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University of Pittsburgh, 2019 

ABSTRACT 

Ocular inflammation is commonly associated with multiple eye disorders such as microbial 

infections, allergies and post-operative healing. Topical anti-inflammatory agents delivered via 

eye drops or ointments are commonly used for the management of inflammation. These treatment 

regimens involve high dosing frequency over prolonged periods depending on the severity of 

inflammation. Further, only 5% of administered drug may be available for action due to the 

physiological barriers of the eye and formulation losses. Collectively, this reduces patient 

compliance and causes irregularity in drug exposure.  Therefore, there is a need for prolonged 

residence time of formulation in the eye to achieve sustained drug delivery. Mucoadhesive 

polymers and ocular inserts have been used for this purpose. Additionally, topographical features 

have been explored to enhance adhesion to mucosal surfaces. Taking inspiration from these 

approaches, we hypothesized that micropatterned polymeric films will prolong residence time by 

enhancing interactions with ocular mucosal surface and sustain the drug release.  

We developed micropatterned films containing a hydrophobic drug, hydrocortisone (HCT) 

or a hydrophilic drug, olopatadine hydrochloride (OLO) using GRAS-compliant cellulose-based 

polymers and polylactic-co-glycolic acid (PLGA). Films with 100 µm sized square, triangle and 

circle micropatterns were manufactured and characterized for HCT / OLO release. We 

demonstrated an in vitro sustained release for up to 72 hours, for both HCT and OLO. The shape 



 v 

of micropatterns did not impact drug release, however, PLGA and hydroxyethylcellulose impacted 

release of HCT and OLO, respectively. Tensile properties of films were dependent on the film 

composition and not micropatterns. A novel method to investigate the mucoadhesion potential of 

micropatterned films was developed. For cellulose and PLGA-based films, micropatterns did not 

improve adhesion to porcine intestinal tissue. Collectively, our results suggest that sustained 

release of anti-inflammatory drugs can be achieved by using cellulose and PLGA-based films and 

the presence of 100 µm sized micropatterns did not improve adhesion to mucosal surface. Further 

optimization of formulation and micropattern characteristics will be required to maximize 

sustained release and mucoadhesion in films, which can potentially be used for long-term delivery 

to the anterior region of the eye.  

Keywords: Micropatterns, polymeric films, hydrocortisone, olopatadine hydrochloride, 

HPMC, HEC, HPC, PLGA, mucoadhesion 
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1.0 Introduction

Visual impairment is one of the major concerns globally as it can have a negative impact on 

the day-to-day functioning of patients and exposes them to a higher risk of accidents, depression, 

social withdrawal and mortality [1]. At least 24 million Americans suffer from various eye-related 

conditions such as cataracts, glaucoma, age-related macular degeneration, dry eye syndrome and 

ocular manifestations of other chronic diseases [2]. In addition to the personal and social issues, 

management of these conditions involves a huge financial burden on the affected individuals [3]. 

To address these problems, extensive research is being conducted in ocular drug delivery to develop 

new therapeutic moieties and treatment regimens, and towards improving the efficiency of these 

intended therapies.  

Ocular drug delivery remains a challenge in the treatment of local diseases of the eye and 

its comorbidities associated with other chronic conditions. The complex and sensitive nature of the 

organ imposes restrictions on xenobiotics and potential drug delivery systems used in the treatment. 

These hurdles are a result of the anatomical structure and physiological conditions of the eye. 

Therefore, there is a need to account for these hurdles when developing a platform for ocular drug 

delivery.  
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1.1 Anatomy and physiology of the eye 

Figure 1: Schematic of the the eye 

The eye can be broadly classified into two regions, the anterior and the posterior region. 

The anterior region comprises of the cornea, iris, pupil, sclera, anterior uvea etc. whereas the 

posterior region comprises of the vitreous humor, retina, choroid etc. (Figure 1). The cornea is the 

transparent and outermost layer which eventually merges into the sclera, the white of the eye. The 

sclera and eyelids are lined by a thin, vascularized tissue known as the conjunctiva. The surface of 

the eye, particularly the cornea, sclera and conjunctiva, are covered by a protective tear film. The 

tear film is typically a few microns in thickness and 7- 10 µL in volume with a turnover of 1-2 

µLmin-1 [4-6]. It consists of a lipid layer, an aqueous layer and mucins. The surface glycocalyx of 

corneal epithelial cells and goblet cells in the conjunctiva is composed of transmembrane mucins, 
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which are also secreted into the tear film to achieve a mucin concentration of approximately 0.01% 

[7, 8]. The static anatomical barriers such as corneal epithelium, stroma and endothelium along with 

dynamic physiological barriers like blinking, tear turnover, nasolacrimal drainage, induced tear 

production, and conjunctival blood flow affect the local concentration and permeation of the drug 

[4, 9]. These anatomical and physiological barriers of the eye must be overcome by drug molecules 

to achieve desired local therapeutic concentrations.  

The corneal epithelium is lipoidal in nature posing a resistance against the permeation of 

topically applied hydrophilic drugs. On the other hand, the stroma is a highly hydrated structure 

and poses a significant barrier to the permeation of lipophilic drug molecules [4]. High tear turnover 

and nasolacrimal drainage would remove the formulation from the ocular surface resulting in a 

contact time of less than 2 minutes [10].  In addition, blinking creates local shear forces which may 

impact the physical integrity of drug delivery system. Excessive conjunctival blood flow can cause 

significant drug loss in the systemic circulation, thereby lowering the ocular bioavailability [9].  

However, in cases of conjunctivitis, corneal abrasion, microbial infection and post-operative 

inflammation, the conjunctiva is an attractive site of drug administration. The conjunctival surface 

area is 17 times the corneal area [11] allowing more drug to be absorbed per unit time. The amount 

of drug formulation delivered can be more and it can serve as a depot of drug when delivered in the 

conjunctival region.  

In general, it can be summarized that the various barriers in the eye challenge the permeation 

of the drug but primarily, cause loss in the formulation available on the surface.  To prevent these 

losses, there is a need to improve the residence time of a formulation in the eye, which can deliver 

the drug in a controlled manner.  
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1.2 Ocular Drug Delivery Systems for the anterior region 

Current ocular dosage forms span across liquids, semi-solids and solids which can be 

delivered via oral, topical, systemic or intraocular route [4]. An appropriate system is chosen 

depending on the pathophysiology of the condition, target region within the eye, the duration of 

treatment and patient profile. For conditions of the posterior eye region, intraocular injections are 

used to access the affected region irrespective of their invasive nature [12-14]. Oral administration 

is highly patient compliant but relies on the oral bioavailability of the drug. Systemic 

administration, although invasive, can ensure good bioavailability. However, the diffusion of orally 

and systemically administered drug is limited by the blood-retinal barrier in the posterior region 

and poses the potential for off-target drug-toxicities [12].  

Currently, topical route is highly preferred for the management of anterior conditions of the 

eye such as dry eye syndrome, glaucoma, uveitis, allergic conjunctivitis and post-operative 

inflammation [15, 16]. Various drug delivery systems such as solutions, suspensions, gels, 

ointments, contact lenses and conjunctival inserts are used via the topical route [10].  

1.2.1  Eye drops 

Eye drops, such as solutions and suspensions, are still the most popular ocular drug delivery 

system for the anterior region. They account for almost 70% of marketed ophthalmic formulations 

due to their convenience, non-invasiveness, ease of administration and ease of manufacturing [10, 

17]. Despite these advantages, the effective corneal bioavailability for most ophthalmic eye drop 

formulations is no more than 5% [5, 16] as most of the topically administered solutions are washed 

away after 15-30 seconds [4]. Interestingly, the rate of removal of instilled solution is directly 
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proportional to the volume instilled [10]. Therefore, just increasing the volume of administered 

dose might not be able to improve ocular bioavailability significantly. Other factors like variability 

in volume dispensed [18] and lack of dose uniformity in suspensions [19] may lead to improper 

dosing.  

1.2.2  Ointments  

Ointments are semi-solid, petrolatum-based dosage forms which are commonly used in drug 

delivery to the anterior region of the eye. Ointments are easy to administer but are ill-accepted due 

to their greasiness and vison-blurring and therefore, they are mostly used as night-time medications 

[10]. Self-administration of ointments by the patient may lead to variability in dosage due to 

variations in amount of ointment applied and may become runny over time causing loss in 

formulation and obstruction in vision. Effectively, there is a reduction in patient compliance.  

1.3 Challenges in dose uniformity  

Overall, the physiological barriers of the eye (Section 1.1), loss of instilled dose and low 

patient adherence are the major challenges in ocular drug delivery. In fact, patient adherence to 

long-term treatments have been found to be as low as 50% due to various reasons such as 

forgetfulness, side-effects, difficulty in administration, lack of immediate relief from symptoms and 

complex multi-drug regimens [20-22]. In one study [23], dose frequency was a major factor found 

to have a statistically significant association with non-compliance in ocular dosing regimens. Even 

patients requiring short-term treatments post glaucoma filtration surgery or  cataract surgery, were 
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found to have low adherence to therapy as they are not familiar with the intensive frequency of 

topical treatment regimens [22]. This may lead to under-dosing and over-dosing resulting in 

irregular drug exposure and potential side effects. One way to reduce the dose frequency is to 

improve the ocular bioavailability, which in turn ensures better efficiency of the dose administered. 

1.4 Strategies to improve ocular bioavailability in the eye 

Some strategies to improve ocular bioavailability include using prodrugs [4], increasing 

drug solubility in formulation [10], enhancing drug penetration through cornea, colloidal 

formulations and improving the residence time of formulation [24].  

Prodrugs approach is used to deliver pharmacologically inactive or less active derivative of 

the drug, which is more lipophilic. Latanoprost is an example wherein it is hydrolyzed by an 

esterase to its free carboxylic acid form, which is more potent [15]. The prodrug approach involves 

extensive studies to investigate both, the parent molecule and metabolite, and is a viable approach 

only for a few therapeutic moieties.  

Poorly water-soluble drugs like cyclosporine, dexamethasone etc. have been solubilized 

using cyclodextrins and dendrimers, which form inclusion complexes and allow higher strength of 

dose [10, 25]. However,  an appropriate choice of cyclodextrin is important to ensure release of 

drug from the complex when administered to the eye as it is only the free drug that can penetrate 

the lipophilic biological barriers [26].  

Permeability enhancers such as surfactants, bile acids, chelating agents, and preservatives, 

have been used to increase ocular tissue penetration and bioavailability [4]. Since their mechanism 
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of action involves destabilization of the tear film, they also have the potential to damage the corneal 

epithelium and induce irritancy [25].   

Colloidal systems such as micro/nano emulsions, microspheres, micro/nano particles, 

liposomes etc. allow for targeted and sustained drug delivery along with enhanced permeation [27]. 

Ex-vivo studies using  a microemulsion of everolimus with pig cornea indicated therapeutic 

concentrations of the drug overcoming the challenges of solubility and stability [28]. Another study 

demonstrated a three-fold increase in ex-vivo ocular permeation of indomethacin drug by 

microemulsion approach as compared to conventional aqueous solution [29]. In general, 

microemulsion-based systems require critically designed surfactant/co-surfactant ratios to ensure 

stability of the formulation and also limited concentrations of the surfactants to prevent ocular 

irritation [17].  

Polylactic-co-glycolide (PLGA), polycaprolactone and chitosan are some of the polymers 

used to develop micro/nano particulate systems. The drug may be attached, dissolved, encapsulated 

or entrapped in the polymeric matrix [30]. In one study [31], the delivery and AUC of a an anti-

inflammatory peptide drug, vancomycin, was found to be sustained in the aqueous humor of rabbits 

by PLGA microspheres better than an aqueous solution of the drug. However, such particulate 

systems often demonstrate variable stability, low reproducibility and lower drug-entrapment 

capacities [10].  

Therefore, there is a need for a stable, physiologically safe and patient-compliant method to 

improve ocular bioavailability of drugs. In view of the challenges of the systems discussed, another 

way to achieve that is by increasing the residence time of drug formulation within the ocular space.  
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1.5 Strategies to improve residence time of formulation 

Various strategies have been considered to improve pre-corneal residence time of 

formulations such as in-situ gelling systems, mucoadhesive  polymers and ocular inserts [32].   

1.5.1  In-situ gelling systems 

These systems undergo a viscosity increase when instilled in the eye as drops, thus 

increasing the pre-corneal retention and potentially slowing the drug elimination from the eye [10]. 

The changes in viscosity can be triggered by different stimuli such as pH, temperature or electrolyte 

composition. Poloxamer 407 and xylan are examples of temperature-sensitive hydrogels, carbomer 

is an example of pH-sensitive hydrogel whereas gellan gum and alginic acid are examples of ion-

sensitive hydrogels used in in-situ gelling systems for ocular application [14].  

A commonly studied temperature-sensitive polymer is poly (N-isopropylacrylamide) which 

forms a gel above 32 °C and lowers in its transparency. The stiff gel can sometimes get 

uncomfortable for the patient and the lowered transparency can interfere with vision [25]. Another 

thermosensitive triblock copolymer, PLGA-PEG-PLGA, demonstrated higher Cmax and AUC of 

dexamethasone acetate than eye drops in rabbit eye.  

 Gelrite® is another polysaccharide that forms clear gels at low solid concentrations in the 

presence of mono and divalent cations in found in tear fluid. Timoptic-XE is a marketed formulation 

for the delivery of timolol maleate using this approach. Sometimes, the in-situ  gelling systems also 

contain mucoadhesive polymers to enhance the pre-corneal residence further [25].  
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1.5.2  Mucoadhesive polymers 

These are typically macro-molecular hydrocolloids with many hydrophilic functional 

groups. They adhere to ocular mucin via non-covalent bonds, thus ensuring prolonged contact of 

the formulation with the ocular tissue [10]. They can establish electrostatic, hydrophobic, Van der 

Waal’s interactions and hydrogen bonding with mucus (Table 1). 

 
Table 1: Theories pertaining to mucodhesion mechanisms  

Adapted from [7, 33] 
Theory Description 

Electronic theory Adhesion is established due to the electrostatic attraction between 

negatively charged mucin and positively charged materials 

Adsorption theory Adhesive interactions are related to the establishment of hydrogen 

and Van der Waals bonding; hydrophobic effects and 

chemisorption may also contribute 

Wetting theory Adhesion is related to the ability of a mucoadhesive (when in 

liquid form) to spread over the mucus layer 

Diffusion theory Considers that adhesion is established by the interpenetration of 

macromolecular mucoadhesives with mucin fibers, as driven by a 

concentration gradient differential 

Fracture theory Relates adhesion with the force required for interfacial detachment 

of two previously joint solid surfaces 

Mechanical theory Adhesion is dependent on the roughness of two different surfaces 

and the available area for interaction 

 

 These interactions are, however, time dependent factors and would be greatly influenced 

by the shear forces in the biological system. If insufficient wetting occurs, the polymers would not 

untangle themselves to be able to interact with the mucus. Excessive exposure may lead to over 
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extension of mucosal bonds. Mucoadhesive polymers must also have sufficient flexibility and 

adequate surface free energies to allow wetting with the mucosal surface [34].  

 

Table 2: Various mucoadhesive polymers used in drug delivery systems  
Adapted from [35] 

Type of polymer Examples 

Anionic polymers 

 

Carbopol® 

Polycarbophil® 

Sodium alginate 

Sodium carboxymethylcellulose 

Cationic polymers Chitosan 

Thiomers 

Nonionic polymers Hydroxypropylmethylcellulose (HPMC) 

Hydroxypropylcellulose (HPC) 

Methylcellulose 

Polyethylene glycol 

Polyvinylpyrrolidone 

Hydroxyethylcellulose (HEC) 

 

Hyaluronic acid (HA) is a natural macromolecule present in the eye and is proposed as a 

viscosity enhancing agent in many formulations. It has been successfully employed in tear 

substitutes in severe dry eye conditions. Its benefits are attributed to its viscoelasticity, similar 

biophysical characteristics as mucins and long-lasting hydration due to retention [36].  

Poly (acrylic acid) and carbomers are some other mucoadhesive polymers which exhibit 

extensive hydrogen-bonding with mucins [36]. They provide tunable rheological properties to 

solutions at different concentrations which affects their interactions with the mucin on corneal 

epithelium. Their inherent anionic nature is similar to mucins; they have good lubricating properties 
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and hence, are also employed in artificial tear drops. However, concentration related blurring and 

discomfort are sometimes reported [37].   

Cellulose based polymers are a class of cellulose derivatives commonly employed as 

viscosity enhancing agents in eye drops and components of soluble ocular inserts [36]. These will 

be discussed in detail in Section 2.0. 

1.5.3  Ocular inserts 

Ocular inserts are drug-impregnated devices used for long-term sustained delivery. They 

may be placed directly on the cornea or in the conjunctival region of the eye. These systems may 

insoluble, requiring removal after a certain time or may be designed to dissolve, erode or biodegrade 

in the ocular environment [25]. The ocular inserts discussed in this section are used for drug delivery 

to the anterior region of the eye.  

Ocusert® (Alza Corporation, Palo Alto, CA) was one of the first commercial inserts 

approved to treat ocular hypertension. It consisted of a pilocarpine-alginate matrix sandwiched 

between ethylene-vinyl acetate to achieve a constant drug release over time. It was discontinued 

owing to unreliable control of intraocular pressure, leakage, difficulty in administration and 

irritation [25]. Since then, advancements were made in the field of ocular inserts designed to provide 

reliable, controlled and patient compliant delivery of drugs through biodegradable or dissolving 

inserts.   

Surodex™ (Allergan Inc., Irwine, CA) implant is an example of biodegradable implant 

containing PLGA and HPMC enclosing dexamethasone. A single administration provided pain 

relief and anti-inflammatory effect to patients of cataract operation for up to 10 days [13].  
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Lacrisert® (Valenat Pharmaceuticals, Bridgewater, PA) is a soluble minirod of HPC 

indicated for patients with moderate to severe dry eye syndrome to provide relief up to 24 hours 

[38]. It measures 1.7 x 3.5 mm and is placed in the conjunctival region of the eye.  

Dextenza™ (Ocular Therapeutix, Bedford, MA) is a recently FDA-approved bioresorbable 

ocular insert placed in the anterior region of the eye to deliver dexamethasone for management of 

post-operative inflammation [39]. The matrix contains 4-arm polyethylene glycol (PEG) N-

hydroxysuccinimidyl glutarate as the primary bioresorbable polymer which can deliver the drug for 

up to 30 days. There are other commercial inserts such as Vitrasert® (Bausch and Lomb Inc., 

Rochester, NY) and Ozurdex® (Allergan Inc., Irwine, CA) which have been developed for 

prolonged drug delivery to the posterior region of the eye.  

1.5.3.1 Contact lenses 

Contact lenses have traditionally been used to correct visual acuity and for aesthetic 

purposes. However, they are increasingly being considered as a viable option for ocular drug 

delivery due to advancements in their manufacturing and potential to “personalize”. Drug laden 

contact lenses are mainly categorized as either hydrogel-based (rigid) or silicone hydrogel-based 

(flexible) with the latter being more popular due to higher oxygen gas permeation allowing higher 

patient compliance [16, 40]. To achieve the desired rate of drug delivery, physical and chemical 

modifications of contact lenses are carried out such as molecular imprinting of drugs, soaking the 

lens with Vitamin E, incorporation of micro/nano particulate formulations within the lens matrix or 

sandwiching a polymeric film between two layers of lens [16]. Contact lenses have been used for 

pre and post-operative delivery of anti-inflammatory drugs such as dexamethasone [41] and 

vancomycin chlorhydrate [42], especially to achieve a sustained drug release for several hours after 

the surgery, which is a critical period for the patient.  
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Despite the advantages of contact lenses, they have a potential to affect the corneal 

physiology, transparency may be lost due to instability of incorporated formulation and the need 

for modifications to personalize the product for every patient [16]. 

1.5.3.2 Microneedles 

Microneedles (MN) are arrays of micrometer (100 – 900 µm) sized needles initially 

developed for transdermal drug delivery due to painless, high efficiency and ease of drug 

administration [43]. Drug coated stainless-steel MNs, hollow glass MNs containing drug solution 

and polymeric dissolvable MNs have been used for intraocular delivery of various molecules such 

as drugs, proteins and DNA [4, 44, 45].  In one study [44], higher local drug concentrations and 

quicker therapeutic outcomes without repercussive inflammation was observed in the delivery of 

sodium fluorescein and pilocarpine to a rabbit animal model. Another study [46] demonstrated  the 

use of methacrylated hyaluronic acid based self-implantable, dissolvable microneedle patches to 

deliver diclofenac and an anti-angiogenic monoclonal antibody to a corneal neovascularization 

mouse model. These patches, which were thumb pressed on the cornea, showed a 90% reduction in 

the neovascular area after 7 days of a single dose application.  

Despite the advantages of MN delivery systems, low drug loading capacity and mechanical 

instability of needles are some of their most common challenges [47]. Additionally, they physically 

penetrate through biological membranes, which may not be patient compliant in cases where the 

ocular membranes are damaged or injured.  
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1.5.3.3 Polymeric films 

 

Polymeric films are a type of ocular inserts wherein a single drug or a combination of drugs are 

dispersed in a polymeric matrix. Multiple studies with animal models have been carried out to 

establish the efficacy and safety of this platform [48]. An interesting study [49] evaluated the 

efficacy of gentamicin-loaded bioadhesive ophthalmic drug inserts (BODI®) versus a marketed eye 

drop, Tiacil®, in conjunctivitis dog model. The BODI®, in form of a polymeric film, contained 

mucoadhesive polymers such as HPC and Carbopol® 934. The clinical study reported similar 

recovery in both cases with the frequency of administration reduced significantly in case of insert.   

A randomized, open-label clinical study compared the ocular bioavailability of sodium 

fluorescein from three eye drops and a lyophilisate [50] .  It was demonstrated that the lyophilisate, 

which is similar a solid ocular insert, showed better bioavailability as opposed to the eye drop 

regimen for up to 7 hours. In another study [51] , the therapeutic efficacy in terms of intraocular 

pressure lowering effect of polyvinylpyrrolidone films was found to be sustained better than 

brimonidine tartarate solution until at least 8 hours. Therefore, polymeric films can sustain the 

delivery of drug moiety to achieve a prolonged therapeutic outcome with lowered frequency of 

administration.  

The various advantages of using polymeric films are shown in Figure 2 [52].  
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Figure 2: Advantages of using polymeric film as a drug delivery platform  

1.6 Ocular inflammation and existing therapies 

Anti-inflammatory agents have been widely used in management of dry eye, microbial 

infections, allergic conjunctivitis and post-operative management in the eye. The number of patients 

suffering from these conditions is on the rise due to pollution, changing climates, increased 

exposure to electronic screens and as a part of secondary complications associated with other 
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chronic diseases [53-55]. For management of these complications, anti-inflammatory agents in the 

form of eye drops and ointments are prescribed for various durations ranging from a few days to 

several months.  

1.6.1  Allergic conjunctivitis 

Allergic conjunctivitis is an ocular manifestation of exposure of an individual to allergens 

[56]. Ocular allergy affects 15-20% of the population in developed countries [15]. Some of the 

commonly used drugs to treat allergic conjunctivitis include olopatadine, ketotifen, ketorolac  

etc.[57].  Dosing regimens with eye drops can last for weeks with dose administration frequency 

ranging from 2-6 times per day [56]. These frequent administrations can increase the drug 

concentration significantly even though a symptomatic maintenance dose is required later in the 

day. With such intense dosing regimens, patient adherence is also challenged due to various reasons 

as discussed in Section 1.3, eventually affecting the outcomes of prescribed treatment.   

 

1.6.2  Post-surgical ocular inflammation 

Cataract surgery, surgery for management of glaucoma, vitreoretinal surgery and corneal 

transplantation are some of the most common surgical procedures performed by ophthalmic 

surgeons worldwide [58]. Corticosteroids and non-steroidal anti-inflammatory drugs in the form of 

eye drops are used to manage post-operative inflammation for a duration ranging from a few days 

to 3 months. For more serious cases of inflammation, corticosteroids such as difluprednate, 

prednisolone acetate and hydrocortisone are prescribed as opposed to antihistamine/mast-cell 
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stabilizers [59]. If the inflammation is not managed, chances of secondary ocular complications 

would increase [15].  

1.6.3  Ocular inflammation due to microbial infection 

Bacterial conjunctivitis is caused by pathogens such as staphylococci, streptococci, N 

gonorrhea etc. [60]. Ointments of tobramycin, gentamicin, erythromycin, bacitracin, polymixin B 

sulfate and prednisolone acetate are some of the FDA-approved products for ocular infection 

management [39]. However, some of these products inherently contain an anti-inflammatory drug, 

hydrocortisone, for the management of ocular inflammation and prevent further corneal destruction 

and scarring [61]. Similar to the antibiotic agents used, there is a need to ensure a sustained 

therapeutic outcome in terms of inflammation which can be achieved by controlling the release of 

the anti-inflammatory drug used. In addition to the discussed conditions, anti-inflammatory agents 

such as loteprednol and lifitegrast [62] are also used in the management of dry eye syndrome along 

with artificial tears.  

Particularly for long-term treatments in management of ocular inflammation, there is a need 

to provide a platform for drug delivery that can reduce the burden of dosing on the patient and 

provide a simple, easy-to-administer, patient compliant drug delivery system.  Polymeric films can 

be a viable option to deliver anti-inflammatory drugs due to their various advantages, as discussed 

in Section 1.5.3.3. However, considering the various physiological barriers of the eye, there is a 

need to ensure that the delivered dosage form is retained for a prolonged period. Taking inspiration 

from nature, a unique approach in the form of micropatterns has been proposed to potentially 

improve adhesion of polymeric films to ocular mucosa.  
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1.7 Microtopographic features to improve adhesion 

The Gecko lizard is known for its ability to travel on vertical surfaces while defying gravity. 

Microscopic evaluations demonstrated that each Gecko foot has almost 500,000 keratinous 

projections known as setae. These setae are 30-130 µm long eventually terminating in sub-micron 

sized spatula-like structures [63]. Overall, the Gecko foot exhibited super hydrophobicity (contact 

angle of one seta > 160°) and high adhesive properties due to extensive Van der Waal’s interactions 

between the setae and a surface [63, 64]. Gecko-inspired adhesives tapes have been developed and 

commercialized, such as Geckskin™ and nanoGriptech®.  

Bioadhesives have also been developed using a biodegradable and biocompatible polymer, 

poly (glycerol-co-sebacate acrylate) wherein the nanotopography of the patterns were varied and 

studied for adhesion to porcine intestinal tissue (in vitro) and rat abdominal tissue (in vivo) [65]. 

The presence of nanopatterns of sizes between 0.1-1 µm showed nearly two-fold increase in 

adhesion forces. The authors envisioned development of this platform for wound-sealing 

application and a potential for simultaneous drug delivery. Topographical texturing using 

micropatterns has been patented by Boston Scientific (Maple Grove, MN) as a stent coating [66] 

and an mucus-plugging preventive device to be used within an airway [67] to ensure interlocking 

of implants at their intended biological sites. This highlights the extensive potential that 

topographical manipulations can have to improve the functionality of systems used for biological 

application.  

Micropatterned surfaces were also studied for improvement in the frictional forces of 

endoscopic probes. Microcapsule endoscopes may miss their targeted area due to lack of control 

over position and orientation as it relies on gastrointestinal (GIT) peristalsis.  Static friction force, 

which is indicative of the maximum force required to first move the sample on the tissue, was found 



 19 

to be higher for patterned (140 µm) samples than unpatterned samples with a significant 

contribution from macroscale edge effects of the patterns [68].  

Another study [69] demonstrated the effect of using micropatterned polydimethylsiloxane 

(PDMS) surfaces on rabbit intestinal tissue to correlate their functionality in self-propelled robotic 

systems in GIT.  Larger micropatterns (>80 µm) showed greater friction coefficients as compared 

to non-patterned PDMS samples. In general, micropatterns on PDMS, in the range of 100 µm size 

were found to demonstrate higher friction forces. All these examples seem to be in accordance with 

the mechanical theory of mucoadhesion (Table 1).  

Collectively, this suggests that micropatterns on polymeric substrates can enhance friction 

and interactions with a mucosal surface, which can be exploited to enhance residence time and 

avoid the limitations of conventional ocular drug delivery systems.  
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2.0 Rationale 

Ocular inflammation is a common symptom of many eye diseases such as allergic conjunctivitis, 

microbial infections etc. and an undesirable consequence of ocular surgical procedures [70]. If left 

untreated, severe manifestations can arise, such as pain, discomfort, corneal edema and interference 

with rehabilitation of vision [71]. Corticosteroids are usually the first line of treatment for ocular 

inflammation management and due to their low-water solubility, they are primarily delivered in the 

form of ointments and suspensions [62]. Some other non-steroidal anti-inflammatory drugs such as 

olopatadine hydrochloride, ketorolac, chromolyn sodium etc. are also used in cases where 

management of intraocular pressure is critical or there is a risk of corneal melting and therefore,  

corticosteroids are avoided [62, 72]. The duration of treatment can vary from few days to several 

months [57, 58].  

Challenges in treatment of ocular inflammation include high frequency of administration of anti-

inflammatory agents, low patient adherence and variable drug exposure [20, 21]. Moreover, the 

existing dosage forms are limited by low patient compliance and losses of the administered dosage 

due to a variety of physiological challenges in the eye, as discussed in Section 1.1[22, 32]. The 

severity of these challenges is particularly critical when inflammation management is required in 

the anterior region of the eye for a prolonged duration for conditions discussed in Section 1.6  [56, 

59]. To overcome these challenges, a delivery system is needed that can reside in the ocular space 

for prolonged period despite the physiological challenges of the eye and sustain the release of the 

drug. We are proposing a micropatterned film which can sustain the delivery of an anti-

inflammatory drug to the anterior chamber for at least 72 hours by virtue of its chemical 
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composition (formulation) and improve the pre-corneal residence time through its physical 

characteristics (micropatterns).  

Hydrocortisone (HCT) is a corticosteroid (Figure 3) [73] used for the management of 

inflammation resulting from microbial infections. Due to its poor water solubility (0.32 mg/mL at 

25 °C) [73], it is commercially marketed as a suspension (1% w/v) or an ointment (1% w/w) with 

a recommended frequency of administration of every 3-4 hours. With such high dosing frequencies, 

patient compliance is challenged. Therefore, to provide a sustained delivery, we are proposing a 

polymeric film formulation due to the various advantages discussed in Section 1.5.3.3. Based on an 

average drop size of 30 µL, which corresponds to 300 µg of HCT per dose in commercial 

formulation, we intend to deliver 300 µg for up to 72 hours using a representative 13 x 13 mm 

micropatterned film.  

Olopatadine hydrochloride (OLO) [74] has been one of the first-line treatment anti-

inflammatory drugs used in the management of ocular inflammation associated with allergic 

conjunctivitis (Figure 4). Clinically, it is considered as a “gold-standard” in ocular inflammation 

management for its dual-action role as an antihistamine and a mast-cell stabilizer [62]. OLO is 

commercially available as a 0.2% solution (Pataday®, Alcon) and a 0.7% solution (Pazeo®, Alcon) 

which can provide relief for 18-24 hours [62]. The average administered dose is 200 µg per day for 

up to 6 weeks [75]. Owing to its high water solubility (> 20 mg/mL at 25 °C) [74], it is challenging 

to control its release in an aqueous tear-fluid environment. Therefore, to provide a sustained release 

of this hydrophilic drug, we are proposing a micropatterned polymeric film formulation aimed at 

delivering 600 µg of OLO over a period of 72 hours.  
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               Figure 3: 2-D structure of hydrocortisone (HCT) 

 

 
                    Figure 4: 2-D structure of olopatadine hydrochloride (OLO)  

 

Various Generally Recognized as Safe (GRAS) - compliant polymers and plasticizers [76] 

were chosen as film excipients based on the suitability for ocular application and the requirement 

of sustained-drug delivery. The polymers could be broadly categorized into a water-insoluble 

polylactic-co-glycolic acid (PLGA) polymer and water-soluble cellulose-based polymers. 
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Considering the regulations by the FDA and corresponding guidelines provided by ICH Q3C (R7) 

[77] on residual organic solvents in drug products, formulations were restricted to aqueous or oil-

in-water emulsion based film solutions. 

HCT, being a hydrophobic drug, is expected to have greater interactions with a hydrophobic 

polymer. These interactions can be exploited to control the release of the drug for prolonged 

durations. A water-insoluble polymer, such as PLGA, would be expected to associate well with 

HCT and hence, control the drug release. PLGA is an FDA-approved, biocompatible and 

biodegradable polymer, extensively studied as a sustained delivery vehicle for drugs, proteins and 

other macromolecules [78]. In ocular drug delivery, it has been used in the form of 

micro/nanoparticles to deliver water-insoluble drugs like fluocinolone acetonide, dexamethasone 

etc. via intravitreal or subconjunctival injections [31, 36, 79]. PLGA has also been investigated for 

sustained release of water-soluble drugs such as vancomycin and calcitriol [31, 80, 81] due to its 

slow degradation in aqueous environment. In the proposed formulation, PLGA and HCT or OLO 

will be processed in an organic phase which will then be dispersed in an aqueous cellulose-based 

polymeric matrix. The cumulative effect of PLGA and the cellulose polymers could be tailored to 

obtain the desired release control of HCT or OLO up to 72 hours.  

HPMC is a non-ionic, slightly mucoadhesive polymer used in various ocular formulations. 

It is used in eye drops for its good viscosity-enhancing and lubricant properties [36]. It is also used 

as a matrix component in oral tablets and film-forming polymer in mucoadhesive buccal films [82].  

Various commercial grades of HPMC are available, which differ in the degrees of substitutions of 

methoxy and hydroxypropyl groups. These substitutions can affect the physicochemical properties 

of the polymer, such as, solubility and viscosity [83, 84]. These properties, in turn, can impact the 

interactions of polymers with drugs and allow for tunable controlled release of drugs [48, 83].  
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HPMC E5 is a low-viscosity grade with good film-forming properties [84]. On the other hand, 

HPMC K4M exhibits high viscosity when hydrated (Table 3), which can be exploited to control the 

release of drug from the system. Therefore, a combination of these two grades was used in the 

design of micropatterned films so that the drug release could be tuned by altering their ratios.  

HPC is another non-ionic, inert polymer which has been found to improve the stability of 

tear film and hence used in dry eye syndrome management [85]. It is also known to have good film-

forming properties and improves drug loading, stability and adhesion of films to other surfaces 

when blended with HPMC [84, 86]. Amongst the various grades of HPC, JXF grade is 

recommended for controlled drug delivery and has moderate molecular weight and viscosity (Table 

3). Therefore, HPC JXF was chosen as another polymer for film formulation.  

Hydroxyethyl cellulose (HEC) is also a non-ionic cellulose based polymer, and within the 

ocular environment, it is better tolerated than other cellulose polymers due to its low surface activity 

[36]. HEC 250L, a low-viscosity grade, was chosen since high viscosities was found to be 

challenging in the formation of micropatterns on films.  

 

Table 3: Properties of cellulose-based polymers 
Adapted from [87-89] 

Polymer Molecular Weight (Da) Concentration (%w/w) Viscosity (mPa sec-1) 

HPMC E5 N/A 2 4-6 

HPMC K4M 400,000 2 2700-5040 

HEC 205 L 90,000 5 75-150 

HPC JXF 140,000 5 150-400 
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Plasticizers can make films softer, smoother and reduce cracking which further improves 

the film toughness. These are particularly important when low-molecular weight polymers like 

HPMC E5 and HEC 250 L are used [84]. Also, since our formulation will be primarily aqueous-

based, water-soluble plasticizers such as PEG 400 and propylene glycol were chosen.  

The primary aim of choosing appropriate polymers of the film formulations was to sustain 

the delivery of HCT and OLO. The film can potentially be placed in the conjunctival region as it is 

the main site of macrophage invasion/inflammation response and provides a high surface area for 

drug permeation [11, 90]. However, due to the shear intensive processes in the eye such as blinking 

and eye ball movement [91], there is need to improve the residence time of the film in the eye. To 

address this, we propose incorporation of topographical features in the form of micropatterns, which 

can improve the adhesion of polymeric films (Section 1.7). The shape and dimensions of these 

micropatterns can influence the extent of adhesion [47, 92, 93]. Based on the previous work in our 

lab [93], micropatterns of circle, square and triangle shapes of 100 µm with an aspect ratio of 1:1, 

were chosen for our study. Therefore, films of 13 x 13 mm dimensions containing various 

compositions of discussed polymers and various shapes of 100 µm sized micropatterns were studied 

for the delivery of HCT and OLO.  
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3.0 Materials and Methods 

3.1 Materials 

Hydrocortisone USP (HCT) was obtained from PCCA (Houston, TX) and olopatadine 

hydrochloride (OLO) was purchased from Tokyo Chemical Industry (Tokyo, Japan). Polylactide-

co-glycolide (Resomer® RG 502H) was graciously gifted by Evonik Industries (Piscataway, NJ).  

Hydroxypropyl methylcellulose (HPMC) K4M (Methocel™ K4M, Colorcon), HPMC E5 

(Methocel™ E5 Premium LV, Dow Chemical Co.), hydroxypropyl cellulose (HPC) (Klucel™ JXF, 

Ashland), hydroxyethyl cellulose (HEC) 250 L (Natrosol ™ 250 L Pharm, Ashland) were the 

various polymers used in formulations. Other excipients, such as, polyethylene glycol (PEG) 400 

and propylene glycol were purchased from Spectrum Chemical (Gardena, CA). Dichloromethane 

was obtained from Sigma-Aldrich (St. Louis, MO), Ethanol was purchased from Decon 

Laboratories (King of Prussia, PA) and ultrapure water was obtained from in-house Milli-Q® 

Direct 8 water purification system.  For soft-lithography, Sylgard™ 184 Silicone Elastomer Kit was 

procured from Dow Corning Corporation (Midland, MI).  
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3.2 Methods 

3.2.1  Fabrication of PDMS molds  

Standard photolithographic and soft-lithographic techniques were used to make the PDMS 

molds [94, 95]. Briefly, Autodesk AutoCAD software 2018 was used to design photomasks 

containing concentrated regions of different shapes of 100 µm sizes (Table 4).  These photomasks 

were used to develop SU-8 master templates. A silicon substrate of 8” diameter was spin-coated 

with SU-8 photoresist. The photomask with patterns was placed over this and the assembly was 

exposed to ultraviolet (UV) light to allow crosslinking of the exposed regions (patterns). This was 

followed by washing off the non-crosslinked SU-8 photoresist, as per the manufacturer’s 

recommendations. Hence, the patterned SU-8 master template was developed using a 

photolithographic technique.  PDMS was then cast on this template using a 10:1 ratio of Silicone 

Elastomer Base and Silicone Elastomer Curing Agent. The PDMS mold, which serves as a 

“negative template”, was delaminated and used for subsequent film casting [96].  

 

Table 4: Size and alignment of various micropatterns 

Shape Size of pattern 

(µm) 

Distance between 

adjacent patterns (µm) 

Nomenclature 

Circle 100 100 100C100 

Square 100 100 100S100 

Triangle 100 100 100T100 
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3.2.2  Fabrication of micropatterned film 

Films were fabricated using a solvent-cast method. Polymer dispersion in water was poured 

on a PDMS mold and subjected to vacuum cycles for 30 mins to remove entrapped air bubbles. It 

was then allowed to rest at room temperature for 1 hour and dried in the oven at 65-70°C and 

atmospheric pressure for 13-15 hours to form the micropatterned film. The film was peeled off from 

the PDMS mold and stored in aluminum foil. A schematic of the design and fabrication of 

micropatterned films is shown in Figure 5.  

 

 

 
Figure 5: Design and fabrication of micropatterned films 
Photomask template design is used for photolithographic and soft-lithographic techniques to develop PDMS mold 
which is in turn used to cast polymeric films 
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3.2.3  Film formulations 

The various components of film formulations were adapted as per the discussion in Section 

3.2.3.  The formulations were broadly categorized into two types: Cellulose-based (Table 5) and 

Cellulose with PLGA (Table 6).  To determine the effect of high-viscosity polymer on the drug 

release, two concentrations of HPMC K4M, 1.5% w/w and 0.75% w/w, were chosen. These 

formulations are referred to as, 1.5% K4M and 0.75% K4M, respectively. Additionally, two 

compositions with relatively higher HEC 250L, 4% w/w and 9% w/w, were also investigated. These 

will be referred to as 4% 250L and 9% 250L. The solid content was maintained at 7.5% w/w for 

all cellulose-based formulations, except 9% 250L. 

The PLGA-containing films followed similar nomenclature as cellulose-based films, except 

for the additional term “PLGA” at the end (Table 6). The solid content in PLGA-based films was 

maintained at 9.375 %w/w.  

 

Table 5: Compositions of cellulose-based films 

Component 1.5% K4M 

(%w/w) 

0.75% K4M 

(%w/w) 

4% 250L 

(%w/w) 

9% 250L 

(%w/w) 

HPMC K4M 1.5 0.75 0 0 

HPMC E5 1.5 2.25 1.5 1.25 

HEC 250L 1.5 2.25 4 9 

HPC JXF 3 3 2 1 

PEG 400 1.125 1.125 1.125 1.6875 

Propylene Glycol 0.75 0.75 0.75 1.125 

Water 90.625 90.625 90.625 88.9375 
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Table 6: Compositions of cellulose and PLGA - based film formulations 

Component 1.5% K4M PLGA    

(%w/w) 

0.75% K4M PLGA 

(%w/w) 

4% 250L PLGA 

(%w/w) 

PLGA 502H 1.875 1.875 1.875 

HPMC K4M 1.5 0.75 0 

HPMC E5 1.5 2.25 1.5 

HEC 250L 1.5 2.25 4 

HPC JXF 3 3 2 

PEG 400 1.125 1.125 1.125 

Propylene Glycol 0.75 0.75 0.75 

Dichloromethane 6.5625 6.5625 6.5625 

Water 82.1875 82.1875 82.1875 

 

As PLGA is water-insoluble [78], DCM was used to dissolve the PLGA which was then 

dispersed in the aqueous phase. The PLGA content in films was limited as per the formulations 

listed in Table 6 since the amount of DCM in the system would have to be restricted. PDMS has a 

tendency to swell and dissolve in organic solvents like DCM [97] and hence, would be challenging 

for film solutions made with high organic solvent content. A swollen PDMS mold would have 

altered micropattern dimensions and therefore, inaccurate micropatterns on films. In our 

formulations, the DCM phase was found to be uniformly dispersed like an emulsion in the viscous 

cellulose-polymer matrix. No phase separation was observed until the solutions were poured into 

the PDMS molds or even in the dried films suggesting that we can incorporate hydrophobic 

polymers in the micropatterned film platform by dispersing them in an aqueous matrix.  
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3.2.4  Preparation of drug-loaded polymer dispersions 

To make a film using one PDMS mold, 21.3 g of cellulose polymer dispersion was prepared 

using the appropriate formula, as listed in Table 5 and Table 6. Plasticizers and cellulose polymers 

were added to water and subjected to 10 minutes of sonication.  

For cellulose-based OLO films, 28.8 mg of drug was directly added to this solution whereas 

for HCT films, 14.4 mg of drug was dissolved in 0.6 mL DCM and added dropwise to the solution. 

For PLGA containing films, the drug and PLGA were dissolved in 1.4 mL DCM. The DCM solution 

was added dropwise to the aqueous phase. These mixtures were allowed to stir overnight to get a 

uniform emulsion. This was later cast using the procedure described in Section 3.2.2. 

3.2.5  Physical characterization of films 

At least three samples for every film were characterized for their weight, thickness and 

tensile properties.  

3.2.5.1 Weight and thickness 

Micropatterned films were weighed using an analytical balance (Mettler Toledo, XS105 

DualRange and Mettler Toledo, AB104-S/FACT). The film thickness was measured in 3 regions 

spaced out randomly, using a thickness gauge (Mitutoyo, Absolute) for each of the various shapes 

of 100 µm patterns.  
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3.2.5.2 Tensile properties 

Tensile strength of films was measured using a texture analyzer (TA.XT Plus C, Stable 

Microsystems), tensile grips and associated software (Stable Microsystems, Exponent). The test 

parameters used were as follows:  

Test mode: Tension; Test Speed: 3 mm/sec; Target Mode: Distance; Distance: 140 mm 

A film sample of known dimensions (approximately 1 inch x 0.5 inch) was held between 

the tensile grips. The grips pulled the film sample at a constant rate and the maximum force required 

to break the film was used to calculate the tensile strength of the film using the following formula: 

Tensile strength = Maximum force (kg)/Area of films (m2) 

3.2.6  Drug content  

Simulated Tear Fluid (STF) was prepared as per the composition shown in Table 7. Since 

it was the media of choice for dissolution testing of films, standard curves of HCT and OLO were 

plotted for solutions in STF.  

3.2.6.1 HCT standard curve 

Standard curve of HCT was plotted in the range 2-25 µg/mL in STF at 248 nm, which was 

the wavelength of maximum absorption. To determine the drug content of films, a standard curve 

was also plotted in the range of 2-25 µg/mL in 50% ethanol in Milli-Q water at 245 nm. HCT-

loaded film samples (13 x 13 mm) were dissolved in 15 mL of 50% ethanol using sonication. The 

solutions were then vortexed, centrifuged at 300 g for 20 minutes and the supernatant was analyzed 

using UV (NanoDrop OneC, Thermo Scientific) at 245 nm. These assay samples were found to be 

stable for 48 hours, when stored at room temperature (25-30 °C) protected from light.  
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3.2.6.2 OLO standard curve 

Standard curves of OLO were plotted for the range of 10-150 µg/mL at 299 nm in STF and 

Milli-Q water. Drug content of films was determined by dissolving 13 mm x 13 mm samples in 5 

mL of Milli-Q water followed by centrifugation and analyzed using UV at 299 nm.  

 

Table 7: Simulated Tear Fluid (STF) composition 
Adapted from [98] 

Component %w/v in water 

Sodium bicarbonate 0.2 

Calcium chloride dihydrate 0.008 

Sodium chloride 0.67 

10% Hydrochloric acid Used to adjust pH to 7.4 

 

3.2.7  Drug release study 

To determine the kinetics of drug release of various formulations, an in vitro release study 

was carried out.  

3.2.7.1 HCT release from micropatterned films 

HCT film samples of 13 mm x 13 mm dimensions containing 300 µg drug were weighed 

and used for the release study.  Sink conditions were maintained using 10 mL STF in 15 mL 

centrifuge tubes. This assembly was kept at 37 °C and 100 revolutions per minute in a shaker-

incubator. Samples of 2 mL were withdrawn from the tubes at pre-determined intervals (30 mins, 

1 hour, 2, 4, 6, 8, 10, 12, 24, 48, 72 hours) and replenished with equivalent fresh media every time. 
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Each collected sample was centrifuged at 14000 rpm for 10 minutes and the supernatant analyzed 

using UV spectrophotometry at 248 nm. 

 

3.2.7.2 OLO release from micropatterned films 

OLO film samples of 13 mm x 13 mm, with a target 600 µg drug content, were weighed 

and studied for drug release. Considering the drug loading and solubility of OLO, sink conditions 

were maintained using 5 mL STF in 15 mL centrifuge tubes. The assembly was maintained at 37 

°C and 100 revolutions per minute in a shaker-incubator. Samples of 1 mL were withdrawn at pre-

determined intervals (30 mins, 1 hour, 2, 4, 6, 8, 10, 12, 24, 48, 72 hours) and replenished with 

equivalent fresh media. Each collected sample was centrifuged at 14000 rpm for 10 minutes and 

the supernatant was analyzed using UV spectrophotometry at 299 nm. 

3.2.8  Differential Scanning Calorimetry  

Differential Scanning Calorimetry (DSC) was performed using Mettler Toledo to study the 

interactions of drugs with polymeric excipients. Pure drug samples and physical mixtures with 

individual polymers or polymeric blends were subjected to DSC analysis. Considering the drug-

loading in the formulations (Section 3.2.4) and the sensitivity of the instrument, all physical mixture 

samples were prepared in a 1:1 ratio of drug to polymer(s). Thermograms were obtained by heating 

HCT samples from 25 °C to 240 °C at a rate of 10°C/min.  OLO samples were heated from 25 °C 

to 300 °C at a rate of 10°C/min. Nitrogen gas was purged through the system at 50 mL/min during 

all sample runs.  
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3.2.9  Ex-vivo tissue mucoadhesion  

Some experimental reports state that the frictional forces involved in removal of Gecko foot 

from surface are higher than the adhesive forces involved in adhering to the surface. These adhesion 

forces in turn depend on the shear forces (friction and gripping) and the gripping direction [99]. 

Since the eye also involves various shear forces which may challenge the adhesive strength of the 

film, we have used frictional forces as a measure of mucoadhesive strength of the films rather than 

conventional methods, which only consider forces in axial direction [33, 35, 100].  

The mucoadhesive performance of micropatterned films with unpatterned control was tested 

using a method developed in-house, inspired from methods used for frictional evaluation in other 

studies [68, 69]. The ex vivo mucoadhesion testing of films was carried out using a texture analyzer 

(TA.XT Plus C, Stable Microsystems), a 5-kg load cell and a controllable sliding platform 

(XSlide™, Velmex Inc.). The film sample was attached to the head of a cylinder probe of 8 mm 

diameter (TA-24) using double-sided adhesive tape. Porcine intestinal tissue stored at -80 °C was 

thawed to room temperature and then washed with simulated tear fluid. Keeping the ocular system 

in perspective [7], excess mucus was removed using blotting paper. The tissue, with the mucosal 

side facing upwards, was secured between a compression probe (CPC 20-T, ADMET) and a 0.125” 

thick 316 stainless steel round shim with clamps. This assembly was placed on the sliding platform 

below the cylindrical probe. The entire assembly is as shown in Figure 6.  

Compressive pre-loading with a force of 10g for a period of 30 seconds was performed by 

bringing the micropatterns in contact with the porcine tissue. The loading force was chosen on the 

basis of the values reported in literature [101] in order to capitulate ocular shear forces and also 

based on the sensitivity of the load cell used.  
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With micropatterns in contact with the tissue, the tissue was moved in horizontal direction 

at a rate of 0.05 cm/sec for 5 secs to cover a distance of 0.25 cm. The Exponent software reported 

the changes in forces experienced by the probe in response to the shear created by the sliding tissue. 

The work expended in this process is a result of frictional barriers and was quantified in the form 

of area under the curve. These values were used as an indirect indication of the mucoadhesive 

potential of films being tested.  

 

 

 

Figure 6: Ex vivo mucoadhesion assembly  
Probe with micropatterned film made to contact porcine tissue with 10g force for 30secs followed by horizontal 
movement of the tissue against the frictional force of film for 0.25 cm at the rate of 0.05 cm sec-1 
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4.0 Results and Discussion 

4.1 Fabrication of micropatterned films 

FITC-loaded films were visualized using confocal microscopy to confirm the formation of 

three dimensional micropatterns. The patterns were uniformly developed and filled for all 100 µm 

shapes, as seen from the vertical and horizontal panels of Z-stacking in Figure 7. Therefore, we 

successfully manufactured films with 100 µm-sized patterns using soft-lithography for the 

formulations listed in Table 5 and Table 6.  

 

 

Figure 7: Formation of micropatterned films  
Confocal images of FITC-loaded films with horizontal and vertical panels indicating the signal intensity as a result of 
Z-stacking across the thickness of films for (a) 100C100; (b) 100S100; (c) 100T100 

 
 

To visualize the distribution of hydrophobic PLGA and other water-soluble polymers within 

the film, FITC and Nile Red were added to the aqueous and organic phase, respectively. FITC 

would be associated with the cellulose polymers and Nile Red would be associated with the PLGA. 

The confocal images of micropatterned film showed uniform distribution of red fluorescence 
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suggesting that PLGA is uniformly dispersed in the cellulose polymer matrix. (Figure 8). 

Differential interference contrast (DIC) microscopy also corroborated with these observations. DIC 

images of cellulose films and PLGA containing films are shown in Figure 9. A uniform polymeric 

matrix can be seen in both cases indicating that the PLGA has been uniformly dispersed.   

 

 

 

Figure 8: Spatial distribution of aqueous and organic phases 
Confocal images of 100C100 micropatterned films (a) Green color of FITC (aqueous dye) showed uniform 
distribution of cellulose polymers, (b) Red color of Nile Red (organic dye) showed uniform distribution of PLGA, (c) 
Merge channel indicated uniform distribution of both phases, (b)-(f) Higher magnification images of the conditions in 
(a)-(c) 
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Figure 9: Uniform distribution of PLGA and cellulose matrix 
DIC microscopy images of 100S100 micropatterned films. Comparison of (a) 4% 250L and (b) 4% 250 PLGA 
showed no phase separation of PLGA polymer indicating that PLGA is uniformly distributed in the cellulose polymer 
matrix in PLGA containing films, (c) - (d) Higher magnification images of (a) – (b)  
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4.2 Film characterization  

All micropatterned were characterized for their weight, thickness and drug content, as 

shown in Table 8 and Table 9. For both HCT and OLO films, the drug content was found to be 

uniform over the different micropatterns within the same film.  

 
 

Table 8: Phyical characteristics of HCT micropatterned films  
*Weight and drug content of entire film is reported, #Thickness is average of circle, square and triangle 

micropatterned film, Data is reported as Mean ± S.D (N=3) 
Film Weight* (g) Thickness# (mm) Drug content* (mg) 

1.5% K4M 1.981 ± 0.027 0.294 ± 0.005 13.765 ± 1.776 

0.75% K4M 1.988 ± 0.026 0.236 ± 0.005 14.918 ± 1.6 

4% 250L 1.906 ± 0.05 0.263 ± 0.008 14.241 ± 1.582 

1.5% K4M PLGA 2.137 ± 0.021 0.253 ± 0.01 15.608 ± 3.37 

0.75% K4M PLGA 2.167 ± 0.011 0.245 ± 0.008 12.828 ± 1.666 

4% 250L PLGA 2.283 ± 0.022 0.25 ± 0.032 15.043 ± 2.05 

 

 

 

Table 9: Phyical characteristics of OLO micropatterned films  
*Weight and drug content of entire film is reported, #Thickness is average of circle, square and triangle 

micropatterned film, Data is reported as Mean ± S.D (N=3) 
Film Weight* (g) Thickness# (mm) Drug content*(mg) 

1.5% K4M 2.095 ± 0.006 0.24 ± 0.008 27.312 ± 1.867 

0.75% K4M 2.027 ± 0.053 0.241 ± 0.021 27.963 ± 1.686 

4% 250L 1.897 ± 0.031 0.276 ± 0.008 29.235 ± 4.426 

9% 250L 2.932 ± 0.014 0.32 ± 0.008 29.092 ± 0.779 

1.5% K4M PLGA 2.643 ± 0.194 0.255 ± 0.005 26.485 ± 5.46 
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4.3 Comparison of shapes for surface area and volume 

The different shapes of micropatterns can vary in the surface area and volume. These 

variations can potentially impact properties of the films such as drug release and mucoadhesion 

[102]. The drug release and mucoadhesion of films are dependent on interfacial properties of 

polymers used in the formulation, surrounding media and the mucus and hence, the surface area 

could play a significant role in altering them. Table 10 lists the theoretical calculated parameters 

for various shapes of 100 µm size.  

 

 

Table 10: Comparison of theoretical surface area for various patterns for a 13 mm x 13 mm film 
  Shape  Size 

(µm) 

Number of 

patterns 

Additional area 

of patterns 

(mm2) 

Additional 

volume of 

patterns (mm3) 

Total surface 

area (mm2) 

Total 

volume 

(mm3) 

Circle 100 4225 132.665 3.318 470.665 28.668 

Square 100 4225 169 4.225 507 29.575 

Triangle 100 4225 126.75 1.829 464.75 27.179 
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4.4 Release of HCT from micropatterned films 

4.4.1  Effect of micropattern shape on HCT release 

 

Figure 10: Effect of shape on in vitro release of HCT  
Cumulative release of HCT from (a) 1.5% K4M, (b) 0.75% K4M, (c) 4% 250L, (d) 1.5% K4M PLGA, (e) 0.75% 
K4M PLGA, (f) 4% 250L micropatterned films evaluated using simulated tear fluid as release media. Data shown is 
the mean ± standard deviation for three replicates (n=3) 
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The release profile of HCT, from films containing circle, square and triangle shaped 

micropatterns of 100 µm size, are shown in Figure 10. Analysis using Repeated Measures (RM) 

two-way ANOVA test [103] indicated no significant effect of shape on the release profiles of HCT 

from various film compositions. Therefore, the drug release data for different shapes was combined 

for comparison of formulations in subsequent sections. 

 

4.4.2  Effect of film composition on HCT release 

 

Figure 11: Effect of PLGA on in vitro release of HCT  
Cumulative HCT drug release from (a) 1.5% K4M, (b) 0.75% K4M, (c) 4% 250L series (cellulose-based and PLGA-
containing) micropatterned films in simulated tear fluid as release media. Data shown is mean ± standard deviation of 
three micropattern shapes from each of the three replicates (n=9) 
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The release profile of HCT from films of various compositions is shown in Figure 11. An 

initial burst release of at least 45% was observed within 2 hours for the films, 1.5% K4M and 1.5% 

K4M PLGA (High K4M). Beyond this time, the PLGA containing film showed sustained release 

of HCT as compared to its cellulose-based counterpart until 72 hours. For the low K4M content 

films, 0.75% K4M and 0.75% K4M PLGA, the initial burst release profiles were significantly 

different; the PLGA containing film released almost 40% within 2 hours whereas the cellulose-

based film released 30% of the drug. This difference was present until 8 hours, after which the 

0.75% K4M PLGA sustained the HCT release better than 0.75% K4M until at least 72 hours. In 

films with high HEC content, 4% 250L and 4% 250L PLGA, the initial burst release and subsequent 

release up to 72 hours was similar for both films.  

In general, PLGA was found to sustain the release of HCT better than the cellulose films 

after initial burst release. This may be attributed to the association of HCT with PLGA, both being 

hydrophobic moieties, allowing the drug to get released slowly. To study the effect of K4M (high 

viscosity polymer) concentration, the release of HCT from 1.5% K4M and 0.75% K4M were 

compared. Surprisingly, 1.5% K4M (high conc.) film showed faster drug release than 0.75% K4M 

(low conc.) and 4% 250L (No K4M). However, the lowered K4M concentrations were compensated 

with HPMC E5 and HEC 250L, which may be imparting some other effects.  
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Figure 12: Effect of formulation on in vitro release of OLO  
Cumulative release of OLO from various cellulose-based formulations, 1.5% K4M (high K4M), 0.75% (low K4M) 
and 4% 250L (high 250L) content in simulated tear fluid as release media. Data shown is mean ± standard deviation 
of three micropattern shapes from each of the three replicates (n=9) 
 
 

Overall, drug release was sustained better with higher HEC 250L concentrations until 48 

hours (Figure 12). Alternatively, PLGA could also sustain the drug release better than pure cellulose 

formulations with K4M. To investigate this further, the interactions of HCT with the various 

polymers were studied using DSC analysis. 
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4.4.3  Study of HCT- polymer interaction by DSC 

 

Figure 13: DSC thermograms of HCT and 1:1 physical mixtures of HCT with individual polymers 
DSC analysis was carried out by heating samples from 25 – 240 °C at the rate of 10 °C/min. Heat flow data expressed 
is per gram of sample. 
 

DSC analysis of HCT and its mixtures with polymers is shown in Figure 13. Pure HCT 

exhibited a sharp endothermic peak indicative of meting point at 224 °C with an onset at 220 °C. 

Pure PLGA also exhibited an endothermic event between 50-55 °C, typical of a glass transition 

peak. The cellulose polymers indicated no such behavior in this temperature range. 

 The 1:1 physical mixtures of HCT with individual cellulose polymers (HPMC E5, HPMC 

K4M, HEC 250L and HPC JXF) exhibited no significant shifts in the melting endotherm of HCT 

unlike the physical mixture with PLGA, where a substantial shift was observed to 188 °C (Figure 

13). A shift in the endothermic peak of a drug is indicative of drug-polymer interactions [104, 105]. 

Therefore, it can be hypothesized that HCT interacts significantly with PLGA as compared to other 
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cellulose polymers. The different cellulose polymers affected the intensity and area under the peaks, 

which are representative of the enthalpy changes in the system [106]. Since all thermograms have 

been normalized to drug-polymer ratio and weight of the sample, the variations in area under the 

peak for different polymers may be indicative of differences in weak interactions of polymers with 

the drug.  

 

 

Figure 14: DSC thermograms of HCT and 1:1 physical mixtures of HCT with polymeric blends 
DSC analysis was carried out by heating samples from 25 – 240 °C at the rate of 10 °C/min. Heat flow data expressed 
is per gram of sample. 
 
 

To check the cumulative effect of polymeric blends on HCT, thermograms were also plotted 

for its 1:1 mixtures with the 1.5% K4M and 1.5% K4M PLGA polymeric blends, representative of 

the cellulose-based and PLGA containing formulations, respectively (Figure 14). The PLGA-

containing formulation exhibited a greater shift (211 °C) than the cellulose blend (223 °C), 

validating the initial observation of PLGA interaction with HCT. Greater shifts with PLGA may be 
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due to the hydrophobic nature of both HCT and PLGA, allowing more interactions between these 

molecules as opposed to hydrophilic cellulose polymers.  

DSC results for drug-polymer interactions are typically corroborated and investigated using 

Fourier Transformed - Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and Nuclear 

Magnetic Resonance (NMR) [105, 107] studies to identify formation of new bonds or changes in 

functional groups due to a chemical reaction. Therefore, further investigations would be required 

to make concrete conclusions. 

 

4.4.4  Mathematical Models of HCT drug release 

Various mathematical models were used to understand the release mechanism of HCT from 

the polymeric matrices. Zero order[108, 109], first order [108], Higuchi [110, 111], Peppas [112, 

113] and Hixson-Crowell [114-116] are some common models applicable to existing drug delivery 

systems. Regression analysis using these models require various assumptions, broadly involving 

the matrix and drug properties, which are then used to hypothesize the mechanisms involved. Some 

common drug release mechanisms pertaining to the matrix include swelling, porosity, dissolution 

and degradation. Additionally, the ratio of drug/polymer and its physicochemical properties such 

as solubility, ionization and diffusion coefficients can influence the release profile observed for a 

system [112].  

Zero-order kinetics are typically seen with osmotically controlled or reservoir type systems 

[109] where a membrane can ensure consistent amount of drug release over time. First-order 

kinetics indicate a concentration gradient-dependent release of drug. This behavior is common in 

porous systems for hydrophilic drugs since drug diffusion, rather than drug solubility, is a limiting 
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factor [117]. The Higuchi model was proposed for the quantification of drug release from a planar 

film of ointment assuming pseudo-steady-state approach. This evolved into an equation with the 

concentration being directly proportional to the square root of time [111, 118]. The Hixson-Crowell 

equation, also known as the “cube-root law” takes into account the changes in surface area as the 

matrix dissolves over time [108]. The Peppas equation, also known as the power-law, was proposed 

for thin polymeric films with negligible edge effects. It is valid for the first 60% of normalized drug 

release and the mechanism of drug release can be interpreted from the value of the diffusional 

exponent, n [119, 120], defined for non-swellable thin films. A value of n=0.5 indicates a Fickian 

diffusion; n=1 indicates Case-II transport (zero-order) whereas 0.5<n<1 indicates anomalous 

transport [118]. 

However, all these models should not be assessed simply based on correlation values. 

Peppas et al. demonstrated that Fickian diffusional release from thin polymeric sample where the 

amount of drug is below its solubility limit is also proportional to square-root of time up to 60% of 

drug release. This may sometimes be misinterpreted as the Higuchi model and therefore, prior 

assumptions of the two models must be taken into account before arriving at a conclusion [118]. 

Table 11 lists the coefficient of determination (R2) values for the various models tested for 

comparison. 
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Table 11: Coefficient of determination values for in vitro release of HCT release models 
 

Formulation Zero-

order 

First 

order 

Higuchi Hixson- 

Crowell 

Peppas* (n) Fickian 

diffusion* 

1.5% K4M 0.5173 0.8731 0.7669 0.9067 0.8947 (0.39) 0.9351 

1.5% K4M PLGA 0.5686 0.802 0.7938 0.7289 0.9145 (0.21) 0.8053 

0.75% K4M 0.7803 0.986 0.959 0.946 0.9903 (0.40) 0.9876 

0.75% K4M PLGA 0.6349 0.8589 0.8278 0.7935 0.9546 (0.15) 0.7899 

4% 250L 0.8405 0.9914 0.9819 0.964 0.9924 (0.35) 0.9829 

4% 250L PLGA 0.7654 0.9351 0.9479 0.9546 0.9833 (0.35) 0.9769 

* Release data up to 60% cumulative release of HCT 

 

Cellulose-based films indicated high R2 values for first order, Hixson-Crowell, Peppas and 

Fickian diffusion models. These models supported each other to indicate that the HCT release from 

micropatterned films was diffusion limited. The n values for Peppas equation varied between 0.35 

and 0.4 (Table 11) which are lower than the 0.5 value expected for Fickian diffusion. These 

differences may be due to the swellable nature of the cellulose-based polymers, bidirectional 

transport and the presence of micropatterns on films [119, 120]. Additionally, the low drug loading 

of these films do not fulfil the primary requirements of Higuchi model [111, 118], therefore, the R2 

values cannot be truly evaluated for this model. 

For films containing HPMC K4M and PLGA, the Peppas model had the highest R2 values 

with n values between 0.15 and 0.35. The diffusion-limited mechanism is not truly supported by 

other models and hence, here it might seem that the profiles are pseudo-Fickian [121], wherein the 

approach to final equilibrium is very slow. For film containing HEC 250L and PLGA, the high R2 

values for all tested models, except zero-order, indicate a diffusion-limited release. This is similar 
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to its pure cellulose counterpart, 4% 250L, as was also reflected in the similar R2 values of its 

cellulose film counterpart.  

The lack of a definitive fit for HCT release with various models can be attributed to the 

complexity of the formulation and processing method. Various cellulose polymers have unique 

mechanisms of drug release when studied independently. HPC is known to show Fickian behavior 

in drug release where diffusion is dominant. Alternatively, HEC and HPMC show a combination 

of drug diffusion and polymer matrix effects [112]. The profiles of drug release in our system would 

be influenced by a multitude of factors, with each polymer contributing its unique characteristics. 

The shape and dimensions of our system are different from conventional geometries considered for 

modelling drug release, such as, cylindrical tablets, spherical granules and slab geometry [119, 

120]. The sub-millimeter thickness and additional surface area of micropatterns allows better 

interaction with the aqueous medium which may improve the wetting rate. The control of release, 

however, would be impacted by the diffusion of drug through the gel layer and also disintegration 

of the polymer matrix. Thus, further investigations would be required to characterize the polymeric 

film matrix and understand the influence of all components within the system on the release of 

HCT.  
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4.5 Release of OLO from micropatterned films 

4.5.1  Effect of micropattern shape on OLO release 

 

Figure 15: Effect of shape on OLO drug release 
Cumulative release of OLO from (a) 1.5% K4M, (b) 1.5% K4M PLGA, (c) 0.75% K4M, (d) 4% 250L, (e) 9% K4M 
micropatterned films in simulated tear fluid as release media. Data shown is the mean ± standard deviation of three 
replicates (n=3) 

 

The release profiles of OLO, from films containing circle, square and triangle shaped 

micropatterns of 100 µm size, are shown in Figure 15. Analysis using RM two-way ANOVA test 

indicated no significant effect of shape for most formulations, except 4% 250L where the triangle 
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(100T100) showed faster release compared to circles and squares. Further investigation using 

Tukey’s post hoc test [122] for every time point corroborated with the results of RM two-way 

ANOVA for all formulations confirming that release was higher for triangles in 4% 250L 

composition. Since, in general, the micropattern shape did not affect the drug release significantly, 

the drug release data for different shapes was combined for comparison of OLO formulations in the 

subsequent sections.  

 

4.5.2  Effect of film composition on OLO release 

The release profile of OLO from micropatterned films of various compositions in shown in 

Figure 16. A high initial burst of at least 45% was observed within 1 hour for 1.5% K4M films as 

opposed to 1.5% K4M PLGA films with a burst release of around 30%. The PLGA-containing film 

was found to sustain the release better than the cellulose film until 24 hours, after which both films 

approached similar OLO release until 72 hours. This may be attributed to the fact that during the 

preparation of PLGA-containing films, the OLO drug was dispersed with the PLGA phase. The 

drug that remains associated with the PLGA, will be release slowly due to the water-insoluble 

nature of PLGA.  

The OLO release from 0.75% K4M film was similar to the 1.5% K4M PLGA film. This 

could be attributed to the fact the 0.75% K4M film composition had low K4M content which was 

compensated by increasing the concentration of HEC 250L and HPMC E5 equally. This suggests 

that HEC 250L may have a significant impact on the release of OLO. To investigate the effect of 

250L on the release of OLO, compositions with higher 250L content were tested. In case of 4% 

250L and 9% 250L films, the initial burst release (~ 30%) and the subsequent release up to 72 hours 
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was similar. Overall, OLO release was sustained well by higher 250L concentrations up to 48 hours 

(Figure 16) even though it is a low-viscosity polymer as opposed to K4M. To investigate these 

observations further, the interaction of OLO with various polymers was studied using DSC.   

 

 

Figure 16: Effect of formulation on OLO release  
OLO release from different compositions, 1.5% K4M, 1.5% K4M PLGA, 0.75% K4M, 4% 250L and  9% 250L 
micropatterned films in simulated tear fluid as release media. Data shown is mean ± standard deviation of three 
micropattern shapes from each of the three replicates (n=9) 

 

4.5.3  Study of OLO – polymer interaction by DSC 

DSC analysis of OLO with individual polymers are shown in Figure 17. DSC of OLO 

indicated a sharp endothermic peak at 254 °C, typical of a melting point [106]. This endothermic 

peak shifted in case of 1:1 physical mixture of OLO: PLGA (238 °C) and OLO: HEC (240 °C).  

These shifts in the peak are indicative of substantial drug-polymer interactions [104, 105, 123]. 
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Endothermic peak shifts observed with other cellulose polymers were similar in intensity and 

enthalpy.  

 

 

Figure 17: DSC thermograms of OLO and 1:1 physical mixtures of OLO with individual polymers 
DSC analysis was carried out by heating samples from 25 – 300 °C at the rate of 10 °C/min. Heat flow data expressed 
is per gram of sample. 
 

DSC was also performed with polymeric blends representative of the various compositions 

(Figure 18). Endothermic peak for physical mixtures with 4% 250L and 9% 250L formulations 

indicated a similar shift, even though the relative polymer compositions were significantly different 

within these two formulations. The shifts in K4M containing compositions, 1.5% K4M and 0.75% 

K4M, was also similar. However, the peak shifts in high 250L content compositions (4% 250L and 

9% 250L) was significantly greater than the peak shifts in K4M containing compositions (1.5% 

K4M and 0.75% K4M). This indicated that OLO had greater interactions with HEC 250L as 

compared to other cellulose-based polymers.  
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Figure 18: DSC thermograms of OLO and 1:1 physical mixtures of OLO with polymeric blends 
DSC analysis was carried out by heating samples from 25 – 300 °C at the rate of 10 °C/min. Heat flow data expressed 
is per gram of sample. 

 

4.5.4  Mathematical models of OLO release 

To understand the release mechanism of OLO from micropatterned films, drug release 

models discussed in Section 4.4.4 were applied. Table 12 lists the coefficient of determination (R2) 

values for the various models tested for comparison of OLO release. 
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Table 12: Coefficient of determination values for OLO release models 
Formulation Zero-

order 

First 

order 

Higuchi Hixson- 

Crowell 

Peppas* (n) Fickian 

diffusion*  

1.5% K4M 0.3651 0.8779 0.6069 0.6644 0.7897 (0.7) 0.9009 

1.5% K4M PLGA 0.5241 0.9366 0.7735 0.8869 0.8173 (0.44) 0.9402 

0.75% K4M 0.4834 0.9268 0.7197 0.7637 0.7109 (0.32) 0.8889 

4% 250L 0.6889 0.9684 0.9055 0.9006 0.9047 (0.46) 0.9632 

9% 250L 0.7234 0.9617 0.9216 0.9347 0.8432 (0.49) 0.9433 

*Release data up to 60% cumulative release of OLO 

 

For all films, highest R2 values were observed for Fickian diffusion model, which indicated 

a primarily diffusion limited drug release. Additionally, films with low K4M (0.75%) or high 250L 

content (4% 250L and 9% 250L) also demonstrated high R2 values for first-order release. The rate 

constants for first order model of 0.75% K4M, 4% 250L and 9% 250L are 0.0366, 0.0393 and 

0.05043 hr-1, respectively.    

These films, not being more than 300 µm in thickness, allow the aqueous media surrounding 

them to get imbibed within the hydrophilic polymeric matrix. This is followed by the relaxation 

polymeric chains to form a gel through which the drug diffuses to the outer media [112]. OLO being 

a hydrophilic drug, is not limited by local dissolution and travels across the gel layer by virtue of 

diffusion or concentration gradient limitations. In case of films with high K4M, the gel formed 

would have a high viscosity indicating a denser network of polymer chains and greater resistance 

thereby controlling the diffusion of drug molecules from the polymeric matrix. On the other hand, 

films with low viscosity polymers, do not form as dense networks and the entire hydrated film 
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would function as a uniform drug reservoir. Therefore, drug release would be limited by difference 

in concentration gradient of this “drug reservoir” and the surrounding media.  

In general, the R2 values for first order and Fickian diffusion are not significantly different 

and hence, a single model cannot define the entire system. 

4.6 Tensile properties of films 

To evaluate the effect of patterns on the mechanical properties of films, tensile testing was 

carried out on 1.5% K4M and 1.5% K4M PLGA, both representative of cellulose and PLGA films, 

respectively. The results of tensile strength, Young’s modulus and % elongation are shown in 

Error! Reference source not found.. For a given formulation, there was no significant impact of 

shape on the tensile properties of films. However, tensile strength was found to be significantly 

dependent on the formulation for micropatterned films. 1.5% K4M films had higher tensile 

strengths than 1.5% K4M PLGA with significant differences between circle or square cellulose 

films and PLGA-containing films (Figure 19 (a)). In general, Young’s modulus of various cellulose 

films were found to be higher than PLGA films, although statistically significant for triangle and 

square micropatterned cellulose films (Figure 19 (b)). This may be attributed to the differences in 

physicochemical properties of PLGA and cellulose phase. The presence of PLGA might be causing 

discontinuity in the polymeric chain matrix, hence, affecting its ability to withstand axial tension. 

The elongation potential was comparable for the two compositions, irrespective of the presence of 

micropatterns (Figure 19 (c)). All these properties are indicative of mechanical strength of films 

[124], an important characteristic for the dosage form at the manufacturing and patient use fronts. 

The film should be able to sustain processes such as peeling and cutting in manufacturing, whereas 
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the patient should be able to effectively place the insert in the eye. In general, there are no guidelines 

or defined regulatory ranges for mechanical properties [125]. However, films with moderate tensile 

strength and low elongation potential are soft and strong, which would be preferable for 

micropatterned films in order to ensure physical integrity and avoid deformation under shear 

intensive processes of the eye such as blinking and movement of the eyeball [91].  

 

 

Figure 19: Effect of micropatterns on mechanical properties of placebo films 
(a)Tensile strength, (b) Young’s modulus and (c) % Elongation of 1.5% K4M and 1.5% K4M PLGA films were 
evaluated using forces measured by TA.XT texture analyzer. Data presented is mean + standard deviation for three 
replicates in each group. *p<0.05, Two-way ANOVA followed by Tukey’s pot hoc test  
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4.7 Mucoadhesion of micropatterned films 

The results from mucoadhesion testing are shown in Figure 20. The films, 1.5% K4M and 

1.5% K4M PLGA, were chosen as representative of the cellulose and PLGA films, respectively. 

The primary aim was to determine whether the presence of micropatterns could resist an external 

shear better than unpatterned films. The proposed experimental setup (Section 3.2.9 ) was used to 

evaluate the work required to move a film over the mucosal tissue surface, under a set of defined 

parameters. This work could be evaluated as an indirect indication of the extent of adhesion of films 

to the mucosal surface of the tissue. The force with which the film was allowed to make contact 

with the tissue, the rate of shear and the distance over which the shear was applied, were chosen to 

simulate the ocular environment within the limitations of other contributing factors like sensitivity 

of the instrument, choice of tissue, direction of force measurements.  

It was observed that the presence of micropatterns did not significantly improve the 

mucoadhesion of films to the tissue surface for either composition. One reason could be that 

compared to the inherent mucoadhesive characteristics of the cellulose polymers in film, the 

potential effect and contribution of micropatterns is relatively small. Another possibility is the 

swellable nature of cellulose polymers, which may compromise the physical integrity of 

micropatterns. Previous work by Yohann Pitale [93] had demonstrated that the work of adhesion 

was significantly improved by micropatterns as compared to unpatterned film when tested on 

porcine intestinal tissue. However, the films tested had a high content of Eudragit® polymers, 

which are more hydrophobic than cellulose polymers and also the loading force used significantly 

higher (150g as opposed to 10g). Hence, the prominent effect of micropatterns could be a result of 

these multiple parameters.  
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Figure 20: Effect of micropatterns on work of friction  
(a) Typical plot of force vs time generated by Exponent software of TA.XT texture analyzer. The beginning of the 
sliding of porcine tissue is marked in red. Work by friction was evaluated for (b) 1.5% K4M, (c) 1.5% K4M PLGA 
films by calculating the area under the force-time graph when the porcine tissue was moved horizontally in contact 
with the micropatterned film sample on probe. Data presented is mean + standard deviation for three replicates in each 
group. 

 

Another factor that can impact the results of the test is the directionality of tissue movement. 

Previous studies [68, 69] involved moving the film sample along the axial direction of intestinal 

tissue, which were relevant within the scope of their endoscopic application. Validation would be 

required to establish the suitability of using the axial direction of porcine intestinal tissue as a 

representative of the conjunctival tissue. Tissue variability, mucosal content and the lack of 

integration of sliding platform with the texture analyzer are other factors that influence the results.  
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4.8 Conclusion and future directions 

Through this study, we demonstrated that polymeric micropatterned films are a versatile 

platform to incorporate drugs with different physicochemical properties, such as hydrocortisone 

(water-insoluble) and olopatadine hydrochloride (water-soluble). By using various proportions of 

GRAS complaint polymers, it was possible to tailor the release of anti-inflammatory drugs for a 

prolonged period up to 72 hours. Cellulose-based polymers like HPMC K4M, HPMC E5, HEC 

250L and HPC JXF were chosen for their various unique properties contributing to the quality of 

films and the sustenance of drug release. Some common theories of drug release from these water-

soluble polymers suggest that the water gets imbibed in the polymeric matrix followed by relaxation 

of polymeric molecules to form a gel. The viscosity of this gel has the potential to control drug 

release by virtue of its viscosity and diffusion limiting parameters of the drug molecule. Therefore, 

a high viscosity polymer, HPMC K4M, was used in our formulations and its effects studied. To 

further sustain the release of HCT and OLO, PLGA was also incorporated. PLGA has been 

previously been studied in the form of micro/nano particles and pure PLGA films for ocular 

applications [31, 78, 79, 102], but we have explored its dispersion in a solid polymeric matrix.  

Despite its hydrophobic nature, we could successfully incorporate PLGA in the hydrophilic 

polymeric matrix but its proportion was limited due to the need of organic solvents like DCM. DCM 

is a class 2 solvent and the FDA has strict regulations regarding residual solvent content [126]. 

Also, DCM has a potential to swell PDMS molds used to fabricate films, which might compromise 

the intended dimensions of micropatterned films.  

Micropatterned films of 100 µm sized circles, triangle and squares were fabricated and 

studied for drug release. These studies indicated a lack of variation for different shapes which may 
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be due to the large size of patterns and the swellable nature of the polymeric matrix, effectively 

masking the potential effects of surface area and volume. 

Polymeric films containing PLGA maintained physical integrity longer and were able to 

sustain the release of HCT better than cellulose-based films. DSC studies revealed that HCT had 

greater interactions with PLGA than other cellulose polymers which may be attributed to their 

hydrophobic nature. Alternatively, films with high HEC 250L content showed better sustenance in 

OLO release. This observation was corroborated with the DSC studies which indicated higher 

interactions of OLO with HEC. However, further investigations with FTIR and XRD studies would 

be required for both drugs to identify and characterize these potential interactions. The drug release 

for both HCT and OLO was found to be primarily diffusion limited for all formulations and the 

lack of a definitive fit for model highlighted the complex nature of these systems. Also, the grade 

of PLGA used in these studies contains a 50:50 ratio of lactic acid and glycolic acid monomers. 

Other grades of PLGA have varied capabilities of sustained release based on these ratios.  

Therefore, future studies would be directed towards exploring the different grades of PLGA and 

also different drug-loading capacities. The in vitro release method used in this work involved the 

use of release media at physiological pH and in quantities far greater than the biological system of 

eye. Hence, further optimization studies can be done towards developing a biorelevant system to 

mimic the tear fluid volume, pH and turnover in the diseased eye.  

Tensile studies indicated that micropatterns did not affect the tensile strength of the films. 

However, the formulation had a significant impact with PLGA-containing films having lower 

tensile strength than cellulose films which may be attributed to the discontinuity in polymeric chain 

alignment incurred as PLGA is incorporated in cellulose matrix. PLGA cannot interact as well with 

the cellulose polymers making the film relatively brittle.  
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A novel method to evaluate mucoadhesion was developed in an attempt to make the 

parameters relevant to the ocular conjunctival system. Initial studies indicated that micropatterns 

did not improve the adhesion of cellulose or PLGA-containing films to the mucosal surface. This 

may be attributed to the inherent mucoadhesive and swellable properties of cellulose polymers used 

which may render the effects of micropatterns insignificant. To investigate these, fluorescent dye-

loaded micropatterned films can be visualized over the time-course of their placement and 

compression on the mucosal surface. These studies could also potentially provide insight into an 

appropriate method of application of the films.  

Previous studies with Eudragit-based films and a different method indicated micropatterns 

significantly improved mucoadhesion [93].  Therefore, further studies would be required to validate 

the new method using the Eudragit-based film compositions and also check whether the effect of 

micropatterns on mucoadhesion is formulation dependent. The validated method can then be used 

to study micropatterns of smaller sizes and their effect on mucoadhesion.   

In conclusion, it was demonstrated that the micropatterned polymeric film is a promising 

platform for prolonged ocular delivery of various drugs and further optimization is required to 

improve its mucoadhesive properties.  
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