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Resumo

O tempo médio de vida da espécie humana tem vindo a aumentar significati-
vamente, sendo a indústria farmacêutica responsável por parte desse sucesso.
O tempo médio de produção de um fármaco situa-se entre os 10 e os 15 anos
e o seu custo tem vindo a crescer anualmente. A quiminformática permite
a redução destas adversidades, recorrendo a ferramentas informáticas com a
capacidade de prever propriedades químicas e biológicas. Uma abordagem uti-
lizada para esta previsão é a dos modelos Relação Estrutura-Atividade Quan-
titativa, que se baseia na relação entre a semelhança de estrutura de fármacos
e o conhecimento das suas atividades. Na verdade, alguns modelos utilizados
atualmente utilizam algoritmos de elevada complexidade, incapazes de fazer
previsões para grandes quantidades de dados. Neste contexto, na elaboração
do presente trabalho, foi desenvolvido um algoritmo de agrupamento que per-
mitisse definir farmacologicamente o espaço molecular. A performance deste
algoritmo foi avaliada para um conjunto de dados considerável, provenientes
da base de dados ZINC, de modo a verificar diversos aspetos importantes,
como por exemplo, se este seria capaz de produzir resultados que permitis-
sem definir o espaço molecular. Com base nos resultados produzidos pelo
algoritmo, foram definidos farmacologicamente os agrupamentos gerados, de
acordo com regras lógicas, recorrendo a uma base de dados de atividades,
nomeadamente o ChEMBL 23. Este processo permitiu a criação de uma base
de dados, posteriormente utilizada na construção de uma interface gráfica de
busca. Desta forma, para um composto desconhecido, será possível verificar a
que agrupamento este se encontra mais próximo, extrapolando a informação
de alvos a ele ligado para o novo fármaco.

Palavras Chave: Algoritmo Brotherhood, Interface de busca, Modelo Quan-
titativo de Relação Estrutura-Atividade, Processo de Agrupamento, Quimioin-
formática





Abstract

The average life expectancy of the human species has been growing signifi-
cantly and the pharmaceutical industry is a part of this success. The average
time of production of a drug is between 10 and 15 years and the cost of it
has been growing annually. Cheminformatics allows the reduction of these ad-
versities, using computer tools capable of predicting chemical and biological
properties. An approach used is the Quantitative Structure Activity Rela-
tionship models. These, make use of the relationship between the similarity
of drug’s structure and the knowledge of their activities. In fact, some models
currently used, make use of highly complex algorithms, unable to make predic-
tions for large amounts of data. Thus, this work had the purpose to develop
a clustering algorithm that allowed to define pharmacologically the molecular
space. The algorithm performance was evaluated for a considerable data set,
from the ZINC database, in order to verify several important aspects, such as,
the ability to produce results that allowed to define the molecular space. Based
on the results produced by the algorithm, the clusters generated, according
to logical rules, were pharmacologically defined using a database of activities,
namely ChEMBL 23. This process allowed the creation of a database, later
used in the construction of a search graphical user interface. So, for an un-
known compound, it will be possible to verify which is the closest cluster,
extrapolating the target information attached to it, to the new drug.

Keywords: Brotherhood Algorithm, Cheminformatics, Clustering Process,
Quantitative Structure-Activity Relationship model, Search User Interface





Resumo Alargado

O tempo médio de vida da espécie humana tem vindo a aumentar significa-
tivamente nas últimas décadas, sendo que a indústria farmacêutica tem con-
tribuido em grande parte para esse sucesso. Apesar do infindável número de
possíveis compostos, desde 1827 até 2013, apenas 1453 foram registados na
Food and Drug Administration. O tempo médio para a produção de um fár-
maco situa-se entre os 10 e os 15 anos e o seu custo médio tem vindo a crescer
quase exponencialmente.

A quiminformática permite reduzir o impacto destas adversidades, uma vez
que, com recurso a ferramentas e tecnologias informáticas, permite a previsão
de propriedades químicas e biológicas. Uma das abordagens mais comum para
a previsão in silico é a dos modelos Relação Estrutura-Atividade Quantitativa,
que se baseia na correlação entre a semelhança de estrutura entre fármacos e
o conhecimento das suas atividades. Deste modo, é possível prever que dois
fármacos com uma estrutura semelhante possuam atividades semelhantes.

Assim, um possível algoritmo que poderia obter bons resultados, seria um
que apresentasse a capacidade de, para cada molécula, a comparar com todas
as moléculas para as quais já se conhece informação acerca das suas ativi-
dades, sendo que, no caso de uma semelhança superior a um valor definido,
extrapolár-se-ia a informação de atividades para a molécula a comparar. A
verdade é que, apesar de este ser um hipotético método com a capacidade
de obter bons resultados, não é prático. Quando não possuímos qualquer
informação acerca de centenas de milhões de moléculas e temos apenas infor-
mação conhecida acerca de um milhão de moléculas, por exemplo, a complex-
idade associada para uma previsão deste género não é computacionalmente
tratável. Imaginemos que temos uma molécula desconhecida e queremos com-
parar a sua estrutura com a de um milhão de moléculas já estudadas. Isto
custar-nos-ia um milhão de comparações "in silico". Se tivermos um milhão de
moléculas desconhecidas e o objetivo for comparar a sua estrutura com outro
um milhão de moléculas conhecidas, para este caso, seria necessário realizar
1,000,000,000,000 de comparações.



Assim, foi necessário neste trabalho encontrar uma solução com a capacidade
de lidar com esta quantidade de dados e ainda assim, obter bons resultados.
Neste contexto, foi desenvolvido um novo algoritmo de agrupamento de dados,
de base heurística, de modo a definir farmacologicamente as diferentes regiões
do espaço molecular. De seguida, foi construída uma base de dados com a
capacidade de armazenar esta informação, a qual foi utilizada na construção
de uma interface de busca, cujo intuito é o de, para novas moléculas, fazer
uma previsão de possíveis alvos.

O algoritmo "Brotherhood" é então um algoritmo de agrupamento de base
heurística desenvolvido com o intuito de lidar com conjuntos de dados de
grande dimensão. Este requer 3 parâmetros de entrada: um ficheiro, com uma
lista de moléculas (uma por linha) com o formato (Identificador da Molécula,
Identificador SMILES); um valor limite entre 0.0 e 1.0, que é utilizado no
sentido de definir se uma molécula tem ou não uma determinada relação com
o agrupamento e, finalmente, um valor limite entre 0.0 e 1.0, que é utilizado
no sentido de definir se uma molécula pertence ou não a um agrupamento
filho. Para cada uma das moléculas presentes, esta pode: pertencer a um
agrupamento se a sua estrutura molecular apresentar semelhança superior ao
primeiro valor limite com todas as moléculas desse agrupamento; pertencer a
um agrupamento filho, se possuir semelhança estrutural superior ao primeiro
limite, com pelo menos uma molécula do agrupamento, e semelhança estrutu-
ral superior ao segundo limite com todas as moléculas do agrupamento filho;
criar um novo agrupamento filho, caso tenha semelhança estrutural superior ao
primeiro limite, com pelo menos uma das moléculas do agrupamento, mas não
preencher os requisitos para se juntar a um agrupamento filho já existente; por
último, criar um novo agrupamento, caso nenhuma das condições anteriores
ocorra. A semelhança estrutural é calculada traduzindo os canonical SMILES
em descriptores 2D, como os Extended Conectivity Fingerprint(ECFP) 4 e 6,
e posteriormente comparados segundo o coeficiente de Tanimoto, descrito na
literatura como o mais utilizado e o que obtém melhores resultados para este
tipo de modelos. Por fim, o algoritmo retorna dois ficheiros: o primeiro, com
a organização de toda a estrutura de agrupamento realizada, os valores limite
utilizados, o número de agrupamentos gerados, o número de agrupamentos
filho gerados e ainda o tempo, em segundos, necessário à realização de todo



o processo; um segundo ficheiro, com o identificador da molécula e o iden-
tificador SMILES da primeira molécula de cada agrupamento gerado, tantos
quanto o número de agrupamentos gerados.

De modo a avaliar a performance do algoritmo, foram realizadas três análises
distintas, recorrendo sempre a conjuntos de dados provenientes de uma base
de dados designada por ZINC. Na primeira análise, o objetivo era avaliar o
tempo necessário de execução, variando apenas os dois parâmetros de entrada,
valores de limite. Na segunda análise, foi avaliada a relação entre a ordem e as
moléculas pertencentes ao conjunto de dados com o número de agrupamentos
gerados e o tempo necessário à execução. Por último, na terceira análise, foi
efetuada uma avaliação que permitisse determinar a partir de que quantidade
de conjunto de dados seria possível gerar uma quantidade de agrupamentos
com a capacidade de representar o espaço molecular.

Em relação à primeira análise foram aplicados quatro conjuntos de valor limite
(0.5-0.3, 0.3-0.5, 0.3-0.3 e 0.2-0.2) a doze conjuntos de dados com dimensões
compreendidas entre 1,000 e 5,000,000. Assim, foi possível verificar que o au-
mento do primeiro valor limite (0.5-0.3), ao gerar demasiados agrupamentos,
mesmo em conjuntos de dados reduzidos, tornava o tempo de execução do algo-
ritmo demasiado elevado. Com a utilização do conjunto (0.3-0.5) verificava-se
a mesma situação, sendo que o tempo elevado de execução não resultava de
um aumento do número de agrupamentos, mas sim do aumento dos agru-
pamentos filho. Reduzindo significativamente os dois limites para 0.2-0.2 foi
possível reduzir o tempo de execução, contudo, o facto de gerar um número
bastante reduzido de agrupamentos e agrupamentos filho fez com que estes fos-
sem maiores, o que levou a um tempo de execução superior quando comparado
com o tempo de execução utilizando um conjunto de limites de 0.3-0.3.

Na segunda análise, foram utilizados três conjuntos para conjuntos de dados
desde 1,000 a 100,000 sendo que, cada conjunto foi baralhado cinco vezes.
Desta forma, foi possível não só avaliar a influência do processo de agrupa-
mento das moléculas pertencentes a cada conjunto mas também a ordem do
mesmo. Foi assim possível verificar que apesar de todas as variações anterior-
mente mencionadas, o tempo de execução e os agrupamentos e agrupamentos
filho gerados não variavam significativamente.



Por último, na terceira análise, foram utilizados dois conjuntos de valor limite
(0.2-0.2 e 0.3-0.3) aplicados a doze conjuntos de dados com quantidades entre
1,000 e 5,000,000. Para cada um, foi calculada e avaliada a proporção de agru-
pamentos e agrupamentos filho gerados face ao número de moléculas utilizado
para os gerar. Deste modo, foi possível traçar dois gráficos que demonstram
que o aparecimento de novos agrupamentos vai diminuindo com o aumento
da quantidade de dados, o que permite concluir que o espaço molecular vai
sendo progressivamente definido até estabilizar. Por fim, foi realizado o pro-
cesso de agrupamento com dois milhões de moléculas e com cinco milhões de
moléculas. De seguida, para cada um desses processos foi verificado se para
um novo conjunto de dois milhões de moléculas estes iriam pertencer a uma já
definida região do espaço (agrupamento) ou gerariam um novo agrupamento.
Foi possível verificar que, para o 1º agrupamento com 2 milhões, apenas 4822
(0.24%) moléculas de um novo conjunto de 2 milhões não pertenceriam a
qualquer agrupamento já definido. Com o 2º agrupamento, com 5 milhões de
moléculas, apenas 1531 (0.07%) moléculas de um novo conjunto de 2 milhões
não pertenceriam a uma região já existente. Assim, desta forma, foi reforçada
a ideia de que o algoritmo "Brotherhood" apresentaria a capacidade de definir
mais de 99% do espaço molecular de um conjunto de dados significativamente
grande.

Após esta definição, tornou-se essencial atribuir informação a cada grupo
molecular, sendo que, foi definido cada agrupamento farmacologicamente, com
base na informação presente na base de dados ChEMBL, versão 23. Assim,
foram utilizados os resultados, de dois conjuntos de agrupamentos, prove-
nientes de um processo de agrupamento com cinco milhões de moléculas e os
conjuntos de parâmetros de valores limite de 0.2-0.2 e 0.3-0.3. Na realidade,
como representação de cada agrupamento, foi utilizado o primeiro elemento,
designado como o centróide do agrupamento.

A base de dados ChEMBL possui diversa informação relativa à atividade entre
compostos e alvos. Contudo, nem toda a informação presente é necessária nem
se encontra imediatamente disponível para ser utilizada no contexto deste pro-
jeto. Desta forma, foi realizada uma extracção e manipulação da informação,
de acordo com algumas regras lógicas definidas, de modo a que fosse possível,
para o máximo de atividades composto-alvo, classificá-las segundo três cat-
egorias: Activa, Inactiva e Desconhecida. Assim, para cada composto cuja



informação se encontrava disponível, foi realizada a sua ligação a todos os
centróides próximos, nomeadamente todos aqueles cuja semelhança estrutural
era superior a 0.2 (nos centroides provenientes do processo de agrupamento
com conjunto 0.2-0.2) e superior a 0.3 (nos centroides provenientes do pro-
cesso de agrupamento com conjunto 0.3-0.3). Como resultado desta ação, foi
construída uma base de dados em que cada composto-atividade-alvo se encon-
trava, paralelamente, ligado a dois conjuntos distintos de centróides.

Por último, foi construída uma interface gráfica de busca, cujo objetivo é o
de, para um composto desconhecido, verificar a que centróide este se encontra
mais próximo, extrapolando a informação de alvos a ele ligado, para a nova e
desconhecida molécula.

Com o término da construção da interface, é possível afirmar que os princi-
pais objetivos da tese foram alcançados com sucesso,existindo agora uma nova
alternativa, de modo a prever possíveis alvos para novos compostos.

Face ao que foi desenvolvido neste projeto, é proposto para um futuro tra-
balho, a validação da interface, recorrendo a novas moléculas cujos alvos se-
jam conhecidos e não se encontrem presentes na base de dados. Desta forma,
poderá ser interessante uma atualização contínua à base de dados de suporte
à interface, efetuando uma análise mais exploratória aos dados nela contida.
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Chapter 1

Introduction

1.1 Motivation

According to the United Nations, between 1900 and 2000, the human population has
grown from 2 to 7 billions, and the projections show that it can reach 11 billions by the
end of the 21th century. The advances of life sciences, such as medicine, chemistry, biology
and informatics took a major role in this exponential growth of population.(United, 2017)
In fact, it’s the relation of all those fields that contributed to new drug development
techniques that are directly related to the increase of average life expectancy. As stated
by Michael, Food and Drug Administration (FDA) approved a total of 1453 compounds
between 1827 and 2013, being more than 800 in the last 35 years. (Kinch et al., 2014;
Pharmaceutical Research and Manufacturers of America, 2016) However, this is a small
number, since there are an infinity of possible compounds. Recent numbers show that
the average time to go through all the process of drug development is 10-15 years and
the average cost is $2.6 billion, since less than 12 % enter clinical trials and even less are
approved.(Pharmaceutical Research and Manufacturers of America, 2016) The cost of of
drug development is, at the moment, higher than ever, and has been increasing year after
year.(figure 1.1)

The process of drug development, can be divided into four main steps (figure 1.2):
Discovery and development; Pre-clinical research, Clinical research and Drug Review.
(FDA, 2018)

Discovery and development - At this stage, researchers discover new drugs (10,000-
15,000) through new insights about a disease process, applying many molecular
tests to the compounds or using new technologies to find possible beneficial effects
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1. INTRODUCTION

Figure 1.1: New drug approvals (dots), represented on the left vertical axis, and pharma-
ceutical R&D expenditures (shaded area), represented on the right vertical axis, in the
United States from 1963 to 2008. R&D expenditures are presented in terms of constant
2008 dollar value. The trend line is a 3-year moving average. (Kaitin, 2010)

against a large number of diseases.There are even treatments that show unantic-
ipated effects, that is, the researchers are looking for a molecule that would act
in a specific target, and it ends to be tested to a completely different one. After
discovering promising compounds, they conduct experiments to gather information
like best dosage, mechanisms of action and side effects. At the end of this stage,
only an average of 250 compounds goes to the next phase.

Pre-clinical research - Before testing a drug on humans, it is necessary to know that
the compound doesn’t have the potential to cause serious harm (toxicity). In order
to understand that, there are several in vivo and in vitro experiments to perform.
On average, only 5 of the 250 compounds are approved to clinical trials.

Clinical research - After pre-clinical research shows that compounds aren’t toxic to
humans, it’s time for the clinical trials. Those have to be planned according to
specific rules and protocols. Three different phases are defined: phase I (20-100
volunteers), phase II (100-500 volunteers) and phase III (1000-5000 volunteers).
Usually, only one of the five compounds goes through all three phases and achieves
the market approval. It’s possible that all 5 fail, and pharmaceuticals have to return

2



1.2 Objectives

to drug and discovery stage.

Drug Review - When a compound has proved to be safe for humans and effective for
it’s intended use, the pharmaceutical company can file the application to market the
drug. If the drug passes all the rigorous controls, it can then be sold in the market.

Figure 1.2: Drug Development Process (Pharmaceutical, 2018)
.

As seen before, the drug development process has an huge cost and its infeasible
to know all the biological and chemical properties of all of the 10,000 compounds at
start. Thereby, it’s necessary to have tools and technologies that predict with precision
those properties. Cheminformatics is the area responsible to predict those properties.
In 1998, Dr. Brown gave his definition of cheminformatics as: “Cheminformatics is the
mixing of information resources to transform data into information and information into
knowledge for the intended purpose of making better decisions faster in the area of drug
lead identification and organization.”(Chen, 2006) Nowadays, cheminformatics extends
the drug development process.

1.2 Objectives

One of the most common approaches for in silico activities prediction is the Quantitative
Structure-Activity Relationship (QSAR) models.(Nantasenamat et al., 2010) The QSAR
models are designed to correlate structure similarities of drugs with activities knowledge.
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It means that, whenever we have activity information about a compound, we can predict
for a new compound similar activities if both share structure properties.(Vilar & Costanzi,
2012) However, the use of these models are not that simple. An algorithm that could
predict with good results could be: for our molecule, m, the algorithm would compare it’s
structure to all the molecule structures with known information, using a threshold value
to split the similar from dissimilar molecules, using the similar ones to predict results for
our m molecule. An algorithm like this, however, would take an exponential amount of
time to solve. Let’s imagine this scenario: if we have 1 molecule and we would like to
compare it’s structure with 1 million of compounds that we already have information,
it would "cost us" 1 million of in silico comparisons. Imagine that we have 1 million of
unknown compounds and we want to predict information about them. Now, our machine
would have to make 1,000,000,000,000 comparisons. This problem is impracticable in real
time, so it means that it is necessary to rearrange a solution for our prediction models.
The aim of this project is to implement a system of hierarchical grouping of molecules
using a new clustering based algorithm, in order to define pharmacological regions inside
the molecular space. Subsequently, it was made a database and a web application that
makes use of algorithm results to predict targets for all type of unknown compounds.
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1.3 Schedule of work

In the table 1.1 is possible to see all the activities, realized during this research, carried
out during the presented time line.

Activities

Year
2017 2018

Month
10 11 12 1 2 3 4 5 6 7 8 9 10 11

Familiarization with
the modeling
techniques of

chemical similarity

X X

Familiarization with
the test data and

definition of subsets
X X

Testing of clustering
strategies X X

Implementation of
the chosen

clustering strategy
X X X

Characterization of
the various clusters
pharmacologically,
according to the

literature information
and annotated

databases

X X X

Design
and construction
of the database

X X

Implementation of
the search user

interface
X X X X X

Interface test
and validation X X

Bibliographic research X X X X X X X X X X X X X X
Report writing X X X X

Table 1.1: Schedule of work
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1.4 Overview

This document is organized and divided into 7 chapters.

• (Previously mentioned) Chapter 1 - Introduction.

• Chapter 2 - Background. Along the background it will be explained important
concepts and definitions regarding the project theme.

• Chapter 3 - Methods and Data. In this chapter, it’s described clustering meth-
ods and the data used.

• Chapter 4 - Clustering Analysis. Here, all the results obtained through the
application of the developed Clustering method to all the datasets, in all lines of
action are presented, analyzed and discussed.

• Chapter 5 - Defining Clusters Pharmacologically. Within this chapter, rel-
evant results are used in order to define clusters pharmacologically by creating a
database.

• Chapter 6 - Search User Interface. Using the database created, a search user
interface is created and described in more detail.

• Chapter 7 - Conclusions. Finally, this chapter makes a final conclusion about
all the project.
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Chapter 2

Background

2.1 Molecular Representations

2.1.1 Identifiers

Since the 60s that computers have been used to store and manipulate chemical struc-
tures.(Warr, 2011) Some of the applications have already been addressed in this docu-
ment, like similarity searching and processes in drug discovery. The need of a machine-
readable representation of chemical structure is/was a need to complete those tasks suc-
cessfully.(Warr, 2011)

Line notations are than linear representations of chemical structures of a molecule
as a line of a text. Some of this characterizations may have some advantages, such as:
being human-readable and human-writable; easily entered into a software and canonical
representations (unique representation of a molecule).(Boyle, 2012) Two of the most widely
used nowadays, are Simplified Molecular Input Line Entry System (SMILES) and IUPAC
International Chemical Identifier (InChI and InChIKey).

2.1.1.1 Simplified Molecular Input Line Entry System (SMILES)

SMILES is a chemical notation language developed in the end of 1980 at Pomono Col-
lege and later implemented by Daylight Chemical Information Systems. The algorithm
responsible for generating the SMILES notation have specific and simple rules that allow
the final result to be easy to understand by humans.(Weininger, 1988)

Rules:

1) Atoms. Atoms are represented by their periodic table symbol inside of square brackets.
The brackets aren’t needed if elements are part of the "organic subset" ( B, C, N,
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O, P, S, F, Cl, Br and I). Whenever represented without brackets, the elements
must have the following premise: the number of attached hydrogens conforms to
the lowest normal valence consistent with explicit bonds;

2) Bonds. Single, double, triple and aromatic bonds are represented by the symbols -, =,
#, and :, respectively. Single and aromatic bonds may be, and usually are, omitted.
E.g.: CC, C=C, C#N

3) Branches. Branches are represented by the inclusion of the atom in parentheses and
can be nested or stacked. E.g.: CCN(CC)CC

4) Cyclic Structures. Cyclic structures are represented by breaking one single (or aro-
matic) bond in each ring. The ring-opening and ring-closure bonds are followed by
a digit. E.g.: C1CCCCC1

5) Disconnected Structures. Disconnected structures are represented by a dot (’.’) sep-
arating them. E.g.: [Na+].[O-]c1ccccc1

6) Aromaticity. Aromatic structures are represented by writing the atoms in the aromatic
ring in lower case letters. E.g.: c1ccccc1C(=O)O

There is no perfection in anything and the SMILES approach is no exception. One of
the drawbacks of this format is the fact that each molecule representation isn’t canonical.
However, there are many algorithms that make use of SMILES and turn it into a canonical
form.(Boyle, 2012)

2.1.1.2 InChi and InChiKey

The IUPAC International Chemical Identifier (InChI) is a machine-readable string of
symbols that unequivocally represent in a computer a compound.(Heller et al., 2013)
One of the greatest advantages is the fact that it is an open source and non-proprietary
system. (Heller et al., 2015; Warr, 2015) The InChI system makes use of his layered format
in order to represent the compound information, where each layer contains a specific type
of information.(Heller et al., 2013, 2015; Warr, 2015)

The layers are characterized as:

1. Formula

2. Connectivity (no formal bond orders)
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(a) Disconnected metals

(b) Connected metals

3. Isotopes

4. Stereochemistry

(a) Double bond

(b) Tetrahedral

5. Tautomers (on or off)

Each layer in the InChI string is separated by the slash (/), followed by a lower-case

letter (except the first layer).

A structure with 100+ atoms gives a very long string, which is an identified problem

when using a search engine such as Google or Yahoo. (Heller et al., 2013) The InChIKey

was the answer for that problem. InChIKey is a shorted hash-based InChI derivative,

with 27-characters and based on a SHA-256 cryptographic hash function.(Heller et al.,

2013; Warr, 2015) A small possibility of finding two structures with the same InChIKey

is possible due to hash code collisions, however, since 2007, only two of these cases have

been reported.(Warr, 2015)

2.1.2 Descriptors

In the last topic, it was described how to identify a molecule computationally. However, in

order to compare between structures, it is necessary to have a comparable definition for the

molecule structures. Descriptors are terms that characterize specific information about an

active compound.(Khan, 2016; Roy et al., 2015) The information encoded by descriptors

generally depends on the kind of molecular representation and the defined algorithm for its

calculations. There are several types of characterizations that describe the compounds in

a different way, used in QSAR models, such as Geometrical, Thermodynamic, Electronic,

Constitutional and Topological descriptors.(Khan, 2016) (Figure 2.1)
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Figure 2.1: Representation of Molecular Descriptors Used in Quantitative Struc-
ture–Activity Relation (QSAR) Modeling.(Khan, 2016)

2.1.2.1 Extended-Connectivity Fingerprints (ECFPs)

Extended-connectivity fingerprints (ECFPs) are a novel class of topological fingerprint,
formulated in graph theoretic approach, for molecule characterization explicitly designed
to capture molecular features relevant to molecular activity. (Rogers & Hahn, 2010; Roy,
2004) ECFPs are suited to tasks related to predicting and gaining insight into drug activity
and in methods such as similarity searching, clustering and virtual screening. (Hu et al.,
2009; Rogers & Hahn, 2010) Like other fingerprints, ECFPs are encoded as a binary bit
vector string. The presence of a specific substructure is represented as the bit 1 and the
absence as 0. (Gortari et al., 2017) (Figure 2.2)

In fact, they have a more complex generation process since they use the relative
position of each atom. ECFP generation process has three sequential stages: (Rogers &
Hahn, 2010)

1. An initial assignment stage, where each atom has an integer assigned to it.

2. An iterative updating stage, where each atom integer is updated to reflect the
integers assigned to each other atoms.
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Figure 2.2:
Representation of a chemical structure as a binary vector (Gortari et al., 2017)

3. Finally, a duplicate identifier removal stage, where multiple occurrences of the same
feature are reduced to a single representative feature.

There are different types of ECFP fingerprint according to different diameters, such
as ECFP_0, ECFP_2, ECFP_4 and ECFP_6. The difference between all of them is
the diameter of circular atoms neighbors considered for each atom. Sometimes, it’s pos-
sible that different approaches generate the same fingerprint, for example, if the molecule
is too small and the same diameter covers all the bonds.(Rogers & Hahn, 2010) The
most common used are ECFP_4 and ECFP_6 since they generally have the best perfor-
mance.(Skinnider et al., 2017)

2.1.3 Similarity Measures

Similarity measures or distance metrics are a need to compare fingerprints in order to
quantify the similarity between two chemical structures.(Skinnider et al., 2017)
Chemical similarity measure can be described has three components: (Chen & Reynolds,
2002; Todeschini et al., 2012)

• Structural representation, used to characterize the structures to be compared;

• Weighting schemes, to assign different importances to each features/substructures;

• Similarity coefficient, that provides the mathematical function for calculating a sim-
ilarity value based on (possible weighted) values of structural descriptors.

Before present similarity measures, it is necessary to define what similarity between
two compounds means. Thus, molecules as the ones we’ve seen can be described as binary
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vectors. Let’s see an example of two molecules as binary vectors, x and y, each with p

substructures with values being 0 or 1. Since each feature can be 0 or 1, and we have 2

vectors, we can have a maximum of 4 combinations. Those four combinations can be seen

in the contingency table 2.1. (Todeschini et al., 2012)

y = 1 y = 0
x = 1 a b a + b
x = 0 c d c + d

a + c b + d p

Table 2.1: Frequency Table of the Four Possible Combinations for Two Binary Vectors

The contingency table can be read as:

– a (x=1 and y=1) is the number of features which x and y share

– b (x=1 and y=0) is the number of features which x has and y lacks

– c (x=0 and y=1) is the number of features which x lacks and y has

– d (x=0 and y=0) is the number of features which x and y both lacks

– a + b is the number of presence of substructures in x

– a + c is the number of presence of substructures in y

– a + d represents the similarity between the x and y vectors

– b + c represents the dissimilarity between the x and y vectors

– p is the total number of variables, (a+b+c+d), which is the length of each binary

vector
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There are several similarity measures that make use of binary fingerprints similarity and
dissimilarity terms. Some of the most commonly applied are present on table 2.2.(Holliday
et al., 2002; Todeschini et al., 2012)

No. Name Formula

1. Jaccard/Tanimoto a
a+b+c

2. Dice 2a
2a+b+c

3. Russell/Rao a
p

4. Sokal/Sneath a
a+2b+2c

5. Kulczynski a
b+c

6. Simple Matching a+d
p

7. Hamann a+d−b−c
p

8. Rogers/Tanimoto a+d
b+c+p

9. Baroni-Urbani/Buser
√
ad+a√

ad+a+b+c

10. Ochiai/Cosine a√
(a+b)(a+c)

11. Forbes pa
(a+b)(a+c)

12. Fossum n(a− 1
2
)2

(a+b)(a+c)

13. Simpson a
min(a+b,a+c)

14. Pearson ad−bc√
(a+b)(a+c)(b+d)(c+d)

15. Yule ad−bc
ad+bc

Table 2.2: Most Used Similarity Measures

According to several studies, Tanimoto is the most appropriate similarity measure in
the search of similarity patterns. (Bajusz et al., 2015; Chen & Reynolds, 2002; Todeschini
et al., 2012)

2.1.4 Quantitative Structure-Activity Relationship (QSAR)

As seen in the last topic, it is possible to compare two distinct structures and retain a
value representative of the similarity. However, this alone doesn’t give us any informa-
tion. Quantitative Structure-Activity Relationship (QSAR) models were first described
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by Corwin Hansch in the 60s and, nowadays, make use of the principle that similar struc-
tures may share the same biological activities and physiochemical properties.(Chen &
Reynolds, 2002; Cherkasov et al., 2015) Statistical and machine learning models such as
Clustering are between the most common approaches to automatize predictions for large
databases instead of ultrahigh-throughput screening of large databases.(Kausar & Falcao,
2018; Polishchuk, 2017)

2.1.5 Drug Activity Measures

The existence of prior laboratory investigation about compound-target biological activities
is the reason that makes possible to use QSAR models to predict activities for unknown
molecules, since these make use of known information to make those predictions. When
defining targets/receptors to a drug by laboratory experiments, it would be desirable that
a drug would act only on the receptor or biological site of interest, at all concentrations,
and wouldn’t interact with others at any achievable concentration. Unfortunately, no
drug have this ideal property.(Neubig et al., 2003) To quantify the action of each drug,
for all type of experiments, at different concentrations, for different targets, the use of
experimental measures is mandatory. The table 2.3 shows some of the most common
experimental measures of drug action and their descriptions.

2.2 Cheminformatics Databases

Chemical information (such as the properties of a drug, the relationship between differ-
ent compounds or the drug-target relationship) increases exponentially everyday. Safe
storage, the possibility of manipulation with different tools and access everywhere are
some of the essential requirements these days. Thus, there are several chemical databases
whose stored information may be different according to the purpose for which the project
intends to respond. Some of the most widely used databases worldwide are, for example:
DrugBank, PubChem, ChEMBL and ZINC.

• DrugBank.(Wishart et al., 2018) "DrugBank is a comprehensive, freely available
web resource containing detailed drug, drug target, drug action and drug interaction
information about FDA-approved drugs as well as experimental drugs going through
the FDA approval process". Contains 2,358 drugs approved by FDA and others,
4,501 compounds from experimental drugs in phases I/II/III and more then 365,000
drug-drug interactions.
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Measure Description

Ki Inhibitory constant. Concentration needed of inhibitor to reduce

an activity between ligand-receptor. (Mohan et al., 2013; Waley, 1982)

IC50
Inhibitory concentration 50%. Concentration needed of inhibitor

to reduce an activity by 50% between ligand-receptor.

(Mohan et al., 2013; Neubig et al., 2003)

MIC
Minimum Inhibitory Concentration (MIC). Lowest concentration

of an anti-microbial that will inhibit the visible growth of a

microorganism after overnight incubation. (Andrews, 2001)

Inhibition Concentration needed of inhibitor to reduce an activity between

ligand-receptor. (Waley, 1982)

Potency Concentration/amount needed to produce an effect with a

determined magnitude. (Neubig et al., 2003)

Activity Concentration needed to produce an activity.(Shockley, 2016)

EC50 Efficacy Concentration 50%. Concentration needed to produce

50% of the maximal possible effect.(Mohan et al., 2013; Neubig et al., 2003)

GI50 Growth Inhibition 50%. Concentration of drug needed to

inhibit the growth by 50%.(Marx et al., 2003)

ED50 Effective Dose 50%. Dose needed to produce 50% of the

maximal response to that drug.(Mohan et al., 2013; Neubig et al., 2003)

AC50 Activity Concentration 50%. Concentration needed to

produce 50% of maximal activity.(Shockley, 2016)

Table 2.3: Experimental Measures of Drug Action and their Descriptions

• PubChem.(Kim et al., 2016) PubChem is a public repository for information on

chemical substances and their biological activities. Launched in 2004, has rapidly

grown to a key chemical information resource that serves scientific communities in

many areas such as cheminformatics, chemical biology, medicinal chemistry and drug

discovery. In 2015, PubChem had more than 157 million provided chemical sub-

stances descriptions, 60 million unique chemical structures and 1 million biological

assay descriptions. The database data is provided by more than 350 contributors,

such as universities, government agencies, pharmaceutical companies, chemical ven-

dors, publishers and some other chemical biology resources. The data exchange
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between other chemical databases is very common.

• ChEMBL.(Gaulton et al., 2014, 2017) "ChEMBL is an open large-scale bioactiv-
ity database containing information largely manually extracted from the medicinal
chemistry literature. Information regarding the compounds tested (including their
structures), the biological or physicochemical assays performed on these and the
targets of these assays are recorded in a structured form, allowing users to address a
broad range of drug discovery questions." In 2017, the database contained informa-
tion extracted from more than 65,000 publications, 1.6 million distinct compounds,
14 million activity values from 1.2 million assays. These assays are mapped to ap-
proximately 11,000 targets, including 9,052 proteins (which 4,255 are human). Data
can be used in different applications, like identification of suitable chemical tools for
a target and large scale data mining, such as the construction of predictive models
for targets.

• ZINC.(Sterling & Irwin, 2015) ZINC (ZINC Is Not Commercial) is a public access
database and a tool set, developed to enable ready access to compounds for virtual
screening, ligand discovery, benchmarking and force field development. Initially
developed as an exclusive compounds database, it has been updated more recently
to ZINC15 version, that is designed to bring together biology and cheminformatics,
with a tool that makes it easier to use for non experts, remaining full programmable
for cheminformaticians and computational biologists.
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Chapter 3

Methods and Data

3.1 Data Mining

Data Mining is a popularly used term as a synonym of Knowledge Discovery from Data
(KDD). This process can be described in the following 7 steps: 1. Data Cleaning (re-
move of inconsistent data); 2. Data Integration (combination of multiple data sources);
3. Data Selection (retrieved relevant data from database); 4. Data Transformation
(transformation of data to appropriate mining form); 5. Data Mining (application of
methods to extract data patterns); 6. Pattern Evaluation (identification of interest-
ing patterns representing knowledge); 7. Knowledge Presentation (visualization and
knowledge representation to users).(Han et al., 2012)

3.1.1 Cluster Analysis

Cluster analysis consists in the process of partitioning a dataset into subdatasets. Each
subset is defined as a cluster, where objects in a cluster are similar to one another, yet
dissimilar to objects in other clusters. The set of clusters generated from a cluster analysis
is commonly referred as clustering. Thus, different clustering methods may generate
different clustering for the same dataset. The discovery of previously unknown groups in
the data is one of the most useful resources of clustering.(Han et al., 2012)

3.2 Clustering Algorithms

There are several clustering algorithms, classified into Hierarchical, if in each iteration a
parent-child relationship is being established between clusters or nonhierarchical, if the
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results produced are a single partition of the dataset. (Lipkowitz & Boyd, 2002)

3.2.1 Hierarchical Algorithms

In the Hierarchical algorithms, there are divisive and agglomerative branches. Agglom-
erative algorithms have a bottom-up strategy, starting with each object forming its own
cluster and iteratively merging them into large clusters until a final merge into a single
cluster. Divisive make use of a top-down strategy, starting by a single cluster with all
objects, splitting them into smaller clusters.(Han et al., 2012; Lipkowitz & Boyd, 2002)

3.2.1.1 Hierarchical Agglomerative Algorithms

The most commonly hierarchical clustering algorithms methods are implemented using
what is called the stored-matrix algorithm, since the starting point of all the algorithms
is a matrix of all pairwise proximities between all the objects to be clustered. After that,
the algorithm scans the matrix to find the most similar pair of clusters and merge them
into a new cluster. The matrix is updated and it’s scanned over and over until just one
cluster remains. For a N dataset the stored-matrix algorithm requires O(n2) time and
space for creation and O(n3) for clustering.(Lipkowitz & Boyd, 2002)

3.2.1.2 Hierarchical Divisive Algorithms

One of the most used Divisive algorithms is Divisive Analysis (DIANA). All the n ob-
jects start by belonging to an initial cluster. The cluster is split according to a principle.
The clustering process ends only when the principle can no longer divide more. In this
algorithm, when the n is large it is computationally prohibitive to examine all possibili-
ties.(Han et al., 2012)

3.2.2 Nonhierarchical Algorithms

Nonhierarchical algorithms make use of different techniques to build clusters. For example,
a single-pass method (used in Leader Algorithm) where the partition is achieved through
a single pass through the dataset; a relocation method, where objects are moved from
one cluster to another to improve the initial estimation of clusters (used in K-means);
and even those who make use of density-based methods (used in Density-Based Spatial
Clustering of Applications with Noise - DBSCAN), regard the distribution of descriptors
across the dataset as generating patterns of high and low density that, when identified,
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can be used to separate the compounds into clusters. (Han et al., 2012; Lipkowitz &
Boyd, 2002)

3.2.2.1 Leader Algorithm

The Leader algorithm starts by setting the number of clusters to zero. Then, uses the first
object in the data set to start the first cluster. To all the next objects, it calculates the
similarity between them and, iteratively, all the first elements (Leader) of each cluster.
If its similarity exceeds some threshold, the object belongs to a cluster; otherwise it tries
the next cluster or generates a new one. This method is simple to implement and fast,
however it is order dependent.(Lipkowitz & Boyd, 2002)

3.2.2.2 K-means

K-means is a centroid-based partiotining technique. It is necessary to give at start, a
dataset with n objects and a k number of clusters to partitionate the dataset. At start,
it chooses arbitrarily k objects from the dataset as the initial cluster centroids, then for
each of the remaining objects it is made the assignment to the most similar centroid. The
mean value of each cluster is calculated, becoming the mean object the new centroid. This
process of assignment/new calculated centroid is repeated until no changes. However, this
process has two main disadvantages since it is necessary, at start, to mention the number
of centroids desired and it is too time consuming in large datasets, with a complexity of
O(ndk+1logn), being d dimensions. (Han et al., 2012)

3.2.2.3 Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN)

DBSCAN is an algorithm known for finding clusters with arbitrary shape as the "S"
shape/oval clusters and can detect noise/outliers in the data. The main strategy makes
use of dense regions in the data space, separated by sparse regions. The algorithm requires
a dataset; a user-specified-parameter e>0 used to specify the radius of a neighborhood
considered for every object; and MinPts>0 that allows a object to be considered a core
object of the cluster if it has at least MinPts objects at e radius. So, an object can be a
core member of a cluster if it has at least MinPts at e radius of distance. A border member
of cluster if it’s at e radius distance of a core object or noise if none of the previously
premises happen. (Han et al., 2012; Lipkowitz & Boyd, 2002)
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The complexity of the algorithm is O(nlogn) if a spatial index is used, and O(n2)
otherwise. This algorithm however is too sensitive to the setting of parameters.

3.2.3 Brotherhood Algorithm

To define different pharmacological regions in the chemical space it is necessary to have
large datasets with a big variety of information. The previously mentioned algorithms and
even variants of them described in the literature are some of the most used algorithms in
clustering cheminformatics data. However, most of them are unable to treat large datasets
and are too sensitive to user-specified parameters.(Ahmad & Dang, 2015)

Brotherhood algorithm is an heuristic clustering algorithm, based on Leader algo-
rithm with a single-pass method, designed with the purpose of handling large datasets.
By using two related layers of clusters (Clusters and Son-Clusters) it allows to reduce the
number of clusters without creating large partitions that would compromise the clustering
in large datasets. Another difference comparing to Leader is the fact that for a molecule
to belong to a specific cluster it is not only necessary to have a threshold higher than the
specified with the first molecule but with all the molecules of that cluster.

The algorithm requires three entry parameters: a dataset moleculesList, as a list
of molecules (one per line) with the format (molecule ID, SMILES identifier); a first

threshold, between 0.0 and 1.0, as a cut-off value for a molecule belong or not to a
specific cluster, and finally a second threshold, between 0.0 and 1.0, as a cut-off value
for a molecule belong or not to a specific Son-Cluster. The following premises are equally
valid:

• For a molecule to belong to a cluster. Necessary that, the result of Tanimoto1

similarity measure between that molecule and all those molecules belonging to the
cluster, be always greater than the first threshold.

• For a molecule to belong to a son-cluster. Necessary that the result of Tan-
imoto similarity measure between that molecule and at least one of the molecules
belonging to a cluster(father) be greater than the first threshold and Tanimoto sim-
ilarity measure between that molecule and all those belonging to the son-cluster, be
always greater than the second threshold.

1According to literature, most used in QSAR studies and with the best results
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3.2 Clustering Algorithms

The workflow is simplified in the pseudo-code of the algorithm:

Figure 3.1: Pseudocode of Brotherhood algorithm
.

After executing the algorithm, with the three parameters required, the expected results
are two .txt files.

• First file with the name Dataset_FirstTH_SecondTH_Output.txt.
E.g (myList_0.5_0.5_Output.txt) Following organization:
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– Thresholds parameters given to execute the algorithm;

– Number of clusters generated;

– Number of son-clusters generated;

– Time (in seconds) of execution;

– Representation of clusters and son-clusters generated

Format of file similar to Figure 3.2

• Second File with the name Dataset_Centroids.txt. Following organization:

– First molecule of each generated cluster (as many as the generated clus-
ters), with molecular identifier and canonical SMILES.

Format of file similar to Figure 3.3

Figure 3.2: First File - A .txt file with the similar aspect representing the clustering results
.

Figure 3.3: Second File - A .txt file with the similar aspect representing centroids (first
molecules) of each cluster
.
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3.3 Chemical Information Processing

The implementation of the algorithm was made using Python(release 3.6.3), being the

molecules SMILES processed and compared using RDKit library.

3.3 Chemical Information Processing

There are several chemical tools/libraries that could be used to implement the task de-

scribed above. Open Babel (Pybel) and RDKit are two of the most used chemical toolkits,

both are free to use and have an open source code. However, according to google trends,

RDKit is more searched than Open Babel. (Figure 3.4)(googleTrends, 2018) This usually

translates into greater support among users in solving complex problems.

Figure 3.4: Google Trends - The numbers represent the search interest relative to the
highest point in the graph of a given region(in this case global) in a given period. A value
of 100 represents the peak popularity of a term. A value of 50 means that the term had
half the popularity. A score of 0 means that there was not enough data on the term.
.

3.3.1 OpenBabel/Pybel

OpenBabel is a C++ toolkit that allows the reading and writing of molecular file formats

(more than 80 supported) as well as molecular data processing. This toolkit supports

SMiles ARbitrary Target Specification (SMARTS) structure searching and molecular fin-

gerprints (daylight and structural-key based). Pybel is the python module that provides

access to the OpenBabel toolkit.(Boyle, 2012)
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3.3.2 RDKit

RDKit is an open source toolkit for cheminformatics with core data structures and algo-
rithms developed in C++ with bindings for Python, Java and C#. Originally developed
at Rational Discovery, is currently being used and developed within the Novartis Institutes
for BioMedical Research. (Landrum, 2018; Tosco et al., 2014)

Unlike Pybel, RDKit allows to turn SMILES into 2D descriptors like ECFP_4 and
ECFP_6 and compare those descriptors using multiple similarity measures such as Tan-
imoto, Dice, Cosine, Sokal, Russel, among others.(Landrum, 2018)

3.4 Data

By using the Brotherhood algorithm it is expected a fast algorithm, less sensitive and
more manageable to entry parameters and the ability of partitioning the chemical space
through the use of large datasets. In the next chapter,divided in three phases, it was used
different sets of the same database, ZINC Database, more specifically the Standard All
Purchasable:

• In the first phase, clustering process was made to test the amount of time needed to
run the algorithm using small and large datasets, including an analysis of clusters
and son-clusters generated. For that, 12 randomly selected datasets from 1,000 to
5,000,000 molecules were used.

• With the second phase, the purpose was to evaluate if there was a relationship
between the amount and order of molecules per dataset with the generated clusters,
son-clusters and time of execution. The clustering process was made in 21 randomly
selected datasets, each randomly ordered 5 times, in amounts from 1,000 to 100,000
molecules, totalizing 105 runs.

• In the third and last phase, the goal was to evaluate if the clustering process in
large amounts of molecules were able to partition most of the chemical space. The
clustering was made for 2 different datasets with 2,000,000 and 5,000,000 molecules.
Then, for 2,000,000 new molecules, it was verified whether they would be part of
any of the previously generated clusters. In this way it would be possible to verify
if the molecular space was adequately divided.
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Chapter 4

Clustering Analysis

This chapter shows the results obtained through the application of the developed algo-
rithm to all the datasets through all the three lines of action. For each phase, results will
be discussed.

The clustering process was executed in a machine with a Intel Core Processor (Broad-
well) with a base frequency of 2.2Ghz 4Mb cache and 20 cores with 32GB of RAM running
a Debian GNU/Linux 8 (jessie).

4.1 Phase I

The algorithm was tested 4 times with the 12 described datasets, changing only the two
entry threshold parameters. The thresholds (first threshold - second threshold) used were:
0.2-0.2; 0.3-0.3; 0.3-0.5 and 0.5-0.3. Since the purpose of the algorithm is to generate a
treatable and small number of clusters, the thresholds used couldn’t be too high, otherwise,
there would be a risk of having a huge number of clusters and the algorithm complexity
problem would remain. In the table 4.1 is represented the time (in seconds) needed to
run the algorithm for each dataset, for each set of thresholds and the number of clusters
and Son-Clusters generated.

For the thresholds of 0.5-0.3, the table does not display all the data. This happens
because for relatively small datasets, the time required to apply clustering is already too
time consuming. For the 200,000 molecules dataset, for example, comparing the time
required with the remaining sets of parameters presented it’s possible to see that it takes
more than 20x and even 40x. The justification for this is due to the fact that the first
threshold (0.5) may be too high. In this case, for a molecule to belong to a cluster, it
must have structural similarity greater than 50% with all of the molecules in this cluster
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0.2-0.2 0.3-0.3
Mol Clust Son-Clust Time Mol Clust Son-Clust Time
1,000 266 281 1 1,000 465 198 1
2,000 377 561 2 2,000 723 504 2
5,000 650 1,356 5 5,000 1,293 1,524 7
10,000 900 2,633 11 10,000 1,917 3,196 17
20,000 1,282 4,943 26 20,000 2,893 6,308 47
50,000 1,848 9,980 87 50,000 4,433 14,345 145
100,000 2,442 16,537 186 100,000 6,057 25,338 337
200,000 3,166 27,315 488 200,000 8,067 43,839 765
500,000 4,415 50,118 1,602 500,000 11,420 85,527 2,197
1,000,000 5,520 76,582 3,886 1,000,000 14,613 136,118 4,807
2,000,000 6,819 115,048 9,659 2,000,000 18,314 212,542 10,621
5,000,000 8,673 183,207 39,331 5,000,000 23,820 352,539 30,129

0.3-0.5 0.5-0.3
Mol Clust Son-Clust Time Mol Clust Son-Clust Time
1,000 465 288 1 1,000 954 1 2
2,000 723 778 2 2,000 1,868 3 6
5,000 1,293 2,620 7 5,000 4,620 28 39
10,000 1,917 6,004 18 10,000 8,702 166 150
20,000 2,893 12,936 50 20,000 16,100 606 551
50,000 4,433 33,979 167 50,000 33,493 2,982 2,672
100,000 6,057 66,576 427 100,000 55,657 8,079 8,371
200,000 8,067 126,626 1,049 200,000 87,595 20,078 24,550
500,000 11,420 279,624 3,447 500,000 - - -
1,000,000 14,613 485,319 9,310 1,000,000 - - -
2,000,000 18,314 816,916 22,979 2,000,000 - - -
5,000,000 23,820 1,492,022 78,631 5,000,000 - - -

Table 4.1: Time (in seconds) necessary to run the algorithm, clusters and Son-Clusters
generated for each datasets with each set of thresholds parameters.

or, to be in a son-cluster, it must have structural similarity greater than 50% with at least
one of them. If this doesn’t happen often, the growth of number of clusters will be fast.
Thus, in the course of the clustering process, more and more comparisons are necessary
as more and more clusters are created, which makes the time needed to run the algorithm
increase exponentially.

Analyzing the results obtained for set 0.3-0.5, it is possible to verify that, compared
with the other two (0.2-0.2, 0.3-0.3), the time differences are not that big when it is
applied the process in small datasets. However, as the dataset increases, the differences
start to to be noticed. In the 3 biggest datasets, for example, the time required is already
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4.1 Phase I

more than double. The justification for this turns out to be similar to the previously set

0.5-0.3. The number of clusters doesn’t grow so quickly but the number of son-clusters

does.

Comparing the execution time between sets 0.2-0.2 and 0.3-0.3, it is possible to verify

a curious fact. Clustering time is always smaller in set 0.2-0.2, except in the largest

dataset (5,000,000), where time is approximately 1.25x bigger. This happens because

being thresholds lower, the number of clusters generated are actually smaller. However,

the size of each of them increases significantly compared to the clusters generated with

0.3-0.3 threshold. The fact that clusters are larger could mean that the average value

distribution of similarity approaches more than 0.2 threshold than 0.3. There are fewer

clusters and these are larger, consequently, it may be necessary to compare a molecule to

a large part of the molecules present in the cluster, until it finds an appropriate place for

that molecule to belong. In the figure 4.1, it is possible to observe the charts of time for

each set, according to each dataset, in a more graphical and simpler way.

With the results seen previously, it is possible to verify that it is through the balance

between thresholds that is possible to achieve a reduced number of clusters with a good

time performance of the algorithm. We observed four combinations of thresholds with

the final conclusions:

• By increasing the first threshold (0.5-0.3), many clusters are generated which, even

for small datasets, make the time for execution too consuming.

• By increasing the second threshold (0.3-0.5), many Son-Clusters are generated which

make the clustering process slower.

• By decreasing the two parameters (0.2-0.2), less clusters are generated (either clus-

ters and Son-Clusters) which make each cluster larger and consequently required

more time to conclude the clustering process.

• Through intermediate threshold values (0.3-0.3) it is possible to have a balanced

amount of cluster and acceptable sizes that end up reducing the execution time.
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Figure 4.1: Charts of Time for each set (of thresholds) for each dataset.
.

4.2 Phase II

In phase II, the algorithm was tested 105 times with the same set of thresholds (0.3-0.3).

Three different sets for each of the seven amounts of molecules from 1,000 to 100,000

molecules with five different randomly orders. In the appendix A, it is presented in tables

all the data obtained.

To analyze the data, it was made a chart for each of the properties: Clusters, Son-

Clusters and Time. In fact, boxplots were plotted in each chart, for each of the amounts
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of the datasets. (figures 4.2,4.3, 4.4)

It is possible to observe that only 2 outliers were detected in the chart of time, regarding

the values "525" and "511". Since the server where the clustering process was made is

shared, and only those 2 values were registered as outliers it may represent a moment

where the server got overloaded.

Figure 4.2: Chart with boxplots - Clusters generated for each amount of the dataset

Figure 4.3: Chart with boxplots - Son-Clusters generated for each amount of the dataset

By making for each chart, the log x and log y and plotting a line crossing the mean of

each boxplot, the following charts were obtained figures 4.5, 4.6, 4.7.
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Figure 4.4: Chart with boxplots - Time necessary to run for each amount of the dataset

Figure 4.5: Chart with boxplots - log(Clusters) generated for each amount of the
log(dataset)

Figure 4.6: Chart with boxplots - log(Son-Clusters) generated for each amount of the
log(dataset)
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4.3 Phase III

Figure 4.7: Chart with boxplots - log(Time) necessary to run for each amount of the
log(dataset)

It is possible to see that in the 3 cases, by doing the log nrMolecules and log y, being y

Clusters, Son-clusters or time, it results in a linear relationship. Whenever two quantities

plotted in logarithmic axes show a linear relationship, it indicates that the two quantities

have a power law distribution. So, it is possible to say that independently of the order and

the constitution of the datasets, clusters, son-clusters and time have a linear relationship

between the dataset that generated them.

4.3 Phase III

This phase has the following line action: first, the clustering process was applied for 2

datasets (2 million and 5 million molecules). Then, with a new dataset with 2 million

molecules, it was made the verification if they would belong to an existing Cluster or

Son-Cluster or if they would create a new Cluster or Son Cluster. Before starting this

process, it was evaluated the relationship between clusters/Son-Clusters and the number

of molecules that originated them. With this evaluation, it is possible to observe whether

the speed of generated clusters increases or decreases as the dataset increases. The results

presented on table 4.2 and 4.3 make use of the results obtained in the phase I, when applied

the algorithm to the 12 datasets with the thresholds as 0.2-0.2 and 0.3-0.3. The charts in

figure 4.8 and 4.9 represent the data in tables 4.2 and 4.3, respectively.
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Figure 4.8: RelationShip between the number of clusters generated and dataset that
originated them when using parameters 0.2-0.2 as entry.
.

Figure 4.9: RelationShip between the number of clusters generated and dataset that
originated them when using parameters 0.3-0.3 as entry
.
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0.2-0.2
Molecules Clusters son-Clusters C/Mol SC/Mol

1,000 266 281 0.2660 0.2810
2,000 377 561 0.1885 0.2805
5,000 650 1,356 0.1300 0.2712
10,000 900 2,633 0.0900 0.2633
20,000 1,282 4,943 0.0641 0.2472
50,000 1,848 9,980 0.0370 0.1996
100,000 2,442 16,537 0.0244 0.1654
200,000 3,166 27,315 0.0158 0.1366
500,000 4,415 50,118 0.0088 0.1002
1,000,000 5,520 76,582 0.0055 0.0766
2,000,000 6,819 115,048 0.0034 0.0575
5,000,000 8,673 183,207 0.0017 0.0366

Table 4.2: Relationship between Clusters and Son-Clusters with the dataset using param-
eters 0.2-0.2.

By analyzing both tables, it is possible to verify that the relationship between the
number of clusters/Son-Clusters generated and the number of molecules that generated
them is decreasing as dataset increases, which means that for every iteration less and less
clusters are being generated. Observing figures 4.8 and 4.9 it is possible to see that the
curve of generated clusters is decreasing and showing a sign of stabilization.

After this, as mentioned, it was executed the algorithm process for 2 million randomly
selected molecules with thresholds 0.3-0.3, with the results presented in table 4.4.

Then, for other set of randomly selected 2 million molecules the assignment for each
molecule was made, so they had to fill one of the following categories: Inside Cluster,
Inside Son-Cluster, Similarity with Cluster but no Son-Cluster (would generate new Son-
Cluster), No Assignment (would generate new cluster). (Table 4.5)

Observing the table 4.5, the most important information we can retain is that in an
universe of 2 million molecules, 4,822 molecules wouldn’t be linked in anyway to any of
the clusters. In other words, only 0.24% of the molecules wouldn’t be assigned to a cluster
in anyway.

The previously procedure was also applied for a clustering of 5 million molecules and
an assignment with the same set of 2 million molecules, being the results presented in
tables 4.6 and 4.7.

In this case, with a previously clustering of 5 million molecules, only 1,531 of the 2
million molecules wouldn’t be linked to a cluster, which represents 0.07% of them.
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0.3-0.3
Molecules Clusters son-Clusters C/Mol SC/Mol

1,000 465 198 0.4650 0.1980
2,000 723 504 0.3615 0.2520
5,000 1,293 1,524 0.2586 0.3048
10,000 1,917 3,196 0.1917 0.3196
20,000 2,893 6,308 0.1447 0.3154
50,000 4,433 14,345 0.0887 0.2869
100,000 6,057 25,338 0.0606 0.2534
200,000 8,067 43,839 0.0403 0.2192
500,000 11,420 85,527 0.0228 0.1711
1,000,000 14,613 137,270 0.0146 0.1373
2,000,000 18,314 212,542 0.0092 0.1063
5,000,000 23,820 352,539 0.0048 0.0705

Table 4.3: Relationship between Clusters and Son-Clusters with the dataset using param-
eters 0.3-0.3.

Thresholds 0.3-0.3
Clusters 18,310

Son-Clusters 210,715
Time(seconds) 10,575

Table 4.4: Results of clustering for 2 million randomly selected molecules with thresholds
0.3-0.3

Inside Cluster 117878
Inside Son-Cluster 1,763,283

Similarity with cluster
but no Son-Cluster 114,728

No Assignment 4,822

Table 4.5: Assignment of 2 million randomly selected molecules with thresholds 0.3-0.3

Thresholds 0.3-0.3
Clusters 23,918

Son-Clusters 350,175
Time(seconds) 29,993

Table 4.6: Results of clustering for 5 million randomly selected molecules with thresholds
0.3-0.3

If the pharmacological definition for each cluster had already been made, it would
be possible to predict some information for each of the molecules with this assignment
process. Thus, in the first case, it wouldn’t be possible to predict for 4,822 molecules
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Inside Cluster 113,494
Inside Son-Cluster 1,835,030

Similarity with cluster
but no Son-Cluster 50,656

No Assignment 1,531

Table 4.7: Assignment of 2 million randomly selected molecules with thresholds 0.3-0.3

(0.24% of the 2 million) and in the second case it wouldn’t be possible to make any
prediction for 1,531 molecules (0.07% of the 2 million).

The cluster method used is based on an heuristic process, so it is necessary to ignore
some information, sacrificing optimum results, in order to make the decision faster and
sometimes even possible. In the last case, we would then be able to predict for 99.93% of
the molecules.
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Chapter 5

Defining Clusters Pharmacologically

The main purpose of this chapter is to make use of the results obtained with the algorithm,

in order to define each of the clusters with pharmacological information from ChEMBL_23

database. Two lists of clusters were defined: 8,673 clusters (generated through 5 million

ZINC dataset with 0.2-0.2 thresholds) and 23,820 clusters (generated through 5 million

ZINC dataset with 0.3-0.3 thresholds). The first element of each cluster was used to

represent it. So, in fact, there is a list of 8,673 and 23,820 molecules, defined as centroids

(they are not the center of the cluster but are representative of it).

First, ChEMBL_23 data was processed and filtered in order to keep only the relevant

information relative to activity. E.g., if a compound is active or inactive to a target.

Then, each of those compounds were linked to a cluster/centroid. Finally, a database was

created with all the information in order to be used in the user interface.

5.1 ChEMBL_23 Data Processing

The ChEMBL_23 is a database that contains 72 tables with different kind of information

relative to bioactivities. However, not all information is relevant for the goal of this task.

The information needed was retrieved from 7 tables and not all columns were required.

In the figure 5.1 it is presented the tables and columns used.
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Figure 5.1: Seven retrieved tables from ChEMBL_23. Green background represents
selected columns and red background represents unselected. The lines between columns
represent the columns that inter ligate all table information.

The tables and columns above mentioned have the following description:
(number of entries for each table is mentioned in brackets)

• compound_structures (1,818,302)

Table storing various structure representations (e.g., Molfile, InChI) for each com-
pound

– molregno: Internal Primary Key for the compound structure and foreign key
to molecule_dictionary table

– canonical_smiles: Canonical smiles, generated using pipeline pilot

• molecule_dictionary(1,742,024)

Non redundant list of compounds/biotherapeutics with associated identifiers

– molregno: Internal Primary Key for the molecule

– chembl_id: ChEMBL identifier for this compound (for use on web interface
etc)
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• activities(14,675,320)

Activity ’values’ or ’end points’ that are the results of an assay recorded in a scientific
document. Each activity is described by a row.

– activity_id: Unique ID for the activity row

– assay_id: Foreign key to the assays table (containing the assay description)

– molregno: Foreign key to compounds table

– standard_relation: Symbol constraining the activity value (e.g. >, <, =)

– standard_value: Same as PUBLISHED_VALUE but transformed to common
units: e.g. mM concentrations converted to nM.

– standard_units: Selected ’Standard’ units for data type: e.g. concentrations
are in nM.

– standard_type: Standardised version of the published_activity_type (e.g.
IC50 rather than Ic-50/Ic50/ic50/ic-50)

– activity_comment: Describes non-numeric activities i.e. ’Slighty active’, ’Not
determined’

• assays(1,238,241)

Table storing a list of the assays that are reported in each document. Similar assays
from different publications will appear as distinct assays in this table.

– assay_id: Unique ID for the assay

– tid: Target identifier to which this assay has been mapped. Foreign key to
target_dictionary. From ChEMBL_15 onwards, an assay will have only a
single target assigned.

• target_dictionary(11,538)

Target Dictionary containing all curated targets for ChEMBL. Includes both protein
targets and non-protein targets (e.g., organisms, tissues, cell lines)

– tid: Unique ID for the target

– pref_name: Preferred target name: manually curated

– organism: Source organism of molecular target or tissue, or the target organism
if compound activity is reported in an organism rather than a protein or tissue
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– chembl_id: ChEMBL identifier for this target (for use on web interface etc)

• target_components(9,512)

Links molecular target from the target_dictionary to the components they consist of
(in the component_sequences table). For a protein complex or protein family target,
for example, there will be multiple protein components in the component_sequences
table.

– tid: Foreign key to the target_dictionary, indicating the target to which the
components belong.

– component_id: Foreign key to the component_sequences table, indicating
which components belong to the target.

• component_sequences (7,758)

Table storing the sequences for components of molecular targets (e.g., protein se-
quences), along with other details taken from sequence databases (e.g., names, ac-
cessions). Single protein targets will have a single protein component in this table,
whereas protein complexes/protein families will have multiple protein components.

– component_id: Primary key. Unique identifier for the component.

– accession: Accession for the sequence in the source database from which it was
taken (e.g., UniProt accession for proteins).

Using the information retrieved from the 7 tables, the purpose was to reorganize and
generate 3 simpler tables with the following information: Compounds_table (information
about compounds), Activities_table (activity level, for a given compound to a specific
target), Targets_table (information about targets).(figure 5.2)

Figure 5.2: ChEMBL information reorganized into simpler tables.
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Most of the information of those 3 tables is easily accessed and well organized in the
ChEMBL_23 tables, however, the information for activity level is not that accurate.

From activities table of ChEMBL_23, it is possible to obtain that information through
the observation and evaluation of the following columns: standard_relation, standard_value,
standard_units, standard_type and activity_comment. (Figure 5.3)

In order to do the transformation of all that data into "Active", "Inactive" and "Un-
known" fields, it was necessary to apply some rules, because, for more than 14 million
entries, it is necessary that the process is automatized.

Figure 5.3: Activity entry example.

To be able to generate those rules, it is necessary to analyze the data present in those
columns and find logic patterns. There are more than 2000 different standard_units
and near 6000 different standard_type of assays. Despite having so many different stan-
dard_types, the 10 most common represent almost 85% of the near 14 million activity
entries, and from those 2000 standard_units, most of them are either represented by
percentage, concentration or quantity units.

So, these are the logic rules to turn activities into activity_level (Active/Inactive/Un-
known):

1. Through the analysis of activity_comment it’s possible to describe the activity as
"Active" or "Inactive". List of exchange comments to Active/Inactive present in
Appendix B.

E.g. "slight Inhibition" turned to "Active". "Ineffective" turned to "Inactive"

2. If there is no comment to conclude about activity and standard unit is %:

• The combination between std_relation and std_value is: > 0, the activity is
described as "Active".

• The combination between std_relation and std_value is: <= 0, the activity
is described as "Inactive".

E.g. An inhibition assay have > 30 %. It means that a compound inhibits more
than 30% when applied to a specific target. Whenever a value is negative, it is
considered as an enhancer instead of an inhibitor, so it’s described as inactive.
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3. If there is no comment to conclude about activity and standard unit is not %:

• When std_relation is <; =; <=; ,̃ ; « the activity is considered Active.

• When std_relation is >; >=; » the activity is considered Inactive.

E.g. If std_type is IC50, std_relation <, std_units is nM and std_value is
50, it’s considered Active. It is evaluated that to achieve 50% inhibition of the
target it is necessary a concentration less (<) than 50nM. In other words, 50nM
is able to inhibit already more than 50%. However, if every fields maintains the
same, but std_relation is >, it is considered Inactive. Since 50 nM isn’t able
to achieve 50% of inhibition, it is necessary, at least, a concentration higher
(>) than 50 nM. Once not an infinity range of concentrations were tested, it’s
not possible to know if at any concentration the inhibition would occur.

4. If the previously 3 rules couldn’t be applied, the activity between compound and
target is considered Unknown.

By applying the previously rules it was possible to characterize each activity between
compound and target into "Inactive", "Active" and "Unknown".

It is important to mention two important cases. Sometimes, there are different as-
says regarding the same compound-target activity with contraries information. So, for
a compound-target activity it is possible to have "Active" and "Inactive" activity_level
(whenever this happens, the information is still used). In the same way, it is possible to
have multiple activity_level for compound-target activity saying in all cases, the same
activity_level. For example, having 3 different assays saying that a compound-target
activity_level is "Active" (whenever this happens, only 1 entry is used).

To define each cluster using activities information, it is necessary to link each com-
pound to the correspondent cluster.

5.2 Link between compounds-activities-targets and clus-
ters

In order to link compounds-activities-targets information to each of the clusters, it was
used the similarity between the compounds and centroids. For each compound, it was
registered the most similar centroid and all those higher than 0.2 for the list of 8,673, and
higher than 0.3 for the list of 23,820. The reason for not keeping only the most similar
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is because it was verified that in some cases, the difference between the most similar and
the second one was to close. One of the cases, for example, had 0.2247 similarity to a
centroid and 0.2222 similarity with another. Both cases may contain precious information
that couldn’t be discarded.

5.3 Database Construction

Through the previously extraction and manipulation of the data from ChEMBL_23 and
the linkage between compounds-activities-targets information to the centroids of the clus-
ters, it was constructed a database.

The database was implemented in MySQL. MySQL is the most popular open source
SQL database management system which is developed, distributed and supported by
Oracle Corporation.(MySQL, 2018) The development process was made through linux
server and phpMyAdmin, which is a free software tool written in PHP, intended to handle
the administration of MySQL from a web user interface.(phpMyAdmin, 2018)

The developed Chemical Database contains information about centroids generated
through the clustering with entry parameters 0.2-0.2 and 0.3-0.3 (zincID, SMILES and
the positions of 1’s in an ECFP_6 vector), compounds (chemblID), activities( with in-
formation about the activity level of a compound to a target) and targets (chemblID,
preferable name, organism and accession number if exists). Each compound can be linked
to the closest centroid and all those closer than 0.2 for centroids generated with 0.2-0.2
and all those closer than 0.3 for centroids generated with 0.3-0.3. A centroid can have
multiple compounds associated. Regarding activities, each compound can be related to
multiple targets and each target can be related to multiple compounds.

In the figure 5.4 it is presented the database scheme.

Each of the tables have the following description and attributes description:

• centroids8673 - Table with 8,673 centroids from clusters generated through 5 million
ZINC sample with Brotherhood algorithm with entry parameters as 0.2-0.2.(8,673
entries)

– centroidID - A natural key, from 1 to 8,673

– zincID - The ZINC ID of the correspondent molecule

– SMILES - Molecule representation
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Figure 5.4: Database Scheme

– bits - SMILES is turned into a ECFP vector. bits represent the position of the
1’s in the correspondent vector.

• centroids23820 - Table with 23,820 centroids from clusters generated through 5
million ZINC sample with Brotherhood algorithm with entry parameters as 0.3-
0.3.(23,820 entries)

– centroidID - A natural key, from 1 to 23,820

– zincID - The ZINC ID of the correspondent molecule

– SMILES - SMILES is turned into a ECFP bits vector

– bits - bits represent the position of the 1’s in the correspondent vector.

• compTocents8673 - Table linking ChEMBL compounds to the closest centroid and
all other centroids with similarity higher than 0.2.(8,312,439 entries)

– centroidID - Foreign key to the centroids8673 table

– compoundID - Foreign key to the compounds table
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– distance - Similarity measure value, between 0 and 1, of a compound to the
centroid.

• compTocents23820 - Table linking ChEMBL compounds to the closest centroid and
all other centroids with similarity higher than 0.3.(1,823,079 entries)

– centroidID - Foreign key to the centroids23820 table

– compoundID - Foreign key to the compounds table

– distance - Similarity measure value, between 0 and 1, of a compound to the
centroid.

• compounds - Table with ChEMBL compounds.(1,727,581 entries)

– compoundID - A Natural key from 1 to 1,727,581

– chemblID - The ChEMBL ID corresponding to the compound.

• activities - Table that registers the activity level from a compound to a target.(9,957,429
entries)

– activityID - The ChEMBl activity ID that originated the entry

– compoundID - Foreign key to the compounds table

– targetID - Foreign key to the targets table

– activity - Activity level of the activity. 0:Inactive; 1:Active; 2:Unknown.

• targets - Table with the ChEMBL targets.(10,827 entries)

– targetID - A Natural key from 1 to 10827

– TID - The ChEMBL ID corresponding to the target

– prefName - The preferable name of the target (according to ChEMBL)

– organism - The organism of the corresponding target

– accession - The accession number, if exists.

The previously database was used to the construction of a search user interface.
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Chapter 6

Search User Interface

With the information stored in the database (only the branch of 8,673 centroids was used,

however it’s possible to switch in seconds of coding) created in the last chapter, a search

user interface was developed with the purpose of predict targets for untested compounds,

among other predictions.

The developed system can be seen in two stages:

• Back end (data access stage): The back end is constituted by the database (de-

veloped in mySQL v5.5.59) and the back end engine (developed with Python 3.7.1

using Django Framework v2.1.3).

• Front end (presentation stage): On the other hand, front end is constituted by the

interface presentation and funcionalities (developed with HTML5, CSS3, Bootstrap

v4 and Javascript).

6.1 System Architecture

In order to facilitate future updates to the system, it is necessary to be properly organized,

otherwise a simple change could imply changes throughout the system. So, the Model-

Template-View (MTV) architecture pattern was the one used.(Django, 2018)
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6.1.1 Model-Template-View

The Model-Template-View is a software design pattern, similar to the widely known
Model-View-Controller. However, since the controller is the framework itself, in django
it’s known as MTV. It’s a collection of three important components, as the name implies:
Models, Templates and Views.

• Model: Provides an abstraction layer (the “models”) for structuring and manipulat-
ing the data of your Web application.

• Template: The template layer provides a designer-friendly syntax for rendering the
information to be presented to the user.

• View: The concept of “views” to encapsulate the logic responsible for processing a
user’s request and for returning the response.

6.2 Interface

The interface of this system is divided into four sections that can be accessed in the
navigation bar: Home, Description, Tool and Contacts. (figure 6.1)

Figure 6.1: Navigation Bar of ChemicalBro Search Interface

6.2.1 Home

The home section is a page where the user is received and contains a brief description of
the purpose of the ChemicalBro interface. (figure 6.2)

6.2.2 Description

In the description section there is a more detailed explanation about the options that can
be chosen and which are the entry parameters and the expected output. (figure 6.3)
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Figure 6.2: Home page

Figure 6.3: Description page

6.2.3 Contacts

Here, there are more details about who developed the system and how it is possible to

contact to obtain more information or report any problem. (figure 6.4)
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Figure 6.4: Contacts page

6.2.4 Tool

In the Tool page, there are four options that can be chosen and a brief description for
each one. An insert box and a search button are present. (figure 6.5) When the option is
chosen, the insert box is correctly filled and the search button is clicked, the user browser
automatically downloads a .csv file with the results.

It is important to mention that the first and second options require a canonical SMILES
(E.g."Cc1c(cnc(n1)N)C(=O)C" ) and third and fourth options require ChEMBL ID’s
(E.g."340" and "340,370" respectively).

Figure 6.5: Tool page

There are 4 types of .csv result files:

• First option generates: CompToTargResults.csv

• Second option generates: CompToCompResults.csv

• Third option generates: TargToTargResults.csv
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• Fourth option generates: 2TargToCompResults.csv

6.2.4.1 Results examples per Option

Aspirin and Paracetamol are two compounds known for participating in the irreversible in-

hibition of cyclooxygenase implicated in the prostaglandin synthesis, in the inflammation

process.(Infarmed, 2008, 2011)

First Option Example

In the first option, by giving the canonical SMILES from Aspirin (CC(=O)OC1=CC=CC=

C1C(=O)O) it is expected to obtain targets related to prostaglandin synthesis and cy-

clooxygenase. By doing the search, it’s obtained 1,002 possible targets, being 10 related

to Cyclooxygenase and prostaglandin. (table 6.1)

# ChEMBLID Preferable Name
64 CHEMBL5658 Prostaglandin E synthase
65 CHEMBL1293255 15-hydroxyprostaglandin dehydrogenase [NAD+]
23 CHEMBL2096674 Cyclooxygenase
24 CHEMBL230 Cyclooxygenase-2
25 CHEMBL221 Cyclooxygenase-1
33 CHEMBL2949 Cyclooxygenase-1
35 CHEMBL2094253 Cyclooxygenase
42 CHEMBL4102 Cyclooxygenase-2
61 CHEMBL2860 Cyclooxygenase-1
768 CHEMBL4321 Cyclooxygenase-2

Table 6.1: Option 1 Results for Aspirin

Second Option Example

In the second option, by giving the canonical SMILES from Aspirin (CC(=O)OC1=

CC=CC=C1C(=O)O) it is expected to obtain, for example, a compound like Paracetamol

(acetaminophen) (CC(=O)NC1=CC=C(C=C1)O - CHEMBL112) since both have an

high structure similarity and because of that are related to the irreversible inhibition

of cyclooxygenase in the inflammation process. By making that search, Acetaminophen

appears as a similar compound to Aspirin.
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Third Option Example

In the third option, it requires a target and returns other targets that are affected by
a compound active for the given target. Aspirin, as mentioned, is present in the inhi-
bition of cyclooxygenases however, it is also known for an effect anti platelet aggrega-
tions. So, in this option, by giving a target such as cyclooxygenase, it is expected to
get targets related to platelets aggregations. The expected results appear with targets
such as: CHEMBL2007, Platelet-derived growth factor receptor alpha; CHEMBL2095189,
Platelet-derived growth factor receptor; CHEMBL1913, Platelet-derived growth factor re-
ceptor beta; CHEMBL250, Platelet activating factor receptor

Fourth Option Example

In the last option, by giving 2 targets, it is expected to obtain compounds active
to both. With the case study presented, by giving two targets such as 5658,2094253
(CHEMBL5658 - Prostaglandin E synthase and CHEMBL2094253 - Cyclooxygenase) it is
expected to get compounds such as the mentioned Aspirin and Paracetamol. As expected,
both compounds appear in the results file, including other anti inflammatory compounds
such as CHEMBL521-Ibuprofen and CHEMBL563-Flurbiprofen.

Case Study - A new molecule with unknown information on ChEMBL

In December 2018, in Journal of Medicinal Chemistry, it was published a new study
with the following title: "Discovery and Characterization of the Potent and Highly Selec-
tive (Piperidin-4-yl)pyrido[3,2-d]pyrimidine based in vitro Probe BAY-885 for the Kinase
ERK5".(Nguyen et al., 2018) In this study, it’s presented that probe BAY-885 inhibits
a ERK kinase known for having an important play role in various cellular processes,
such as proliferation, differentiation, apoptosis and cell survival. ERK is also known as a
therapeutic target for several cancers.

The mentioned compound have the chemical formula "C25H28F3N7O2" and the
following canonical SMILES "O=C(NC1=CC=C(CN2CCN(CC)CC2)C(C(F)(F)F)=C1)
NC3=CC=C(OC4=NC(N)=NC=C4)C=C3". Also, there are no studies of activity pre-
sented on ChEMBL, being this a "ghost" compound. So, this molecule could be used in
the ChemicalBro interface to find possible targets. By choosing the option 1 - Compound
to Targets, it is expected to find ERK related targets as possible results since the recent
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study shows that the BAY-885 inhibits ERK targets. The results of the .csv file are 868
possible targets, being 3 of them relevant to the case study:

• #225, CHEMBL4040, MAP kinase ERK2

• #346, CHEMBL3385, MAP kinase ERK1

• #741, CHEMBL1907606, Mitogen-activated protein kinase;ERK1/ERK2

With the the results mentioned above, it’s possible to observe promising results for the
ChemicalBro interface. In this specific case study, for an unstudied molecule, it suggests
targets that are related to those presented in the recent laboratory study.
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Chapter 7

Conclusions

Cheminformatics has been a crucial approach in the process of discovering new drugs by
the pharmaceutical industries, and the premise that similar drugs have similar activities
has proved to be quite valid. Despite this, the increasing amount of data has greatly
hampered the application of forecasting methods.

One of the main objectives of this work was the creation and development of a clus-
tering algorithm, based on heuristics, capable of becoming an auxiliary tool in predicting
new therapeutic targets for unknown compounds.

Through the analysis and evaluation of algorithm performance, it was possible to draw
some important conclusions. In the first place, it was possible to verify, for several data
sets, how input thresholds influences not only the run time but also the number of clusters
generated. This factor becomes very important since the number of clusters generated
must be as small as possible but should allow to define with quality the molecular space.
Then, it was possible to observe that the order of the data, in a given data set, does
not drastically influence the definition of the molecular space. Finally, an assessment
was made of how well defined the molecular space was. Through this, it was possible to
verify that the number of clusters generated, with increasing data, was becoming smaller
and smaller, with molecular space almost entirely defined. To confirm this analysis, for a
new set of 2 million data it was possible to verify that only 0.07% of the data wouldn’t
have place in the molecular space already defined, which can be seen as a rather small
dimension.

In fact, the results obtained by the algorithm can be seen as a division of molecular
space and not a definition of it. To make this definition, data from an activity database,
named ChEMBL v23, was used. Through a logical procedure, this process was performed,
giving rise to a database, capable of reflecting the definition of the clusters.
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Using this database, it was possible to create a graphical search interface. This allows,
for a new unknown drug (by giving the canonical SMILES), to predict possible therapeutic
targets and even to find similar new compounds. By providing a ChEMBL target ID, it is
possible to get other targets that are affected by active compounds to the given target. By
providing two ChEMBL ID’s targets, it is possible to obtain compounds that are active
for both.

The fulfill of all the steps mentioned above is a further step in the direction of predict-
ing, with quality, new biological and biochemical properties. However, the work shouldn’t
end here.

In the line of action of this work, it would be interesting to develop new features
in the user interface and with new releases of ChEMBL it is also possible to populate
the database with more info. Also, it would be interesting to evaluate and compare the
predictions obtained using the branch of 8,673 centroids vs 23,820 centroids, in order to
see which are more accurate.
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Appendix A

1,000
Clusters Son Clusters Time (in seconds)

First Second Third First Second Third First Second Third
Random 1 479 446 495 191 221 204 1 1 2
Random 2 465 450 488 221 225 239 2 1 2
Random 3 473 441 481 211 232 224 2 1 1
Random 4 472 446 495 204 237 218 1 1 1
Random 5 454 446 494 232 238 214 1 1 1

Mean 468 220 1.27
Max 495 239 2
Min 441 191 1

Table A.1: Result of algorithm applied to 3 sets (1,000 molecules) with 5 different random
order
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2,000
Clusters Son Clusters Time (in seconds)

First Second Third First Second Third First Second Third
Random 1 752 733 764 526 518 525 4 3 4
Random 2 746 745 755 532 510 530 3 4 3
Random 3 753 739 758 525 499 526 4 3 3
Random 4 735 746 769 565 500 523 3 3 3
Random 5 751 754 756 525 504 537 3 3 3

Mean 750 523 3.27
Max 769 565 4
Min 733 499 3

Table A.2: Result of algorithm applied to 3 sets (2,000 molecules) with 5 different random
order

5,000
Clusters Son Clusters Time (in seconds)

First Second Third First Second Third First Second Third
Random 1 1,324 1,294 1,320 1,517 1,455 1,551 11 11 11
Random 2 1,340 1,289 1,299 1,503 1,490 1,561 11 14 11
Random 3 1,345 1,308 1,318 1,519 1,516 1,514 11 12 11
Random 4 1,317 1,325 1,287 1,496 1,465 1,516 11 11 11
Random 5 1,323 1,318 1,298 1,529 1,447 1,542 11 11 11

Mean 1,313 1,508 11.27
Max 1,345 1,561 14
Min 1,287 1,447 11

Table A.3: Result of algorithm applied to 3 sets (5,000 molecules) with 5 different random
order
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10,000
Clusters Son Clusters Time (in seconds)

First Second Third First Second Third First Second Third
Random 1 1,969 1,968 1,950 3,107 3,233 3,141 27 28 27
Random 2 2,012 1,992 1,962 3,077 3,212 3,104 28 28 27
Random 3 2,018 1,985 1,941 3,091 3,208 3,194 28 28 27
Random 4 1,992 1,955 1,970 3,139 3,226 3,113 28 27 27
Random 5 2,001 1,982 1,971 3,111 3,299 3,067 28 28 27

Mean 1,978 3,152 27.53
Max 2,018 3,299 28
Min 1,941 3,067 27

Table A.4: Result of algorithm applied to 3 sets (10,000 molecules) with 5 different random
order

20,000
Clusters Son Clusters Time (in seconds)

First Second Third First Second Third First Second Third
Random 1 2,900 2,881 2,874 6,310 6,188 6,124 66 67 64
Random 2 2,883 2,888 2,847 6,193 6,229 6,132 66 66 65
Random 3 2,854 2,913 2,840 6,296 6,253 6,219 66 67 65
Random 4 2,872 2,873 2,837 6,201 6,189 6,197 67 66 64
Random 5 2,856 2,809 2,805 6,233 6,304 6,173 64 66 63

Mean 2,862 6,216 65.47
Max 2,913 6,310 67
Min 2,805 6,124 63

Table A.5: Result of algorithm applied to 3 sets (20,000 molecules) with 5 different random
order
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50,000
Clusters Son Clusters Time (in seconds)

First Second Third First Second Third First Second Third
Random 1 4,422 4,447 4,408 14,230 14,039 14,337 196 194 196
Random 2 4,450 4,439 4,439 14,159 14,072 14,207 197 193 192
Random 3 4,399 4,461 4,430 14,113 13,996 14,267 196 195 196
Random 4 4,408 4,478 4,407 14,110 13,892 14,303 195 194 193
Random 5 4,420 4,453 4,388 14,229 14,013 14,239 196 196 197

Mean 4,430 14,147 195.07
Max 4,478 14,337 197
Min 4,388 13,892 192

Table A.6: Result of algorithm applied to 3 sets (50,000 molecules) with 5 different random
order

100,000
Clusters Son Clusters Time (in seconds)

First Second Third First Second Third First Second Third
Random 1 6,031 6,019 6,025 25,369 25,213 25,328 440 525 431
Random 2 6,047 5,997 5,981 25,640 25,306 25,211 439 431 425
Random 3 6,051 5,942 6,024 25,279 25,185 25,306 438 434 432
Random 4 6,064 6,036 5,971 25,510 25,319 25,348 442 434 433
Random 5 6,022 5,953 6,019 25,329 25,209 25,310 511 431 439

Mean 6,012 25,324 445.67
Max 6,064 25,640 525
Min 5,942 25,185 425

Table A.7: Result of algorithm applied to 3 sets (100,000 molecules) with 5 different
random order
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Appendix B

Figure B.1: Inactive Dictionary.
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. APPENDIX B

Figure B.2: Active Dictionary.
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