluation and Immunofluorescence studies. 
 

All rats were housed in the animal facility of the Faculty of Medicine of the University of Lisbon, 

in a maximum number of 4 animals per cage and divided by sexes (after weaning, at 21 days of age), 

with controlled temperature (22 ± 1°C) and humidity (50 ± 5%) and synchronized for a 12/12h light/dark 

cycle (lights on between 7 am and 7 pm). Food (Mucedola, Italy) and tap water (Epal, Portugal) were 

provided ad libitum. All procedures (functional and behavioural evaluation) were performed during the 

light period of the day. 

3.3 BEHAVIOURAL TESTING PROCEDURES 

Two weeks before functional evaluation, animals underwent a set of standard behavioural tests 

to access: I) anxiety and stress levels92 (Elevated Plus Maze test); II) spontaneous locomotor activity and 

exploratory behaviour93 (Open Field Test); III) spatial working memory94 (Y-Maze test); and, IV) episodic 

long-term memory95 (Novel Object Recognition test).  
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At the experimental days, animals were taken into the behaviour testing room, for at least, 1h 

prior to the start of the testing session. All behavioural studies were performed between 9am and 6pm, 

in a quiet room with dim light and all animals underwent a prior handling period for testing room and 

researcher habituation96. All behaviour apparatus used were cleaned with 70% ethanol between 

animals, so that any residual smell of the disinfectant was experienced equally by every animal. After 

placing the animal in the behavioural apparatus, the investigator immediately left the room, to avoid 

introducing an unintentional bias into the study or serving as a cue for the animal. All experiments were 

video-recorded by an UV camera (Chacon, Belgium) and all videos were posteriorly analysed by ANY-

maze© software (Stoelting Co, Ireland). 

I. Elevated Plus-Maze  

The elevated plus-maze (EPM) is one of the most used tests of anxiety behavior evaluation in 

rodents92,97. The apparatus consists in an elevated maze with four arms (two open arms – 50 x 10cm - 

perpendicular to two enclosed arms 50 x 10 x 30cm height) that form a plus shape, elevated 50cm from 

de ground (Figure 5).  

 

Figure 5 - Elevated plus test apparatus. 
The apparatus consists in an elevated maze with four arms (two open arms – 50 x 10cm - perpendicular to two enclosed 

arms 50 x 10 x 30cm) that form a plus shape, elevated 50cm from de ground.  

Each animal was left at the centre of the maze to freely explore the maze during 5 minutes 

without prior habituation to the maze. Usually, a trial of 5 min is sufficient to capture the critical 

components of anxiety behaviour in animals98.  
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The parameters evaluated from the EPM test were: the number of entries in each zone (all four 

paws on open or enclosed arms); the percentage of time spent in open and closed arms using the 

following ratio: [time spent in open or closed arms/total time] x 100. Normal exploratory 

behavior in rodents is in favor of the closed arms 99; thus, animal exposure to a novel maze area evokes 

an avoidance conflict which is stronger in open arm compared to the enclosed one, being a lower ratio 

an indication of anxiety92,100. 

II. Open Field Exploration test 

The Open Field Test (OFT) provides a unique opportunity to systematically assess novel 

environment exploration, general locomotor activity, and allows an initial screening for anxiety-related 

behaviour in rodents,101. This apparatus consists in a square black box (measures of 67 x 67 x 57cm 

height) “virtually” divided in three concentric squares: 1- peripheral zone (near the walls), 2- 

intermediate zone and 3- centre, as shown, in Figure 6.  

 

Figure 6 - Open field test apparatus.  
The OFT apparatus consists in a square black box (measures of 67 x 67 x 57cm height) with three virtual zones 

discrimination: 1. Periphery zone; 2. Intermediate zone; 3. Central zone.  

The locomotor behaviour has been tested without previous habituation to the box. Usually, a 

5-min test session is sufficient to evaluate the general exploratory locomotion. It is known that rats 

typically spend an appreciably greater amount of time exploring the periphery of the arena, usually in 

contact with the walls (i.e., thigmotaxis)102–104, than in the unprotected centre area105.  

The parameters evaluated during this test were: the percentage of time spent exploring the 

centre, the total amount of entering times into the three virtual zones, the total travelled distance and 

the average velocity of the animal during the test93. The total amount of entries in the virtual zones and 
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the presence time in the central zone are measures of exploratory behaviour and anxiety. A high 

frequency/duration of these behaviours indicates high exploratory behaviour and low anxiety levels, 

and, in the contrary, a low frequency/duration of these behaviours is indicative of poor exploration and 

high anxiety levels93. Total travelled distance of the animal and average velocity are measures of the 

general locomotor activity85,93,106. High values of both these parameters are indicative of hyperactivity 

behaviour of animals, and, in the contrary, decreased values of these parameters indicate a locomotor 

impairment93,107. 

III. Y-Maze 

Y-Maze Spontaneous Alternation94 is a behavioural test taking advantage of the willingness of 

rodents to explore new environments92,101,108. The Spontaneous Alternation Behaviour measured in this 

test mirrors the process of spatial working memory - hippocampal dependent process94. It is a simple 

memory test, reason why it has been widely used by behaviour researchers and already used for lead 

neurotoxicity studies49. 

The apparatus for Y-Maze test consists of an Y-shaped labyrinth with a black interior, with three 

identical arms at angles of 120 ° (arm dimensions of 35cm length x 10cm width x 20cm height) was 

used. Visual hints were placed on the walls to mark a previous visit. (Figure 7). The detailed protocol 

was described elsewhere49. Briefly, each rat was placed at the end of one arm (the chosen arm) and 

allowed to move freely through the maze during 8 min, without prior habituation.  

 

Figure 7 - Y-Maze apparatus. 
 A wooden Y-shaped labyrinth, with the interior in black, with three identical arms at an angle of 120 ° of the other.  

The arm dimensions: 35cm x 10cm x 20cm. 
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The series of arm entries were calculated. An entry occurred when all four limbs were within 

the arm and an alternation was defined as entries in all three arms on consecutive occasions. The 

number of maximum possible alternations for each animal was therefore the total number of arm 

entries minus two. The percentage of spontaneous alternation behaviour (SAB) was calculated as 

following: [actual alternations/maximum alternations] x 100. In addition, and for each animal, 

the total number of arm entries was used as a measure of exploratory activity 94. 

 

IV. Novel Object Recognition Test 

The Novel Object Recognition (NOR) Test is very useful to evaluate different types of memory 

through manipulation of the retention interval (RI) that resembles the amount of time that animals 

must retain the information of the sample objects presented during the training phase, before the test 

phase.95 Since the aim of this test was to study the long-term memory changes of the animals, in our 

protocol, a retention interval of 24h was chosen95.  

To perform this test, the open field (OFT) arena (square black box with measures of 67 x 67 x 

57cm height) was used. The objects used, were transparent and brown glass shapes proportional to 

the animal size. There were various examples of every object (n=2), and they were randomized and 

used interchangeably between trials. The role of the object, namely sample or novel, was randomized 

between object types. Also, their position relatively to the other object was permuted with the aim of 

using every object as a familiarity or novelty. The object position was frequently changed so that the 

object exploration of the animal was independent of that specific object preference by the animal95,109. 

The objects were attached to the bottom of the arena with a round piece of Velcro that could not be 

seen or touched by the animals. The objects were placed in symmetric and opposed corners of the 

arena95.  

The testing protocol, schematically described in Figure 8, consists of three phases: habituation, 

training and the testing phase. In the habituation phase (3 consecutive days), each animal could explore 

freely the open field (OFT) arena for 15 min in the absence of objects. In the initial 5 min of the first day 

of habituation, animal behaviour was quantified as a measure of locomotor activity (OFT) throughout 

the ANY-maze® software. During the training phase, in the fourth day, the animal was presented with 

the two objects to-be-familiarized, named as sample objects (S and S’ objects) for 5 min. Following 

sample-objects exposure, the animal was put back to the home cage for 24h. During the test phase, the 

animal was exposed to two objects: one previously experienced (sample object -S) and a novel object 

(N), for 5 min 95. 
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Between every trial, the arena and the objects were carefully cleaned with a 70% ethanol 

solution to erase any olfactory clues. Training and testing days were recorded and analysed by 3-point 

analysis (head, torso and tail of the animal) using ANY-maze® software, and only the data from the head 

point analysis was relevant for exploration of the objects. Exploratory behaviour was quantified as the 

amount of time animals spent around each object in both, training and testing phases. The number of 

approaches that included sniffing the object, rearing towards the object or touching the object, were 

counted. Sitting backwards to the object or crossing in front of the object without pointing the snout in 

the object direction was not considered as exploration95. Exploration was quantified as following:  

ET (%)= [time exploring the object/overall exploring time] x 100.  

 

 

Figure 8 - Novel object recognition test schematic representation.  
 

Novelty index was calculated from the data obtained in the NOR testing day, as:                          

[ET% Novel – ET% Sample] / [ET% Novel + ET% Sample]. This index ranges from -1, to 1, 

where negative values to 0 represent absence of discrimination between novel and familiar objects, 

i.e. more time exploring sample object, equal time exploring both objects, and 1 corresponds to 

exploration of the novel object only. 109 
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3.4 FUNCTIONAL EVALUATION 

Metabolic evaluation 

Animals were housed in a metabolic cage for 24h for food, water intake and urine and faeces 

production quantification. Animals were weighted before and after being placed in the metabolic cage.  

Cardiorespiratory and autonomic evaluation 

Anaesthesia, surgical and experimental protocols 

Wistar rats, both sexes, aged > 12weeks, were anesthetized with sodium pentobarbital (60 

mg/kg, ip). The levels of anaesthesia were maintained, when necessary, with a 20% solution (v/v) of the 

same anaesthetic, after testing the withdrawal reflex. The trachea was cannulated below the larynx for 

recording of the tracheal pressure and artificial ventilation (if necessary) with O2-enriched air through 

a positive pressure ventilator. Femoral artery and vein were cannulated for blood pressure monitoring 

and injection of saline and drugs, respectively. Rectal temperature was maintained between 37.5-39ºC 

through a homoeothermic blanket connected to a rectal probe (Harvard Apparatus). The 

electrocardiogram (ECG) was recorded from subcutaneous electrodes placed into three of four limbs; 

heart rate has been derived from the ECG recording (Neurolog, Digitimer). The right carotid artery 

bifurcation was identified, and the tip of a catheter was placed within the right carotid sinus by 

retrograde cannulation of the external carotid artery. Carotid body receptors were stimulated by the 

injection of lobeline45  (0.2ml, 25 μg/ml, Sigma) through this indwelling cannula. Baroreceptors were 

stimulated by an intravenous injection of phenylephrine45 (0.2ml, 25 µg/ml, Sigma). As a control, the 

same volume of saline was also injected at the beginning of the experiment and was shown not to evoke 

any change in the recorded variables.  

At the beginning of the experimental protocol, and upon parameters stabilization, a recording of 

5min was taken for further autonomic evaluation. There was an interval of, at least, 3 min between 

each provocation to allow the recovery to basal values. Throughout the experiment, blood pressure 

(BP), ECG, heart rate (HR), tracheal pressure (TP) and respiratory frequency (RF) were continuously 

monitored and recorded (PowerLab, ADInstruments).  
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At the end of the experimental protocol, blood was collected from the femoral artery for BLL by 

atomic absorption spectroscopy (n=2). The guidelines for BLL monitoring in human children consider a 

value superior to 5 μg/dL to be harmful to human health5,6,18. 

The animal was, then, sacrificed with an overdose of anaesthetic. The brain was carefully 

removed and maintained 4% paraformaldehyde in phosphate buffer (PBS) (pH 7.4) at 4°C overnight, 

after which, was immersed in increasing concentrations of sucrose, of 15% and 30%. Subsequently, the 

brain was embedded in gelatine (7.5% gelatine in 15% sucrose solution) and frozen with liquid nitrogen 

and 2-metilbutane (Sigma-Aldrich, UK) for further histological procedures. 

 

Data acquisition and analysis 

All the recorded variables were acquired at 1 kHz, amplified and filtered (Neurolog, Digitimer; 

Powerlab, ADInstruments). For the recorded variables, the baseline values were taken immediately 

before the beginning of each type of stimulation. 

I. Baro- and chemoreceptor reflex analysis 

To evaluate the baroreceptor reflex function, the baroreceptor reflex gain (BRG) has been 

quantified, calculating the variation of HR in relation to mean BP variation: 𝛥𝛥𝛥𝛥𝛥𝛥 ⁄ 𝛥𝛥𝛥𝛥𝛥𝛥 upon 

phenylephrine provocation.  

The evaluation of the chemoreceptor response elicited by intra-carotid injection of lobeline 

was calculated through basal respiratory frequency (RF, in cpm) before [average of 30sec] and during 

lobeline stimulation, or, Δ chemoreflex (lob)= RF stimulation- RFbasal. 
 

II. Cardiovascular variability 

Heart rate and blood pressure variabilities are indirect methods for non-invasive evaluation of 

autonomic nervous system. Systolic blood pressure and R-R intervals were analysed, in periods of 3min, 

through discrete wavelet transform110–112 using an in-house software FisioSinal113, to calculate Low 

Frequencies (LF) and High Frequencies (HF). Low frequencies (LF; [0.15-0.6] Hz) obtained from systolic 

BP are a marker of sympathetic activity and high frequencies (HF; [0.6-2.0] Hz) obtained from R-R 

interval represent both parasympathetic and respiratory variations. The ratio LFsBP / HFRR represents 

the autonomic balance to the cardiovascular system. 
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3.5 IMMUNOFLUORESCENCE STUDIES 

Sample processing 

To address neuroinflammation and neurodegeneration, the hippocampus was identified (B=-

2.92 to -5.04), and the brain was sectioned around that region on a cryostat (Leica CM 3050S, Germany) 

and coronal slices (25µm) collected in a cryoprotectant solution (PBS, ethylene glycol and Glycerine) 

and stored at -20oC. For immunohistochemical studies, the slices were washed with TBS (3x/5min; Bio-

Rad, USA), placed in citrate buffer (Sigma-Aldrich, UK) at 90oC for 30min for antigen retrieval114. After 

cooling down to room temperature, the samples were washed with TBS (3x/5min) and treated with 

0.3% Triton X-100 (Sigma-Aldrich, UK) for 15 min. Sample blocking was then performed by 5% Goat 

Serum (BioWest, France) and 1% Bovine serum (VWR, USA) blocking solution for 1h, after which the 

incubation with primary antibodies over-night has been performed (concentrations and markers are 

shown in Table 2). 

Table 2 - List of primary antibodies used in immunohistochemistry protocol. 

 

At the second day of staining protocol, tissue slices were washed with TBS (3x/10min) and 

incubated with a secondary antibody, in concentrations presented in Table 3, for 1 hour at room 

temperature, after which, were washed (TBS; 3x/10min) and mounted in salinized SuperFrost® 

Microscope Slides treated with ProLong Gold Antifade with DAPI (Sigma-Adrich, UK), dried and stored 

at -20ºC until further visualisation and analysis of the dentate gyrus (DG).   

Table 3 - Secondary antibody used in the immunohistochemistry protocol. 

Secondary antibody 
Conjugate 
(Dilution) Supplier 

Goat anti-Rabbit IgG (H + L) 
Secondary antibody 

Alexa Fluor® 594 
(1:1000) Life Technologies - ThermoFisher 

Scientific (USA) Alexa Fluor® 488 
(1:1000) 

 

Marker 
Antigen 

Antibody 
(Dilution) Host Supplier 

Neuronal marker Neuronal nuclei NeuN 
(1:500) 

Rabbit 
polyclonal 

Abcam®  
(UK) 

Astrocytic marker Glial fibrillary acidic protein GFAP 
(1:500) 

Microglial marker 
 Ionized Ca binding adaptor molecule 1 Iba-1 

(1:250) 

Synaptic marker Synaptophysin Syn 
(1:200) 
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Image acquisition 

Image acquisition was performed under a confocal point-scanning microscope (Zeiss LSM 880 

with Airyscan) (Table 4). All images where taken at DG level because it is known that this area receive 

the most number of input pathways to the hippocampus executing three main functions: (i) 

accumulating encoding of multiple sensory inputs, (ii) spatial pattern separation, and (iii) facilitation of 

encoding of spatial information based on its outputs to CA3
48

. 

Table 4 – Image acquisition and quantification. 
Lasers, objectives and ZEN Software (Carl Zeiss, Germany) used for high-resolution fluorescence images of DG 

 

Marker 
Primary Ab Secondary Ab 

Conjugate Laser Objective Type of images 

Neuronal marker NeuN 594 HeNe594 
(594 nm) 

20x, dry 

Snap optimal 

Astrocytic marker GFAP 

488 

Argon 
(458nm) 
(488nm) 
(514 nm) 

Z-stack 
(compilation of 
images in Z axis) Microglial marker Iba-1 

Synaptic marker Syn 63x, oil Snap optimal 
 

 

Image analysis 

Subsequently the appropriate image acquisition, fluorescent images of GFAP, Iba-1 and 

Synaptophysin were analysed and quantified using Fiji115 open source software by specific features. 

Morphological categorization of GFAP and Iba-1 stained cells into various types of glial cells, form 

reactive to resting state cells was performed by comparison of the cells to the ones described in 

different sources55,116–118. Also, for GFAP and Iba-1, a manual quantification of positive cells was 

performed, using Z-stack images by Cell Counter plugin in the software to mark cells.  

Synaptophysin fluorescence intensity staining quantification was completed using ROI manager 

tool, choosing 5 regions of interest (ROIs), equal in size and shape and then normalized to a negative 

control image (sample obtained by incubation of secondary antibody without primary antibody for non-

specific binding quantification). 

Number of neurons in Neu-N stained tissue slides were quantified using an in-house software 

developed by Bioimaging facility of Instituto de Medicina Molecular João Lobo Antunes named 

Multichannel Cell Counter RGB. Succinctly, single-cell nuclei were identified via DAPI staining 

thresholding and particle analysis, and dilated regions of interest (ROIs), based on a user-defined radius. 

For each channel and ROI, a staining was considered positive if a minimum number of pixels (usually 5, 

above a given threshold), and a filter for cell counting was defined based on staining. 
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3.6 STATISTICAL ANALYSIS  

 Data are expressed as mean ± SEM and plotted as the composite of the mean values of all 

subjects, unless otherwise specified. Normality distribution of the continuous variables was analysed 

with the Kolmogorov-Smirnov test (Lilliefors’ correction) and Levene's test was used for assessment of 

homogeneity of variance. For assessing data within the same group or between Pb group and the 

Control group at a specific timepoint (12, 20 and 28 weeks), Student’s t-Test for paired or unpaired 

observations, respectively, was used.  

 Comparisons between groups (PbS vs. PbP vs PbI) were performed using a "repeated measures" 

analysis of variance (ANOVA) with Tukey’s multiple comparison. 

 A value of p < 0.05 was considered statistically significant. Data were analysed using GraphPad 

Prism 6 (GraphPad Software Inc, USA). 
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4 RESULTS 

4.1 LONG - TERM LEAD EXPOSURE PROTOCOL (PBP) 

The animal model of long-term lead exposure evaluates the behavioural, overall functional and 

hippocampal histological consequences of a continuous exposure of animals to lead since the foetal 

period until 28 weeks after birth. Animals were divided into three groups in accordance to the time of 

evaluation: 12, 20 and 28 weeks. 

Effect on metabolic parameters and BLL 

The weight of the animals, evaluated at three different time-points, did not change significantly 

in animals under long-term lead exposure protocol. Animals exposed to lead until 12 weeks ingest more 

water and less food, without alterations in the urine and faeces excretion. At 20 weeks of age no 

significant differences were observed, however in the animals exposed to lead until 28 weeks, a small 

increase in the water intake was detected, without an increase in urine production (Table 5). 

All the metabolic parameters evaluated in CTL groups, at three different time-points, did not 

change significantly. 

 Regarding the blood lead levels, Pb animals presented a high lead concentration at 20 and 28 

weeks of age, without BLL evaluation at 12 weeks (see Table 5 for values). 

 
Table 5 – Values of metabolic parameters and BLL in CTL and PbP groups at 12, 20 and 28 weeks of age. 

Values are presented as mean ± SEM. n=10/group; *p < 0.05; **p < 0.01. 

Group Age BBL  
(ug/dL) Weight (g) Food 

intake (g) 
Water 

intake (ml) 
Urine 
(ml) 

Faeces 
(g) 

CTL 12 
weeks 

na 358 ± 34 25 ± 1 24 ± 3 19 ± 1 12 ± 1 

Pb na 345 ± 39 22 ± 1* 32 ± 3* 15 ± 1 9 ± 1 

CTL 20 
weeks 

< 0.1 386 ± 41 23 ± 3 39 ± 3 17 ± 2 12 ± 1 

PbP 28 ± 2.3 390 ± 42 24 ± 2 33 ± 2 20 ± 3 10 ± 1 

CTL 28 
weeks 

< 0.1 368 ± 36 24 ± 2 24 ± 2 11 ± 1 8 ± 1 

PbP 21 ± 10.7 434 ± 50 24 ± 3 30 ± 2* 16 ± 3 8 ± 1 

  



Results | Long-term exposure protocol (PbP) characterization 

32   |   Liana Shvachiy 
 

Effect on blood pressure, heart rate and respiratory frequency  

Long-term lead exposure significantly increased mean blood pressure values, mainly due to the 

continuous increase of systolic and diastolic blood pressure through time. These hypertensive values 

were maintained between 20 and 28 weeks. Heart rate apparently did not account for those changes, 

since they did not change significantly during the continuously lead exposure. The changes of 

respiratory frequency follow the inverse profile of blood pressure (Figure 9; see Table 6 for values).  

 

Figure 9 – Basal physiological parameters evaluation of PbP and CTL protocols at 12, 20 and 28 weeks  
Systolic (A), diastolic (B) and mean (C) blood pressures, heart rate (D) and respiratory frequency (E).  

Values are mean ± SEM. ***p < 0.001; ****p < 0.0001. 



Long-term exposure protocol (PbP) characterization | Results 

Liana Shvachiy   |   33 
 

Table 6 – Values of basal physiological parameters of PbP and CTL groups at 12, 20 and 28 weeks.  
Values are presented as mean ± SEM. n=10/group; ***p < 0.001; §p < 0.0001. 

 

Group Age 
Blood pressure (mmHg) Heart rate 

(bpm) 

Respiratory 
frequency 

(cpm) Systolic  Diastolic Mean 

CTL 12 
weeks 

125 ± 7 91 ± 7 113 ± 4 432 ± 7 78 ± 2 

Pb 164 ± 6*** 129 ± 4§ 141 ± 4§ 395 ± 27 113 ± 6§ 

CTL 20 
weeks 

137 ± 4 104 ± 4 119 ± 3 433 ± 10 81 ± 3 

PbP 171 ± 4§ 155 ± 4§ 163 ± 4§ 429 ± 6 81 ± 3 

CTL 28 
weeks 

120.1 ± 10.76 90 ± 7 104 ± 8 433 ± 27 60 ± 3 

PbP 171 ± 4§ 148 ± 4§ 157 ± 4§ 411 ± 9 68 ± 2 

 

 

Effect on baroreceptor and chemoreceptor reflexes 

Baroreceptor function seems to have undergone a remodelling process along time. In fact, the 

baroreflex gain decreased until 20 weeks, from which was kept without significant changes, suggesting 

that the putative remodelling process that was ongoing since early life to accommodate the increases 

in blood pressure has terminated.  

Long-term exposure to lead was responsible for an augmentation of the carotid chemoreflex 

sensitivity at 12 weeks that has been aggravated until 20 weeks of age and then maintained with the 

same profile until the end of exposure (28 weeks).  

The temporal evolution of both baroreceptor and chemoreceptor reflexes changes due to 

prolonged lead exposure is represented in Figure 10 and values in Table 7.  
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Figure 10 – Baroreceptor and chemoreceptor reflex evaluation of PbP and CTL protocols at 12, 20 and 28 weeks.  
Baroreflex gain (A) and chemoreflex sensitivity (B). Values are mean ± SEM; *p < 0.05; **p < 0.01. 

 

Table 7 – Values of baroreflex gain and chemoreflex sensitivity of PbP and CTL groups at 12, 20 and 28 weeks.  
Values are presented as mean ± SEM n=10/group; *p < 0.05; **p < 0.01. 

 

Group Age Baroreflex gain 
(bpm2/mmHg) 

Chemoreflex 
sensitivity (cpm) 

CTL 12 
weeks 

0.53 ± 0.10 15 ± 2.6 

Pb 0.27 ± 0.03* 22 ± 1.8* 

CTL 20 
weeks 

0.76 ± 0.11 20 ± 1.1 

PbP 0.39 ± 0.07* 31 ± 3.8** 

CTL 28 
weeks 

0.65 ± 0.07 14 ± 1.5 

PbP 0.37 ± 0.03** 25 ± 2.1** 
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Effect on autonomic output measured indirectly 

Autonomic function is impaired since earlier life. This impairment, expressed mainly in the 

sympathetic tone increase (LF band), is observed at 12 and 28 weeks, which contributed to the 

autonomic balance (LF/HF ratio) increase at 12 weeks. Interestingly, in opposition to other clinical 

conditions, in which the autonomic system is provoked for further adaptation leading to sympathetic 

overactivation independently of the parasympathetic tone (HF band), in this case, the activity of both 

peripheral branches follow the same incremental tendency changes resulting in a decrease of 

autonomic balance seen at 20 and 28 weeks of age.  

The time evolution of the LF, HF and LF/HF parameters for the 3 time-points of evaluation are 

presented in Figure 11 and values in Table 8. 

 

Figure 11 – Autonomic function evaluation of PbP and CTL protocols at 12, 20 and 28 weeks  
Low frequency band– LF (A), high frequency band - HF (B) and LF/HF index (C) are presented.  

Values are mean ± SEM; *p < 0.05. 
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Table 8 – Values of autonomic output measure indirectly of PbP and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; *p < 0.05. 

Group Age LFsBP 

(mmHg2) 
HFHR 

(bpm2) 
LFsBP/ HFHR 

(mmHg2/bpm2) 

CTL 12 
weeks 

1.015 ± 0.16 0.85 ± 0.37 2.49 ± 0.82 

Pb 2.34 ± 0.47* 0.56 ± 0.23 6.20 ± 1.29* 

CTL 20 
weeks 

0.85 ± 0.09 0.72 ± 0.08  0.93 ± 0.19 

PbP 1.37 ± 0.39 0.65 ± 0.076 1.41 ± 0.52 

CTL 28 
weeks 

1.05 ± 0.23 0.97 ± 0.25 0.88 ± 0.25  

PbP 2.02 ± 0.32* 1.04 ± 0.11 1.61 ± 0.25 

 

 

Effect on behavioural parameters 

Anxiety, locomotion and exploratory activity 

Long-term exposure to lead provokes irreversible anxiety behaviour in the animals through life 

that aggravates with the passing time. However, the initial time of exposure was the most relevant for 

the behavioural change. This behaviour was inferred by the reduction of the presence time in the open 

arms of the EPM apparatus thus, increasing the presence time in the closed arms of the maze. Also, 

variations in the number of entries that were observed are coherent with the presence time percentage 

changes, characteristic of an anxiety behaviour due to long-term lead exposure (see Figure 12; and 

Table 9 for values). 

Long-term lead exposure also induced some significant changes in the exploratory behaviour of 

the animals that was evaluated by OFT, leading to poor exploration and increasing the anxiety levels of 

the subjects since earlier life. These exploratory behaviour modifications were recovered through life 

(animals do not show changes in the presence time percentage in the central zone of the arena at 28 

weeks of age).  Also, the exposure to lead in the early stages of life is a cause of a hyperactive behaviour 

in the animals that was also recovered at 28 weeks. This change was inferred by the augmented values 

of the average velocity parameter in the Pb-exposed animals at 12 and 20 weeks of age thus increasing 

the total travelled distance of the animals in the arena (see Figure 13; and Table 10 for values). 
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Figure 12 – Anxiety behaviour assessment by EPM of PbP and CTL protocols at 12, 20 and 28 weeks  

Presence time percentage (A) and number of entries (B) in open and closed arms of the maze are presented.  
Values are mean ± SEM; *p < 0.05; ***p < 0.001; ****p < 0.0001. 

 

Table 9 – Values from anxiety behaviour assessment of PbP and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; *p < 0.05; ***p < 0.001; §p < 0.0001. 

Group Age 
Presence Time (%) Number of entries 

Open Arms  Closed arms Open Arms  Closed arms 

CTL 12 
weeks 

29 ± 3.2 44 ± 1.8 7 ± 1.3 12 ± 1.0 

Pb 12 ± 2.3*** 60 ± 2.7*** 6 ± 1.2 33 ± 2.4§ 

CTL 20 
weeks 

21 ± 2.5 58 ± 5.4 5 ± 0.9 10 ± 1.1 

PbP 1 ± 0.4§ 91 ± 1.4§ 1 ± 0.4*** 13 ± 1.3 

CTL 28 
weeks 

27 ± 4.3 51 ± 6.8 6 ± 0.6 18 ± 3.5 

PbP 5 ± 1.4§ 77 ± 2.0*** 5 ± 0.7 12 ± 1.2* 
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Figure 13 – Locomotor and exploratory behaviour assessment by OFT of PbP and CTL protocols at 12, 20 and 28 weeks  
Presence time percentage in the centre (A), total number of entries (B), average velocity (C) and total travelled distance 

(D) are represented. Values are mean ± SEM; *p < 0.05; ***p < 0.001; ****p < 0.0001. 
 

Table 10 – Values of locomotor and exploratory activity assessment by OFT of PbP and CTL protocols at 12, 20 and 28 weeks  
Values are mean ± SEM. n=10/group; *p < 0.05; ***p < 0.001; §p < 0.0001. 

 

Group Age Time in the 
centre (%)  

Total number 
of entries 

Average 
velocity (cm/s)  

Total travelled 
distance (cm) 

CTL 12 
weeks 

6 ± 1.0 63 ± 6.6 9.3 ± 0.9 2302 ± 171 

Pb 2 ± 0.6* 52 ± 7.5 17.9 ± 1.2§ 2350 ± 330 

CTL 20 
weeks 

3 ± 0.9 51 ± 4.3 11.0 ± 1.2 1993 ± 192 

PbP 1 ± 0.3* 45 ± 4.8 24.4 ± 1.2§ 4204 ± 331§ 

CTL 28 
weeks 

1 ± 0.4 39 ± 4.6 19.4 ± 3.2 2998 ± 105 

PbP 2 ± 0.2 68 ± 4.5*** 13.5 ± 1.4 2380 ± 232 



Long-term exposure protocol (PbP) characterization | Results 

Liana Shvachiy   |   39 
 

Effect on memory 

Spatial working memory 

The spatial working memory seems not to be primary affected by the persistent lead exposure 

since foetal period and through lifetime, which was inferred from the lack of alterations in the 

spontaneous alternation behaviour in the animals that were exposed to lead. Also, no changes were 

observed in the exploration behaviour while performing the Y-Maze test, which could be a confounding 

factor for data interpretation.  

The time evolution of the spontaneous alterations percentage and the total number of entries 

parameters of the 3 periods of evaluation are presented in Figure 14 and values in Table 11. 

 
Figure 14 – Spatial working memory evaluation by Y-Maze test of PbP and CTL protocols at 12, 20 and 28 weeks  

Spontaneous alternations percentage (A) and the total number of entries in the arms (B) are presented.  
Values are mean ± SEM. 

 

Table 11 – Values from spatial working memory evaluation by Y-Maze test of PbP and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group. 

Group Age Spontaneous alternations (%)  Total number of entries 

CTL 12 
weeks 

67 ± 2.5 26 ± 1.6 

Pb 66 ± 3.7 23 ± 1.6 

CTL 20 
weeks 

64 ± 3.8 22 ± 2.4 

PbP 63 ± 2.6 20 ± 1.3 

CTL 28 
weeks 

66 ± 2.1 26 ± 1.3 

PbP 60 ± 2.7 24 ± 1.9 
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Episodic long-term memory 

As it is seen in the Figure 15 and Figure 16 and in the Table 12, PbP group shows no novel object 

recognition (data of exploration time percentage), as the animals explore the two objects (sample and 

Novel) similarly in the testing day, in the contrary to the CTL group, even though, showing no significant 

differences between the novelty recognition indexes at 20 and 28 weeks of age, a more refined and 

sensitive to variability parameter.  

Therefore, exposure to lead in the early stages causes a long-term memory impairment through 

life, even though, some recovery seems to be happening over time, which could be indicative of 

remodelling and adjustment processes to the lead presence within the regions responsible for long-

term memory-evoking.  

 

 
Figure 15 – Episodic long-term memory evaluation by NOR test of PbP and CTL protocols at 12, 20 and 28 weeks 

Training and testing exploration time percentage data from 12 weeks of age (A), 20 weeks of age (B) and 28 weeks of 
age (C) are presented. Values are mean ± SEM; *p < 0.05 (paired). 
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Figure 16 – Novelty recognition index data of PbP and CTL protocols at 12, 20 and 28 weeks  

Values are mean ± SEM; ***p < 0.001 (unpaired). 
 

 

Table 12 – Values of episodic long-term memory evaluation by NOR test of PbP and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; $p < 0.05, (paired); ***p < 0.001 (unpaired). 

Group Age 
Exploratory time % Novelty 

Recognition 
Index 

Training Testing 
S S’ S N 

CTL 12 
weeks 

53 ± 2.8 47 ± 2.8 45 ± 1.7 55 ± 1.7$ 0.26 ± 0.06 

Pb 48 ± 2.5 52 ± 2.5 51 ± 1.9 49 ± 1.9 -0.04 ± 0.04*** 

CTL 20 
weeks 

58 ± 4.8 42 ± 4.8 43 ± 2.9 57 ±2.9$ 0.19 ± 0.06 

PbP 51 ± 2.5 49 ± 2.5 48 ± 3.6 52 ± 3.6 0.04 ± 0.07 

CTL 28 
weeks 

47 ± 3.7 53 ± 3.7 42 ± 2.3 58 ± 2.3$ 0.16 ± 0.05 

PbP 51 ± 1.8 49 ± 1.8 45 ± 2.9 55 ± 2.9 0.10 ± 0.06 
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Effect on morphofunctional processes in dentate gyrus subregion of the hippocampus 

Neurons 

Data from NeuN staining (see Figure 17 and Table 13) showed that long-term exposure to lead 

seem to provoke some tendency to augmentation of the neurodegenerative processes in dentate gyrus 

hippocampal region.  

 

Figure 17 – Detection and quantification of NeuN in DG hippocampal area of PbP and CTL protocols at 12, 20 and 28 weeks 
Confocal images (A) and quantitative analysis data (B) are represented.  

Scale bar is 50µm for staining images. Values are mean ± SEM. 
 

 

Synapses 

Data from Syn staining (see Figure 18 and Table 13) showed that a continuous Pb exposure from 

the early stages of life leads to increased synaptic processes in the hippocampus at 20 weeks of age, 

that seem to undergo a slow recovery through time, even though, not complete at 28 weeks of age. 

This synaptic overexcitation could be a cause of some general behavioural changes that were observed 

in the animals permanently exposed to lead.  
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Figure 18 – Detection and quantification of Syn in DG hippocampal area of PbP and CTL protocols at 12, 20 and 28 weeks 
Confocal images (A) and quantitative analysis data (B) are represented.  

Scale bar is 20µm for staining images. Values are mean ± SEM; *p < 0.05. 
 

 

Astrogliosis 

Data from GFAP staining (see Figure 19 and Table 13) showed that long-term exposure to lead 

drastically affects the astrocytic cells, changes that persist through the whole time of exposure to lead, 

both in morphological and functional levels. Reactive astrogliosis (characterized by astrocytes marked 

with GFAP staining that are denser and upregulated for the marker, showing hypertrophic branches), 

which is reminiscent of chronic neuroinflammatory mechanisms and alterations in the tripartite 

synaptic processes for neuronal communication presence in the hippocampus area.   
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Figure 19 – Detection and quantification of GFAP in DG hippocampal area of PbP and CTL protocols at 12, 20 and 28 weeks 
Confocal images (A) and quantitative analysis data (B) are represented. Scale bar is 50µm for staining images. Values are 

mean ± SEM; **p < 0.01; ***p < 0.001. 
 

Microgliosis 

No visible alterations at the morphological level of the microglial cells were observed in animals 

that were permanently exposed to lead.  In fact, data from Iba-1 staining (see Figure 20 and Table 13) 

showed that microglia is ramified, with small cell bodies and numerous long branching processes. 

However, an increased number of these cells at both 20 and 28 weeks was observed, which is evocative 

of microglial activation promoting long-lasting pro-neuroinflammatory processes that contribute to 

central nervous system protection from the adverse effects of lead exposure.  
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Figure 20 – Detection and quantification of Iba-1 in DG hippocampal area of PbP and CTL protocols at 12, 20 and 28 weeks 
Confocal images (A) and quantitative analysis data (B) are represented. Scale bar is 50µm for staining images. Values are 

mean ± SEM; *p < 0.05; **p < 0.01. 
 

Table 13 – Values of NeuN, Syn, GFAP and Iba-1 stainings quantification in DG hippocampal area of PbP and CTL groups at 12, 
20 and 28 weeks 

Values are presented as mean ± SEM. n=3/group; *p < 0.05; **p < 0.01; ***p < 0.001. 

Group Age 
Number of 

NeuN positive 
cells 

Syn staining 
fluorescence 

intensity 

Number of 
GFAP positive 

cells 

Number of  
Iba-1 positive 

cells 

CTL 20 
weeks 

634 ± 50 42 ± 5.8 129 ± 3.5 29 ± 0.5 

PbP 613 ± 8.1 66 ± 5.3* 196 ± 4.6** 45 ± 3.8* 

CTL 28 
weeks 

702 ± 122.8 41 ± 4.2 134 ± 3.2 16 ± 2.1 

PbP 557 ± 58.7 58 ± 9.1 195 ± 6.3*** 39 ± 3.8** 
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4.2  SHORT - TERM LEAD EXPOSURE PROTOCOL (PBS) 

The animal model of short-term lead exposure evaluates the behavioural, overall functional and 

hippocampal morphofunctional alterations due to a short, single exposure of animals to lead since the 

foetal period until 12 weeks after birth, without being exposed during adulthood. Animals were divided 

into three groups in accordance to the time of evaluation: 12, 20 and 28 weeks. 

Effect on metabolic parameters and BLL 

Animals exposed to lead until 12 weeks of age and without any adult exposure do not present 

fluctuations in weight at different time-points of evaluations (at 12, 20 and 28 weeks of age) (Table 14). 

Regarding other metabolic parameters, it was found that just after lead exposure, at 12 weeks 

of age, a little food and water intake increase were observed in these animals, even though, without 

changes in the urine and faeces production. Interestingly, at 20 weeks of age, a small decrease in faeces 

production was reported, without food intake alterations, and at 28 weeks, an increase in urine 

excretion. All the metabolic parameters evaluated in CTL groups, at three different time-points, did not 

change significantly (Table 14). 

Regarding BLL, at 20 weeks, after an 8-week period lead abstinence, a low concentration of lead 

in the blood was observed in these animals. These levels are even lower after another 8 weeks without 

lead exposure, at 28 weeks of age. This can be explained by the increase in urine production, as it is 

one of the main routes of lead excretion (Table 14).  

 
Table 14 – Values of metabolic parameters and BLL of PbS and CTL groups at 12, 20 and 28 weeks of age. 

Values are presented as mean ± SEM. n=10/group; *p < 0.05; ***p < 0.001. 

Group Age BBL  
(ug/dL) 

Weight 
(g) 

Food 
intake (g) 

Water 
intake (ml) 

Urine 
(ml) 

Faeces 
(g) 

CTL 12 
weeks 

na 358 ± 34 25 ± 1 24 ± 3 19 ± 1 12 ± 1 

Pb na 345 ± 39 22 ± 1* 32 ± 3* 15 ± 1 9 ± 1 

CTL 20 
weeks 

< 0.1 386 ± 41 23 ± 3 39 ± 3 17 ± 2 12 ± 1 

PbS 6 ± 0.7 390 ± 35 25 ± 1 34 ± 1 14 ± 1 8 ± 1*  

CTL 28 
weeks 

< 0.1 368 ± 36 24 ± 2 24 ± 2 11 ± 1 8 ± 1 

PbS 4 ± 0.4 445 ± 54 23 ± 2  31 ± 2 17 ± 1*** 9 ± 1 
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Effect on blood pressure, heart rate and respiratory frequency  

Short-term lead exposure since foetal period until 12 weeks of age significantly increases mean 

blood pressure values, due to the strong increase of both systolic and diastolic blood pressure values. 

A period of 8 weeks of lead abstinence was not sufficient for a decrease of blood pressure values, 

however, a longer period of 16 weeks without exposure to lead accounted for a small decrease of all 

blood pressure values, even though they maintained a hypertensive profile. 

Heart rate did not change with the presence of lead in the system and after its abstinence.  The 

tachypnoea is only observed at 12 weeks of age, when lead is still in high levels in the organism. After 

lead removal, a normal respiratory frequency was observed (Figure 21; Table 15).  

 

Figure 21 – Basal physiological parameters evaluation of PbS and CTL protocols at 12, 20 and 28 weeks  
Systolic (A), diastolic (B) and mean (C) blood pressures, heart rate (D) and respiratory frequency (E).  

Values are mean ± SEM; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
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Table 15 – Values of basal physiological parameters of PbS and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; **p < 0.01; ***p < 0.001; §p < 0.0001. 

 

Group Age 
Blood pressure (mmHg) Heart rate 

(bpm) 

Respiratory 
frequency 

(cpm) Systolic  Diastolic Mean 

CTL 12 
weeks 

125 ± 7 91 ± 7 113 ± 4 432 ± 7 78 ± 2 

Pb 164 ± 6*** 129 ± 4 § 141 ± 4 § 395 ± 27 113 ± 6 § 

CTL 20 
weeks 

137 ± 4 104 ± 5 119 ± 4 433 ± 11 82 ± 3 

PbS 204 ± 6 § 149 ± 4 § 169 ± 4 § 421 ± 7 81 ± 4 

CTL 28 
weeks 

120± 11 90 ± 8 104 ± 9 434 ± 27 60 ± 3 

PbS 157 ± 6** 121 ± 6** 136 ± 5** 394 ± 11 64 ± 4 

 

 

Effect on baroreceptor and chemoreceptor reflexes 

Baroreceptor reflex seems to be primarily affected by the lead exposure and rapidly recovers 

after lead removal. Actually, baroreflex gain suffered a huge decrease until 12 weeks (when animals 

were exposed to lead), slowly increasing after lead exposure was cessed, reaching normal values. 

Though, a period of 8 weeks was not sufficient for the baroreflex gain recovery to normal levels. A 

longer period of time was necessary for this process to occur and, only at 28 weeks of age, animals 

presented normal baroreflex gain values. 

In the contrary, the carotid chemoreceptor reflex, being affected by the lead exposure, did not 

undergo the remodelling and recovery processes. The increase of chemoreflex sensitivity that was 

found in the lead exposed animals at 12 weeks persisted through life, even after 16 weeks of lead 

abstinence.  

A temporal evolution of both baroreceptor and chemoreceptor reflexes changes due to a single, 

short-term exposure are presented in Figure 22 and values in Table 16.  
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Figure 22 – Baroreceptor and chemoreceptor reflex evaluation of PbS and CTL protocols at 12, 20 and 28 weeks  
Baroreflex gain (A) and chemoreflex sensitivity (B).  

Values are mean ± SEM; *p < 0.05; **p < 0.01. 
 

Table 16 – Values of baroreflex gain and chemoreflex sensitivity of PbS and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; *p < 0.05; **p < 0.01. 

 

Group Age 
Baroreflex gain 
(bpm2/mmHg) 

Chemoreflex 
sensitivity (cpm) 

CTL 12 
weeks 

0.53 ± 0.10 15 ± 2.6 

Pb 0.27 ± 0.03* 22 ± 1.8* 

CTL 20 
weeks 

0.77 ± 0.11 20 ± 1.1 

PbS 0.49 ± 0.04* 31 ± 1.8** 

CTL 28 
weeks 

0.66 ± 0.07 14 ± 1.5 

PbS 0.52 ± 0.04 27 ± 2.9** 
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Effect on autonomic output measured indirectly 

In the animals that were exposed to lead until 12 weeks, the sympathetic autonomic function 

output (evaluated by the LF band) follows the same pattern of the baroreflex gain changes. The 

maximum increase of the LF band was observed shortly after lead exposure and it was slowly recovering 

through time without exposure to lead, reversing into values within normal range after a 16-week 

absence of lead (at 28 weeks). The HF band that accounts for the parasympathetic nervous system was 

not changed at the evaluated time-points. 

Due to the changes in the LF band, the LF/HF index (representative of the autonomic output) 

suffered an increase during lead exposure that was reversed after lead was removed from the diet, 

becoming normal after a long period of lead abstinence (i.e., ˃ 16 weeks). 

The time evolution of the LF, HF and LF/HF parameters of the 3 periods of evaluation are 

presented in Figure 23 and the values in Table 17. 

 

Figure 23 – Autonomic function evaluation of PbS and CTL protocols at 12, 20 and 28 weeks  
Low frequency band– LF (A), high frequency band - HF (B) and LF/HF index (C) are presented.  

Values are mean ± SEM; *p < 0.05, **p < 0.01. 
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Table 17 – Values of autonomic output measure indirectly of PbS and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; *p < 0.05; **p < 0.01. 

Group Age LFsBP 

(mmHg2) 
HFHR 

(bpm2) 
LFsBP/ HFHR 

(mmHg2/bpm2) 

CTL 12 
weeks 

1.02 ± 0.16 0.85 ± 0.37 2.49 ± 0.82 

Pb 2.34 ± 0.47* 0.56 ± 0.23 6.20 ± 1.29* 

CTL 20 
weeks 

0.86 ± 0.09 0.72 ± 0.08  0.93 ± 0.19 

PbS 1.81 ± 0.29** 0.62 ± 0.07 2.76 ± 0.57** 

CTL 28 
weeks 

1.05 ± 0.23 0.97 ± 0.25 0.88 ± 0.25 

PbS 1.15 ± 0.18 1.16 ± 0.17 0.94 ± 0.22  

 

Effect on behavioural parameters 

Anxiety, locomotion and exploratory activity 

Anxiety levels were increased due to the sort-term lead exposure for 12 weeks and through life 

course, even after lead was absent for a long period of time (16 weeks). Thus, the initial time of 

exposure was of significant relevance for this behavioural alteration. This behaviour was inferred by the 

reduction of the presence time in the open arms of the EPM apparatus thus, increasing the presence 

time in the closed arms of the maze. Though, the number of entries in the open arms were not 

significantly different of those of the controls, the number of entries in the closed arms were increased 

at 12 weeks of age which shows that animals were moving in the maze, without choosing the open 

arms. In the contrary, at 28 weeks, animals preferred to stay in the closed arms, without challenging 

themselves to move to the open arms (see Figure 24; and Table 18 for values). 

Lead exposure induced some significant changes in the exploratory behaviour of the animals that 

was evaluated by OFT, leading to poor exploration and increasing the anxiety levels of the subjects just 

after the terminus of exposure (data at 12 weeks). These alterations were recovered through life when 

lead was removed from the drinking diet (animals do not show changes in the presence time 

percentage in the central zone of the arena). Also, the exposure to lead in the early stages of life is a 

cause of a hyperactive behaviour in the animals that was also recovered in the life course, after lead 

removal (increased values of the average velocity parameter in the Pb-exposed animals at 12 weeks of 

age). Though, lead does not cause alterations in the locomotor activity (total travelled distance is similar 

to controls) (see Figure 25 and Table 19 from values from OFT evaluation).  
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Figure 24 – Anxiety behaviour assessment by EPM of PbS and CTL protocols at 12, 20 and 28 weeks  

Presence time percentage (A) and number of entries (B) in open and closed arms of the maze are presented.  
Values are mean ± SEM; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 

 

Table 18 – Values from anxiety behaviour assessment of PbS and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; *p < 0.05; **p < 0.01; ***p < 0.001; §p < 0.0001. 

 

Group Age 
Presence Time (%) Number of entries 

Open Arms  Closed arms Open Arms  Closed arms 

CTL 12 
weeks 

29 ± 3.2 44 ± 1.8 7 ± 1.3 12 ± 1.0 

Pb 12 ± 2.3*** 60 ± 2.7*** 6 ± 1.2 33 ± 2.4§ 

CTL 20 
weeks 

21 ± 2.5 58 ± 5.3 5 ± 0.9 10 ± 1.0 

PbS 7 ± 2.2** 73 ± 3.2* 7 ± 0.7 12 ± 1.2 

CTL 28 
weeks 

27 ± 4.3 51 ± 6.8 6 ± 0.6 18 ± 3.5 

PbS 15 ± 2.7* 65 ± 3.8 5 ± 0.9 8 ± 0.9** 
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Figure 25 – Locomotor and exploratory behaviour assessment by OFT of PbS and CTL protocols at 12, 20 and 28 weeks  
Presence time percentage in the centre (A), Total number of entries (B), average velocity (C) and total travelled distance 

(D) are represented. Values are mean ± SEM; *p < 0.05; ****p < 0.0001. 
 

Table 19 – Values from locomotor and exploratory activity assessment by OFT of PbS and CTL protocols at 12, 20 and 28 weeks  
Values are mean ± SEM. n=10/group; *p < 0.05; §p < 0.0001. 

Group Age Time in the 
centre (%)  

Total number 
of entries 

Average 
velocity (cm/s)  

Total travelled 
distance (cm) 

CTL 12 
weeks 

6 ± 1.0 63 ± 6.6 9 ± 0.9 2302 ± 171 

Pb 2 ± 0.6* 52 ± 7.5 18 ± 1.2§ 2350 ± 330 

CTL 20 
weeks 

3 ± 0.9 51 ± 4.3 11 ± 1.2 1993 ± 192 

PbS 2 ± 0.4 42 ± 6.4 13 ± 2.8 2013 ± 214 

CTL 28 
weeks 

1 ± 0.4 39 ± 4.6 19 ± 3.2 2998 ± 105 

PbS 1 ± 0.2 28 ± 6.7 17 ± 2.5 2976 ± 507 
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Effect on memory 

Spatial working memory 

A lack of alterations in the spontaneous alternation behaviour in the animals that were exposed 

to lead until 12 weeks of age is indicative of no alterations in the spatial working memory in these 

animals. Interestingly, at 28 weeks of age, PbS group present a reduction of the total number of entries, 

and no changes in the spontaneous alternations behaviour, which favours the hypotheses that lead 

does not primarily affect the spatial working memory. Even though, its removal is favourable for a 

memory improvement (see Figure 26, and Table 20 for values of the 3 time-points of evaluation). 

 
Figure 26 – Spatial working memory evaluation by Y-Maze test of PbS and CTL protocols at 12, 20 and 28 weeks  

Spontaneous alternations percentage (A) and the total number of entries in the arms (B) are presented.  
Values are mean ± SEM; *p < 0.05. 

 

Table 20 – Values from spatial working memory evaluation by Y-Maze test of PbS and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; *p < 0.05. 

Group Age Spontaneous alternations (%)  Total number of entries 

CTL 12 
weeks 

67 ± 2.5 26 ± 1.6 

Pb 66 ± 3.7 23 ± 1.6 

CTL 20 
weeks 

64 ± 3.8 22 ± 2.4 

PbS 55 ± 3.6 21 ± 1.3 

CTL 28 
weeks 

66 ± 2.1 26 ± 1.3 

PbS 70 ± 2.8 20 ± 1.6* 
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Episodic long-term memory 

The episodic long-term memory is strongly affected by the lead exposition at the early stages 

(at 12 weeks). No recovery of these alterations has been observed after a period of 8 weeks without 

lead exposure, with lead continuing its nefarious effects in memory. However, a longer period of time 

without exposure seem to culminate in some recovery of this alterations to normality, as seen by the 

novelty recognition data, even though animals do not recognise the novel object at the testing day 

when exploration time percentage is calculated, contrary to controls that explore the novelty object for 

more time.  

Data of the exploration time percentage at 12, 20 and 28 weeks is shown in Figure 27, of the 

novel recognition index in Figure 28 and values of both parameters at the 3 time-points of evaluation 

are represented in Table 21. 

 
Figure 27 – Episodic long-term memory evaluation by NOR test of PbS and CTL protocols at 12, 20 and 28 weeks 

Training and testing exploration time percentage data from 12 weeks of age (A), 20 weeks of age (B) and 28 weeks of 
age (C) are presented. Values are mean ± SEM; *p < 0.05 (paired).  
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Figure 28 – Novelty recognition index data of PbS and CTL protocols at 12, 20 and 28 weeks  

Values are mean ± SEM; ***p < 0.001 (unpaired). 
 

 

Table 21 – Values of episodic long-term memory evaluation by NOR test of PbS and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; $p < 0.05 (paired); ***p < 0.01 (unpaired).  

Group Age 
Exploratory time % Novelty 

Recognition 
Index 

Training Testing 
S S’ S N 

CTL 12 
weeks 

53 ± 2.8 47 ± 2.8 45 ± 1.7 55 ± 1.7$ 0.26 ± 0.06 

Pb 48 ± 2.5 52 ± 2.5 51 ± 1.9 49 ± 1.9 -0.04 ± 0.04*** 

CTL 20 
weeks 

58 ± 4.8 42 ± 4.8 43 ± 2.9 57 ±2.9$ 0.19 ± 0.06 

PbS 44 ± 5.3 56 ± 5.3 52 ± 2.5 48 ± 2.5 -0.10 ± 0.03*** 

CTL 28 
weeks 

47 ± 3.7 53 ± 3.7 42 ± 2.3 58 ± 2.3$ 0.16 ± 0.05 

PbS 46 ± 7.9 54 ± 7.9 48 ± 6.6 52 ± 6.6 0.03 ± 0.13 
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Effect on morphofunctional processes in dentate gyrus subregion of the hippocampus 

Neurons 

Data from NeuN staining (see Figure 29 and Table 22 for values) showed that short-term 

exposure to lead seem not be affecting neurodegenerative processes in dentate gyrus hippocampal 

region, even after long periods of lead abstinence (namely, after 8 e 16 weeks). 

 

Figure 29 – Detection and quantification of NeuN in DG hippocampal area of PbS and CTL protocols at 12, 20 and 28 weeks 
Confocal images (A) and quantitative analysis data (B) are represented.  

Scale bar is 50µm for staining images. Values are mean ± SEM.  
 

 

Synapses 

Data from Syn staining (see Figure 30 and Table 22 for values) showed that, at 20 weeks of age, 

animals that underwent an exposure to lead until 12 weeks and were withdrawn from that drinking 

solution for 8 weeks have a reduction in the synaptic transmission. Though, a longer period of lead 

abstinence (for 16 weeks) permitted the recovery of synaptic transmission similar to controls (at 28 

weeks of age). 
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Figure 30 – Detection and quantification of Syn in DG hippocampal area of PbS and CTL protocols at 12, 20 and 28 weeks 
Confocal images (A) and quantitative analysis data (B) are represented.  

Scale bar is 20µm for staining images. Values are mean ± SEM; *p < 0.05.  
 

Astrogliosis 

Data from GFAP staining (see Figure 31 and Table 22 for values) showed that an exposure to 

lead in the early stages of life drastically affects the astrocytic cells, at morphological and functional 

levels, changes that persist through life, even after a prolonged period of lead abstinence. 

In PbS group, the astrocytic cells are in the activated state within the hippocampus (astrocytes 

marked with GFAP staining are dense and upregulated, with hypertrophic branches), that is reminiscent 

of chronic neuroinflammatory mechanisms and alterations in the tripartite synaptic processes for 

neuronal communication, even though lead was removed from the drinking water of the animals for 8 

or 16 weeks.   
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Figure 31 – Detection and quantification of GFAP in DG hippocampal area of PbS and CTL protocols at 12, 20 and 28 weeks 
Confocal images (A) and quantitative analysis data (B) are represented. Scale bar is 50µm for staining images.  

Values are mean ± SEM; ***p < 0.001. 
 

 

Microgliosis 

Data from Iba-1 staining (see Figure 32 and Table 22 for values) showed no visible alterations 

at the morphological level of the microglial cells, with microglia being in ramified state, small cell bodies 

and numerous long branching processes.  

However, even after a long period of time without lead exposure, an increased number of these 

cells were observed at both 20 and 28 weeks, which is evocative of the microglial activation, which 

becomes reactive, leading to long-lasting pro-neuroinflammatory mechanisms activation that acts to 

protect the central nervous system. 
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Figure 32 – Detection and quantification of Iba-1 in DG hippocampal area of PbS and CTL protocols at 12, 20 and 28 weeks 
Confocal images (A) and quantitative analysis data (B) are represented. Scale bar is 50µm for staining images.  

Values are mean ± SEM; *p < 0.05; **p < 0.01. 
 

Table 22 – Values of NeuN, Syn, GFAP and Iba-1 stainings quantification in DG hippocampal area of PbS and CTL groups at 12, 
20 and 28 weeks 

Values are presented as mean ± SEM. n=3/group; *p < 0.05; **p < 0.01; ***p < 0.001. 

 

Group Age Number of Neu 
N positive cells 

Syn staining 
fluorescence 

intensity 

Number of 
GFAP positive 

cells 

Number of  
Iba-1 positive 

cells 

CTL 20 
weeks 

634 ± 49.7 42 ± 5.8 129 ± 3.5 29 ± 0.5 

PbS 486 ± 87.8 23 ± 2.1* 184 ± 1.2*** 33 ± 0.9* 

CTL 28 
weeks 

702 ± 122.8 41 ± 4.2 134 ± 3.2 16 ± 2.1 

PbS 627 ± 80.3 51 ± 0.9 194 ± 3.3*** 28 ± 1.2** 
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4.3 INTERMITTENT LEAD EXPOSURE PROTOCOL (PBI) 

The intermittent lead exposure protocol evaluates the behavioural, overall functional and 

hippocampal morphofunctional alterations from a double exposure to lead, first exposure since the 

foetal period until 12 weeks after birth, and a second from 20 to 28 weeks of age, with a lead-free 

period in between (from 12 to 20 weeks). Animals were divided into three groups in accordance to the 

time of evaluation: 12, 20 and 28 weeks. 

Effect on metabolic parameters and BLL 

The weight of the animals, evaluated at three different time-points, did not change significantly 

in animals under intermittent lead exposure protocol. At 12 weeks of age, a little food and water intake 

increase were observed in these animals, even though, without changes in the urine and faeces 

production. At 20 weeks, only a small decrease in the faeces excretion was observed, that could also 

be one of the signs of some stress related to the metabolic cages. All the metabolic parameters 

evaluated in CTL groups, at three different time-points, and in PbI group evaluated at 28 weeks did not 

change significantly (Table 23). 

The levels of lead in the blood are decreased after an 8-week period of lead abstinence and 

strongly increase after a second exposure for 8 weeks (Table 23). 

 
Table 23 - Metabolic parameters of PbI and CTL groups at 12, 20 and 28 weeks of age. 

Values are presented as mean ± SEM. n=10/group; *p < 0.05. 

Group Age BBL  
(ug/dL) 

Weight 
(g) 

Food 
intake (g) 

Water 
intake (ml) 

Urine 
(ml) 

Faeces 
(g) 

CTL 12 
weeks 

na 358 ± 34 25 ± 1 24 ± 3 19 ± 1 12 ± 1 

Pb na 345 ± 39 22 ± 1* 32 ± 3* 15 ± 1 9 ± 1 

CTL 20 
weeks 

< 0.1 386 ± 41 23 ± 3 39 ± 3 17 ± 2 12 ± 1 

PbI 6 ± 0.7 390 ± 35 25 ± 1 34 ± 1 14 ± 1 8 ± 1*  

CTL 28 
weeks 

< 0.1 368 ± 36 24 ± 2 24 ± 2 11 ± 1 8 ± 1 

PbI 21 ± 2.7 428 ± 50 24± 2 25 ± 2 11 ± 0.4 9 ± 2 
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Effect on blood pressure, heart rate and respiratory frequency  

Blood pressure is highly increased after the first exposure to lead from foetal period until 12 

weeks, without recovering to normotensive values at 20 weeks, after an 8-week period of lead 

abstinence. Nevertheless, the effect of a second exposure to lead in the adulthood (from 20 to 28 weeks 

of age) is not as nefarious as the first exposure, mainly seen in the diastolic blood pressure that is 

reduced at 28 weeks, however not reaching the normotensive values (Figure 33; Table 24). 

Heart rate did not change at the lead exposure and at lead abstinence periods. Respiratory 

frequency is only increased when high lead levels are present in the blood (at 12 weeks, after the first 

lead exposure and at 28 weeks, after the second exposure), fully recovering after lead removal. Also, 

the adult exposure to lead (second period of exposure) did not provoke a very strong increase in this 

parameter as seen in the first exposure (Figure 33; see Table 24 for values).   

 

Figure 33 – Basal physiological parameters evaluation of PbI and CTL protocols at 12, 20 and 28 weeks  
Systolic (A), diastolic (B) and mean (C) blood pressures, heart rate (D) and respiratory frequency (E).  

Values are mean ± SEM;*p < 0.05; ***p < 0.001; ****p < 0.0001. 
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Table 24 – Values of basal physiological parameters of PbI and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; *p < 0.05; ***p < 0.001; §p < 0.0001. 

 

Group Age 
Blood pressure (mmHg) Heart rate 

(bpm) 

Respiratory 
frequency 

(cpm) Systolic  Diastolic Mean 

CTL 12 
weeks 

125 ± 7 91 ± 7 113 ± 4 432 ± 7 78 ± 2 

Pb 164 ± 6*** 129 ± 4§ 141 ± 4§ 395 ± 27 113 ± 6§ 

CTL 20 
weeks 

137 ± 4 104 ± 5 119 ± 4 433± 11 82 ± 3 

PbI 204 ± 6§ 149 ± 4§ 169 ± 4§ 421 ± 7 81 ± 4 

CTL 28 
weeks 

120 ± 11 90 ± 8 104 ± 9 433 ± 27 60 ± 4 

PbI 141 ± 2§ 108 ± 2* 124 ± 4* 404 ± 10 72 ± 2* 

 

Effect on baroreceptor and chemoreceptor reflexes 

Baroreceptor reflex is strongly affected by the lead presence in the system, suffering an 

impairment after the first lead exposure. The period of lead abstinence of 8 weeks was not sufficient 

for baroreflex gain to recover to its normal values and a second exposure to lead even potentiated 

more the impairment that was observed after the first exposure.  

The chemoreflex sensitivity is strongly increased after the first exposure at the developmental 

period, without suffering a remodelling and recovery processes after lead was removed. A second, adult 

exposure to lead, potentiated the increase in this parameter even more that the first exposure (Figure 

34, see Table 25 for values).  
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Figure 34 – Baroreceptor and chemoreceptor reflex evaluation of PbI and CTL protocols at 12, 20 and 28 weeks  
Baroreflex gain (A) and chemoreflex sensitivity (B). Values are mean ± SEM; *p < 0.05; **p < 0.01. 

 

Table 25 – Values of baroreflex gain and chemoreflex sensitivity of PbI and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; *p < 0.05; **p < 0.01. 

 

Group Age Baroreflex gain 
(bpm2/mmHg) 

Chemoreflex 
sensitivity (cpm) 

CTL 12 
weeks 

0.53 ± 0.10 15 ± 2.6 

Pb 0.27 ± 0.03* 22 ± 1.8* 

CTL 20 
weeks 

0.76 ± 0.11 20 ± 1.1 

PbI 0.49 ± 0.04* 31 ± 1.8** 

CTL 28 
weeks 

0.66 ± 0.07 14 ± 1.5 

PbI 0.38 ± 0.03** 32 ± 4.4** 
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Effect on autonomic output measured indirectly 

Autonomic function is impaired since the early exposure to lead. A sympathetic overexcitation 

(increase in the LF band) was reported after the first, developmental exposure to lead. This increase in 

the LF band persisted even after a period of 8 weeks without lead exposure. Although, an exposure in 

the adulthood (from 20 to 28 weeks of age) did not increase the LF band, being at its normal range 

values. The HF band, representative of the parasympathetic nervous system, did not suffer significant 

alterations through the whole exposure protocol. 

By reason of the changes in the LF band, the LF/HF index (representative of the autonomic 

output) suffered an increase after first exposure and after the period of lead abstinence for 8 weeks, 

not suffering alterations after the second, adult exposure to lead. 

Time evolution of the LF, HF and LF/HF parameters and the values for the 3 periods of evaluation 

are presented in Figure 35 and Table 26. 

 

Figure 35 – Autonomic function evaluation of PbI and CTL protocols at 12, 20 and 28 weeks  
Low frequency band– LF (A), high frequency band - HF (B) and LF/HF index (C) are presented.  

Values are mean ± SEM; *p < 0.05, **p < 0.01. 
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Table 26 – Values of autonomic output measure indirectly of PbI and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; *p < 0.05; **p < 0.01. 

Group Age LFsBP 

(mmHg2) 
HFHR 

(bpm2) 
LFsBP/ HFHR 

(mmHg2/bpm2) 

CTL 12 
weeks 

1.02 ± 0.16 0.85 ± 0.37 2.49 ± 0.82 

Pb 2.34 ± 0.47* 0.56 ± 0.23 6.20 ± 1.29* 

CTL 20 
weeks 

0.86 ± 0.09 0.72 ± 0.08  0.93 ± 0.19 

PbI 1.81 ± 0.29** 0.62 ± 0.08 2.75 ± 0.57** 

CTL 28 
weeks 

1.05 ± 0.23 0.97 ± 0.25 0.88 ± 0.25  

PbI 1.40 ± 0.24 1.24 ± 0.34 0.47 ± 0.15 

 

 

Effect on behavioural parameters 

Anxiety, locomotion and exploratory activity 

Anxiety levels seem to be primarily increased after the first, early-life lead exposure, without 

recover to normal levels after the period of lead abstinence. A second, adult lead exposure seems not 

to affect as strongly this behaviour, even though, the stress levels were increased through the whole 

experimental protocol in these animals. This behaviour was inferred by the reduction of the presence 

time in the open arms of the EPM apparatus thus, consequently increasing the presence time in the 

closed arms of the maze. Though, the number of entries in the open arms were significantly different 

of those of the controls, the number of entries in the closed arms were increased at 12 weeks of age, 

which shows that animals were moving in the maze, without choosing the open arms. In the contrary, 

at 28 weeks, animals preferred to stay in the closed arms, without challenging themselves to move to 

the open arms (see Figure 36; and Table 27 for values). 

The developmental lead exposure (from foetal period until 12 weeks of age) seem to be the most 

nefarious for the exploratory behaviour alterations, leading to the anxiety and hyperactivity behaviours 

in the animals (decreased time in the centre and increased average velocity, respectively). However, 

both these alterations in the behaviour seem to be recovered when lead is removed from the diet and 

a second, adulthood exposure, not having a strong effect on these behaviours. The total number of 

entries and the total travelled distance of these animals did not change a lot through the whole 

experimental protocol (see Figure 37; and Table 28 for values). 
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Figure 36 – Anxiety behaviour assessment by EPM of PbI and CTL protocols at 12, 20 and 28 weeks  

Presence time percentage (A) and number of entries (B) in open and closed arms of the maze are presented.  
Values are mean ± SEM; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 

 

Table 27 – Values from anxiety behaviour assessment of PbI and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; *p < 0.05; **p < 0.01***p < 0.001; §p < 0.0001. 

Group Age 
Presence Time (%) Number of entries 

Open Arms  Closed arms Open Arms  Closed arms 

CTL 12 
weeks 

29 ± 3.2 44 ± 1.8 7 ± 1.3 12 ± 1.0 

Pb 12 ± 2.3*** 60 ± 2.7*** 6 ± 1.2 33 ± 2.4§ 

CTL 20 
weeks 

21 ± 2.5 58 ± 5.3 5 ± 0.9 10 ± 1.1 

PbI 7 ± 2.2** 73 ± 3.2* 7 ± 0.7 12 ± 1.2 

CTL 28 
weeks 

27 ± 4.2 51 ± 6.8 6 ± 0.6 18 ± 3.5 

PbI 14 ± 2.8* 66 ± 6.4 3 ± 0.6** 9 ± 0.9** 
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Figure 37 – Locomotor and exploratory behaviour assessment by OFT of PbI and CTL protocols at 12, 20 and 28 weeks  

Presence time percentage in the centre (A), Total number of entries (B), average velocity (C) and total travelled 
distance, (D) are represented. Values are mean ± SEM; *p < 0.05; ****p < 0.0001. 

 

Table 28 – Values from locomotor and exploratory activity assessment by OFT of PbI and CTL protocols at 12, 20 and 28 weeks  
Values are mean ± SEM. n=10/group; *p < 0.05; §p < 0.0001. 

Group Age Time in the 
centre (%)  

Total number 
of entries 

Average 
velocity (cm/s)  

Total travelled 
distance (cm) 

CTL 12 
weeks 

6 ± 1.0 63 ± 6.6 9 ± 0.9 2302 ± 171 

Pb 2 ± 0.6* 52 ± 7.5 18 ± 1.2 § 2350 ± 330 

CTL 20 
weeks 

3 ± 0.9 51 ± 4.3 11 ± 1.2 1993 ± 192 

PbI 2 ± 0.4 42 ± 6.4 13 ± 2.7 2013 ± 214 

CTL 28 
weeks 

1 ± 0.3 39 ± 4.6 19 ± 3.2 2998 ± 105 

PbI 1± 0.4 29 ± 3.9 17 ± 1.8 3152 ± 380 
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Effect on memory 

Spatial working memory 

A lack of alterations in the spontaneous alternation behaviour in the animals that were exposed 

to lead until 12 weeks of age, which is indicative of no alterations in the spatial working memory in 

these animals. Interestingly, at 28 weeks of age, animals that suffered an intermittent (double) lead 

exposure present a reduction of the total number of entries, and no changes in the spontaneous 

alternations behaviour, which favours the hypotheses that lead does not primarily affect the spatial 

working memory (see Figure 38, and Table 29 for values at the 3 evaluated time-points). 

 
Figure 38 – Spatial working memory evaluation by Y-Maze test of PbI and CTL protocols at 12, 20 and 28 weeks  

Spontaneous alternations percentage (A) and the total number of entries in the arms (B) are presented.  
Values are mean ± SEM; *p < 0.05. 

 

Table 29 – Values from spatial working memory evaluation by Y-Maze test of PbI and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; *p < 0.05. 

  

Group Age Spontaneous alternations (%)  Total number of entries 

CTL 12 
weeks 

67± 2.5 26 ± 1.6 

Pb 66 ± 3.7 23 ± 1.6 

CTL 20 
weeks 

64 ± 3.8 22 ± 2.4 

PbI 55 ± 3.6 21 ± 1.3 

CTL 28 
weeks 

66 ± 2.1 26 ± 1.3 

PbI 67 ± 2.7 20 ± 2.2* 
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Episodic long-term memory 

The episodic long-term memory is strongly affected by the lead exposition at the early stages 

(exposure until 12 weeks). No recovery of these alterations has been observed after a period of 8 weeks 

without lead exposure, with lead continuing its nefarious effects in memory. However, an adult 

exposure to lead (from 20 to 28 weeks of age) seem not to affect the episodic long-term memory, as 

seen by the novelty recognition data, even though animals do not recognise the novel object at the 

testing day when exploration time percentage is calculated, contrary to controls that explore the 

novelty object for more time due to familiarization with the sample object.  

Data of the exploration time percentage at 12, 20 and 28 weeks is shown in Figure 39, of the 

novel recognition index in Figure 40 and values of both parameters at the 3 time-points of evaluation 

are represented in Table 30. 

 
Figure 39 – Episodic long-term memory evaluation by NOR test of PbI and CTL protocols at 12, 20 and 28 weeks 

Training and testing exploration time percentage data from 12 weeks of age (A), 20 weeks of age (B) and 28 weeks of 
age (C) are presented. Values are mean ± SEM; *p < 0.05 (paired).  
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Figure 40 – Novelty recognition index data of PbI and CTL protocols at 12, 20 and 28 weeks  

Values are mean ± SEM; ***p < 0.001 (unpaired). 
 

 

Table 30 – Values of episodic long-term memory evaluation by NOR test of PbI and CTL groups at 12, 20 and 28 weeks 
Values are presented as mean ± SEM. n=10/group; $p < 0.05 (paired); ***p < 0.01 (unpaired). 

Group Age 
Exploratory time % Novelty 

Recognition 
Index 

Training Testing 
S S’ S N 

CTL 12 
weeks 

53 ± 2.8 47 ± 2.8 45 ± 1.7 55 ± 1.7$ 0.26 ± 0.06 

Pb 48 ± 2.5 52 ± 2.5 51 ± 1.9 49 ± 1.9 -0.04 ± 0.04*** 

CTL 20 
weeks 

58 ± 4.8 42 ± 4.8 43 ± 2.9 57 ±2.9$ 0.19 ± 0.06 

PbI 44 ± 5.3 56 ± 5.3 52 ± 2.5 48 ± 2.5 -0.10 ± 0.03*** 

CTL 28 
weeks 

47 ± 3.7 53 ± 3.7 42 ± 2.3 58 ± 2.3$ 0.16 ± 0.05 

PbI 50 ± 4  50 ± 4 45 ± 10 55 ± 10 0.09 ± 0.19 
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Effect on morphofunctional processes in dentate gyrus subregion of the hippocampus 

Neurons 

Data from NeuN staining (see Figure 41 and Table 31 for values) showed that an intermittent 

exposure (early and adult) to lead seem not be affecting neurodegenerative processes in dentate gyrus 

hippocampal region, even after a period of 8 weeks without lead, and after the second exposure. 

 

Figure 41 – Detection and quantification of NeuN in DG hippocampal area of PbI and CTL protocols at 12, 20 and 28 weeks 
Confocal images (A) and quantitative analysis data (B) are represented.  
Scale bar is 50µm for staining images. Values are mean ± SEM, p > 0.05.  

 
 

Synapses 

Data from Syn staining (see Figure 42 and Table 31 for values) showed that, at 20 weeks of age, 

animals that underwent an exposure to lead until 12 weeks and were withdrawn from that drinking 

solution for 8 weeks have a reduction in the synaptic transmission. A second lead exposure for 8 weeks 

potentiates this change even more, with a synaptic loss being even stronger at 28 weeks of age. 
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Figure 42 – Detection and quantification of Syn in DG hippocampal area of PbI and CTL protocols at 12, 20 and 28 weeks 
Confocal images (A) and quantitative analysis data (B) are represented.  

Scale bar is 20µm for staining images. Values are mean ± SEM; *p < 0.05; **p < 0.01.  
 

Astrogliosis 

Data from GFAP staining (see Figure 31 and Table 22 for values) showed that the first, early-life 

lead exposure primarily affects the astrocytic cells, even if a period of lead abstinence was present. A 

second exposure to lead does not potentiate the changes already present in these animals. 

The astrocytic cells are in the activated state within the hippocampus (astrocytes marked with 

GFAP staining are denser, showing hypertrophic branches and an upregulation for GFAP staining), that 

is reminiscent of chronic neuroinflammatory mechanisms and alterations in the tripartite synaptic 

processes for neuronal communication, changes that persist after lead-free period and after a second 

exposure (from 20 to 28 weeks of age).  
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Figure 43 – Detection and quantification of GFAP in DG hippocampal area of PbI and CTL protocols at 12, 20 and 28 weeks 
Confocal images (A) and quantitative analysis data (B) are represented.  

Scale bar is 50µm for staining images. Values are mean ± SEM; ***p < 0.001.  
 

Microgliosis 

Data from Iba-1 staining (see Figure 44 and Table 31 for values) showed no visible alterations 

at the morphological level of the microglial cells, with microglia being in ramified state, small cell bodies 

and numerous long branching processes at 20 weeks of age. However, after the second exposure, 

microglial cells became reactive, with loss of branches and upregulation for Iba-1. 

Also, an increased number of these cells at both 20 and 28 weeks was observed, which is 

evocative of the microglia activation, becoming reactive, promoting long-lasting pro-

neuroinflammatory processes that contribute to central nervous system protection. The period of lead 

abstinence of 8 weeks was not sufficient for microglial number to recover to normality and the second 

period potentiated the increase of these cells (evaluation at 28 weeks), which is evocative of microglial 

activation.  
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Figure 44 – Detection and quantification of Iba-1 in DG hippocampal area of PbI and CTL protocols at 12, 20 and 28 weeks 
Confocal images (A) and quantitative analysis data (B) are represented.  

Scale bar is 50µm for staining images. Values are mean ± SEM; *p < 0.05. 
 

Table 31 – Values of NeuN, Syn, GFAP and Iba-1 stainings quantification in DG hippocampal area of PbI and CTL groups at 12, 
20 and 28 weeks 

Values are presented as mean ± SEM. n=3/group; *p < 0.05; **p < 0.01; ***p < 0.001. 

Group Age Number of Neu 
N positive cells 

Syn staining 
fluorescence 

intensity 

Number of 
GFAP positive 

cells 

Number of  
Iba-1 positive 

cells 

CTL 20 
weeks 

634 ± 49.7 42 ± 5.8 129 ± 3.5 29 ± 0.5 

PbI 486 ± 87.8 23 ± 2.1* 184 ± 1.2*** 33 ± 0.9* 

CTL 28 
weeks 

702 ± 122.8 41 ± 4.2 134 ± 3.2 16 ± 2.1 

PbI 540 ± 53 18 ± 1.1** 192 ± 3.1*** 42 ± 3.2** 
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4.4 COMPARISON BETWEEN LONG-TERM (PBP), SHORT-TERM (PBS) AND INTERMITTENT (PBI) 

LEAD EXPOSURE PROFILES AT 28 WEEKS OF AGE 

After the physiological, behavioural and immunohistochemistry characterization of all lead 

exposure groups in three different timepoints (12, 20 and 28 weeks of age) and its comparison with a 

matching control group, a comparison between all these three developed lead exposure profiles was 

performed. In summary, the long-term lead exposure (PbP) was exposed from foetal period to 28 weeks 

of age through animal life, the short-term lead exposure (PbS) was exposed to a single lead exposure 

from foetal period until 12 weeks of age with no adult exposure until 28 weeks and, finally the 

intermittent lead exposure (PbI) suffered a double exposure, from foetal period until 12 weeks of age 

and an adult exposure from 20 to 28 weeks of age.  

 

Basal physiological differences between lead exposed groups 

Long-term lead exposure causes the highest increase in blood pressure, while the intermittent 

lead exposure causes the mildest blood pressure increase, without significant differences between heart 

rate and respiratory frequency values 

Some significant differences were reported regarding blood pressure values (Figure 45) 

between PbS (n=10) PbI (n=10) and PbP (n=10) groups (A). Concerning systolic blood pressure (sBP), 

only a significant difference was reported between PbI and PbP groups (**p < 0.01). Regarding the 

diastolic blood pressure (dBP), significant differences were reported between PbS and PbP groups 

(***p < 0.001) and PbI and PbP groups (****P < 0.0001). Also, significant differences were reported 

concerning the mean blood pressure (mBP) between PbS and PbP groups (**P <0.01) and PbI and PbP 

groups (****p < 0.0001). No significant differences between groups were observed between groups 

regarding both, heart rate (B) and respiratory frequency (C) (p > 0.05). 
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Figure 45 - Physiological parameters in PbS, PbI and PbP groups 

Significant differences were reported in blood pressure values between groups (A), However, no significant changes were 
reported in heart rate (B) and respiratory frequency (C). Values are mean ± SEM; **p < 0.01; ***p < 0.001; ****p < 0.0001. 

 

Baroreceptor and chemoreceptor reflexes differences between lead exposed groups 

Significant impairment of baroreflex was caused by permanent and intermittent lead exposures 

without changes in the chemoreflex sensitivity 

The baroreflex gain (A) was significant different between the PbS group and PbI group (PbS vs 

PbI - *p < 0.05) and the PbS and PbP groups (PbS vs PbP - *P<0.05), without significant differences 

between PbI and PbP groups (p > 0.05) (n=10/group, **p < 0.01).  

As for the chemoreflex sensitivity (B), no significant differences were reported between the three 

groups (n=10/group, p > 0.05). Data shown in Figure 46. 
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Figure 46 – Baroreceptor gain and chemoreflex sensitivity evaluation in PbS, PbI and PbP groups at 28 weeks 

Significant differences were reported between groups in the baroreflex gain (A). No significant differences were observed in 
the chemoreflex sensitivity (B). Values are mean ± SEM; *p < 0.05. 

 

Autonomic output differences between lead exposed groups  

Permanent lead exposure causes the strongest sympathoexcitation without any changes in the 

parasympathetic tone  

A significant difference was observed in LF parameter (A) by the PbP group, when compared to 

the PbS animals (n=10/group; *p < 0.05). No significant differences were reported in the HF (B) and 

LF/HF (C) parameters (p > 0.05), data shown in Figure 47. 

 

Figure 47 - Autonomic function evaluation of PbS, PbI and PbP groups at 28 weeks 
Low frequency band– LF (A), high frequency band - HF (B) and LF/HF index (C) are presented. A significant difference was 

observed in LF band in the PbP group when compared to the PbS group. No other significant modifications between groups 
were observed in the LF and HF bands and LF/HF index; *p < 0.05. 
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Behavioural differences between lead exposed groups 

Permanent lead exposure leads to a strong anxiety levels without changing the locomotor and 

exploratory activity 

In EPM test (Figure 48) and concerning the percentage of presence time (A), only a significant 

difference between PbS and PbP groups was observed regarding the percentage of time in the open 

arms (n=10/group; *p < 0.05). No significant differences were depicted in the percentage of time spent 

in closed arms and, also in the number of entries (B), either in the open and closed arms, between the 

three groups (P < 0.05). 

 
 

Figure 48 – Anxiety behaviour assessment by EPM test in PbS, PbI and PbP groups at 28 weeks 
A significant decrease of percentage of time was reported between PbS and PbP group (A) without any differences in the 

percentage of time in closed arms and number of entries in both, open and closed arms (B).   
Values are mean ± SEM; *p < 0.05. 

  

 The open field test performance of PbS, PbI and PbP groups is presented in Figure 49. Regarding 

the total number of entries (B), the significant differences between PbP and PbS group (n=10/group; 

***p < 0.0001) and PbP and PbI group (****p < 0.0001). No significant differences were observed in 

the presence time in the centre parameter (A) between groups. Also, no significant differences were 

reported in the total travelled distance (C) and average velocity (D) between the three groups. (NS p > 

0.05). 
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Figure 49 – Locomotor and exploratory activity assessment by OFT of PbS, PbI and PbP groups at 28 weeks 

Significant differences were found between PbP group and PbS and PbI groups (A). No changes were observed in the total 
travelled distance (B) and average velocity (C) between groups. Values are mean ± SEM; ****p < 0.0001. 

 

Memory differences between lead exposed groups 

Lead exposure profiles caused no changes in the working and episodic long-term memory 

Spatial working learning and memory assessment performance is presented in Figure 50. 

Regarding the percentage of spontaneous alternation (A) and total number of entries (B) calculated 

from Y-Maze test, no significant differences between PbS, PbI and PbP groups were reported 

(n=10/group; NS p < 0.05).  
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Figure 50 - Performance in Y-Maze test by PbS, PbI and PbP groups at 28 weeks 

There are no statistical differences between the lead exposed groups in % of spontaneous alternations (A) and total number 
of entries (B). Values are mean ± SEM. 

 

Episodic long-term memory assessment by NOR test performance of PbS, PbI and PbP groups 

at 28 weeks are shown in Figure 51. No significant differences were found between groups in the 

novelty recognition index calculated from the exploration time percentage data in the testing day 

(n=10/group; NS p > 0.05) as all groups show a similar pattern of exploration of the objects. 

 
Figure 51 - NOR test performance results in different phases of the test of the PbS, PbI and PbP groups at 28 weeks of age 

No significant differences between the three groups were found in the novelty recognition index (C) calculated from data in 
the testing day. Values are mean ± SEM. 
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Neuronal, synaptic and glial differences between lead exposed groups 

Intermittent lead exposure causes loss of synapses, the most prominent reactive microgliosis 

without differentiating in the neuronal number and astrogliosis 

 Figure 52 depicts differences in the immunohistochemistry data between PbP, PbS and PbI 

exposure protocols. NeuN stained tissues (A) show no significant differences between the three lead 

exposed groups, PbS, PbI and PbP (n=3/group; NS p > 0.05)). A significant decrease in the Syn staining 

(B) fluorescence intensity quantification was shown by the PbI group when compared to PbS (**p < 

0.01) and PbP group (**p < 0.01). The comparison of quantification of GFAP (C) and Iba-1 (D) showed 

that no significant differences were reported between groups in the number of astrocytes (NS p > 0.05) 

and a significant increase by the PbI group was reported when compared to the PbS group (*p < 0.05). 

 

Figure 52 - Quantification of NeuN, Syn, GFAP and Iba-1 in DG hippocampal area of PbS, PbI and PbP groups at 28 weeks. 
No differences were reported in NeuN positive cells between PbI and CTL groups (A). Significant decrease between PbI group 
and PbS and PbP groups were observed in the Syn staining quantification (B). The number of GFAP positive cells (C) showed 

to be similar between the three groups, however, an increase in the PbI group, when compared to the PbS group was 
reported in the number of Iba-1 positive (D). Values are mean ± SEM; *p < 0.05; **p < 0.01. 
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5 DISCUSSION 
The current comparative study provides additional insight into the association between the 

physiological dynamics and lead intoxication evoked by different profiles of lead exposure.  

First, independently of the type of lead exposure profile, the current study reveals a clear 

association between lead exposure, hypertension and cardio-respiratory reflex impairment. And, even 

after a lead free-period, only the sympathetic nervous system activity and the baroreflex function were 

re-established to physiological conditions. This pattern of association is similar with other clinical 

situations, such as hypertension, acute heart ischemia or heart failure46,119–121.  

Second, we have showed an involvement of sympathetic nervous system in modulation of the 

baroreceptor reflexes responses or hypertension development on lead intoxication. In fact, in our 

study, the overactivity of the sympathetic nervous system is concomitant with baroreceptor reflex 

impairment and/or hypertension. This exaggerated sympathetic tone associated with mild 

hypertension, observed in three different lead exposure profiles, can result from an increased intrinsic 

activity of the brain stem vasomotor neurons or can be secondary to a reduction of the inhibitory 

potency of baroreceptors 122,123. 

Third, all groups exposed to lead, evaluated in different time points, had behavioural changes, 

namely anxiety, hyperactivity and/or long-term impairment memory. This can be, in part, explained by 

the immunohistochemistry studies from the present study, that demonstrated that independently of 

lead exposure profile, lead-induced reactive astrogliosis and microgliosis in dentate gyrus of 

hippocampus of rats. 

Finally, in our model of intermittent exposure we demonstrated, for the first time, that an 

intermittent lead exposure causes adverse health effects, i.e, hypertension, sympathetic overactivity, 

increased chemoreflex sensitivity and baroreflex impairment, similar to a long-term exposure, however 

less pronounced.  

Therefore, exposures to lead during the developmental phase can alter the normal course of 

development, with lifelong health consequences. 
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I. Effects of different lead exposures on physiological parameters 

Increased blood pressure is synonymous of hypertension, which is one of the main causes of 

mortality and morbidity. It has been broadly defined that low-level lead exposure is one of the causes 

of hypertension in humans, and it has already been reproduced in various animal models of chronic 

lead exposure39,40,42,72.  

In the present study, all lead exposed rats showed an increased arterial blood pressure (≈ 15 

mmHg). In PbP group evaluated at 12, 20 and 28 weeks the average increase in systolic blood pressure 

was 37, 32, 51 mmHg and in diastolic blood pressure was 38, 51and 57 mmHg, respectively.  

In PbS and PbI groups evaluated at 20 weeks and in PbS group evaluated at 28 weeks it was an 

average increase in systolic blood pressure (66 and 36 mmHg, respectively) and in diastolic blood 

pressure (45 and 30 mmHg, respectively). Thus, during the 16 weeks period without lead exposure, a 

clearance of lead occurred with repercussions on blood pressure values. However, the effect on blood 

pressure values was similar to the PbS and PbI groups that only had 8 weeks without lead exposure. It 

remains to be determined if a clearance for a longer time can render these animal models’ 

normotensive.  

However, we can notice that, at 28 weeks, PbI group, the new animal model of lead exposure 

developed, has a less pronounced hypertension when compared to PbP group, which might suggest 

that the duration of Pb exposure is more relevant than the time of exposure.  In PbI group, the average 

increase in systolic blood pressure was 21 mmHg and in diastolic blood pressure was 18 mmHg. 

It is interesting that the effect on diastolic blood pressure produced by lead exposure was more 

evident than that of systolic blood pressure. The same pronounced effect on diastolic blood pressure 

was observed in men exposed to lead124. This can be explained by the fact that lead has a greater effect 

on the vascular smooth muscle, which contributes for peripheral resistance. Actuality, lead exposure 

affects the vascular response to vasoactive agents, induces endothelial damage, reducing the NO 

bioavailability and increasing endothelin levels125,126 .  

 The increase in blood pressure reported here has been well documented in previous studies 

using rodent models of chronic low levels of lead exposure40,42. An increase in blood pressure of rats 

occurs at low lead exposure levels of approximately 0.1 to 100 ppm, which is similar to the exposure 

levels seen in the environment. Similar observations were obtained in a population-based study, 

showing that blood lead levels as low as 20–30 µg/L increase blood pressure, even after adjustment for 

potential confounders such as age, sex, smoking habits, alcohol intake, waist circumference, and 

educational level127. Moreover, while low to moderate lead level exposures (BLLs <30 μg/dL) show only 
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a low degree of association with hypertension, higher exposures (primarily seen in occupational 

settings) increase the risk for hypertensive heart disease and cerebrovascular disease as latent 

effects128. 

Although the pathogenesis of hypertension promoted by lead is multifactorial, the mechanisms 

for lead-induced hypertension have been extensively examined. The involvement of renin-angiotensin 

and sympathetic nervous systems44,129, oxidative stress130, circulating catecholamine levels131, beta-

adrenergic receptors42, Na+/K+ ATPase39, and endothelial factors126 as well as renal dysfunction132 have 

been implicated in lead-induced hypertension.  

Despite the recorded hypertension evoked by different profiles of lead exposure, these animals 

did not have significant changes in heart rate when compared to controls. This leads us to conclude that 

neither early nor lifelong postnatal Pb exposure, at these doses, affect heart rate in adulthood. In 

contrast, others have shown that developmental exposure to other toxicants, such as manganese or 

mercury, can increase heart rate133,134. Studies in humans that evaluated heart rate showed inconsistent 

findings40. 

Regarding respiratory frequency, only the intermittent exposure (PbI group), evaluated at 28 

weeks) and the long-term exposure group (PbP) whose evaluation was performed at 12 and 28 weeks 

had an increase in respiratory frequency. This increase was concomitant with a higher chemoreceptor 

reflex sensitivity, indicating that lead triggered an overall alert-like reaction which could contribute not 

only to a higher respiratory rate, but also to blood pressure increase.  

In occupational lead exposure, it was established that workers have higher frequencies of 

respiratory symptoms, higher serum and urine lead concentration, but lower pulmonary function tests 

values135. 
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II. Effects of different lead exposures on cardio-respiratory reflexes 

All lead exposed groups had a higher chemoreceptor reflex sensitivity. However, it seems that 

PbP groups had a tendency of lower chemoreflex sensitivity that may be related to an already installed 

remodelling process due to a persistent stimulation which is not the case in the intermittent exposure 

(PbI). The PbS at 20 and 28 weeks and the PbI at 20 weeks, despite a lead-free period, didn’t show 

significant improvements in chemoreflex function.  

The permanent increased sensitivity to chemoreceptor reflex suggests the involvement of a 

protective sympathoexcitatory reflex in the maintenance of oxygen homeostasis but mostly appears to 

be an important piece of the internal defence mechanisms to manage the progression of lead 

toxicity136–138. 

Moreover, the observed chemoreflex facilitation was accompanied by the impairment of 

baroreflex function, a specific component of the defence reaction120,139,140, suggesting that lead toxicity 

may impair central autonomic areas leading to a higher sympathetic tone. The exception was PbS group 

that was exposed from foetal period until 12 weeks of age and then had 16 weeks period without lead 

exposure. Even the PbS and PbI groups that had 8 weeks period without lead exposure showed 

chemoreflex facilitation and baroreflex impairment. Thus, only a higher period without lead exposure 

is capable to improve baroreflex function, without significant changes in chemoreflex function. 

However, it is uncertain if a longer period (>16 weeks) without exposure could reverse the chemoreflex 

hypersensitivity. 

Therefore, our autonomic reflexes data indicate that lead exposure from foetal period, 

independently of the duration, induces a permanent chemoreceptor dysfunction and a temporary 

baroreceptor impairment that can be partially responsible for high blood pressure values. This 

dysfunction could have been evoked by the foetal exposure to lead, resulting in impairment of nervous 

system development.  

In fact, lead primarily affects the central nervous system, particularly the developing brain. 

During pregnancy, lead stored in bone is released into blood and, since lead has the ability to pass 

through the blood-brain barrier, it becomes a source of exposure to the developing foetus24,32. 

Additionally, children are at a greater risk than adults of suffering from the neurotoxic effects of lead, 

because they absorb 4 to 5 times as much ingested lead as adults from a given source1,24,141. This can 

result in lasting cognitive impairment , that has been already described previously in several prospective 

epidemiological studies32,142.  
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III.  Effects of different lead exposures on autonomic nervous system 

To clarify the mechanisms underlying this autonomic reflex dysfunction, data from autonomic 

tone evaluation was essential. In fact, our data showed that the PbP exposed group have a lasting 

sympathoexcitation, which is in accordance with previous studies that indicated central and peripheral 

sympathetic hyperactivity after chronic lead exposure44,45. A study in 9-11-year-old children with low 

blood Pb levels (≤ 3.76 μg/dL) also found increased sympathetic nervous system activity during rest 

and, paradoxically, a depressed sympathetic response during the stressful computer task143. 

In fact, the PbP exposure, by stimulating the carotid chemoreflexes, induces sensory long-term 

facilitation, and drives an elevated sympathetic tone from the hindbrain leading to hypertension, and 

despite the 8-week period without lead exposure, the sympathetic activity in the PbS and PbI groups 

evaluated at 20 weeks does not diminish significantly. On the other hand, as shown by the results of 

the PbS group, a lead-free period of 16 weeks is sufficient for the reestablishment of the sympathetic 

nervous system activity, similar to the physiological condition. 

However, we can notice that, at 28 weeks, PbI group has a less pronounced sympathoexcitation 

when compared to PbP group, which might suggest that the duration of Pb exposure is more relevant 

than the time of exposure.   

The autonomic data from the present study indicates that the impaired autonomic regulation 

likely contributed to the baro and chemoreflex dysfunction observed in these Pb groups. Other studies 

already described that chronic lead exposure induces sympathoexcitation by peripheral and central 

stimulation, increasing the activity of sympathetic receptors (α2 and β1) and promoting increased 

plasma concentration of adrenaline and noradrenaline44.  

Sympathetic nervous activity is also affected by baroreceptor reflexes, as they provide a tonic 

inhibitory influence, controlling peripheral vasoconstriction and cardiac output144. Therefore, our data 

show that lead exposure, independently of the duration, induces a baroreceptor dysfunction that could 

be due to chronic resetting to hypertensive state. This dysfunction could have been evoked by the foetal 

exposure to lead experienced by all groups, resulting in impairment of nervous system development. 

Our hypothesis is that the autonomic dysfunction, seen in lead exposures, may have been 

mediated through central autonomic controls and the major mechanism inducing changes in 

cardiorespiratory reflexes would be similar to that already suggested for other pathologies, which also 

runs with sympathetic overexcitation, chemoreflex facilitation and baroreflex impairment46,119,121,131,145–

147. This mechanism may involve neuronal pathways linking the hypothalamus to lower brainstem 

nuclei, in particular, the PVN-NTS axis120,148,149. 
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IV.  Different profiles of lead exposure and blood lead levels 

Blood lead levels, mainly lead levels in the erythrocytes, is representative of soft tissue lead and 

is the primary biomarker used for the assessment of lead exposure, both for screening and diagnostic 

purposes and for biomonitoring body burden and absorbed doses of the metal32. Other currently 

available biomarkers, such as bone or teeth (for past exposures), faeces (for current gastrointestinal 

exposure), or urine (for organic lead) are sometimes more useful than blood for the assessment of lead 

exposure32. In the study presented here, blood lead concentrations in PbS at 20 and 28 weeks and PbI 

rats at 20 weeks were much higher than those in control rats but lower than PbP rats (5.8±0.7 and 

3.7±0.4 versus 27.9±2.3 and 20.9±10.7 μg/dL, respectively). Despite the lower blood lead levels in PbI 

at 20 weeks and PbS at 20 and 28 weeks, caused by a lead-free period of 8 and 16 weeks, an elevation 

of blood pressure produced by these profiles of exposure was confirmed by the present investigation. 

Regarding the intermittent model of lead exposure (PbI), the blood lead levels, evaluated at 28 

weeks, were similar to those obtained in the group permanently exposed to lead, which might suggest 

that, in this type of lead exposure assessment, the time is more relevant than the duration of Pb 

exposure.   

Studies in humans, also demonstrated that immigrant women and children had elevated blood 

lead levels150,151. In refugee children, the levels were almost 14 times higher than that of US children 

aged 1–5 years based on the most recent National Health and Nutrition Examination Survey (NHANES) 

data. For that reason, the American Academy of Pediatrics recommends that children who have been 

adopted or emigrated from countries where lead poisoning is prevalent should be screened for 

elevated blood lead levels152. Considering the amount of lead acetate ingested, we would expect to get 

a higher increase in blood lead levels. The apparent reason for that is the standard chow used. This 

chow is rich in iron (0.18 g/Kg) that is known to decrease the susceptibility to lead toxicity, possibly 

through a lower lead absorption. The importance of an adequate iron diet was also demonstrated in a 

recent prospective study that showed that iron-deficient children in Boston aged 1–4 years were at 

significantly increased odds of developing lead poisoning153. 
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V. Effects of different lead exposures on neurobehavioral function 

Few studies have attempted to model neurobehavioral changes in young animals following low 

level exposure, and there is a needed to identify tests that are sensitive to the neurobehavioral changes 

that may occur. Mechanisms of action are not yet known; however, results have suggested that 

hippocampus/dentate gyrus may be uniquely vulnerable to early low-level lead exposure. 

Studies in children have suggested that many neurobehavioral functions are modified by early 

chronic low-level lead exposure. These include memory and learning, visual attention, abstract 

problem-solving, cognitive set-shifting, and motor dexterity68,154–161 . 

The results of the present study clearly demonstrate that lead exposure since foetal period, 

independently of the age or the lead exposure profile, produced a significant long-term anxiety-like 

behaviour in adult rats, as indicated by elevated plus-maze (EPM) test results, together with an increase 

in hippocampal astrocytes and microglial cells. It has already been shown that chronic lead exposure can 

produce behavioural disturbances, including anxiety, in human and in animal models85,162. Also, there 

is a strong evidence suggesting an association between hippocampal dysfunction and the behavioural 

deficiencies observed in experimental animals following neonatal Pb exposure57,81.  

In our results, we can notice that the young animals (12 weeks) were more anxious than the 

older ones (20 and 28 weeks). In fact, a study on the ontogeny of anxiety-like behaviour in laboratory 

healthy rodents has showed that adolescent rats demonstrated a higher anxiety-like response than 

adults163. The hypothesis that adolescent rats have a more noticeable response to stressors than adults 

is being confirmed by these results. 

Moreover, in the open field test (OFT), it was observed (although it was not shown in the 

results) that rats exposed to lead, independently of the exposure profile, spent more time exploring the 

periphery of the arena, usually in contact with the walls. This tendency to remain close the walls, called 

thigmotaxis, can be also used as an index of anxiety in rats. Even though, it is a normal rodent behaviour, 

animals showing a more prominent thigmotaxic behaviour are considered to be more anxious102. 

Also, a long-term lead exposure from foetal period until 20 weeks of age induces hyperactivity, 

showed by the increased average velocity, without changing the general locomotor activity and 

exploration behaviour. Studies within the past decade have indicated that certain environmental 

factors, including exposure to environmental pollutants can induce hyperactivity. Recent studies 

showed that Pb exposure may be associated with higher risk of clinically diagnosed ADHD in children, 

even at low levels164–168.  



Discussion 

90   |   Liana Shvachiy 
 

Although the PbS group also presented anxiety, it was less pronounced when compared to the 

permanently exposed group (PbP) or to the PbS and PbI groups evaluated at 20 weeks. This leads us to 

conclude that a 16 weeks lead-free period can cause beneficial behavioural effects by reducing the 

anxiety level. It remains to be determined if a longer lead-free period can render these animal models 

not anxious. 

As for the spatial memory and learning, no impairment was depicted, regardless the time or 

duration of exposure, as no alterations in the Y-Maze test results were observed. Regarding long-term 

memory, only the PbP evaluated at 12 weeks and the PbS and PbI evaluated at 20 weeks showed an 

impairment in NOR test performance, namely in Novelty index, as compared to controls. And this 

impairment of memory observed in the present study cannot be attributed to the locomotor activity 

impairment or anxiety behaviour presented by these animals, since it was similar to the matching 

control group. Therefore, anxiety was not a factor due to the long process of habituation to the arena 

of the Novel object recognition test. Moreover, anxiety and locomotor activity were also tested during 

the test, showing no differences between groups (data not shown in this thesis). 

However, although there were no significant differences in Novelty index results in the other 

exposed groups, we can notice that these animals had a similar exploration time in the two objects in 

the testing day of the NOR test (the novel and the familiar object), allowing us to conclude that they 

don´t recognize the new object as novelty. This, because, when animals are exposed to a familiar and a 

novel object, they approach frequently and spend more time exploring the novel than the familiar one 

due to animal’s normal explorative curiosity when in the presence of novelty, which was not the case 

in the Pb-exposed animals. 

This difference in NOR test performance can be due to lead-induced impairments of the 

hippocampus, in part explained by the synaptophysin, astrocytes and microglia expression in the dentate 

gyrus region. The PbS and PbI at 20 weeks and PbI at 28 weeks of age groups had a decrease in 

hippocampus/ dentate gyrus region synapses. The first, had a preeminent long-term memory 

impairment and the second had a similar exploration time in the two objects (indicative of some level 

of long-term memory impairment). Moreover, a permanent exposure until 20 weeks (PbP) promotes 

an increase in synapses in the dentate gyrus. Thus, lead exposure disturbs synaptogenesis of dentate 

gyrus, which could lead to synaptic plasticity impairment in the hippocampus.  

In fact, decreases and increases in the synaptic activity are an answer for synaptic strengthening 

or weakening over time, which has been given a name of synaptic plasticity. Synaptic plasticity in one 

of the main molecular processes behind learning and memory, and memories are being described by 

interconnected networks of synapses in the brain30,169. 
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Lead exposure has been already implicated in the impairment of synaptic plasticity in the 

developing hippocampus, but the mechanism remains unclear170. A reduction in the length of dendritic 

field and the number of dendritic branches of hippocampal dentate granule cells in the developing 

hippocampus after lead exposure has been reported171,172. Also, other studies have reported that 

developmental lead exposure causes alteration of NMDAR subunit ontogeny and disruption of its 

downstream signalling30,173, which are associated with deficits in hippocampal long-term potentiation 

(LTP)174. A more recent study concluded that developmental lead exposure alters synaptogenesis 

through inhibiting canonical Wnt pathway170. 

As the DG subregion of the hippocampus is a substrate for both cognition and mood 

regulation175, it was important to evaluate whether the different exposure profiles led to 

morphological48 alterations in this area. Immunohistochemistry evidence indicate that all exposed 

groups showed an increase in hippocampal astrocytes and microglial cells. Glial cells that englobe 

astrocytes and microglia in the CNS execute a variety of important functions, maintaining a complex 

interdependency between neurons and glia176.  Neuronal damage37 has been already described as one 

of the key elements of Pb toxicity. However, recently, neuroglia has been the focus as a target of low-

level lead exposure toxicity34.  

In our study, to better understand and correlate the changes that has been reported in animal 

behaviour with molecular alterations within the brain, more specifically, the cognitive impairment of 

the animals that have been exposed to lead, we focused our attention to both, neuronal and glial 

changes in the dentate gyrus. Astrocytes along with endothelial cells make up the blood brain barrier 

(BBB). Astrocytes perform homeostatic regulatory functions, exerting a fine control of the CNS 

extracellular environment, as well as, are one of the key elements of tripartite synapse. Also, astrocytes 

are involved in the long-term potentiation, that is crucial for synaptic plasticity, learning and 

memory116,118. Astrocytes play a crucial role in the inflammation induction in the brain, interplaying with 

microglia, upon antigen presence34,116. Also, upon pathological conditions, as lead toxicity, maladaptive 

reactive astrogliosis118 is triggered causing the depletion of glutamine, therefore reduction of synaptic 

GABA causing hyperexcitability of hippocampal neuronal circuits, due to a decrease in glutamine 
55,116,118. Glial fibrillary acidic protein (GFAP) is an astrocytic intermediate filament protein that is 

induced during periods of reactive astrocytic gliosis36.  

On a morphological level, reactive astrogliosis ranges from mild to prominent116,118, the last 

often being accompanied by glial scarring. In this study, the morphological evaluation of astrocytes, 

stained with GFAP in DG showed that exposure to lead enhanced the astrocytic reactivity, more 

specifically, a persistent maladaptive as GFAP immunoreaction was greatly enhanced within individual 



Discussion 

92   |   Liana Shvachiy 
 

cells, the density of the cells was much higher within the area and the branching processes of the cells 

were hypertrophic. To corroborate the morphological evaluation, a quantification of number of 

astrocytes within the area was performed as it has been already described that not only morphological 

changes, but also a number of astrocytes is increased upon lead exposure36,48.   

Our results showed that the developmental period of exposure to lead, from foetal period until 

12 weeks of age, leads to a strong reactive astrogliosis that persists through adulthood in all groups of 

exposed animals (permanent – PbP, intermittent – PbI and single exposure – PbS). Exposure to lead 

during adulthood does not cause changes in the astrogliosis, which persists reactive through time, even 

of the absence of exposure is of 16 weeks (PbS group). These findings are consistent with other that 

reported1 that the major lifelong changes in the GFAP gene expression occur during the developmental 

period, due to immaturity of blood-brain barrier, offering little protection and low resistance to lead 

toxicity  because of the lack of high-affinity  lead-binding protein in astrocytes that sequester lead and 

remove it from mitochondria177.  

Nevertheless, GFAP is the major marker of astrocytes, studies showed that it is not exclusively 

produced by astrocytes, but also is present, in very small quantities in oligodendrocytes, that are 

responsible for neuronal myelinisation. The demyelination of neurons has been already described as 

one of the major toxicological changes due to lead exposure178. Thus, the changes in the GFAP 

expression may reflect various glial populations that respond differently to Pb.  

Microglial cells are the neuroinflammatory sensors and are usually present in the resting state 

in the brain. Studies have already confirmed that, microglia, morphologically, are defined as extremely 

motile cells with processes and branches for territorial scanning in the brain117,179. In the pathogen 

presence, microglia are activated, becoming reactive microglia, changing morphologically to an 

ameboid form and increasing in number of cells substance release to combat the pathogenic attack. 

These substances could also be damaging to the surroundings of the activated microglia, leading to 

oxidative stress. The migrating nature of these cells permits a rapid response to the injury in the nervous 

system, thus leading to the fast proliferation and phagocyting of the cells and their parts179. Iba1 

(ionizing calcium-binding adaptor molecule 1) has been already described by various studies as being a 

novel protein that it is singly expressed in microglia and its upregulation is a marker of activation of 

these cells. This polyclonal antibody does not cross-react with neurons or astrocytes180.  

Morphological evaluation of animals at 20 weeks showed that exposure to lead until 12 weeks 

of age and exposure to lead until 20 weeks of age does not disrupt the microglial cells in the dentate 

gyrus, presenting microglial cells with a small cell bodies and branching processes for territorial 
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scanning. However, the results from quantification of the Iba-1 stained tissue showed that an increase 

in the number of resting state microglial cells was provoked by exposure to lead from foetal period until 

adulthood (PbP group observations). This is consistent with other results observed before that show 

that due to the changes in the neurogenesis, and the fact that lead is present in the brain, increase in 

the number of microglial cells happens55,181. This increase persists even after a long abstinence from 

lead exposure, which was observed in the PbS group of animals.   

Remarkably, a different pattern of microgliosis was observed in the animals that were exposed 

to lead twice (PbI group, from foetal to 12 weeks of age and from 20 to 28 weeks of age). After the 

second exposure to lead, the microglia was activated, with branching loss and upregulation to Iba-1 

staining. Also, an increase in the number of cells from 20 to 28 weeks was observed which is indicative 

of not only disruption of microglia but also a process of neuroinflammation in the dentate gyrus, causing 

cognitive and behavioural changes in animals. This activation is consistent with other results that show 

that neuroinflammation is one of the key features of lead toxicity34. Together with activation of 

astroglia, the intermittent exposure to lead causes the neuroinflammatory activation, delaying their 

promoting assistance in the neuronal differentiation and maturation in the hippocampus, a specific 

brain region that maintains active neurogenesis and prevents neurodegeneration in whole life.  

It is important to mention that all the neurobehavioral impairments observed in the present 

study were not the result of nonspecific stimulation. In fact, the different lead exposures did not affect 

body weight gain of dams or offspring development, neither locomotor activity. 

Changes in long-term memory that have been identified in the lead exposed animals are one 

of the main neurobehavioral disruptions that have the most devastating effects during the lifetime of 

the brain health. The early alterations in the hippocampus (and more specifically in the dentate gyrus) 

are the potential mechanisms for neural pathways formation disruptions182 , memory dysfunction, 

learning impairment during development and weakened neurogenesis during adulthood and aging183. 

All these alterations have been already linked to an increase in vulnerability to cognitive decline, 

neurodegenerative diseases and dementia157,184. 

The neurobehavioral results presented here are not surprising, since exposure to lead began in 

a very critical period, the foetal period, and the primary site of Pb action is the central nervous system, 

where Pb exposure is associated with several neurobehavioral and psychological alterations19,58,185,186. 

During the prenatal period in mammalian species, the rapid growth of the central nervous system 

makes the foetus particularly vulnerable to insults187,188. This phenomenon is evident from the results 

of several independent (and prospective) human studies which indicate that maternal stress during 

pregnancy is associated with adverse neurodevelopmental outcomes in the child later in life, including 
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attention-deficit/hyperactivity disorder, autism, and anxiety disorders188. Also, in low-level exposure to 

lead during early childhood was shown to be inversely associated with neuropsychological development 

and neurobehavioral-cognitive performance189. 

Similar to human studies, the current research in animals exposed to different lead profiles has 

clearly demonstrated that behavioural changes, namely anxiety, hyperactivity and/or long-term 

impairment memory can be a consequence of developmental lead exposure.  

Therefore, the lead-induced alterations in rat development observed here due to ingestion of 

lead water (the most common route of contamination in the general population) are important in terms 

of searching for similar developmental alterations in human beings exposed to low levels of lead.  
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6 CONCLUSIONS AND FUTURE PERSPECTIVES 
As the result of this work, we provide the first direct experimental evidence that an intermittent 

lead exposure has detrimental effects on cardiorespiratory control, on anxiety, cognitive impairment 

and on synaptic, astrocytic and microglial functions. The current work adds to our understanding of the 

complex interactions between sex, level of Pb exposure and developmental window of Pb exposure on 

cognitive processing and mammals´ physiology. 

In summary, our experiments have provided several main findings to support our hypothesis 

that the exposure in utero produces behavioural, functional, and structural deficits that can be 

irreversible as they were apparent, in this study, at adult age.  

As future perspectives, we intend to evaluate the effect of different lead exposure profiles, in 

target organs already removed and where lead is primarily distributed, such as heart, liver and kidneys. 

Also, correlations between target organs lead levels, blood lead levels, lead exposure profiles and 

physiological and neurobehavioral parameters should be performed. 

In order to evaluate the physiological changes through the time course of animal lives, 

telemetric sensors should be implanted for continuous haemodynamic assessment of these subjects to 

better understand the most relevant timepoints of lead toxicological effects in conscious animals. 

Moreover, since the chemoreflex dysfunction and anxiety behaviour were maintained after a 

16 week-period without lead exposure, future pharmacological studies in central areas should be tested 

in order to reverse these dysfunctions towards normality.  

Other central brain regions should also be evaluated, specially the amygdala, hypothalamus 

and centres of autonomic regulation for traces of morphofunctional changes within these areas that 

could account for the alterations that were observed in the animal models in this study. Similarly, some 

other studies must be performed to assess neurogenesis and neural morphological alterations, possible 

myelinic loss, electrophysiological alterations and other behavioural changes that lead could be 

responsible for within various lead exposure protocols. 

Since sex differences in the neurodevelopmental effects of early lead exposure have been 

reported in humans, future research should focus on health effects differences between males and 

females exposed to different lead exposure profiles.  
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