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Zusammenfassung. In Anlehnung an das Standardbeispiel für die einfache Irrfahrt be-
trachten wir das folgende Modell: Nach einer durchzechten Nacht findet sich eine betrun-
kene Person auf ihrem Nach-Hause-Weg aus unerfindlichen Gründen in einem unendlichen
Irrgarten wieder. Aufgrund ihres Alkoholspiegels weiß die Person weder, an welchem Ort sie
sich befindet noch wo sie sich vorher aufhielt, und so torkelt sie auf der Suche nach ihrer
Wohnung durch das Labyrinth. Wir fassen den Weg des Betrunkenen als Irrfahrt in einem
zufälligen Graphen auf und nehmen ferner an, dass die Irrfahrt einen Drift in eine bestimm-
te, fest gewählte Richtung aufweist. Ein Grund für diesen Drift könnte beispielsweise sein,
dass das Labyrinth ein leichtes Gefälle in diese Richtung besitzt, wodurch der Betrunkene
unwissentlich mit höherer Wahrscheinlichkeit bergab anstelle von bergauf torkelt.
Wir betrachten dieses Modell für den Spezialfall, dass die Umgebung der Irrfahrt durch ein
ein-dimensionales Perkolations-Cluster gegeben ist. Die lineare Geschwindigkeit der Irrfahrt
konvergiert fast sicher gegen eine Konstante v, welche deterministisch vom Drift-Parameter
λ der Irrfahrt abhängt. Dieser Grenzwert ist für kleine Werte von λ strikt positiv, und es
existiert ein kritischer Wert λc, sodass die Geschwindigkeit v für alle λ ≥ λc den Wert null
annimmt. Im ballistischen Fall bestimmen wir die typische Größenordnung der Abweichung
der Irrfahrt von ihrer linearen Geschwindigkeit v. Des Weiteren bestimmen wir im kritischen
und im subballistischen Fall die Größenordnung der Entfernung der Irrfahrt vom Ursprung.
Außerdem zeigen wir im subdiffusiven Fall ein Gesetz des iterierten Logarithmus.

Abstract. Suppose an ant is placed in a randomly generated, infinite maze. Having no
orientation whatsoever, it starts to move along according to a nearest neighbour random
walk. Now furthermore, suppose the maze is slightly tilted, such that the ant makes a step
along the slope with higher probability than in the opposite direction. Tracking the ant’s
position, we are interested in the long-term behaviour of the corresponding random walk.
We study this model in the context that the maze is given by a one-dimensional percolation
cluster. Depending on the bias parameter λ of the walk, its linear speed converges almost
surely towards a deterministic value v. This limit exhibits a phase transition from positive
value to zero at a critical value of λ. We investigate the typical order of fluctuations of the
walk around v in the ballistic speed regime, and the order of displacement from the origin in
the critical and subballistic speed regimes. Additionally, we show a law of iterated logarithm
in the subdiffusive speed regime.
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CHAPTER 1

Introduction

In this work, we will examine a variant of the ’ant in the labyrinth’ model. The ’ant in the
labyrinth’ was introduced in a popular science article in 1976 by the physicist De Gennes [17]
and can be described as follows: Suppose we place a blindfolded ant in an infinite, randomly
generated maze. At each time step, the ant randomly chooses a direction along which it tries to
make a step in the labyrinth. If the step is permitted by the labyrinth, the ant steps into a new
site, time advances and it continues with choosing the direction of its next step. If the path is
blocked, the ant hits a wall, cannot make a step and thus stays put. Then again, time advances
and the ant continues with choosing the direction of its next step.
To describe this procedure in terms of mathematical objects, suppose we are given a graph (maze)
G = (V,E) and a random subset E′ ⊆ E of its edges. A particle (the ant) is then placed on one
of the graph’s nodes and performs a lazy nearest-neighbour random walk. This random walk is
such that at each time, it chooses the direction of its next step (the direction of the ant) among
those vertices that are neighboured to its current position according to the complete edge set E,
but only changes its position if the selected edge is among those edges that are contained in E′.
At times when a neighbouring vertex was selected due to an edge not contained in E′, the walk
stays put. That is, the ant hits a wall.
We are interested in those instances where the underlying random walk is not the simple random
walk but tends to slightly prefer steps in a pre-specified direction over those in opposite direction.
In terms of the blindfolded ant, we might imagine that the labyrinth is slightly tilted such that
due to gravity, the ant unwittingly takes a step along the slope with increased probability.
In terms of real-world applications, the described process can for example be used to model the
diffusion of a particle in large chromatographic columns, as indicated by Barma and Dhar in [6]
or more generally to study dissipation of a gas in a porous medium under the influence of an
external field inducing a bias direction.
In particular, we are interested in a precise description of the long-term behaviour of this process
when the environment is given by the infinite open cluster of a conditional percolation model on
the ladder graph.

1.1. Percolation

The processes that we want to analyse involve two sources of randomness. One being the random
walk itself, while the other one is given by the environment. In case of the latter, we look for the
most straightforward way to randomize a given graph. That is, for each edge of the graph, we flip
an independent coin. Based on the outcome of the coin flip, we retain the edge if the coin shows
heads, and delete it otherwise. The corresponding mathematical subject is known as percolation.
While some aspects of percolation are covered in general textbooks about probability theory,
e. g. [32], the standard reference for the subject is [25].
The subject started with the paper [15] by Broadbent and Hammersley in the 1950s and was
motivated by the following scenario: Suppose we submerge a large porous stone in water. We can
imagine the stone as a mixture of actual matter and a variety of tunnels of different diameter.

1



1.1. PERCOLATION 2

For each tunnel, there is a probability p ∈ [0, 1] that it is wide enough to allow the intruding
water to flow along it, independent of all other tunnels. With probability 1− p, it is too narrow
to make this possible. A natural question to ask then is what is the probability of the interior
of the stone to become wet. In other words, whether water which enters the stone at its outer
boundary can percolate.
To describe this in less vague terms, we can think of the tunnels as edges of a graph, and the
intersections of tunnels in the stone can be seen as its vertices. We say the edges are open if
they allow flow of water, and call them closed otherwise. The aforementioned probability of the
interior of the stone to become wet is then connected to the event that there exists a path from
a node on the boundary of the graph to a node in the interior of the graph such that every edge
of the path is open.
In mathematical terms, suppose we are given an infinite graph G = (V,E). The most common
examples are the lattices Zd, that is, the graphs with V = Zd whose vertices share an edge if
and only if their euclidean distance equals 1.
In (Bernoulli) bond percolation, for each edge e we flip an independent coin. Depending on the
outcome of the coin flip, we assign to the edge a value of either 0 or 1, where 0 is to be interpreted
as the edge being closed and 1 as the edge being open.
To be precise, we look at Ω = {0, 1}E , endowed with the product σ-algebra F . The elements
ω = (ω(e))e∈E ∈ Ω are called configurations. For p ∈ [0, 1], we define a probability measure Pp
on (Ω,F) by

Pp(ω) :=
∏
e∈E

µp,e(ω(e)),

where µp,e is a probability measure on ({0, 1},P({0, 1})) where P(A) is the power set of a set
A, with µp,e({1}) = p and µp,e({0}) = 1− p.

Figure 1. A subgraph of the lattice in Z2 where only the open edges for
Bernoulli bond percolation with p = 0.3 (left) and p = 0.6 (right) are drawn.

For v ∈ V , denote by C(v) the connected component of v in the subgraph of G whose edge set
only consists of the open edges. Speaking in terms of the porous stone which is submerged in
water, if water enters the stone at vertex v, then it can percolate to some arbitrarily distant part
of the stone if and only if C(v) is infinite. The critical percolation threshold pc denotes - in terms
of the edge retention parameter p - the critical value above which this event occurs with positive
probability. More precisely, it is defined as

pc := sup{p ∈ [0, 1] : Pp(|C| =∞) = 0},
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where C denotes the cluster C(0) at the origin.
For bond percolation on the lattice Zd, it is known that pc ∈ (0, 1) when d ≥ 2. Furthermore,
exact values of pc are only known for special cases, e. g. pc = 1/2 for bond percolation on Z2 or
pc = 2 sin(π/18) for bond percolation on the triangular lattice, see e. g. [25, Section 3].
In the supercritical case of p > pc, there Pp-almost surely exists an infinite open cluster, which
further is unique. For this thesis, we are interested in the properties of biased random walk
whose environment is given by a sample of this infinite open cluster.

1.2. Random walk on the supercritical percolation cluster

When percolation in general can be thought of as water spreading in a random media, random
walk on a percolation cluster can be thought of as the investigation of how fast this dispersion
takes place by tracking a single water particle. This particle will perform a nearest-neighbour
random walk on the infinite cluster of the graph. To spice things up, we will assume that there
exists an external field that affects the transition probabilities of the particle such that one
direction becomes more likely. A useful picture for this is that of a dried sponge whose lower
end is submerged in water and that subsequently begins to suck up water, creating a small bias
towards its dry component for water particles that enter at its bottom. Alternatively and closer
to the original description of the topic in [17], we might imagine an ant that is placed in a
random, slightly tilted labyrinth.
Suppose we are given an infinite graph G = (V,E) and a probability measure Pp on ({0, 1}E ,F)
where F is the product σ-algebra on Ω := {0, 1}E . As indicated, for a configuration ω ∈ Ω, we
say that an edge e = 〈u, v〉 ∈ E between vertices u, v ∈ V is open in ω if ω(e) = 1, and closed
otherwise. We assume that with Pp-probability 1, there exists an infinite open cluster C. Given a
configuration ω ∈ Ω, we define a random walk (Yn)n∈N0 on C by putting Y0 = u for some vertex
u ∈ C and then performing a nearest-neighbour random walk on the cluster according to some
law Pω on (V N0 ,G), where G is the product σ-algebra on V N0 . We choose the distribution Pω to
depend on ω such that the walk (Yn)n∈N0

is only allowed to take steps along edges that are open
in ω. We call Pω the quenched law of (Yn)n∈N0 , that is the law of (Yn)n∈N0 given some fixed ω.
The corresponding so-called annealed law P is then obtained by averaging the quenched laws Pω
over ω ∈ Ω using Pp. That is, P is a probability measure on {0, 1}E ×V N0 defined by setting, for
A ∈ F , B ∈ G,

(1.2.1) P(A×B) :=

∫
A

Pω(B) Pp(dω).

We start with an excerpt of the existing literature on this topic. While the most interesting
case is clearly given by biased random walk on the infinite cluster of supercritical percolation
in Zd, this is also the most technically challenging. Due to interest in the topic from physics,
there exists a large number of physics papers on this topic, some of whom provide a very useful
intuition to explain the phenomena that occur. We sum up some of these findings in Section
1.2.1.1, and the known mathematical features in Section 1.2.1.2.
A more accessible instance of random walk on a random infinite graph is given when the envir-
onment is provided by an infinite Galton-Watson tree. In this case, biased random walk exhibits
a very similar phenomenology, but technical properties of the Galton-Watson tree facilitate the
analysis. In addition, in some cases properties can be described in a more transparent fashion.
We summarize the most important results for biased random walk on Galton-Watson trees in
Section 1.2.2.
In their papers [5] and [4], Axelson-Fisk and Häggström introduced a model for biased random
walk on a conditional percolation model on the ladder graph. In their model, a similar phe-
nomenology as in the two aforementioned models occurs, while simultaneously, the environment



1.2. RANDOM WALK ON THE SUPERCRITICAL PERCOLATION CLUSTER 4

takes a very simple form. We return to this toy model - whose analysis amounts to the main
part of this thesis - in Section 1.2.3.

1.2.1. Supercritical bond percolation in Zd. The most general percolation setting
which has been studied in the aforementioned context is supercritical bond percolation on the
lattice Zd. In this case, for Pp we take the i.i.d. bond percolation measure on the d-dimensional
lattice with p > pc, conditioned on the event that the infinite open cluster contains the origin
0. Given a configuration ω, a bias direction l ∈ Sd−1 where Sd−1 is the unit sphere in Rd and a
bias parameter λ ∈ R, biased random walk (Yn)n∈N0

on the infinite cluster starts at 0 and its
quenched transition probabilities are defined as

(1.2.2) Pω,λ,l(Yn+1 = v | Yn = u) =
eλl·vω(〈u, v〉)

Zu,ω
,

where u·v denotes the scalar product of u, v ∈ Zd, Zu,ω :=
∑
w:w∼u e

λl·wω(〈u,w〉) is a normalizing
constant and u ∼ v denotes that u and v are adjacent vertices. Note that for λ = 0, this reduces
to simple random walk on the infinite open cluster, where the transitions to all neighbouring
vertices of the cluster are equally likely.
The annealed law of the random walk is obtained as in (1.2.1) via averaging Pω,λ,l over all
possible configurations using Pp.

1.2.1.1. Random walk on the percolation cluster from the physics perspective.
After being introduced in [17], simple and biased random walk on the supercritical bond percol-
ation cluster in Zd were studied in the phyics literature in the 1980s, cf. [44, 41, 40, 43, 46].
Most relevant in the context of this thesis are the papers [6], [18] and [19].
In [6], it was first argued that the linear velocity

v := lim
n→∞

|Yn · l|
n

of the walk in the direction of the bias vanishes for large values of λ. To justify this, a heuristic
argument for the computation of the expected time which the walk spends in dead-end regions of
the graph in the direction of the bias was given. In this computation, a critical value λc for the
bias parameter λ appeared such that the expected time spent in dead-end regions of the cluster
becomes infinite for λ > λc, subsequently leading to a value of v = 0 for λ > λc.
This was further investigated in [18], where it was argued that, indeed, a phase transition of v as
a function of the bias parameter occurs. That is, the critical value λc is such that for λ ∈ (0, λc)
the linear speed v is positive, whereas for λ > λc its value is 0. The somewhat accurate heuristics
given in the paper is that up to time n, the random walk on the one hand moves with linear
speed in those parts of the graph that permit travel in the direction of the bias without the
need to backtrack. On the other hand, the walk spends a large amount of time being trapped
in dead-end regions of the graph. Those dead ends are the parts of the graph where from each
vertex of the dead-end, only finitely many other vertices of the infinite cluster can be reached
without having to take backtracking steps against the bias direction. From the distribution of
the length of dead-end regions in the direction of the bias, first the typical length of such traps
encountered up to time n, and then the critical bias parameter λc are derived. The parameter
λc marks the critical point at which the time spent in a ’typical’ trap seen up to time n reaches
an order higher than n. Based on this argument, it was also conjectured that for λ > λc the
displacement |Yn · l| from the origin is of order nα for some α ∈ (0, 1).
In a later paper [19] by Dhar and Stauffer, a refinement of this argument led to the conjecture
that at the critical bias λ = λc the displacement from the origin at time n is of order n/ log n.
This notion was reinforced by simulation results in the same paper.
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1.2.1.2. Mathematical analysis. The mathematical analysis of this particular instance
of biased random walk in random environment started later. For simple random walk on the
lattice in Zd, it is known that the random walk is recurrent for d = 1, 2, and transient otherwise.
Therefore, due to Rayleigh’s monotonicity law, simple random walk on the infinite open cluster
of i.i.d. supercritical bond percolation is recurrent for d = 1, 2, too. In [24], using electrical
analysis and a tree-like subgraph of the infinite cluster, it was shown that simple random walk
on the supercritical percolation cluster in Zd is transient for d ≥ 3.
Asking how random sparsing of the graph affects the transition of the behaviour of the simple
random walk from recurrence to transience, the (fractal) dimension at which the change from
recurrence to transience occurs on the supercritical percolation cluster was further investigated
e. g. in [27, 10, 9, 3].
The analysis of biased random walk on the superciritical percolation cluster in Zd was first done
in the parallel papers [11] and [45]. In [11], biased random walk on the infinite open cluster
of supercritical percolation in Z2 which has transition probability proportional to eλ along open
edges in positive x-direction and proportional to 1 along open edges in any other direction was
investigated. Using a regeneration argument and information about the shape of the cluster, it
was shown that this biased random walk is P-almost surely transient for λ 6= 0, and that there
exist different speed regimes. More precisely, the limit

v := lim
n→∞

Xn

n

where Xn := x(Yn) denotes the x-coordinate of the walk at time n, is a P-almost surely determ-
inistic constant with v > 0 for small, and v = 0 for large values of λ.
With a more analytic approach, the same was shown in [45] for biased random walk on the
infinite cluster in Zd with arbitrary bias direction and transition probabilities as in (1.2.2). More
precisely, it was shown that there exist λ1 ≤ 1 ≤ λ2 such that

v := lim
n→∞

Yn
n

is a P-almost surely deterministic vector with v · l > 0 for λ ∈ (0, λ1) and v = 0 for λ > λ2.
Additionally, it was shown that for small values of λ a central limit theorem for a suitable
renormalisation of the walk holds.
In both papers, however, it was left open whether a sharp phase transition for v as a function of
λ holds. That is, whether there exists a critical bias parameter λc such that v > 0 for λ ∈ (0, λc)
and v = 0 for λ ≥ λc. The existence of such a λc was later confirmed by Fribergh and Hammond
in [22].

1.2.2. Galton-Watson trees. Switching to a model that is more accessible than random
walk on the supercritical percolation cluster in Zd but which remains closely related leads to
(biased) random walk on trees, in particular on Galton-Watson trees. In this case, most properties
that are known for biased random walk on the supercritical percolation cluster in Zd are known,
too, but can be described in a similar or more transparent fashion.
Let ξ, (ξk,l)k,l∈N be a family of i.i.d. N0-valued random variables on a joint probability space
(Ω,F ,P′) with generating function f(z) =

∑∞
m=0 pmz

m, where pm := P′(ξ = m). Consider a
population that evolves as follows. The first generation consists of a single individual which gives
rise to ξ1,1 children in generation 2, and then dies. Subsequently, in generation k, each living
individual of the population independently gives birth to a random number of children in the
following generation before dying. The number of descendants of each individual is distributed
as an independent copy of ξ. More precisely, for the the l-th individual (given it exists) of the
k-th generation of the population, we sample the number of its children from ξk,l. The size Xk+1
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of the population in generation k + 1 can be written as Xk+1 =
∑Xk
l=1 ξk,l, starting at X1 = 1.

The population dies out if Xk = 0 for some (and subsequently all following) k.
We use this process to construct a (random) genealogical tree T known as Galton-Watson tree.
Therefor, we number the individuals of generation k by 1, . . . , Xk, and for each individual of the
population in generation k, we introduce a vertex (k, l) where l corresponds to its number in its
generation. Then, the vertex set V of the genealogical tree consists of the union of all sets of
vertices {(k, 1), . . . , (k,Xk)} over all generations k = 1, 2, . . .. On the other hand, the edge set
E of the tree is such that each vertex (k, l) is connected to the vertex that corresponds to its
parent in the preceding generation, and to all vertices that correspond to its ξk,l children in the
following generation. As root of the tree, we take the vertex (1, 1) corresponding to the very first
member of the population and denote it by 0.

Figure 2. A Galton-Watson tree at the root with the first three offspring generations.

A Galton-Watson tree is called supercritical if the expected number of children E(ξ) = f ′(1) of
each individual is larger than 1. In this case, with positive probability the population survives,
leading to an infinite genealogical tree. We let this infinite tree then serve as the environment of
a biased random walk.
Denote by P the law of a supercritical Galton-Watson tree conditioned on nonextinction of the
underlying population. Let T (ω), ω ∈ Ω be a sample of an infinite tree according to P, and
β > 0. The β-biased random walk (Yn)n∈N0

on T (ω) is defined as follows. The walk starts at
the root 0 of the tree, and the (quenched) transition probabilities of (Yn)n∈N0

at u ∈ V \ {0} are
given by

Pω,β(Yn+1 = û | Yn = u) =
1

1 + βku
,

Pω,β(Yn+1 = vi | Yn = u) =
β

1 + βku
, i = 1, . . . , ku,

where û denotes the parent node of u, ku denotes the number of children of u and v1, . . . , vku
denote the children of u, respectively. At the root, the walk transitions to each of the children
of the root with equal probability.
The annealed law P of biased random walk on the Galton-Watson tree is again defined as in
(1.2.1) as a probability measure on Ω× V N0 , with P and Pω,β replacing Pp and Pω, respectively.
In [36], upon investigating the branching number of general trees - which is roughly the typical
number of children of a vertex of the tree - a criterion for transience of the β-biased random walk
on a tree was derived. In the case of a Galton-Watson tree conditioned on nonextinction, this
criterion takes the form that the biased random walk is recurrent if βE(ξ) < 1 and transient if
βE(ξ) > 1.
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For v ∈ V , denote by |v| the graph distance of v from the root of the tree, that is the length
of the (unique) shortest path connecting v and 0. In [38] it was shown that analogously to the
situation on the supercritical percolation cluster in Zd, for values of β such that (Yn)n∈N0

is
transient, the linear speed limit

v := lim
n→∞

|Yn|
n

of the walk is a P-almost surely deterministic value. Further, with a suitably defined family
(τk)k∈N of regeneration times, for β < 1, the linear speed limit can be written as v = E(|Yτ2 | −
|Yτ1 |)/E(τ2 − τ1). In addition, given the case that an individual of the population may produce
zero offspring, a phase transition of v occurs at βc := 1/f ′(q), where q is the extinction probability
of the Galton-Watson tree. Namely, if β < βc, the walk satisfies v > 0, whereas for β ≥ βc, we
have v = 0. This is due to trapping of the walk in finite subtrees, where the walk has to take
steps against the direction of the bias in order to proceed arbitrarily far away from the root.
To show this, it was utilised that a Galton-Watson tree can be constructed by first drawing its
backbone, that is an infinite Galton-Watson tree where each node has at least one child, and
then attaching to each node of the backbone a random number of independent leaves, that is
of almost surely finite Galton-Watson trees, cf. [37]. The generating functions of the offspring
distributions of the backbone and the leaves directly depend on the generating function f of
the offspring distribution of the original tree. Using this procedure, the time spent between
regenerations of the walk can be decomposed into the time spent on the backbone and the time
spent on independent excursions into leaves of the tree. For large values of β, the (annealed)
expected time spent in a single leaf of the tree increases with β, and becomes infinite as soon as
β reaches βc which leads to the phase transition of v.
For Galton-Watson trees without leaves, that is for Galton-Watson trees whose offspring dis-
tribution satisfies p0 = 0, a quenched central limit theorem was derived in [42]. On the one
hand, for β = 1/E(ξ) and P-almost every Galton-Watson tree, the displacement of Yn from the
root converges in the quenched law under suitable renormalisation towards the absolute value
of a Brownian motion. On the other hand, for β > 1/E(ξ), the increments of the regeneration
times of the walk have arbitrary power moments. From this it follows that - given the offspring
distribution of the Galton-Watson tree has exponential moments - for P-almost every tree, the
walk converges under the usual scaling in the quenched law towards a Brownian motion. More
precisely, there exists σ2 > 0 such that for P-almost every ω( |Ybntc| − ntv√

σ2n

)
t≥0

d→ (B(t))t≥0

under Pω,β as n → ∞, where (B(t))t≥0 is a standard Brownian motion and d→ denotes conver-
gence in distribution.
In [8], using a coupling with the β-biased random walk on Z in order to derive regenerations of
the walk that are independent of the environment, the order of displacement of the walk from
the origin in the subballistic speed regime, that is for values of β such that v = 0, was derived.
In particular, for β > βc the laws of (

|Yn|
nγ

)
n∈N

are tight under P, where γ := lnβc/ lnβ. Additionally, converging subsequences of the walk were
identified. The results of [8] were later extended to a larger class of offspring distributions in
[14].

1.2.3. Conditional percolation on the ladder graph. For the remainder of this thesis,
we resort to a further simplification of the environment. For biased random walk on the supercrit-
ical percolation cluster on Zd as well as for biased random walk on Galton-Watson trees, a crucial
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part in their analysis is played by the amount of time the walk is trapped. More precisely, with
increasing strength of the bias, an increasingly large proportion of the time is spent in dead-end
regions of the environment that stretch in the direction of the bias such that the walk is required
to take multiple backtracking steps against the bias to leave. In order to analyse this behaviour
in a more accessible graph, Axelson-Fisk and Häggström in [4] and [5] introduced biased random
walk on a one-dimensional percolation model in which dead-ends in the direction of the bias
take the simplest possible form. Apart from the simple geometry of traps, Axelson-Fisk and
Häggström’s model also features a description of the critical bias parameter as an elementary
function of the percolation parameter while still mirroring large parts of the behaviour of biased
random walk on the ’full’ cluster in Zd.
We introduce the model in Chapter 2. There, in the model of Axelson-Fisk and Häggström,
we deduce the order of the speed of biased random walk in the critical bias case, which has
not yet been established in similar models apart from simulations, e. g. in the aforementioned
paper [19] by Dhar and Stauffer, or for general random walk in random environment, cf. [30].
Furthermore, we describe the typical order of fluctuations of the random walk around its linear
speed in the ballistic, nondiffusive speed regime, and the order of displacement from the origin in
the subballistic speed regime. Together with existing results in [23], our results therefore suffice
to describe the asymptotic behaviour of biased random walk on the one-dimensional percolation
model at hand for all values of the bias parameter except at zero bias, which amounts to the
case of simple random walk and requires a different approach due to recurrence. We also prove
a law of iterated logarithm for the displacement of the walk from the origin in the nondiffusive
parameter range.
Parts of Chapter 2 have been presented in the preprint [35] by the author and supervisor Matthias
Meiners which can be found on the arxiv.
The remainder of this thesis is structured as follows. Due to the fact that we mainly operate with
processes which can be well described in terms of electrical networks, and as we make use of this
relation on several occasions, we dedicate the remainder of the introduction to first gathering
some frequently used notation and then giving a short overview of the stochastic subject of
electrical analysis.
In Chapter 2, we introduce the model of Axelson-Fisk and Häggström and derive the aforemen-
tioned results. First, we give a definition of the laws of the environment of the biased random
walk and the biased random walk itself in Sections 2.1 and 2.2. This is followed by a section
about regeneration times for the walk (Section 2.3), and a section about properties of the traps
of the model (Section 2.4). After that, a section is devoted to the proof of tail estimates of the
regeneration times (Section 2.5). Then, we apply these estimates to prove our main results in
Section 2.6.

1.2.4. Preliminaries and notation. For random variables X and Y with distribution
functions F and G, respectively, we say that X is stochastically dominated by Y , and write
X 4 Y , if F (t) ≥ G(t) for all t ∈ R.
For a random variable Z and p̂ ∈ (0, 1), we write Z ∼ geom(p̂) if Z is geometric with success
parameter p̂, i.e., P(Z = k) = p̂(1− p̂)k, k ∈ N0.
Convergence in distribution of a sequence (Xn)n∈N of random variables towards a random variable
X is denoted by Xn

d→ X. Analogously, convergence in probability of (Xn)n∈N to X under P is
denoted by Xn

P→ X.
As usual, for sequences a, b : N→ [0,∞), we write a = on(b) or an = o(bn) as n→∞ if for every
ε > 0 there is an n0 ∈ N with an ≤ εbn for all n ≥ n0. We say that a and b are asymptotically
equivalent and write a ∼ b or an ∼ bn as n → ∞ if an, bn > 0 for all sufficiently large n and
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limn→∞ an/bn = 1. Furthermore, we write a = On(b) or an = O(bn) as n → ∞ if there exists
some C > 0 such that an ≤ Cbn for all sufficiently large n.
For a function f : A → B and b ∈ B, we write f ≡ b if f(a) = b for all a ∈ A. Finally, for
x, y ∈ R we write x ∧ y := min(x, y) and x ∨ y := max(x, y).

1.3. Electrical networks and random walks on graphs

1.3.1. Discrete Markov chains. With the exception of limit processes, almost all the
stochastic processes that occur in this thesis are discrete-time Markov chains on finite or count-
ably infinite state spaces. Let (S,A) be a measurable space with finite or countably infinite S.
For a stochastic process (Yn)n∈N0 taking values in SN0 , we write P v for the law of (Yn)n∈N0

starting at Y0 = v, or, more generally, we write P ν for the law of (Yn)n∈N0 with initial distribu-
tion ν, where ν is a probability measure on (S,A). The function P ν is a probability measure on
(SN0 ,F), where F is the product σ-algebra.
A (time-homogeneous) Markov chain (Yn)n∈N0

with state space S is a stochastic process taking
values in SN0 such that for any n ∈ N and v, v0, . . . , vn ∈ S with P v0(Y1 = v1, . . . , Yn = vn) > 0,
we have

(1.3.1) P v0(Yn+1 = v | Y1 = v1, . . . , Yn = vn) = P vn(Y1 = v).

Equation (1.3.1) is called the Markov property. As a consequence of the Markov property,
a Markov chain is fully characterised by its initial distribution and its transition matrix (or
transition probabilities)

p(u, v) := Pu(Y1 = v),

where u, v ∈ S. Given a transition matrix p, a probability measure π on (S,A) is called stationary
distribution with respect to p if the Markov chain (Yn)n∈N0

with initial distribution π satisfies

Pπ(Y1 ∈ ·) = π(·).

That is, starting with initial distribution π, the law of Yn is π for all n ∈ N. A Markov chain
(Yn)n∈N0 with stationary distribution π is called reversible if π and the transition matrix p satisfy
the detailed balance equations

π(u)p(u, v) = π(v)p(v, u)

for all u, v ∈ S.
A Markov chain (Yn)n∈N0

is called irreducible if for all states u, v ∈ S, there exists an n ∈ N
such that Pu(Yn = v) > 0. That is, if it can transition between any two given states in a
finite number of steps with positive probability. The period of a state v ∈ S is defined as
gcd({n ∈ N : P v(Yn = v) > 0}), where gcd(A) denotes the greatest common divisor of a set
A ⊆ N. A Markov chain is called aperiodic if all of its states have period 1. For irreducible and
aperiodic Markov chains there exists the following convergence theorem.

Lemma 1.3.1 (Convergence Theorem, e. g. Theorem 4.9 in [33]). Suppose |S| <∞. Let (Yn)n∈N0

be an irreducible, aperiodic Markov chain with state space (S,A) and stationary distribution π.
Then there exist constants γ ∈ (0, 1) and C > 0 such that for all n ∈ N

max
u∈S
‖Pu(Yn ∈ ·)− π(·)‖TV ≤ Cγn,

where ‖µ − ν‖TV := maxA∈A |µ(A) − ν(A)| denotes the total variation distance between two
probability measures µ and ν on (S,A).
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1.3.2. Electrical networks. For most of this thesis, we will in particular deal with weighted
random walks on directed or undirected graphs. In the following section, we give a short overview
of weighted random walks and list some of their properties. Good references for the topic can
be found in [33], [39] and [1].
Let G = (V,E) be a directed or undirected graph with countable vertex set V and edge set
E ⊆ V ×V . Two vertices (states) u, v ∈ V are called neighbouring, in short u ∼ v, if there exists
an edge 〈u, v〉 ∈ E connecting u and v. Further let c : E → [0,∞) be a weight function for the
edges of the graph. For each edge e ∈ E, we call c(e) the conductance of e and its reciprocal
r(e) := 1/c(e) is called resistance of e, with r(e) := ∞ if c(e) = 0. The pair (G, c) of a graph
G and conductances c is named a network. Given conductances c and under the assumption
that c(u) :=

∑
v:v∼u c(〈u, v〉) ∈ (0,∞) for all u ∈ V , we can define the transition matrix of a

random walk (Yn)n∈N0 on V by demanding that for u ∼ v, the transition probability from u to
v is proportional to c(〈u, v〉),

p(u, v) :=
c(〈u, v〉)
c(u)

.

We say (Yn)n∈N0
is induced by the conductances c or the weighted random walk on G (with

conductances c). The random walk (Yn)n∈N0
can be thought of as the trajectory of a particle

that is dropped onto a vertex of G and then proceeds to hop along the vertices of the graph.
For the particle, the set of neighbouring vertices of its position constitutes the set of possible
directions of a hop, with the conductances of the corresponding edges denoting their likeliness
(up to normalisation).
In the case that the graph G is undirected, for u ∼ v we write c(u, v) := c(〈u, v〉) = c(〈v, u〉) and
vice versa for the resistance r. From here on, we throughout assume that c(u) ∈ (0,∞) for all
u ∈ V .

Example 1.3.2 (The gambler’s ruin). A classic example of a weighted random walk is the
following: A gambler wants to make a fortune of m ∈ N. Therefor, he gathers all of his current
capital of value k ∈ N, sits down at his favourite game of chance and repeatedly plays. To keep
things interesting, we suppose that k < m. In each round, the gambler invests 1 unit, and with
a probability of p ∈ (0, 1), he gets 2 in return (thus making a net win of 1). With probability
q := 1− p, he loses the round and makes a net loss of 1. The gambler is disciplined enough that
he stops playing either when the value of his fortune reaches the goal of m, or when he faces
bancruptcy, that is, when his fortune reaches 0. What is the gambler’s ruin probability?
We can describe the evolution of the gambler’s fortune with the following weighted random walk
on the line graph {0, 1, . . . ,m}, that is on the nearest-neighbour graph Gm = (Vm, Em) with
vertex set Vm := {0, . . . ,m} and unoriented edges Em := {〈k, k + 1〉 : k ∈ {0, . . . ,m− 1}}.

0
. . .

m

Let β := p/q > 0. For each edge e = 〈k, k + 1〉, k ∈ {0, . . . ,m − 1}, we define its conductance
by c(e) := βk, and define (Sn)n∈N0 as the weighted random walk on Gm, starting at k ∈
{1, . . . ,m−1}. Then, (Sn)n∈N0 moves to the right with probability p, moves left with probability
q and can therefore be used to describe the (initial) evolution of the gambler’s fortune. Doing
so, the gambler’s fate depends on which of the stopping times σ0 := inf{j ∈ N : Sj = 0} and
σm := inf{j ∈ N : Sj = m} occurs first.

Reversible Markov chains and weighted random walks on networks are related as follows. On the
one hand, every weighted random walk (Yn)n∈N0

on a finite, undirected network (G, c), that is a
network whose graph G = (V,E) only has finitely many vertices and whose edges are unoriented,
is reversible: For v ∈ V , define π(v) := c(v)/cG, where cG :=

∑
v∈V c(v). Then, if we interpret
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π as a probability measure on (V,P(V )), where P(V ) denotes the power set of V , by setting
π({v}) := π(v), this is the stationary distribution of (Yn)n∈N0

and satisfies the detailed balance
equations:

π(u)p(u, v) =
c(u)

cG

c(u, v)

c(u)
=
c(v)

cG

c(v, u)

c(v)
= π(v)p(v, u)

for all u, v ∈ V with u ∼ v. Hence (Yn)n∈N0
is reversible with respect to π.

On the other hand, given a reversible Markov chain (Yn)n∈N0
with finite state space, we can

construct a network such that the weighted random walk thereon coincides with (Yn)n∈N0
in law.

Therefor, take the states of the Markov chain as vertices, and connect two vertices u, v ∈ V with
an edge if and only if p(u, v) > 0 where p is the transition matrix of (Yn)n∈N0 . As conductances,
for u ∼ v we set c(u, v) := π(u)p(u, v) where π is the stationary distribution of (Yn)n∈N0

.

1.3.3. Harmonicity, voltage and current. For now, assume we are given a finite network
(G, c), where G = (V,E) is an undirected graph, and a particle that travels along the edges of
G according to the weighted random walk (Yn)n∈N0

thereon. For A ⊆ V , let σA := inf{l ∈ N0 :
Yl ∈ A} be the first hitting time of A, where we write σa if A = {a} consists of a single vertex
a ∈ V . A function F : V → R is called harmonic at u ∈ V if

F (u) =
∑
v:v∼u

p(u, v)F (v).

An example of such a function is the following. Given two disjoint sets A,Z ⊆ V , look at the
probability that the particle visits A before Z as a function of the particle’s starting point. That
is, define f : V → [0, 1] via

f(u) := Pu(σA < σZ).

Clearly, f(u) = 1 for u ∈ A and f(u) = 0 for u ∈ Z. Due to the Markov property, the function
f further is harmonic at all vertices u ∈ V \ (A ∪ Z):

f(u) =
∑
v:v∼u

Pu(Y1 = v)Pu(σA < σZ | Y1 = v) =
∑
v:v∼u

p(u, v)f(v).

Among other things, harmonic functions satisfy the following properties:

Lemma 1.3.3 (Maximum and uniqueness principle, e. g. [39, p. 20]). Let V be finite or countable
and f, g : V → R.

1. If f is harmonic at all states of some subset W ⊂ V and the supremum of f is achieved
at some vertex w ∈ W , then f is constant on all states of the connected component of
w in (W,E(W )), where E(W ) consists of all edges 〈w1, w2〉 ∈ E with w1, w2 ∈W .

2. Suppose G is connected and W is a finite subset of V . If f, g are both harmonic on W
and f(v) = g(v) for all v 6∈W , then f = g.

For finite graphs, computing the values of a harmonic function amounts to the solution of a
(finite) system of linear equations. In general, however, this is non-trivial.
The connection between weighted random walks and electrical networks can be expanded as
follows. Given disjoint subsets A,Z ⊂ V , we call a function v : V → R such that v is harmonic
for all u ∈ V \ (A ∪ Z) a voltage. As a consequence of the uniqueness principle, a voltage is
uniquely determined by its boundary values v|A and v|Z .
A flow θ is a mapping θ : V × V → R such that θ(u, v) = 0 for all u, v ∈ V with 〈u, v〉 6∈ E and
θ(u, v) = −θ(v, u) for u, v ∈ V with u ∼ v. For a flow θ, the divergence of θ at u ∈ V is

divθ(u) :=
∑
v:v∼u

θ(u, v).
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Given disjoint subsets A,Z ⊂ V , a flow between A and Z is defined as a flow θ such that
divθ(u) = 0 for all u 6∈ A∪Z. A flow between a singleton A = {a} and Z is called a flow from a
to Z if divθ(a) ≥ 0. If divθ(a) = 1, a flow θ from a to Z is called unit flow.
The energy E(θ) of a flow θ is defined as

E(θ) :=
∑
e∈E

θ(e)2r(e),

where θ(e)2 := θ(v, w)2 if e = 〈v, w〉.
Given a voltage v between sets A and Z, a current or current flow i is a flow between A and Z
such that

i(u, v) := c(u, v)(v(u)− v(v))

for all pairs u, v of neighbouring vertices of V . Note that by definition, i(u, v) = −i(v, u), and
for all u ∈ V such that v is harmonic at u, we have divi(u) = 0, hence i indeed is a flow between
A and Z.
In the language of electrical networks, the property divi(u) = 0 for u 6∈ A∪Z is called Kirchhoff’s
(node) law, and the relation

v(u)− v(v) = i(u, v)r(u, v),

where u, v ∈ V with u ∼ v, which immediately follows from the definition of i, is referred to as
Ohm’s law.

1.3.4. Effective conductance. Suppose the network is such that there are two distinctive
regions of the graph, characterised by disjoint subsets A and Z of V . When the particle whose
trajectory is described by (Yn)n∈N is initially placed at a vertex that belongs to set A, we are
interested in the probability that - as time evolves - the particle visits a site of Z before returning
to a site of A. That is, we want to find the escape probability P a(σ+

A > σZ), where a ∈ A and

σ+
A := inf{l ∈ N : Yl ∈ A} is the first return time of A. In particular, we are interested in the

escape probability from a singleton A = {a}. To compute this, impose a voltage of v(a) = 1 at
a and 0 on Z. It follows from harmonicity of the function u 7→ Pu(σa < σZ) on V \ (Z ∪ {a})
and the uniqueness principle that

(1.3.2) Pu(σa < σZ) =
v(u)

v(a)

for all u 6∈ Z ∪ {a}. In conjunction with a one-step evolution of the weighted random walk, this
leads to

P a
(
σ+
a > σZ

)
=

∑
u:u∼a i(a, u)

v(a)c(a)
=:
C(a↔ Z)

c(a)

where i is the current flow associated with v. The expression C(a ↔ Z) is called the effective
conductance between a and Z. Its reciprocal R(a↔ Z) is called the effective resistance between
a and Z, with R(a ↔ Z) := ∞ in case C(a ↔ Z) = 0. The effective conductance is the net
amount of current flowing into the graph at a when we impose a unit voltage at a. Therefore, if
we interpret Z as a single vertex and the whole graph between a and Z as a single edge between
a and Z, the effective conductance is the conductance of this single edge.

1.3.5. Network reduction. Suppose we are interested in the escape probability between
two single vertices a, z ∈ V of the graph. At the moment, it remains unclear whether we can
actually calculate effective conductance and resistance between a and z without explicitly com-
puting a voltage function and the associated current flow. The most straightforward alternative
to brute-force calculation is to perform a pre-processing of the graph before computing v. That
is, there exist local transformations of the network such that either the vertex or edge number is



1.3. ELECTRICAL NETWORKS AND RANDOM WALKS ON GRAPHS 13

reduced but the value of C(a↔ z) remains unchanged in the reduced graph. The most common
network reductions, which are mostly motivated by physical laws, are the following.
The series law. If, in an electrical circuit, two resistances are series connected, they can as well
be viewed as one. When computing the effective conductance, this works as well: If v ∈ V \{a, z}
is a vertex of degree 2, that is, if v has exactly two neighbouring vertices u and w, then we can
replace 〈u, v〉 and 〈v, w〉 by a single edge 〈u,w〉 from u to w whose resistance satisfies

r(〈u,w〉) := r(u, v) + r(v, w)

and remove v from the graph. In this case, the voltages at each remaining vertex are unchanged
and the current from u to w is given by i(u, v).

1 1 1 1 →
1
4

Figure 3. Network reduction using the series law. Instead of a series of four
vertices with conductance 1 each, we are left with one edge of conductance 1/4.

In mathematical terms, this amounts to setting up a new network (G′, c′) where G′ = (V ′, E′)
with V ′ := V \ {v} and E′ := (E \ {〈u, v〉, 〈v, w〉}) ∪ {〈u,w〉}. As conductances in the reduced
network (G′, c′), we take c′(e) := c(e) for all e 6= 〈u,w〉 and c′(u,w) := 1/(r(u, v) + r(v, w)). If
we define functions v′ on V ′ and i′ on E′ × E′ via

v′(x) := v(x), i′(x, y) := i(x, y), i′(u,w) := i(u, v),

where x, y ∈ V ′ are such that (x, y) 6= (u,w), then we can check that v′ is a voltage and i′ is
a current function on V ′ and E′ × E′, respectively. The voltage v′ obeys the same boundary
conditions as v.
The parallel law. In an electrical circuit, if there are multiple conductors in parallel arrange-
ment, they can as well be viewed as one. The mathematical analogy of this is that if there are
multiple edges e1, . . . , en between two vertices u and v, we can replace them with a single edge
〈u, v〉 with conductance

c(〈u, v〉) := c(e1) + . . .+ c(en).

As for the series law, doing so does not affect the voltages or currents except for the current
along the edge 〈u, v〉, whose value is given by i(u, v) = i(e1) + . . . + i(en). Again, this has to
be understood in the sense that the values of v and i still define a voltage and current function,
respectively, in the reduced graph.

1

1 → 2

Figure 4. Network reduction using the series law. We replace two edges, each
of conductance 1, with an edge of conductance 2.

The star-triangle law. The following law is only listed for the sake of completeness. With
suitable choice of conductances, the following two local configurations of an electrical network
are equivalent.
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u

w

v
↔

u

w

v

s

Figure 5. The appropriate local shape for the star-triangle law.

The proper choice of conductances is implicitly determined by setting

γ :=
r(u, v) + r(v, w) + r(u,w)

r(u, v)r(v, w)r(u,w)
=

c(u, s)c(v, s)c(w, s)

c(u, s) + c(v, s) + c(w, s)
,

and demanding that

c(s, u)c(v, w) = c(s, v)c(u,w) = c(s, w)c(u, v) = γ.

Quality-of-life reductions. There are further network reductions which are more straightfor-
ward but nevertheless important. First, if the voltage value at two vertices u, v ∈ V \ {a, z}
coincides, we can merge them. That is, we can replace them by a new vertex w which we then
connect to all edges that formerly were adjacent to u or v. Second, isolated vertices, that is
vertices u ∈ V with exactly one adjacent edge 〈u, v〉, can safely be erased together with their
adjacent edge. This is due to the fact that their voltage value coincides with that of v due to
harmonicity. The same can be done with loop edges, that is edges 〈u, u〉 whose starting and
endpoint coincide.

Example 1.3.4 (The gambler’s ruin revisited). We can compute the ruin probability of the
gambler in Example 1.3.2 using network reduction. In the setting of Example 1.3.2, write P k

for the law of (Sn)n∈N0 starting at S0 = k. If we apply a unit voltage to node 0 and and zero
voltage to node m, then it follows from (1.3.2) that

P k(σ0 < σm) = v(k)

where v is the voltage function on Vm with v(0) = 1, v(m) = 0. Now, we apply the series law
between 0 and k and between k and m. More precisely, we apply it at each of the vertices
1, . . . , k− 1 and k+ 1, . . . ,m− 1. This reduces the graph to the vertices {0, k,m} and the edges
{〈0, k〉, 〈k,m〉}. The resistances of the remaining edges are given by

r(〈0, k〉) =

k−1∑
l=0

β−l =

{
k for p = 1

2 ,
1−β−k
1−β−1 for p 6= 1

2

and

r(〈k,m〉) =

m−1∑
l=k

β−l =

{
m− k for p = 1

2 ,
β−k−β−m

1−β−1 for p 6= 1
2 .

Thus, since the computation of the ruin probability amounts to finding v(k), and the computation
of v(k) has been reduced to the solution of a single linear equation for harmonicity of v at k, it
follows that the ruin probability is given by

(1.3.3) P k(σ0 < σm) =

{
m−k
m for p = 1

2 ,
β−k−β−m

1−β−m for p 6= 1
2 .
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1.3.6. Infinite networks. We are slowly closing in on completing the collection of tools
we will employ in Chapter 2. Now, suppose we are dealing with an infinite network. That is,
suppose that the vertex set of the given graph is countably infinite. For simplicity, we continue
to assume that the graph is undirected.

Example 1.3.5 (β-biased random walk on Z). A straightforward example of weighted random
walk on an infinite network is given by the biased random walk on Z. Here, the network (G, c) is
given by the infinite line graph G = (Z, E) with nearest-neighbour edges E := {〈k, k+1〉 : k ∈ Z}
and conductances c(〈k, k + 1〉) := βk, where β > 0. For β = 1, the weighted random walk on
(G, c) is the simple random walk on Z, whereas for β 6= 1, it becomes biased. More precisely,
with k ∈ Z, for β ∈ (0, 1) we have p(k, k − 1) > p(k, k + 1), thus the walk is more likely to
move left than right. For β ∈ (1,∞), this relation reverses and we have p(k, k+ 1) > p(k, k− 1),
leaving the walk to be more likely to move to the right.

For later reference, we gather two well-known facts about biased random walk on Z which can
be found, e. g., as equations (13.3) and (13.4) in [26]. Let (Sn)n∈N0 be the biased random walk
on Z starting at S0 = 0 with probability p > 1

2 to step right and probability q := 1 − p to step
left. For k ∈ Z, let

σZ
k := inf{l ≥ 0 : Sl = k}

and denote the expectation of (Sn)n∈N0
starting at S0 = 0 by E0

Z.

Lemma 1.3.6. For x > 0, it holds that

E0
Z
[
xσ

Z
1
]

=
1−

√
1− 4pqx2

2qx
, E0

Z
[
σZ

1

]
=

1

1− 2q
.

For completeness, we include a brief proof.

Proof. Let x > 0 and f(x) := E0
Z
[
xσ

Z
1

]
. On the one hand, the Markov property gives

(1.3.4) f(x) = px+ qxf(x)2.

On the other hand, limx↘0 f(x) = 0 due to dominated convergence. Hence, solving (1.3.4)
for f(x) leads to the given formula. The expectation of σZ

1 follows from the derivative of the
generating function. �

In some cases, it turns out useful to approximate infinite networks by series of finite networks.
Let (V,E) be a graph with countably infinite vertex and at most countably infinite edge set.
A sequence (Vn, En), n ∈ N, of finite subgraphs of (V,E) is called exhausting if Vn ⊆ Vn+1,
En ⊆ En+1 for all n ∈ N and V = ∪n∈NVn as well as E = ∪n∈NEn.

1.3.7. Recurrence and transience. We continue with the observation of a particle that
moves along the vertices of an infinite network according to the weighted random walk thereon.
Naturally, we ask whether the particle will stay concentrated on a certain domain (which might
grow over time), or whether there is a chance that it will at some point leave e. g. the domain of
its starting point and never return.
We call a state a ∈ V recurrent if P a(σ+

a <∞) = 1, and transient otherwise. Due to irreducib-
ility of weighted random walk on the connected component of its starting point, recurrence and
transience are properties shared by all vertices of a connected component of a graph. For nota-
tional simplicity, for the remainder of this section we assume that the underlying graph of the
infinite network is connected. Technically, we assume this and further exclude the pathological
case of c(e) = 0 for some e ∈ E. We call weighted random walk on an infinite network recurrent
(transient) if one - and therefore all - of its states is recurrent (transient).
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Suppose (G, c) is an infinite network with an exhausting sequence ((G′n, c))n∈N, where G′n =
(V ′n, E

′
n) for n ∈ N. From this, we define a further sequence ((Gn, c))n∈N of finite networks as

follows. For n ∈ N, we identify V \V ′n with a single vertex zn, convert all edges 〈u, v〉 with u ∈ V ′n,
v 6∈ V ′n to edges 〈u, zn〉 and then reduce all parallel edges that are adjacent to zn to single edges

using the parallel law. We denote the collection of these reduced edges by Ẽn. Then, we set
Gn = (Vn, En) := (V ′n ∪ {zn}, E′n ∪ Ẽn).
Let a ∈ V . The effective conductance C(a ↔ ∞) from a to ∞ is defined as the limit of the
effective conductances C(a↔ zn) (starting at n sufficiently large such that a ∈ Vn) in (Gn, c):

C(a↔∞) := lim
n→∞

C(a↔ zn).

Again, we define the effective resistance R(a↔∞) from a to ∞ as the reciprocal of C(a↔∞),
with R(a↔∞) :=∞ if C(a↔∞) = 0.
A flow from a to ∞ is defined as a flow θ such that divθ(u) = 0 for all u 6= a and divθ(a) > 0.
The effective conductance from a to ∞ and the energy of a flow from a to ∞ are related to
recurrence and transience, respectively, of the weighted random walk on an infinite network as
follows.

Lemma 1.3.7 (Proposition 21.6 in [33]). Let (G, c) be an infinite network. The following are
equivalent:

(1) The weighted random walk on the network is transient.
(2) There exists a ∈ V such that C(a↔∞) > 0.
(3) There exists a flow θ from some node a ∈ V to ∞ with E(θ) <∞.

There are several helpful tools to compute or estimate the effective conductance between a vertex
a ∈ V and ∞.

Lemma 1.3.8 (Thomson’s principle, Theorem 9.10 in [33]). Let (G, c) be an infinite network and
a ∈ V . Then

R(a↔∞) = inf{E(θ) : θ is a unit flow from a to ∞}.

It follows from Thomson’s principle that increasing the resistance of individual edges while
retaining the resistance values for the remainder of the edge set can only increase the effective
resistance. More precisely, the following relation holds.

Lemma 1.3.9 (Rayleigh’s monotonicity law, Theorem 9.12 in [33]). If r and r′ are resistances
on E such that r(e) ≤ r′(e) for all e ∈ E, then

R(a↔∞; r) ≤ R(a↔∞; r′),

where R(a ↔ ∞; r) and R(a ↔ ∞; r′) denote the effective resistance between a and ∞ in the
network using resistances r and r′, respectively.

A path P between vertices u, v ∈ V is a finite sequence P = (e1, . . . , en) of edges e1 =
〈u0, u1〉, . . . , en = 〈un−1, un〉 ∈ E with u0 = u and un = v.

Example 1.3.10. (Transience of biased random walk in Z) Let (Sn)n∈N0 be the biased random
walk on Z with conductances c(〈k, k + 1〉) := βk, where β 6= 1. Then, the origin 0 is a transient
state, hence (Sn)n∈N0

is transient. For β > 1, we can see this by sending a unit flow in the
direction of the bias, that is along the infinite path P = (e0, e1, . . .) with ei := 〈i, i + 1〉 for all
i ∈ N0. To make this precise, set θ(i, i + 1) = 1 = −θ(i + 1, i) for i ∈ N0 and θ ≡ 0 otherwise.
The energy of this flow from 0 to ∞ is given by

E(θ) = 2
∑
e∈P

r(e) = 2

∞∑
i=0

β−i <∞.
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For β < 1, we can apply the same approach with the path P = (e′0, e
′
1, . . .) where e′i := 〈−i,−i−1〉

for i ∈ N0.

A set Π ⊂ E is called an edge-cutset for vertices u, v ∈ V if every path from u to v contains an
edge in Π.

Lemma 1.3.11 (Nash-Williams inequality, Proposition 9.15 in [33]). Let T ⊆ N and suppose
(Πk)k∈T is a family of disjoint edge-cutsets which separate vertices a, z ∈ V . Then

R(a↔ z) ≥
∑
k∈T

( ∑
e∈Πk

c(e)

)−1

.

Example 1.3.12 (Simple random walk on Zd). The simple random walk on Zd, that is the
weighted random walk on the lattice Zd with conductances c ≡ 1, is recurrent for d = 1, 2 and
transient otherwise. Again, to show this it suffices to show that the origin 0 is a recurrent or
transient state, respectively. In the case d = 1, consider the exhausting sequence that consists of
the subgraphs Gk that only contain vertices in {−k, . . . , k}, together with a vertex zk identified
with the remainder of Z. If we define disjoint edge-cutsets Πl := {〈l, l+ 1〉, 〈−l,−l− 1〉}, l ∈ N0,
then these separate the origin and zk for l ≤ k, and it follows from the Nash-Williams inequality
that

R(0↔∞) = lim
k→∞

R(0↔ zk) ≥ lim
k→∞

k∑
l=0

1

c(〈l, l + 1〉) + c(〈−l − 1,−l〉)
=∞.

Hence, the walk is recurrent.
In Z2, the same strategy applies with the edge cutsets Πk consisting of all edges that connect
vertices (x(v), y(v)), (x(w), y(w)) ∈ Z2 with max(x(v), y(v)) = k and max(x(w), y(w)) = k + 1.
Each cutset Πk consists of 4(2k + 1) edges, therefore we get

R(0↔∞) ≥
∞∑
k=0

1

4(2k + 1)
=∞,

which implies recurrence of the walk.
In dimension d = 3 on the other hand, a finite energy flow from 0 to ∞ can be constructed, cf.
[33, Ex.21.9]. Thus, simple random walk on Z3 is transient. As Z3 can be viewed as a subset of
Zd for d ≥ 3, transience for all d ≥ 3 follows from Rayleigh’s monotonicity law.



CHAPTER 2

Biased random walk on a one-dimensional percolation
model

For the remainder of this thesis, we focus on a toy model for biased random walk on a super-
critical percolation environment. In particular, we investigate the one-dimensional conditional
percolation model that was introduced by Axelson-Fisk and Häggström in their papers [4] and
[5]. At the time of their writing, existence of a critical bias parameter for the biased random
walk on the infinite open cluster of the percolation process in Zd was still an open problem. In
the model of Axelson-Fisk and Häggström, dead-end regions of the environment in the direction
of the bias take the simplest possible form, and the parameter λc marking the transition from
the ballistic to the subballistic speed regime can be given as an elementary function of the edge
retention parameter p.

2.1. The percolation model

We start with a description of the model of Axelson-Fisk and Häggström, together with some
basic properties of the percolation environment and the biased random walk thereon.
As the underlying graph for the percolation environment, we consider the ladder graph G =
(V,E), with vertex set V := Z× {0, 1} and edge set E := {〈u, v〉 ∈ V 2 : |u− v| = 1}, where | · |
denotes the usual Euclidean norm on R2. If v = (x, y) ∈ V , we write x(v) = x and y(v) = y, and
call x and y the x- and y-coordinate of v, respectively.

Figure 1. The ladder graph.

Set p ∈ (0, 1). In a first step, we consider i.i.d. bond percolation with edge retention parameter
p on G. That is, each edge e ∈ E is retained independently of all other edges with probability
p, and deleted with probability 1− p. As usual, we call an edge e ∈ E open if it is retained and
closed if it is deleted.
Again, the state space of the percolation process is Ω := {0, 1}E , which we endow with the
product σ-algebra F . The elements ω ∈ Ω are called configurations. We interpret ω(e) = 1 for
ω ∈ Ω and e ∈ E as the edge e being open in the configuration ω.
In a naive approach, we might already try to use the standard i.i.d. bond percolation measure µp
on (Ω,F) with retention parameter p to choose a configuration ω. In that case, a straightforward
application of Borel-Cantelli shows that for all p < 1, in µp-almost every configuration there exist
infinitely many k ∈ Z such that both of the parallel edges 〈(k, 0), (k+1, 0)〉 and 〈(k, 1), (k+1, 1)〉
are closed. This prevents the existence of an infinite cluster under µp for p < 1 and implies
pc = 1 for the critical percolation threshold pc of i.i.d. bond percolation on the infinite ladder.

18
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Figure 2. Bond percolation on the ladder graph. Due to pairs of parallel closed
horizontal edges, there cannot exist an infinite open cluster stretching towards
both the left and the right in x-direction.

Since the topic at hand is the speed of biased random walk on an almost surely infinite cluster,
the percolation environment has to be derived under additional assumptions. These are - roughly
speaking - that we condition i.i.d. bond percolation on the existence of a bi-infinite open path,
which is reminiscent to the construction of the incipient infinite cluster by Kesten [31], but for
p strictly below criticality.
Recall that a path P between vertices u, v ∈ V is a finite sequence P = (e1, . . . , en) of edges
e1 = 〈u0, u1〉, . . . , en = 〈un−1, un〉 ∈ E with u0 = u and un = v. The path P is called open if
ω(ek) = 1 for k = 1, . . . , n.
Let ΩN1,N2

be the event that there exists an open path connecting a vertex with x-coordinate
−N1 to a vertex with x-coordinate N2, and let Pp,N1,N2

be the probability measure on (Ω,F)
arising from conditioning the i.i.d. bond percolation measure µp with retention parameter p on
the event ΩN1,N2 . Then Pp,N1,N2 converges weakly as N1, N2 →∞ to a probability measure P∗p
on (Ω,F).

Lemma 2.1.1 (Theorem 2.1 and Corollary 2.2 in [5]). For any p ∈ (0, 1), as N1, N2 → ∞, the
probability measures Pp,N1,N2

converge weakly to a translation invariant probability measure P∗p
on (Ω,F) satisfying P∗p (Ω∗) = 1 where Ω∗ =

⋂
N1,N2∈N ΩN1,N2

is the event that a bi-infinite open
path exists.

It is easily seen that P∗p -almost surely, there is a unique infinite open cluster C ⊆ V consisting
of all vertices v ∈ V which are connected via open paths to vertices with arbitrary x-coordinate.
We define

Pp(·) := P∗p (· | 0 ∈ C)
where 0 := (0, 0) is the origin. This will serve as the law of ω.

0

Figure 3. A sample of the percolation configuration according to Pp

2.1.1. General properties of the percolation environment. From [5], we recall some
basic properties of the conditional percolation measure P∗p .
A function f : Ω → R is increasing if f(ω1) ≤ f(ω2) for all ω1, ω2 ∈ Ω such that ω1(e) ≤ ω2(e)
for all e ∈ E. It follows from the FKG-inequality, e. g. [25, Theorem 2.4], that P∗p stochastically
dominates µp. That is, Eµp [f ] ≤ EP∗p

[f ] for all increasing functions f , where EP [·] denotes
expectation with respect to a probability measure P .

Lemma 2.1.2 (Lemma 3.1 in [5]). For any p ∈ (0, 1), the conditional percolation measure P∗p
stochastically dominates the i.i.d. bond percolation measure µp.
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Due to the conditional nature of the conditional percolation measure Pp, we cannot expect a
direct Markov property of the environment in the sense that the probability that an edge e ∈ E
is open only depends on the state of finitely many other edges. Indeed, look at the following two
configurations. Let n ∈ N and A1 be the event that to the right of 0, the conditional percolation
environment consists of two parallel lines of n open edges. More precisely, suppose that the
edge 〈(0, 0), (0, 1)〉 and all horizontal edges 〈(i, 0), (i + 1, 0)〉, 〈(i, 1), (i + 1, 1)〉, i = 0, . . . , n are
open, and that all vertical edges 〈(i, 0), (i, 1)〉, i = 1, . . . , n are closed. On the other hand, let
A2 be the same configuration except that the edge 〈(0, 0), (1, 0)〉 is closed in A2. Both events
have positive probability under Pp but, given A1, the edge 〈(n, 1), (n+ 1, 1)〉 can be closed with
positive probability whereas given A2, the infinite path must include the edge 〈(n, 1), (n+ 1, 1)〉
hence the edge must almost surely be open under Pp.

0 0

Figure 4. Visualisations of the events A1 (left) and A2 (right). In the right
case, the dotted edge must be open in order to have an infinite open path.

However, with a small amount of additional information, a Markov property does hold for the
environment under P∗p . For i ∈ Z, let Ei,− be the set of all edges 〈u, v〉 such that x(u) ≤ i and
x(v) ≤ i. We say that a vertex v ∈ V with x(v) = i is backwards-communicating if there exists an
infinite open self-avoiding path P = (e1, e2, . . .) starting at v such that ek ∈ Ei,− for all k ∈ N.
Now, we track which of the vertices (k, 0) and (k, 1), k ∈ Z are backwards-communicating
and view this as a process in time k. That is, we define the process (Tk)k∈Z taking values in
{00, 01, 10, 11} as follows:

Tk =


00 if neither (0, k) nor (1, k) are backwards-communicating,

10 if (0, k) is backwards-communicating, but (1, k) is not,

01 if (0, k) is not backwards-communicating, but (1, k) is,

11 if both (0, k) and (1, k) are backwards-communicating.

Note that due to P∗p (Ω∗) = 1, we have P∗p (Tk = 00) = 0 for all k ∈ Z, but the corresponding
state is listed for completeness. The process (Tk)k∈Z is a time-homogeneous Markov chain under
P∗p .

Lemma 2.1.3 (Theorem 3.1 in [5]). Under P∗p , the process (Tk)k∈Z is a time-homogeneous Markov
chain.

Axelson-Fisk and Häggström also explicitly computed the transition probabilities of the process
(Tk)k∈Z, cf. [5, p. 1111-1112]. Writing pab,cd := P∗p (T1 = cd | T0 = ab), they can be written as

(2.1.1)

p01,01 p01,10 p01,11

p10,01 p10,10 p10,11

p11,01 p11,10 p11,11

 =

1− p01,11 0 p01,11

0 1− p01,11 p01,11

p11,01 p11,01 1− 2p11,01

 ,

where

p01,11 =
1

2p

(
2p2 − 1 +

√
1 + 4p2 − 8p3 + 4p4

)
and

p11,01 =
1

4(1− p)
(
2(1− p)− (3− 2p)

(
1 + 2p− 2p2 −

√
1 + 4p2 − 8p3 + 4p4

))
.
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As an irreducible, aperiodic Markov chain taking values in {01, 10, 11}, the law of Tk converges
towards a stationary distribution π whose values are given as elementary functions of p, cf. [5,
p. 1112], (

π(01) π(10) π(11)
)

=
(

p11,01
2p11,01+p01,11

p11,01
2p11,01+p01,11

p01,11
2p11,01+p01,11

)
.

In the limit p → 0, the states 01 and 10 have probability 1/2 under π, respectively. Roughly
speaking, this can be interpreted in the sense that for small values of p, the percolation environ-
ment locally looks like the infinite line graph Z.
Given (Tk)k∈Z, the random environment ω can be drawn as i.i.d. bond percolation conditioned
on being compatible with (Tk)k∈Z. To make this precise, we divide the edge set E into the
triplets Ei := Ei,− \Ei−1,−, i ∈ Z. Note that the values of Ti−1 and ω(Ei) determine the value
of Ti.
Let η ∈ {0, 1}Ei . Given Ti−1 = ab, Ti = cd, where ab, cd ∈ {01, 10, 11}, we say η is Ti−1-Ti-
compatible if Ti−1 = ab and ω(Ei) = η imply Ti = cd. We further define the probability measure
P∗p,i,Ti−1,Ti on Ei via

P∗p,i,Ti−1,Ti(η) =
1{η is Ti−1-Ti-compatible}

Zp,i,Ti−1,Ti

∏
e∈Ei

pη(e)(1− p)1−η(e),

where η ∈ {0, 1}Ei and Zp,i,Ti−1,Ti is a normalizing constant.

Lemma 2.1.4 (Theorem 3.2 in [5]). The conditional distribution of ω under P∗p given (Tk)k∈Z is∏
i∈Z

P∗p,i,Ti−1,Ti .

It follows that we can construct the conditional percolation environment under P∗p as the outcome
of a Markov process as follows. Given Tk, k ∈ Z, we first draw the value of Tk+1 according to
the law of Tk+1 given Tk. Then, we draw ω(Ek) according to P∗p,k,Tk−1,Tk and so forth. The

Markov property carries over to the environment chosen according to Pp since conditioning on
the event {0 ∈ C} only affects the law of P∗p,0,T−1,T0

.

Unfortunately, there exists no canonical coupling of the P∗p ’s as in the i.i.d. bond percolation case
such that P∗p1 stochastically dominates P∗p2 for all p1 ≥ p2.

Lemma 2.1.5 (Proposition 5.1 in [5]). For any fixed p ∈ (0, 1), there exists ε ∈ (0, p) such that
P∗p does not stochastically dominate P∗p′ for all p′ ∈ (0, ε).

This is due to the aforementioned fact that for p → 0, the environment basically looks like an
infinite line, where the infinite line with x-coordinate 0 and the infinite line with x-coordinate 1
are equally likely. That is, for any fixed n ∈ N, in the limit as p → 0, the probability that all
edges 〈(i, 0), (i + 1, 0)〉, i = 0, . . . , n are open becomes 1/2. On the other hand, for fixed p > 0,
the probability of this event vanishes as n→∞.
However, the edge density of the graph, that is the average number of open edges in Ei, i ∈ Z
does increase with p. For p ∈ (0, 1), define

ϑ(p) :=
∑
e∈E0

P∗p (ω(e) = 1).

Lemma 2.1.6 (Theorem 5.1 in [5]). For 0 < p1 < p2 < 1, we have ϑ(p1) ≤ ϑ(p2).
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2.2. Random walk on the conditional percolation model

Henceforth, we fix the parameter p ∈ (0, 1) associated with edge retention. Almost all constants
and objects defined below will depend on p, but this will not always figure in the notation. Given
a configuration ω ∈ {0, 1}E chosen according to Pp, we define a random walk on G with bias
λ ∈ R as follows. Let the conductances (c(e))e∈E be defined via

c(〈u, v〉) := eλ(x(u)+x(v)), 〈u, v〉 ∈ E.
Then (Yn)n∈N0 is defined as the lazy random walk on the infinite cluster C induced by the
conductances c starting at Y0 := 0. That is, when at u ∈ V the walk attempts to move to a
neighbour v ∈ V in G with probability proportional to c(〈u, v〉). If Yn = u, the direction Y cand

n+1

of the attempted step is

Y cand
n+1 =


(x(u) + 1, y(u)) with probability eλ

eλ+1+e−λ
,

(x(u), 1− y(u)) with probability 1
eλ+1+e−λ

,

(x(u)− 1, y(u)) with probability e−λ

eλ+1+e−λ
.

Then, the step is actually performed if the corresponding edge is open, ω(〈u, v〉) = 1. Otherwise,
the walk stays put.

Yn+1 =

{
Y cand
n+1 if ω(〈Yn, Y cand

n+1 〉) = 1,

Yn otherwise.

We denote the law of (Yn)n∈N0
on (V N0 ,G) by Pω,λ, where G is the product σ-algebra on V N0 .

Further, we write P vω,λ for the law of the Markov chain with the same transition probabilities
but with start at v ∈ V . Due to the symmetry of the law of ω, we only consider the case λ > 0.
As before, the distribution Pω,λ is referred to as the quenched law of (Yn)n∈N0 , that is, the law
of (Yn)n∈N0

given ω. The corresponding annealed law P is obtained by averaging the quenched
laws over ω ∈ Ω using Pp. That is, we define the probability measure P on {0, 1}E × V N0 by
setting, for A ∈ F , B ∈ G,

(2.2.1) P(A×B) :=

∫
A

Pω,λ(B) Pp(dω).

Notice that P depends on p and λ even though both parameters do not figure in the notation.

2.2.1. Basic properties of the percolation model and the random walk. We recall
some properties of the biased random walk on the conditional percolation model from [4].
Using electrical analysis, it can be checked that for λ > 0, for Pp-almost every configuration ω
the walk is transient under Pω,λ. To do so, it suffices to construct a unit current from 0 to ∞
with finite energy.

Lemma 2.2.1 (Proposition 3.1 in [4]). Fix λ > 0. The walk (Yn)∈N0
is P-almost surely transient.

We give a short sketch of the proof as we will resort to the same type of argument later in the
proof of Lemma 2.5.8.

Proof(Sketch). From the Markov property of the environment, it follows that for Pp-
almost every ω, there exists a vertical edge with negative x-coordinate that is open under ω.
Let m ∈ N be the smallest natural number such that the vertical edge 〈(−m, 0), (−m, 1)〉 is
open in ω. In the subgraph of G whose edge set consists of those edges that are open in ω,
there either exists an infinite open self-avoiding path P = (e1, e2, . . .) connecting 0 with ∞ that
never backtracks in the sense that the sequence of the x-coordinates of the vertices of the path
is nondecreasing, or there exists such a path P̂ = (ê1, ê2, . . .) starting from (−m, 0) and all edges
〈(−k, 0), (−k + 1, 0)〉, k = 1, . . . ,m are open in ω. In the first case, define a flow θ from 0 to ∞
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by pushing a unit current along P . In the second case, define a flow θ′ from 0 to ∞ by pushing
a unit current along the path P ′ = (〈(0, 0), (−1, 0)〉, . . . , 〈(−m + 1, 0), (−m, 0)〉, ê1, ê2, . . .). The
energy of either of these flows is bounded by

(2.2.2) E(θ′) =
∑
e∈P ′

θ(e)2r(e) ≤ e2λm +

m∑
k=1

e(2k−1)λ +

∞∑
k=−m

e−2λk

which is finite if and only if λ > 0. This implies transience of the walk (Yn)n∈N0
under Pω,λ for

Pp-almost every ω. Hence, the walk (Yn)n∈N is transient under P. �

The linear speed limit of the walk exhibits a phase transition from positive to zero speed at a
critical value of the bias parameter λ. To be more precise, define

Xn := x(Yn).

Then the following result holds.

Proposition 2.2.2 (Theorem 3.2 in [4]). Fix λ > 0. The walk (Yn)n∈N0
satisfies limn→∞

Xn
n =

v(λ) P-a.s. with

v(λ) =

{
> 0 for λ ∈ (0, λc),

= 0 for λ ≥ λc

where λc = 1
2 log

(
2/
(
1 + 2p− 2p2 −

√
1 + 4p2 − 8p3 + 4p4

))
.

As indicated in Section 1.2, existence of a critical value for the bias has been proven in similar
models, e. g. in [38] for biased random walks on Galton-Watson trees and in [22] for biased
random walk on the supercritical percolation cluster in Zd. In contrast to the results for biased
random walks on Galton-Watson trees or the supercritical percolation cluster in Zd, in the present
setting the value of λc is given as an elementary function of p.
Paraphrasing the argument in [4], the phase transition of v is triggered by the following. Suppose
the walk (Yn)n∈N0

reaches the rightmost node of a dead-end in the direction of the bias. Fur-
thermore, suppose the dead-end is such that in order to leave, the walk requires m backtracking
steps. Now, look at the time spent by (Yn)n∈N0 in this trap. Along the same lines as the argu-
ment that leads to (2.2.2), Axelson-Fisk and Häggström show that the quenched expectation of
the occupation time of such a trap is of order e2λm. On the other hand, it turns out that the
probability to generate this type of trap is proportional to e−2λcm. It follows that the annealed
expectation of the time spent in a dead end of unspecified length is of order

∑∞
m=1 e

2λme−2λcm,
which is finite if λ < λc, and infinite otherwise. Axelson-Fisk and Häggström then show that
this observation carries over to the linear speed limit of the walk.
We organise the further investigation of the properties of the biased random walk (Yn)n∈N0 in
bottom-up fashion as follows. First, we introduce a decomposition of the percolation cluster at
regeneration points in the upcoming Section 2.3. Using these regenerations, the trajectory of
(Yn)n∈N0

and the environment can simultaneously be decomposed into i.i.d. segments. The most
important result of this section is Proposition 2.3.5 which gives fine estimates for the tails of the
time spent by (Yn)n∈N0 between regenerations.
To prove these tail estimates, it is necessary to have decent estimates for the time spent by the
walk in traps. Therefore, we first give a detailed description of traps in Section 2.4 before proving
the tail estimate over the course of Section 2.5. After that, we proceed with our main results
about the asymptotic behaviour of (Yn)n∈N0

in Section 2.6.
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2.3. Regeneration in the one-dimensional percolation environment

For the in-depth analysis of the random walk, we use a decomposition of the percolation cluster
at regeneration points from [23]. Regeneration points are defined in two steps. Given a config-
uration ω ∈ Ω, a vertex v = (x(v), 0) ∈ V is called a pre-regeneration point if v ∈ C and (x(v), 1)
is an isolated vertex in ω, that is, all three edges adjacent to (x(v), 1) are closed in ω.
As a consequence of Lemma 2.1.3 and Lemma 2.1.4, it follows that there exist infinitely many
pre-regeneration points.

Lemma 2.3.1 (Lemma 5.1 and Corollary 5.2 in [4]). With Pp-probability one, there exist infinitely
many pre-regeneration points both left and right of the origin.

We enumerate the pre-regeneration points in ω by . . . , Rpre
−1 , R

pre
0 , Rpre

1 , . . . such that x(Rpre
−1 ) <

0 ≤ x(Rpre
0 ) and x(Rpre

n ) < x(Rpre
n+1) for all n ∈ Z.

0 Rpre
0 Rpre

1Rpre
−1

Figure 5. Pre-regeneration points close to the origin

The pre-regeneration points can be used to decompose the percolation cluster into independent
pieces. For a, b ∈ Z, we denote the subgraph of ω with vertex set V[a,b) := {v ∈ V : a ≤ x(v) ≤ b}
and edge set E[a,b) := {e = 〈u, v〉 ∈ E : u, v ∈ V[a,b), x(u) ∧ x(v) < b, ω(e) = 1} by [a, b) and call
[a, b) a piece or block (of ω). We then define

ωn := [x(Rpre
n−1), x(Rpre

n )), n ∈ Z.
Using this definition, we may introduce the cycle-stationary percolation law P◦p .

Definition 2.3.2. The cycle-stationary percolation law P◦p is defined to be the unique probability
measure on (Ω,F) such that the cycles ωn, n ∈ Z are i.i.d. under P◦p with each ωn having the

same law under P◦p as ω1 under P∗p , and such that Rpre
0 = 0.

We write P◦ for the annealed law of the biased random walk and the percolation configuration
when the latter is drawn using P◦p instead of Pp. To be more precise, P◦ is defined as P in (2.2.1),
but with Pp replaced by P◦p .

Definition 2.3.3. We call a v ∈ V regeneration point if

1. it is a pre-regeneration point and
2. the random walk (Yn)n∈N0

visits v exactly once.

It follows from the discussion in Section 4 of [23] that there are infinitely many regeneration
points to the right of 0. We set R0 := 0 and, for n ∈ N, define Rn to be the first regeneration
point to the right of Rn−1. Thus, ρn < ρn+1 for all n ∈ N0 where ρn := x(Rn), n ∈ N0.
Furthermore, let τ0 := 0 and

τn := inf{k ∈ N0 : Yk = Rn}, n ∈ N.
For n ≥ 1, τn is the unique time at which the nth regeneration point Rn is visited by the walk
(Yk)k∈N0 . In particular, 0 = τ0 < τ1 < . . . . We will call τn the nth regeneration time. Below, we
write

α := λc/λ.

The following assertions are known from [23] about the regeneration times and points.
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Lemma 2.3.4 (Lemmas 4.1 and 4.2, Proposition 4.3 in [23]). Fix λ > 0.

(a) Under P, the pairs (τn+1−τn, ρn+1−ρn), n ∈ N are i.i.d. and independent of (τ1, ρ1), and

P((τ2−τ1, ρ2−ρ1) ∈ ·) = P◦((τ1, ρ1) ∈ · | Yn 6= 0 for all n ≥ 1).

(b) There exists some δ > 0 such that E[eδ(ρ2−ρ1)] <∞.

(c) It holds that E[(τ2 − τ1)κ] <∞ if and only if κ < α = λc/λ.

(d) The ballistic speed satisfies v(λ) = E[ρ2 − ρ1]/E[τ2 − τ1].

It should be noted that according to Lemma 2.3.4(d), the quantity v fits the elementary descrip-
tion of speed as a fraction of displacement over time since it can be written as the ratio of the
average distance traveled between regenerations of the random walk to the average time spent
between those regenerations.
Lemma 2.3.4(c) indicates that P(τ2 − τ1 ≥ n) is roughly of the order n−α as n→∞. We give a
more precise statement in the following proposition.

Proposition 2.3.5. For any λ > log(2)/2, in particular for λ ≥ λc/2, there exist constants
0 < c ≤ d <∞ (depending on p and λ) such that, for all n ∈ N,

cn−α ≤ P(τ2 − τ1 ≥ n) ≤ dn−α

and

cn−α ≤ P(τ1 ≥ n) ≤ dn−α log n.

We will prove Proposition 2.3.5 over the course of Section 2.5.

0 p 1

log(2)
2

1

1.5

2

λc

λc

2

Figure 6. The figure shows λc and λc/2 as functions of p. Proposition 2.3.5 giv-
ing precise tail asymptotics for the regeneration times applies for λ > log(2)/2,
which is strictly smaller than λc/2 for any p ∈ (0, 1)

2.4. Traps

As for biased random walk on Galton-Watson trees or on the supercritical percolation cluster in
Zd, the slowdown of biased random walk in the one-dimensional percolation model considered
here is due to traps. These are dead-end regions stretching in the direction of the bias. For
conditional percolation on the ladder graph, this boils down to parallel finite open horizontal
line segments with no vertical connections.
To give a formal definition of a trap, we introduce some notation. For a vertex u ∈ V , we
write u′ for (x(u), 1 − y(u)). Further, if e = 〈u, v〉 ∈ E, we let e′ := 〈u′, v′〉. In particular,
e = e′ if e is a vertical edge, and e′ is the horizontal edge parallel to e if e is a horizontal edge.
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Now we define a trap (in ω) to be an open path P = (e1, . . . , em) of length m ∈ N with edges
e1 = 〈u0, u1〉, . . . , em = 〈um−1, um〉 ∈ E such that

1. x(uk) = x(uk−1) + 1 and y(uk) = y(uk−1) for k = 1, . . . ,m;
2. the edges 〈u0, u

′
0〉 and e′k, k = 1, . . . ,m are open (in ω);

3. the edge 〈um, um+1〉 is closed (in ω) where um+1 = (x(um) + 1, y(um));
4. all vertical edges 〈uk, u′k〉 for k = 1, . . . ,m are closed (in ω).

Here, m is called the length of the trap, u0 is called the trap entrance and um is called the bottom
of the trap. The piece [x(u0), x(um+1)) is called (the corresponding) trap piece. The figure below
shows the trap piece of a trap of length 4.

trap end

trap entrance bottom of the trap

We define the backbone B to be the subgraph of the infinite cluster C obtained by deleting from
C all edges and all vertices in traps except the trap entrance vertices. Clearly, B is connected
and contains all pre-regeneration points.

Rpre
−1 0 Rpre

0

Rpre
−1 0 Rpre

0

Figure 7. The original percolation configuration (above) and the backbone (below)

Due to the Markovian structure of the percolation process under Pp, there are infinitely many
traps both to the left and to the right of the origin 0. Let Tn, n ∈ Z be an enumeration of all
trap pieces such that Tn is strictly to the left of Tn+1 for each n ∈ Z and that T1 is the trap piece
with minimal nonnegative x-coordinate of the trap entrance. Denoting the length of the trap in
the trap piece Tn by `n, the following result holds.

Lemma 2.4.1 (Lemma 3.5 in [23]). (a) Under Pp, (`n)n 6=0 is a family of i.i.d. positive random
variables independent of `0 with Pp(`1 = m) = (e2λc − 1)e−2λcm, m ∈ N.

(b) There is a constant χ(p) such that Pp(`0 = m) ≤ χ(p)me−2λcm, m ∈ N.

This is a consequence of the Markovian structure of the percolation process under P∗p , of the fact
that the transition probabilities of the process (Tk)k∈Z tracking the backwards-communication
of pairs of parallel vertices can be written in terms of elementary functions of p in the form of
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(2.1.1), and of Lemma 2.1.4. Under P∗p , given T0 = 11, the event that state 11 of (Tk)k∈Z occurs
m times in a row, T1 = . . . = Tm = 11, in combination with the event that all horizontal edges
〈(k, 0), (k + 1, 0)〉, 〈(k, 1), (k + 1, 1)〉, k = 1, . . . ,m are open and all vertical edges 〈(k, 0), (k, 1)〉,
k = 1, . . . ,m are closed, precisely has probability e−2λcm.

2.4.1. Biased random walk on a line segment. An excursion of the random walk
(Yn)n∈N0 into a fixed trap of length m can be identified with an excursion of a biased random
walk on the line graph {0, 1, . . . ,m} introduced in Example 1.3.2, where m is the length of the
trap. Let

pλ := eλ

e−λ+eλ
, qλ := 1− pλ, and γ := qλ

pλ
= e−2λ.

We write P km,λ for the law of a biased random walk (Sn)n∈N0
on {0, . . . ,m} starting at k ∈

{0, . . . ,m}, moving to the right with probability pλ and moving left with probability qλ from
any vertex other than 0,m. The origin 0 is supposed to be absorbing and at m the walk stays
put with probability pλ and moves left with probability qλ. We write Ekm,λ for the corresponding

expectation. We drop the superscript k, both in P km,λ as well as Ekm,λ, if k = 1.

For k ∈ {0, . . . ,m} we write σk := inf{j ∈ N0 : Sj = k} and σ+
k := inf{j ∈ N : Sj = k} for

the hitting time and the first return time of node k under (Sn)n∈N0
, respectively. For k, l ∈

{0, . . . ,m}, we write σk→l = inf{j ∈ N0 : Sj = l} on {S0 = k} for the time it takes until the walk
(Sn)n∈N0

visits l for the first time when starting at k. Let em := Pmm,λ(σ+
0 < σ+

m) be the escape
probability from the rightmost node in the trap to the trap entrance without a rebound to the
rightmost node in the trap. By the gambler’s ruin formula, Equation (1.3.3) with β := γ−1, this
is

(2.4.1) em = Pmm,λ(σ+
0 < σ+

m) = qλ
γm−1 − γm

1− γm
= γmpλ

1− γ
1− γm

.

2.5. Tail estimate for regeneration times

Over the course of this section, we prove the tail estimate for regeneration times, Proposition
2.3.5.

2.5.1. The proof of the lower bound. The analysis of traps from the previous section
almost immediately results in a proof of the lower bound in Proposition 2.3.5.

Lemma 2.5.1. There exists some c > 0 such that, for all n ∈ N,

P(τ2 − τ1 ≥ n) ≥ cn−α and P(τ1 ≥ n) ≥ cn−α

Proof. According to Lemma 2.3.4, we find

P(τ2 − τ1 ≥ n) = P◦(τ1 ≥ n | Yk 6= 0 for all k ≥ 1) ≥ P◦(τ1 ≥ n, Yk 6= 0 for all k ≥ 1).

On the other hand, as P(Rpre
0 = 0) > 0, we can safely write

P(τ1 ≥ n) ≥ P(Rpre
0 = 0)P(τ1 ≥ n, Yk 6= 0 for all k ≥ 1 | Rpre

0 = 0).

= P(Rpre
0 = 0)P◦(τ1 ≥ n, Yk 6= 0 for all k ≥ 1).

We therefore provide a lower bound for P◦(τ1 ≥ n, Yk 6= 0 for all k ≥ 1). Under P◦p , there is a
pre-regeneration point at 0 as depicted in the figure below.

0
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Given there is a pre-regeneration point at 0 (as is always the case under P◦p ), the law of the
percolation cluster to the right of the origin under Pp and P◦p coincides since the ωn, n ∈ N have
the same law under Pp and P◦p . We may thus argue as on p. 3404 of [4] to conclude that the
probability that directly to the right of the origin, there is a trap of length m as in the picture
above is γ(p)e−2λcm for some constant γ(p) ∈ (0, 1).
We write T for the time spent on the first excursion of (Yn)n∈N0 into the trap right of the origin.
We have

P◦(τ1 ≥ n, Yk 6= 0 for all k ≥ 1) ≥ P◦(T ≥ n, there is a trap directly to the right of the origin).

Typically, after entering the trap the walk drifts towards the bottom of the trap and then requires
a geometric number of trials to leave again. It follows from the gambler’s ruin formula (1.3.3)
that for all m, hitting the bottom before leaving the trap has positive probability bounded from
below:

P 1
m,λ(σm < σ0) =

1− γ1

1− γm
> 1− γ > 0.

The probability of leaving the trap from the bottom without rebound to the bottom is em. In
order to visit the trap in the situation as depicted above, two steps to the right at the start
suffice. Thus we get

P◦(τ1 ≥ n, Yk 6= 0 for all k ≥ 1) ≥
( eλ

eλ + 1 + e−λ

)2 ∞∑
m=2

γ(p)e−2λcmP 1
m,λ(T ≥ n, σm < σ0)

≥ (1− γ)e2λγ(p)

(eλ + 1 + e−λ)2

∞∑
m=2

e−2λcm(1− em)n−1,

Restricting this sum to the term of order x̂ := logn
| log γ| leads to

P◦(τ1 ≥ n, Yk 6= 0 for all k ≥ 1) ≥ (1− γ)e2λγ(p)

(eλ + 1 + e−λ)2
e−2λcbx̂c(1− ebx̂c)

n−1

≥ (e2λ − 1)γ(p)

(eλ + 1 + e−λ)2
e−2λcx̂(1− ex̂−1)n−1

= n−α
(e2λ − 1)γ(p)

(eλ + 1 + e−λ)2
exp(−pλ(e2λ − 1))(1 + on(1)).

�

2.5.2. Sketch of the proof of the upper bound and preliminaries. To prove the
upper bound in Proposition 2.3.5, we can use the same approach as in the proof of the lower
bound - at least to prove a tail estimate for the time spent in a single trap. The overall proof of
the upper bound will proceed along the following steps.

1. We divide the time τ2 − τ1 spent between the visit to the first and the second regeneration
point, respectively, as follows.

τ2 − τ1 = (τ2 − τ1)B + (τ2 − τ1)traps

where (τ2−τ1)B and (τ2−τ1)traps are the times spent in the backbone and in traps, respectively,
during the time interval [τ1, τ2).

2. The term (τ2 − τ1)B has sufficiently high moments to be neglected.
3. The term (τ2 − τ1)traps can be written as the sum of the occupation times of the distinct

traps in the block [ρ1, ρ2). In the annealed case, the occupation times can be bounded by
identically distributed - albeit not independent - random variables that offer the tail estimate
of Proposition 2.3.5 up to lower order terms.
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4. Using a taylor-made coupling, we can further estimate these by a family of i.i.d. random
variables with the same (up to a constant) tail probabilities.

To estimate the time spent on bottom-to-bottom excursions uniformly in the trap length, let
(S′n)n∈N0 be a biased random walk on Z that mimics the steps of (Sn)n∈N0 without staying put.
More precisely, set S′0 := 0 and for n < σ0, let

S′n+1 = S′n + 1 if Sn+1 = Sn + 1 or Sn+1 = Sn = m,

S′n+1 = S′n − 1 if Sn+1 = Sn − 1.

After (Sn)n∈N0
hits the absorbing state 0, we let (S′n)n∈N0

move along as the usual biased
random walk on Z with probability pλ to jump right. For z ∈ Z, write P zZ,λ and EzZ,λ for the law

of (S′n)n∈N0
starting at S′0 = z and the corresponding expectation, respectively. For k ∈ Z, set

σZ
k := inf{l ∈ N0 : S′l = k}.

The second step in the outline given above comes as a consequence of the following Lemma.

Lemma 2.5.2 (Lemma 7.5 in [23]). For any κ > 0, we have E[((τ2 − τ1)B)κ] <∞.

This and Markov’s inequality imply the following result.

Lemma 2.5.3. It holds that P((τ2 − τ1)B > n) = o(n−α) as n→∞.

To obtain an upper bound on P(τ2 − τ1 > n), we thus need to consider the time spent in traps.
We write (τ2 − τ1)traps as

(τ2 − τ1)traps =

T∑
i=1

Vi∑
j=1

Tij ,

where T is the number of traps in [ρ1, ρ2), Vi is the number of visits in the ith trap in [ρ1, ρ2)
and Tij is the time (Yn)n∈N0

spends during the jth excursion into the ith trap in [ρ1, ρ2).

2.5.3. Tail estimates for the time spent in a single trap. If we fix a percolation
environment ω, the time spent in a single trap of length m can be split into the time spent on
bottom-to-bottom excursions and the time spent to reach or leave the bottom without a rebound
to the left- or rightmost, respectively, node of the trap. This leads to the following result for a
fixed number of excursions into a single trap.

Lemma 2.5.4. Let (Sn,j)n∈N0
, j ∈ N be i.i.d. copies of (Sn)n∈N0

starting at 1. Further, let T qu,a
ij

be the absorption time at 0 of the walk (Sn,j)n∈N0 , j ∈ N. Let R := E0
Z,λ[σZ

1 ] = 1
1−2qλ

. Then,

for any l ∈ N, there exist independent Z1, ..., Zl ∼ geom(em) and m0 ∈ N such that, for m ≥ m0

and n ∈ N, we have

Pm,λ

( l∑
j=1

T qu,a
ij ≥ n

)
≤ 2Pm,λ

( l∑
j=1

Zj ≥
n

4R

)
+ 3lmax

{
P 1
m,λ

(
σ1→0 ≥ n

6l , σ0 < σm
)
, P 1

m,λ

(
σ1→m ≥ n

6l , σm < σ0

)
,

Pmm,λ
(
σm→0 ≥ n

6l , σ0 < σ+
m

)}
.

Proof. Let Z(j) be the number of returns to m of (Sn,j)n∈N0 before absorption. For

completeness, we define Z(j) := 0 on the event where (Sn,j)n∈N0
visits m at most once. By

the strong Markov property, Pm,λ(Z(j) = k) = P 1
m,λ(σm < σ0)(1 − em)kem for k ∈ N and

Pm,λ(Z(j) = 0) = P 1
m,λ(σ0 < σm) + P 1

m,λ(σm < σ0)em. We write T̃jk, k = 1, . . . , Z(j) for the

durations of consecutive excursions of (Sn,j)n∈N0
from m to m, and let T̃jk, k > Z(j), be a family

of i.i.d. random variables distributed as the duration of an excursion of (Sn)n∈N0
from m to m
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conditioned on the event {σ+
m < σ0}. When starting at 1, the walk (Sn)n∈N0 either hits the

absorbing state 0 before reaching the trap bottom, or hits the bottom, does a geometric number
of bottom-to-bottom excursions, and then gets absorbed. We have

Pm,λ

( l∑
j=1

T qu,a
ij ≥ n

)
= Pm,λ

( l∑
j=1

T qu,a
ij ≥ n,

∣∣∣∣ l∑
j=1

T qu,a
ij −

l∑
j=1

Z(j)∑
k=1

T̃jk

∣∣∣∣ ≤ n

2

)

+ Pm,λ

( l∑
j=1

T qu,a
ij ≥ n,

∣∣∣∣ l∑
j=1

T qu,a
ij −

l∑
j=1

Z(j)∑
k=1

T̃jk

∣∣∣∣ > n

2

)

≤ Pm,λ
( l∑
j=1

Z(j)∑
k=1

T̃jk ≥
n

2

)
+ 3lmax

{
P 1
m,λ

(
σ1→0 ≥ n

6l , σ0 < σm
)
, P 1

m,λ

(
σ1→m ≥ n

6l , σm < σ0

)
,

Pmm,λ
(
σm→0 ≥ n

6l , σ0 < σ+
m

)}
.

We can safely replace Z(j), j = 1, ..., l by an independent family of i.i.d. random variables Zj
with law geom(em) under Pm,λ. As T̃jk, j = 1, ..., l, k ∈ N are nonnegative and i.i.d., we have

Pm,λ

( l∑
j=1

Zj < n

)
= Pm,λ

( l∑
j=1

Zj < n,

n∑
k=1

T̃1k ≥ 2Rn

)
+ Pm,λ

( l∑
j=1

Zj < n,

n∑
k=1

T̃1k < 2Rn

)

≤ Pm,λ
( n∑
k=1

T̃1k ≥ 2Rn

)
+ Pm,λ

( Z1+...+Zl∑
k=1

T̃1k < 2Rn

)

= Pm,λ

( n∑
k=1

T̃1k ≥ 2Rn

)
+ Pm,λ

( l∑
j=1

Zj∑
k=1

T̃jk < 2Rn

)
.

This implies

Pm,λ

( l∑
j=1

Zj∑
k=1

T̃jk ≥ 2Rn

)
≤ Pm,λ

( l∑
j=1

Zj ≥ n
)

+ Pm,λ

( n∑
k=1

T̃1k ≥ 2Rn

)
.(2.5.1)

Using Markov’s inequality, the Markov property, stochastic domination and Lemma 1.3.6, for
µ > 0, we have

Pm,λ

( n∑
k=1

T̃1k ≥ 2Rn

)
≤ e−2µRnEmm,λ

[
eµσ

+
m

∣∣σ+
m < σ0

]n ≤ e−2µRnE0
Z,λ
[
eµσ

Z
1
]n

= e−2µRn

(
1−

√
1− 4pλqλe2µ

2qλeµ

)n
.

The function f :
[
0, 1

2 log
(

1
4pλqλ

)]
→ R given by

f(µ) := e−2µR 1−
√

1− 4pλqλe2µ

2qλeµ

is differentiable and satisfies

f(0) =
1− (1− 2qλ)

2qλ
= 1, f ′(0) =

−1

1− 2qλ
< 0.
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Hence, there exists µ̂ > 0 with f(µ̂) < 1, and

Pm,λ

( n∑
k=1

T̃1k ≥ 2Rn

)
≤
(

f(µ̂)

1− em

)n
· Pm,λ(Z1 ≥ n).

As em → 0 for m → ∞, there exists m0 such that f(µ̂)
1−em < 1 for all m ≥ m0. This and (2.5.1)

lead to

Pm,λ

( l∑
j=1

Zj∑
k=1

T̃jk ≥ 2Rn

)
≤ Pm,λ

( l∑
j=1

Zj ≥ n
)

+

(
f(µ̂)

1− em0

)n
Pm,λ(Z1 ≥ n)

≤ 2Pm,λ

( l∑
j=1

Zj ≥ n
)

for m ≥ m0. �

Lemma 2.5.4 can be adapted to the case where the random walk is allowed to take lazy steps.
Let (Slazy

n )n∈N0
be the lazy biased random walk on the line graph {0, 1, . . . ,m} that moves to the

right with probability eλ/(eλ+1+e−λ), to the left with probability e−λ/(eλ+1+e−λ) and stays
put with probability 1/(eλ + 1 + e−λ) from any vertex other than 0,m. The origin 0 is again
supposed to be absorbing and at m, the walk stays put with probability (eλ + 1)/(eλ + 1 + e−λ)
and moves left with probability e−λ/(eλ + 1 + e−λ). Slightly abusing notation, we again write

Pm,λ for the law of (Slazy
n )n∈N0

starting at Slazy
0 = 1, and Em,λ for the corresponding expectation.

Lemma 2.5.5. Let (Slazy
n,j )n∈N0 , j ∈ N be i.i.d. copies of (Slazy

n )n∈N0 starting at 1. Further, let

T qu
ij be the absorption time at 0 of the walk (Slazy

n,j )n∈N0
, j ∈ N. Let R := E0

Z,λ[σZ
1 ] = 1

1−2qλ
and

rλ > e2λ + eλ. Then, for any l ∈ N, there exist independent Z1, ..., Zl ∼ geom(em) and m1 ∈ N
such that, for m ≥ m0 ∨m1 and n ∈ N, we have

Pm,λ

( l∑
j=1

T qu
ij ≥ n

)
≤ 3Pm,λ

( l∑
j=1

Zj ≥
n

4rλR

)
+ 3lmax

{
P 1
m,λ

(
σ1→0 ≥ n

6lrλ
, σ0 < σm

)
, P 1

m,λ

(
σ1→m ≥ n

6lrλ
, σm < σ0

)
,

Pmm,λ
(
σm→0 ≥ n

6lrλ
, σ0 < σ+

m

)}
.

Proof. We have

l∑
j=1

T qu
ij

law=

l∑
j=1

T qu,a
ij∑
k=1

Z̃k,j ,

where T qu,a
ij , j ∈ N are as in Lemma 2.5.4, and Z̃k,j , k, j ∈ N are independent random variables

distributed as the number of times the walk (Slazy
n,j )n∈N0

stays put before it changes its position

for the kth time. Since the probability for (Slazy
n,j )n∈N0 to change its position at any vertex other

than the absorbing state 0 is bounded from below by p̃ := e−λ/(eλ+1+e−λ), we have Z̃k,j 4 Zk,j
where Zk,j , k, j ∈ N is a family of i.i.d. geometric random variables with success probability p̃.
Notice that Em,λ[Z1,1] = (1 − p̃)/p̃ = e2λ + eλ > 2. Choose rλ > e2λ + eλ. Then, as the Zk,j ,
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k, j ∈ N are nonnegative and i.i.d., we find

Pm,λ

( l∑
j=1

T qu
ij ≥ n

)
≤ Pm,λ

( l∑
j=1

T qu,a
ij∑
k=1

Zk,j ≥ n
)

= Pm,λ

( l∑
j=1

T qu,a
ij∑
k=1

Zk,j ≥ n,
l∑

j=1

T qu,a
ij >

⌊ n
rλ

⌋)
+ Pm,λ

( l∑
j=1

T qu,a
ij∑
k=1

Zk,j ≥ n,
l∑

j=1

T qu,a
ij ≤

⌊ n
rλ

⌋)

≤ Pm,λ
( l∑
j=1

T qu,a
ij >

⌊ n
rλ

⌋)
+ Pm,λ

( b nrλ c∑
k=1

Zk,1 ≥ n
)
.

Standard large deviation estimates yield that Pm,λ(
∑bn/rλc
k=1 Zk,1 ≥ n) decays exponentially fast

as n→∞ (with a rate which is independent of m). Hence, as em → 0 for m→∞, there exists
m1 = m1(λ) ∈ N such that for all m ≥ m1

Pm,λ

( b nrλ c∑
k=1

Zk,1 ≥ n

)
≤ (1− em)

d n
4rλR

e
= Pm,λ

(
Z1 ≥

n

4rλR

)
.

The remainder of the proof now follows from Lemma 2.5.4. �

In the annealed case, Lemma 2.5.5 translates to a tail probability of basically order n−α (given
the trap is actually seen).

Lemma 2.5.6. Let R, rλ,m0,m1 be as in Lemma 2.5.5 and µ > 0 be such that E0
Z,λ
[
eµσ

Z
1

]
<∞.

Further, let T ann
ij , i ∈ Z, j ∈ N be a family of random variables which are independent given ω

and with T ann
ij given ω being distributed as the hitting time of the entrance of the trap in Ti by

(Yn)n∈N0
under Pω,λ when (Yn)n∈N0

starts at the right neighbor of the trap entrance. Then

P
( l∑
j=1

T ann
ij ≥ n, `i ≥ m0 ∨m1

)
≤

c1lα+1n−α + c2le
−µ n

6lrλ , for i 6= 0,

c′1l
α+1n−α log n+ c′2le

−µ n
6lrλ for i = 0,

where c1 = c1(p, λ), c2 = c2(p, λ), c′1 = c′1(p, λ), c′2 = c′2(p, λ) are positive, finite constants neither
depending on n nor l.

Proof. Using Lemmas 2.4.1 and 2.5.5, we can estimate P
(∑l

j=1 T
ann
ij ≥ n, `i ≥ m0 ∨m1

)
using independent Z1, ..., Zl ∼ geom(em) and T qu

ij , j = 1, . . . , l, rλ and R as defined in Lemma
2.5.5 by

P
( l∑
j=1

T ann
ij ≥ n, `i ≥ m0 ∨m1

)
=

∞∑
m=m0∨m1

Pp(`i = m)Pm,λ

( l∑
j=1

T qu
ij ≥ n

)

≤ 3

∞∑
m=m0∨m1

αi(m)e−2λcmPm,λ

( l∑
j=1

Zj ≥
n

4rλR

)

+ 3l

∞∑
m=m0∨m1

αi(m)e−2λcm max
{
P 1
m,λ

(
σ1→0 ≥ n

6lrλ
, σ0 < σm

)
, P 1

m,λ

(
σ1→m ≥ n

6lrλ
, σm < σ0

)
,

Pmm,λ
(
σm→0 ≥ n

6lrλ
, σ0 < σ+

m

)}
,

(2.5.2)
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where αi(m) := (e2λc − 1) for i 6= 0 and α0(m) := χ(p)m. We consider the second series first.
For y ∈ {0, ...,m} we write

h(y) := P ym,λ(σ0 < σm).

Due to the Gambler’s ruin formula we have h(y) = γy−γm
1−γm . An excursion of (Sn)n∈N0

starting

from either 1 or m to the origin 0 conditioned on σ0 < σ+
m has the transition probabilities

P ym,λ(S1 = z | σ0 < σ+
m) =

h(z)

h(y)
p(y, z),

where y ∈ {1, ...,m− 1}, z ∈ {0, ...,m} and p(y, z) := P ym,λ(S1 = z). For y ∈ {1, ...,m− 1} this
implies

P ym,λ(S1 = y + 1 | σ0 < σ+
m)

P ym,λ(S1 = y − 1 | σ0 < σ+
m)

=
h(y + 1)

h(y − 1)

p(y, y + 1)

p(y, y − 1)
< γ,

whereas
Pmm,λ(S1 = m | σ0 < σ+

m)

Pmm,λ(S1 = m− 1 | σ0 < σ+
m)

= 0 < γ.

In other words, conditioned on σ0 < σ+
m, the walk (Sn)n∈N0

drifts towards to the left at least as
strong as the unconditioned walk drifts towards the right. Estimating all three quantities in the
max-term by corresponding quantities for (S′n)n∈N0 , the biased random walk on Z, we get

max
{
P 1
m,λ

(
σ1→0 ≥ n

6lrλ
, σ0 < σm

)
, P 1

m,λ

(
σ1→m ≥ n

6lrλ
, σm < σ0

)
, Pmm,λ

(
σm→0 ≥ n

6lrλ
, σ0 < σ+

m

)}
≤ max

{
P 0
Z,λ
(
σZ

1 ≥ n
6lrλ

)
, P 1

Z,λ
(
σZ
m ≥ n

6lrλ

)
, P 0

Z,λ
(
σZ
m ≥ n

6lrλ

)}
= P 0

Z,λ
(
σZ
m ≥ n

6lrλ

)
.

Using Markov’s inequality and Lemma 1.3.6, we get that for µ > 0 with E0
Z,λ
[
eµσ

Z
1

]
<∞,

3l

∞∑
m=m0∨m1

αi(m)e−2λcmP 0
Z,λ
(
σZ
m ≥ n

6lrλ

)
≤ 3le

−µ n
6lrλ

∞∑
m=m0∨m1

αi(m)e−2λcmE0
Z,λ
[
eµσ

Z
1
]m

= 3le
−µ n

6lrλ

∞∑
m=m0∨m1

αi(m)e−2λcm

(
1−

√
1− 4pλqλe2µ

2qλeµ

)m
.

The latter series is finite. To see this, notice that if λ < λc, we have e−2λc < e−2λ = qλ
pλ

and thus

e−2λc
1−

√
1− 4pλqλe2µ

2qλeµ
< 1

as 1 −
√

1− 4pλqλe2µ ≤ 1 and 2pλe
µ > 1. If on the other hand λ ≥ λc, we have E0

Z,λ[eµσ
Z
1 ] ≤

E0
Z,λc

[eµσ
Z
1 ] and the series converges using the same argument.

For the first series on the right-hand side of (2.5.2), we use the union bound to get

3

∞∑
m=m0∨m1

αi(m)e−2λcmPm,λ

( l∑
j=1

Zj ≥
n

4rλR

)
≤ 3l

∞∑
m=m0∨m1

αi(m)e−2λcmPm,λ

(
Z1 ≥

n

4rλRl

)

= 3l

∞∑
m=m0∨m1

αi(m)e−2λcm(1− em)
d n
4rλRl

e
.
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We set n0 := d n
4rλRl

e. Since em ≥ (pλ − qλ)γm, we have

3l

∞∑
m=m0∨m1

αi(m)e−2λcm(1− em)n0 ≤ 3l

∞∑
m=m0∨m1

αi(m)e−2λcm(1− (pλ − qλ)γm)n0 .

Let t ∈ N0 be such that (pλ − qλ)γ−t ≤ 1 < (pλ − qλ)γ−(t+1). Then

3l

∞∑
m=m0∨m1

αi(m)e−2λcm(1− (pλ − qλ)γm)n0

≤ 3le2λct
∞∑

m=m0∨m1

αi(m+ t)e−2λc(m+t)
(

1− pλ − qλ
γt

γm+t
)n0

≤ 3le2λct
∞∑
m=0

αi(m)e−2λcm
(

1− pλ − qλ
γt

γm
)n0

= 3le2λct
∞∑
m=0

αi(m)e−2λcm
n0∑
j=0

(
n0

j

)(
− pλ − qλ

γt
γm
)j

1n0−j

= 3le2λct
n0∑
j=0

(
n0

j

)
(−1)j

(pλ − qλ
γt

)j ∞∑
m=0

αi(m)γαm+jm

=

{
3le2λct(e2λc − 1)

∑n0

j=0

(
n0

j

)
(−1)j

(
pλ−qλ
γt

)j 1
1−γα+j if i 6= 0,

3le2λctχ(p)
∑n0

j=0

(
n0

j

)
(−1)j

(
pλ−qλ
γt

)j γα+j

(1−γα+j)2 if i = 0.

To find the asymptotic behavior of the two expressions in the Lemma, we apply residue calculus.

Define the complex function φ via φ(z) := (pλ−qλ)z

γtz(1−γα+z) for z ∈ C. Then φ is holomorphic in C
except at the poles zk := 2πik

log γ − α, k ∈ Z. Moreover, by the choice of t, |φ(z)| remains bounded

as |Re(z)| → ∞. Consequently, Theorem 2(i) in [21] applies and gives

n0∑
j=0

(
n0

j

)
(−1)j

(pλ − qλ
γt

)j 1

1− γα+j
= (−1)n0+1

∑
k∈Z

Res
z=zk

( 1

1− γα+z

(pλ − qλ)zn0!

γtzz(z − 1) . . . (z − n0)

)
.

Along the lines of Example 3 in [21], we get

n0∑
j=0

(
n0

j

)
(−1)j

(pλ − qλ
γt

)j 1

1− γα+j
=
(
− 1

log γ

)∑
k∈Z

Γ(n0 + 1)

Γ(n0 + 1− zk)
Γ(−zk)

(pλ − qλ
γt

)zk
=

1

2λ
n−α0

∑
k∈Z

n
2πik
log γ

0

Γ(n0 + 1)n−zk0

Γ(n0 + 1− zk)
Γ(−zk)

(pλ − qλ
γt

)zk
≤ γtα(4rλR)αlα

2λ(pλ − qλ)α
n−α

∑
k∈Z

e2πik(logγ((pλ−qλ)n0)−t) Γ(n0 + 1)n−zk0

Γ(n0 + 1− zk)
Γ(−zk)

=
e−2λct(4rλR)αlα

2λ(pλ − qλ)α
n−α

∑
k∈Z

e2πik logγ((pλ−qλ)n0) Γ(n0 + 1)n−zk0

Γ(n0 + 1− zk)
Γ(−zk)(2.5.3)

where Γ is the complex gamma function. From Stirling’s formula, e. g. [2, Theorem 1.4.2], we
know that

log Γ(z) =
1

2
log(2π) +

(
z − 1

2

)
log z − z +R(z)
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for z ∈ C \ (−∞, 0] where log is the branch of the complex logarithm, defined on C \ (−∞, 0],
with log x ∈ R for all x > 0 and where R(z) satisfies |R(z)| ≤ c

|z| for some constant c > 0. Hence,

Γ(n0+1)n−zk0

Γ(n0+1−zk)
= exp

((
n0+ 1

2

)
log(n0+1)− (n0+1) +R(n0+1)− zk log n0

−
((
n0+ 1

2−zk
)

log(n0+1−zk)− (n0+1−zk) +R(n0+1−zk)
))

=
(n0+1−zk

n0

)zk( n0+1

n0+1−zk

)n0+
1
2
e−zkeR(n0+1)−R(n0+1−zk).

In this product, the first and second factors are bounded in absolute value by 1, the third by eα,
and the fourth by e2c. Using Corollary 1.4.4 in [2], we conclude that |Γ(−zk)| → 0 exponentially
fast as |k| → ∞ and that the bi-infinite series in (2.5.3) is finite and can be bounded by a finite
constant c1 that neither depends on n nor l.
For i = 0, we again use Theorem 2(i) in [21] and find

n0∑
j=0

(
n0

j

)
(−1)j

(pλ−qλ
γt

)j γα+j

(1−γα+j)2
= (−1)n0+1

∑
k∈Z

Res
z=zk

( γα+z

(1−γα+z)2

(pλ−qλ)zn0!

γtzz(z−1) . . . (z−n0)

)
with zk = 2πik

log γ − α as above. Evaluating the residues leads to

n0∑
j=0

(
n0

j

)
(−1)j

(pλ−qλ
γt

)j γα+j

(1− γα+j)2

= (−1)n0+1
∑
k∈Z

n0!

(log γ)2zk(zk − 1) . . . (zk − n0)

(
log
(pλ−qλ

γt

)
+

n0∑
j=0

1

j−zk

)(pλ−qλ
γt

)zk
=

e−2λct

4λ2(pλ−qλ)α
n−α0

∑
k∈Z

e2πik logγ((pλ−qλ)n0) Γ(n0+1)n−zk0

Γ(n0+1−zk)
Γ(−zk)

(
log
(pλ−qλ

γt

)
+

n0∑
j=0

1

j−zk

)
≤ e−2λct(4rλR)α

4λ2(pλ−qλ)α
lαn−α

∑
k∈Z

e2πik logγ((pλ−qλ)n0) Γ(n0+1)n−zk0

Γ(n0+1−zk)
Γ(−zk)

n0∑
j=0

1

j−zk
.

Along the same lines as above, we can show that this bi-infinite series has finite value and the
whole term can be bounded by c′1l

αn−α log n, where c′1 ∈ (0,∞) does not depend on n or l. �

2.5.4. Coupling of the biased random walk with a biased random walk on the
backbone. As the times spent in different traps are not independent, further work is needed
to transfer the tail estimate for the time spent in a single trap to the time spent in the possibly
several traps inside a block [ρi, ρi+1). Therefore, we introduce a random walk on a subgraph ωp

of the initial environment ω as follows. We take the initial graph ω sampled according to Pp or
P◦p and modify it as follows. For each trap P = (e1, . . . , em) in ω with trap entrance u0 and edges
e1 = 〈u0, u1〉, . . . , em = 〈um−1, um〉, we delete the edges e1, . . . , em from ω and also the vertices
u1, . . . , um. We further delete the opposite vertices u′1, . . . , u

′
m and replace the parallel edges

e′1, . . . , e
′
m, 〈u′m, u′m + (1, 0)〉 with a single edge connecting u′0 and u′m + (1, 0) with resistance

given by the sum of the resistances of the single edges. We shall call the vertex u′0 opposite
the former trap entrance an obstacle. Should this procedure lead to the deletion of 0, we assign
x-coordinate 0 in ωp to the obstacle that replaced the trap piece which contained 0 in ω. In this
way, we also obtain new conductances cs on ωp.
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0

(3,1)

0

(2,1)

Figure 8. Comparison of ω (left) and the resulting ωp (right). Normal vertices
are drawn as filled circles, the obstacles as filled boxes.

By the series law, the corresponding resistances rs between the first obstacle v to the right of 0
that replaces a trap piece covering x-level k to k + m + 1 and its neighbors u to the left and w
to the right satisfy

rs(〈u, v〉) = r(〈u, v〉) = e−λ(x(u)+x(v)) = e−λ(2k−1)

and

rs(〈v, w〉) =

k+m∑
j=k

r(〈j, y(v)〉, 〈j + 1, y(v)〉) =

k+m∑
j=k

e−λ(2j+1) = e−λ(2k+1) 1− e−2λ(m+1)

1− e−2λ
.

Based on this, we define the pruned random walk as the lazy random walk (Y p
n )n∈N0

on ωp with
transition probabilities proportional to the conductances

cp(〈u, v〉) = eλ(x(u)+x(v)) · (1− e−2λ)p(v)

where x(u) ≤ x(v) and p(v) is the number of obstacles with x-coordinate ∈ [0, x(v)). More
precisely, if Y p

n = u, then the walk attempts to step from u to v with probability proportional
to cp(〈u, v〉). If the edge between u and v is present in ωp, then the step is actually performed,
otherwise the walk stays put.
Roughly speaking, (Y p

n )n∈N0
is the lazy random walk on the non-trap pieces of ω when all traps

are set to have infinite length. Intuitively, as the traps in ω have finite lengths, the embedding
of (Y p

n )n∈N0 into ω will lag behind the random walk (Yn)n∈N0 . Regenerations of (Y p
n )n∈N0 also

amount to regenerations of (Yn)n∈N0 without implications on the lengths of the traps in the
underlying piece of ω. Furthermore, (Y p

n )n∈N0
can be used to bound the number of visits to

any trap by a quantity independent of the trap lengths, thus greatly reducing the difficulties
in transforming the estimate of Lemma 2.5.6 to an estimate for the time spent in the whole
block [ρi, ρi+1) in ω. To make this precise, we give a coupling of (Y p

n )n∈N0
and (Yn)n∈N0

with
the described properties. Technically, the coupling is such that we obtain processes with the
same distributions as (Yn)n∈N0 and (Y p

n )n∈N0 and the desired properties, but we shall again
refer to them as (Yn)n∈N0

and (Y p
n )n∈N0

, respectively, once equality of the corresponding laws is
established.
First, let (Oi)i∈Z be an enumeration of the obstacles in ωp such that . . . < x(O−1) < 0 ≤ x(O0) <
x(O1) < . . .. Starting from ωp, take an independent family (Li)i∈Z of random variables, with
(Li)i 6=0 independent of ω. We re-insert at Oi a trap piece with a trap of length Li. Here, we let
Li have the same distribution as `i for i 6= 0. For i = 0, let the law of L0 given x(O0) > 0 be the
law of `1. Further notice that if x(O0) = 0, then, by the definition of T0 and T1, either 0 is one
of the two leftmost vertices in T1 or 0 ∈ int(T0) which consists of all vertices from T0 except the
two leftmost and the two rightmost vertices. Thus, we define the law of L0 given x(O0) = 0 by

Pp(0 ∈ T1 | 0 ∈ T1 ∪ int(T0))Pp(`1 ∈ ·) + Pp(0 ∈ int(T0) | 0 ∈ T1 ∪ int(T0))Pp(`0 ∈ · | 0 ∈ int(T0)).

In other words, we toss a coin with probability Pp(0 ∈ T1 | 0 ∈ T1∪ int(T0)) for heads. If the coin
comes up heads, we sample the value of L0 using an independent copy of `1 (under Pp). If the
coin comes up tails, we sample the value of L0 using an independent copy of `0 (under Pp given
that 0 ∈ int(T0), this random variable satisfies the bound in Lemma 2.4.1(b)). Additionally,
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if the coin comes up tails, we shift horizontally by a value k ∈ {1, . . . , L0} according to the
distribution under Pp of the position of 0 in T0 given 0 ∈ int(T0). This gives a new configuration
ω̃. By construction, ω̃ law= ω.
Slightly abusing notation, we write ωp for both ωp and the subset of ω̃ corresponding to it. We
further write V (ωp) and V (ω̃) for the corresponding vertex sets. Consequently, we write u = v
for vertices u ∈ V (ωp), v ∈ V (ω̃) if v is the node in ω̃ corresponding to u in ωp. Given ωp and
ω̃, we define a random walk (Yn)n∈N0 on V (ωp)× V (ω̃)× {−1, 0, 1}, where the first and second
component (up to random waiting times) behave like (Y p

n )n∈N0
and (Yn)n∈N0

, respectively, and
the third component exclusively acts as a memory of the directions taken at certain nodes. This
is to ensure that (Yn)n∈N0

is a Markov chain.
At each time n ∈ N0, first a candidate Ycand

n+1 = (Ycand
n+1,1,Ycand

n+1,2,Ycand
n+1,3) for the next step is chosen

and afterwards the chosen step is taken only if the corresponding edges in ωp or ω̃, respectively,
are open:

Yn+1,1 =

{
Ycand
n+1,1 if ωp(〈Yn,1,Ycand

n+1,1〉) = 1,

Yn,1 otherwise,
Yn+1,2 =

{
Ycand
n+1,2 if ω̃(〈Yn,1Ycand

n+1,1〉) = 1,

Yn,2 otherwise

and Yn+1,3 = Ycand
n+1,3.

We start at Y0 = (0,0, 0) and give the transition matrix of (Yn)n∈N0 in a case-by-case description
depending on the position (u, v, w) ∈ V (ωp)× V (ω̃)× {−1, 0, 1} at time n.

(1) If u = v when regarding ωp as a subset of ω̃, and if u 6= Oi for all i ∈ Z, we let (Yn)n∈N0

attempt to do exactly the same steps in its first two components. In that case

Ycand
n+1 =


(u+ (1, 0), v + (1, 0), 0) with probability eλ

eλ+1+e−λ
,

(u− (1, 0), v − (1, 0), 0) with probability e−λ

eλ+1+e−λ
,

(u′, v′, 0) with probability 1
eλ+1+e−λ

.

Note that if v is a trap entrance in ω̃, a step to the right by (Ycand
n+1,1,Ycand

n+1,2) induces a lazy step
of (Yk,1)k∈N0

whereas (Yk,2)k∈N0
moves into the trap. In that case, as will be described in detail

below, (Yk,2)k∈N0
will make an excursion into the trap afterwards whereas (Yk,1)k∈N0

will stay
put in u until (Yk,2)k∈N0 returns to the trap entrance v. Similarly, when a step of (Yk,1)k∈N0 to
the left means moving to an obstacle, (Yk,2)k∈N0 will then step onto a backbone node in ω̃ \ ωp.
In this case (Yk,1)k∈N0

will also stay put until (Yk,2)k∈N0
reaches a node in ω̃ ∩ ωp.

u1 v1u2 v2

u3 v3

Figure 9. The figure shows possible transitions on non-obstacle backbone-
nodes from (u1, v1), (u2, v2) and (u3, v3), where uj in ωp ‘equals’ vj in ω̃.

(2) If u = v, but u = Oi for some i ∈ Z, then the step in the first component is taken according
to the conductances cp. The second component mimics this, but with the additional option to
move right even if the first component does not. This is to adjust the transition probabilities
of the second component to match those of (Yn)n∈N0

. If the first component moves right, we
demand that the second component leaves the coming trap piece at the right end, which we
encode in the third component. Since we further want the walk in the second component to have
the same law as (Yn)n∈N0 , we have to make sure that in total, it leaves the trap piece at the right
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resp. left end with the correct probability. These restrictions lead to a system of linear equations
for the transition probabilities whose solution is given as follows.

Ycand
n+1 =



(u+ (1, 0), v + (1, 0), 1) with probability eλ(1−e−2λ)
eλ(1−e−2λ)+1+e−λ

= eλ−e−λ
eλ+1

,

(u− (1, 0), v − (1, 0), 0) with probability e−λ

eλ+1+e−λ
,

(u′, v′, 0) with probability 1
eλ+1+e−λ

,

(u− (1, 0), v + (1, 0), 1) with probability e−λ

1+e−λ

(
e′Li+1 − eλ−e−λ

eλ+1

)
,

(u− (1, 0), v + (1, 0),−1) with probability e−λ
(

1
1+e−λ

− 1
eλ+1+e−λ

− 1
1+e−λ

e′Li+1

)
,

(u′, v + (1, 0), 1) with probability 1
1+e−λ

(
e′Li+1 − eλ−e−λ

eλ+1

)
,

(u′, v + (1, 0),−1) with probability 1
1+e−λ

− 1
eλ+1+e−λ

− 1
1+e−λ

e′Li+1,

where Li is the length of the trap right of v and

e′m :=
eλ

eλ + 1 + e−λ
P 1
m,λ(σm < σ0) =

eλ

eλ + 1 + e−λ
1− e−2λ

1− e−2λm

is the probability that the biased random walk (S′n)n∈N0
on Z starting from 0 first makes a step

to the right and then hits m before 0.

u v v∗

Figure 10. Transitions from obstacles. Depending on the value of Yn+1,3, after
a step to the right it is already determined whether the random walk on ω̃ hits
the boundary of the trap piece at v or v∗.

(3) If v is in the interior of the backbone part of a trap piece in ω̃ (and thus not in ωp),
then we write Lv for the length of the corresponding trap. In this case, the first component
of (Yn)n∈N0

stays put while the second component moves in the trap piece with transition
probabilities according to the biased random walk (Yn)n∈N0 , possibly conditioned on the event
that the boundary of the trap piece is first hit at the left- or rightmost end, respectively. Let
pk,0, pk,−1, pk,1 be the transition matrices of the lazy biased random walk (Sn)n∈N0

on {0, ..., k}
(which steps to the right, steps to the left or stays put with probability proportional to eλ, e−λ

and 1, respectively) and the lazy biased random walk on {0, ..., k} conditioned on {σ0 < σk}
resp. {σ0 > σk}, where σj := inf{n ∈ N0 : Sn = j}. Then we set

Ycand
n+1 =


(u, v + (1, 0), w) with probability pLv+1,w(xv, xv + 1),

(u, v − (1, 0), w) with probability pLv+1,w(xv, xv − 1),

(u, v′, w) with probability pLv+1,w(xv, xv),

where xv ∈ {1, ..., Lv} is the relative horizontal position of v in the trap piece.

v1 v2

Figure 11. Transitions in the backbone part of trap pieces. If Yn,3 ∈ {−1, 1},
then it is predetermined that the walk hits the boundary of the trap piece at v1

or v2, respectively.
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(4) If v is a trap node in ω̃, the first component of (Yn)n∈N0 stays put while the second
component moves inside the trap with transition probabilities according to the biased random
walk (Yn)n∈N0

. That is,

Ycand
n+1 =


(u, v + (1, 0), 0) with probability eλ

eλ+1+e−λ
,

(u, v − (1, 0), 0) with probability e−λ

eλ+1+e−λ
,

(u, v′, 0) with probability 1
eλ+1+e−λ

.

Figure 12. Transitions in the dead end part of trap pieces

(5) Finally, when v ∈ ω̃ ∩ ωp, but the positions of the two components of (Yn)n∈N0
do not

correspond, the second component stays put, while the first component moves with transition
probabilities given by the conductances cp:

Ycand
n+1 =


(u+ (1, 0), v, 0) with probability proportional to cp(〈u, u+ (1, 0)〉),
(u− (1, 0), v, 0) with probability proportional to cp(〈u, u− (1, 0)〉),
(u′, v, 0) with probability proportional to cp(〈u, u′〉).

Figure 13. Transitions on the backbone when coordinates do not coincide. In
this case, the walk on ω̃ waits at a trap end or a vertex opposite a trap entrance.
This vertex must be passed by the walk on ωp provided that this walk is transient
to the right. The walk on ω̃ pauses until the walk on ωp hits its position.

We write P′p for the distribution of the environment (ωp, ω̃) and P ′ωp,ω̃,λ for the quenched law of

(Yn)n∈N0 as described above. With these, we define a measure P′ on ({0, 1}E ×{0, 1}E)× (V 2×
{−1, 0, 1})N0 , endowed with the product σ-Algebra, by

P′(A×B) :=

∫
A

P ′ωp,ω̃,λ(B) P′p(d(ωp, ω̃)).

Sometimes, the walks on ωp and ω̃ are at different positions (when ωp is embedded in ω̃). Then,
depending on the particular situation, one of the walks waits while the other moves until they
meet again. The times at which each of the walks moves without being forced to hold as described
above are collected in the following sets:

N1 := {n ∈ N0 : Yn,2 is at a vertex in ω̃ corresponding to a vertex in ωp},
N2 := {n ∈ N0 : Yn,1 = Yn,2} ∪ {n ∈ N0 : Yn,2 is in the interior of a trap piece}.

Let (s1,k)k∈N resp. (s2,k)k∈N be enumerations of N1 resp. N2 in ascending order. Then the
following processes coincide in law with (Y p

n )n∈N0
and (Yn)n∈N0

, respectively. More precisely,
with

(Yp
n)n∈N0

:= (Y1,s1,n)n∈N0 , (Ỹn)n∈N0
:= (Y2,s2,n)n∈N0

the following Lemma holds.



2.5. TAIL ESTIMATE FOR REGENERATION TIMES 40

Lemma 2.5.7. We have

(Yp
n)n∈N0

law= (Y p
n )n∈N0 , (Ỹn)n∈N0

law= (Yn)n∈N0 .

Proof. Since (Yp
n)n∈N0

and (Y p
n )n∈N0

are defined on the same environment, and the envir-

onments of (Ỹn)n∈N0
and (Yn)n∈N0

are identically distributed by construction, it suffices to check

the quenched transition probabilities of (Ỹn)n∈N0
and (Yp

n)n∈N0
, respectively. One can check that

the transition probabilities of (Yp
n)n∈N0

coincide with those of (Y p
n )n∈N0

, thus the equality in law

of (Y p
n )n∈N0

and (Yp
n)n∈N0

follows from the Markov property of (Yn)n∈N0
. For (Ỹn)n∈N0

, at most
nodes this is also obvious except for transitions at obstacles and inside trap pieces. However, it
suffices to show that on obstacles, steps into the different directions are taken with the correct
probability and that excursions on the following trap pieces end on the left resp. right end with
the correct probability, i.e., that (Yn,3)n∈N0

takes value −1 or 1 with the correct probability. This
amounts to a system of linear equations which is solved by the transition probabilities defined
under (2). The result now also follows from the Markov property of (Yn)n∈N0

. �

From now on, all results concerning (Yn)n∈N0 will be discussed in terms of the process (Ỹn)n∈N0

under P′. To ease notation, we shall write (Yn)n∈N0 and P for (Ỹn)n∈N0 and P′, respectively.
We shall also write `i though technically referring to Li. Consequently, we will not distinguish
between (Y p

n )n∈N0
and (Yp

n)n∈N0
nor between ω and ω̃. Also, we write Pωp,λ for the quenched

law of (Y p
n )n∈N0

.

Lemma 2.5.8. For λ > λ∗ := log(2)
2 , in particular for λ ≥ λc

2 , it holds that limn→∞ x(Y p
n ) = ∞

almost surely under Pωp,λ.

The proof of the Lemma is very similar to that of Proposition 3.1 in [4].

Proof. It is sufficient to show that 0 is a transient state for the biased random walk on
V (ωp). We use electrical network theory. Write Rp(0↔∞) for the effective resistance between
0 and +∞ in the random conductance model on ωp with conductances cp(e) for e ∈ E with
ωp(e) = 1. Using Thomson’s Principle, we infer

Rp(0↔∞) ≤ Ep(θ)

for all unit flows θ from 0 to ∞ where Ep(θ) is the energy of the flow θ. The energy of the
flow θ is Ep(θ) =

∑
e:ωp(e)=1 θ(e)

2/cp(e) where θ(e)2 = θ(v, w)2 if e = 〈v, w〉. Since there are no

traps in ωp, there exists an infinite open self-avoiding path P = (e1, e2, . . .) connecting 0 with
∞. This path never backtracks in the sense that the sequence of x-coordinates of the vertices on
this path is nondecreasing. Now define a flow θ from 0 to ∞ by pushing a unit current through
P . More precisely, if en = 〈un−1, un〉 with u0 := 0, then let θ(un−1, un) = 1 = −θ(un, un−1) for
all n ∈ N and θ(v, w) = 0 whenever 〈v, w〉 is not on the path P . For every x-level n ∈ N0 there is
at most one edge e in P connecting the two vertices with x-value n. The resistance of this edge is
bounded by rp(e) ≤ e−2λn(1−e−2λ)−p(n) where p(n) is the number of obstacles with x-value < n.
There are at most n such obstacles. Therefore, rp(e) ≤ e−2λn(1 − e−2λ)−n. Further, for every
n ∈ N, there is exactly one edge on P leading from a vertex with x-value n− 1 to x-value n. The
resistance of this edge is bounded by rp(e) ≤ e−λ(2n−1)(1− e−2λ)−p(n) ≤ e−λ(2n−1)(1− e−2λ)−n.
Consequently, the energy Ep(θ) is bounded by

Ep(θ) =
∑
e∈P

θ(e)2rp(e) ≤ 1 +

∞∑
n=1

(e−λ(2n−1) + e−2λn)(1− e−2λ)−n ≤ 1 + 2eλ
∞∑
n=1

( e−2λ

1− e−2λ

)n
.

The latter series is finite iff e−2λ

1−e−2λ < 1 or, equivalently, λ > log(2)
2 =: λ∗. Comparing this with

λc/2, for which we have an explicit formula in terms of p given in Proposition 2.2.2 with unique
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minimizer p = 1/2, we have

λc

2 ≥
λc(1/2)

2 = 1
4 log

(
4

3−
√

5

)
= 1

2 log
(

2√
3−
√

5

)
> log(2)

2 = λ∗.

�

It also follows from the proof of Lemma 2.5.8 that for u ∈ ωp and λ ≥ λc/2, the escape probability
at u, that is the probabilty to leave u and never return, is uniformly bounded from below. For
u ∈ ωp, let σp

u := inf{n ∈ N : Y p
n = u}. Also let Rp(u↔∞) and cp(u) be the effective resistance

between u and +∞ and the sum of conductances of all incident edges at u, respectively, in the
random conductance model on ωp with conductances cp(e) for e ∈ E with ωp(e) = 1. Then
pushing a unit current from u to +∞ as in the proof of Lemma 2.5.8, we get

Puω,λ
(
σp
u =∞

)
=

1

cp(u)Rp(u↔∞)

≥ 1

3e(2x(u)+1)λ(1− e−2λ)p(u)e−2λx(u)(1− e−2λ)−p(u)
(
1 + 2e2λ

∑∞
n=1

(
e−2λ

1−e−2λ

)n)
=

1

3eλ
(
1 + 2e2λ

∑∞
n=1

(
e−2λ

1−e−2λ

)n) > 0.(2.5.4)

Let Rp
1 , R

p
2 , . . . be an enumeration from left to right of the pre-regeneration points in ωp which

are visited exactly once by (Y p
n )n∈N0

. Further, let ρp
0 = 0 and ρp

n := x(Rp
n) for n ∈ N. Finally,

for n ∈ N, let τp
n be the unique time k with x(Y p

k ) = ρp
n. We refer to the Rp

n’s and τp
n ’s as

regeneration points and times, respectively, of the pruned walk.

Lemma 2.5.9. With P-probability 1, there exist infinitely many regeneration points of (Y p
n )n∈N0

.

Proof. This can be proven along exactly the same lines as for (Yn)n∈N0
in [4, Lemma 5.1],

as the argument there only relies on a uniform lower bound on the escape probability at any
pre-regeneration point u. Here, (2.5.4) gives this estimate. �

Lemma 2.5.10. Let λ > λ∗. Then there exists δ > 0 such that

E◦
[
eδ(ρ

p
1−minj∈N x(Y p

j ))
]
<∞.

Furthermore, E◦[(τp
1 )κ] <∞ for any κ > 0.

Both statements still hold true when E◦ is replaced by E.

Proof. This is proven along the same lines as Lemmas 6.3, 6.4 and 6.5 in [23]. We set

pp
esc :=

1

3eλ
(
1 + 2e2λ

∑∞
n=1

(
e−2λ

1−e−2λ

)n)
as the uniform lower bound from equation (2.5.4) on the escape probability at any vertex u ∈ ωp

in the random conductance model on ωp with conductances cp(e) for e ∈ E with ωp(e) = 1.
Furthermore, we define F0 := E0 := M0 := 0, D((yn)∈N0

) := inf{k ∈ N : yk = y0}, where
inf ∅ :=∞, and

Fk := inf{j ∈ N0 : Y p
j ∈ R

pre, x(Y p
j ) > Mk−1},

Ek := D((Y p
Fk+j)j∈N0

),

Mk := sup{x(Y p
j ) : 0 ≤ j < Ek}.
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With K := inf{k ∈ N : Fk <∞, Ek =∞}, we have FK = τp
1 and x(Y p

FK
) = ρp

1 . Let r > 0. Then

P◦(ρp
1 ≥ k) = P◦

( K∑
l=1

x(Y p
Fl

)− x(Y p
Fl−1

) ≥ k
)

≤ P◦(K ≥ k/r) + P◦
( bk/rc∑

l=1

(x(Y p
Fl

)− x(Y p
Fl−1

))1{Fl<∞} ≥ k
)
.(2.5.5)

By definition of pp
esc, we have

P◦(K ≥ n) ≤ (1− pp
esc)

n−1, n ∈ N

and thus the first term in (2.5.5) can be bounded by (1− pp
esc)bk/rc. Using Markov’s inequality,

for µ > 0 we further get that

P◦
( bk/rc∑

l=1

(x(Y p
Fl

)− x(Y p
Fl−1

))1{Fl<∞} ≥ k
)
≤ e−µkE◦

[
exp

(
µ

bk/rc∑
l=1

(x(Y p
Fl

)− x(Y p
Fl−1

))1{Fl<∞}

)]
= e−µkE◦

[
eµx(Y

p
F1

)1{F1<∞}
]bk/rc

≤ e−µkE◦
[
eµx(Y

p
F1

)1{F1<∞}
]k/r

.

For m ∈ N, on {F1 <∞} we have

(2.5.6) P◦(x(Y p
F1

) > 2m) = P◦(x(Y p
F1

) > 2m,M1 ≥ m) + P◦(x(Y p
F1

) > 2m,M1 < m).

For the first term in (2.5.6), we can use electrical analysis to show that this is bounded by a term
of order (e−2λ/(1− e−2λ))m: Let u ∈ ωp with x(u) = l, and define sk := inf{n ∈ N : x(Y p

n ) = k}
for k ∈ Z. For k < l < n, it follows from formula (4) in [11] that

Puωp,λ(sk < sn) ≤ R
p(u↔ {(n, 0), (n, 1)})
Rp(u↔ {(k, 0), (k, 1)})

,

where Rp(u↔ A) for a set A of vertices in ωp denotes the effective resistance between u and A
in the random conductance model on ωp with conductances cp(e) for e ∈ E with ωp(e) = 1. As
u ∈ ωp, there exists a self-avoiding path P from u to {(n, 0), (n, 1)} such that the sequence of
x-coordinates in this path is nondecreasing. Sending a unit flow from u to {(n, 0), (n, 1)} along
the path P as in the proof of Lemma 2.5.8, we have

Rp(u↔ {(n, 0), (n, 1)}) ≤
∑
e∈P

r(e) ≤
n∑
j=l

2e−(2j−1)λ(1− e−2λ)−j

= 2eλ
( e−2λ

1− e−2λ

)l 1− ( e−2λ

1−e−2λ

)n−l+1

1− e−2λ

1−e−2λ

.

On the other hand, the sets {〈(j−1, i), (j, i)〉, i = 0, 1}, j = k+1, . . . , l form disjoint edge-cutsets
for u and {(k, 0), (k, 1)}. Hence we can use the Nash-Williams inequality to get

Rp(u↔ {(k, 0), (k, 1)}) ≥
l∑

j=k+1

(
2e−(2j−1)λ

)
= 2eλe−2(k+1) 1− e−2(l−k)λ

1− e−2λ
.

Combining these two estimates in particular implies that

(2.5.7) Puωp,λ(s0 <∞) ≤
( e−2λ

1− e−2λ

)x(u) 1− e−2λ

e−2λ(1− e−2λ)
,

uniformly for all u ∈ ωp with x(u) > 0.
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For the second term in (2.5.6), note that x(Y p
F1

) > 2m and M1 < m imply that there exist no
pre-regeneration points in the subgraph of ωp that is formed by the vertices with x-coordinate
between m and 2m. Due to the Markovian structure of the environment, this event has a
probability that decays exponentially in m.
Therefor, both terms on the right-hand side of (2.5.6) can be bounded by a term that decays
exponentially in m. With suitable choice of r, this implies the existence of exponential moments
of ρp

1 .
Along the same lines that led to (2.5.7), it follows from electrical analysis that

Pωp,λ(min
l∈N

x(Y p
l ) = −k) ≤ (e−2λ/(1− e−2λ))k,

hence −minl∈N x(Y p
l ) also has exponential moments. The first result thus follows from the

Cauchy-Schwarz inequality.
To prove the existence of power moments of τp

1 , for v ∈ ωp we write N(v) := #{k ∈ N0 : Y p
k = v}

for the number of times v is visited by (Y p
n )n∈N0

. We have

E◦[(τp
1 )κ] ≤ 2κ−1

(
E◦
[( ∑

v∈ωp:
x(v)<0

N(v)
)κ]

+ E◦
[( ∑

v∈ωp:
0≤x(v)<ρ

p
1

N(v)
)κ])

= 2κ−1
( ∞∑
k=1

E◦
[
1{min

l∈N
x(Y p

l )=−k}(2k)κ
( 1

2k

∑
v∈ωp:

−k≤x(v)<0

N(v)
)κ]

+

∞∑
n=1

E◦
[
1{ρp1=n}(2n)κ

( 1

2n

∑
v∈ωp:

0≤x(v)<n

N(v)
)κ])

≤ 2κ−1
( ∞∑
k=1

E◦
[
1{min

l∈N
x(Y p

l )=−k}(2k)κ−1
∑
v∈ωp:

−k≤x(v)<0

N(v)κ
]

+

∞∑
n=1

E◦
[
1{ρp1=n}(2n)κ−1

∑
v∈ωp:

0≤x(v)<n

N(v)κ
])

≤ 2κ−1
( ∞∑
k=1

E◦
[
1{min

l∈N
x(Y p

l )=−k}(2k)2(κ−1)
]1/2( ∑

v∈V :
0≤x(v)<n

E◦
[
1{v∈ωp}N(v)2κ

])1/2

+

∞∑
n=1

E◦
[
1{ρp1=n}(2n)2(κ−1)

]1/2( ∑
v∈V :

0≤x(v)<n

E◦
[
1{v∈ωp}N(v)2κ

])1/2)
,

where we have used convexity of the function x 7→ xκ on [0,∞) in the second-to-last and the
Cauchy-Schwarz inequality in the last inequality. As the estimate of the escape probability in
(2.5.4) is uniform in ωp, for any v ∈ ωp we can estimate N(v) by a geometric random variable
with success parameter pp

esc. This leads to∑
v∈V :

−k≤x(v)<0

E◦
[
1{v∈ωp}N(v)2κ

]
≤ 2kE◦[N2κ] <∞,

where N ∼ geom(pp
esc), and vice versa∑

v∈V :
0≤x(v)<n

E◦
[
1{v∈ωp}N(v)2κ

]
≤ 2nE◦

[
N2κ

]
<∞.
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In conjunction with the existence of exponential moments for ρp
1 and −minl∈N x(Y p

l ), this implies
the second result. �

2.5.5. The proof of the upper bound. We can now conclude the proof of Proposition
2.3.5.

Proof of Proposition 2.3.5. For each n ∈ N, we have

P(τ2 − τ1 ≥ n) ≤ P
(
(τ2 − τ1)B ≥ n/2

)
+ P

(
(τ2 − τ1)traps ≥ n/2

)
.

The time spent on the backbone can be neglected due to Lemma 2.5.3. We now estimate the
time spent in traps. From Lemma 2.3.4, we infer

P
(
(τ2 − τ1)traps ≥ n

)
= P◦

(
τ traps
1 ≥ n | Xk ≥ 1 for all k ∈ N

)
.

If 0 is a pre-regeneration point (or just connected to +∞ via a path that does not visit vertices
with x-coordinate strictly smaller than 0), the argument that leads to (24) in [4] gives

Pω,λ(Yn 6= 0 for all n ∈ N) ≥
(
∑∞
k=0 e

−λk)−1

eλ + 1 + e−λ
=

1− e−λ

eλ + 1 + e−λ
=: pesc.

Integration with respect to P◦p gives

pesc ≤ P◦(Yn 6= 0 for all n ≥ 1) ≤ 1.

Notice that the same bound holds when P◦ is replaced by P. Thus

P◦
(
τ traps
1 ≥ n | Xk ≥ 1 for all k ∈ N

)
≤ 1

pesc
P◦
(
τ traps
1 ≥ n,Xk ≥ 1 for all k ∈ N

)
.

Analogously, when estimating P(τ1 ≥ n), the time spent on the backbone can be neglected by

Lemma 2.5.10, so that it suffices to bound P(τ traps
1 ≥ n) in this case. We shall only estimate

P◦(τ traps
1 ≥ n,Xk ≥ 1 for all k ∈ N) as P(τ traps

1 ≥ n) can be estimated similarly. To this end,
we consider (Yn)n∈N0 and (Y p

n )n∈N0 as constructed in Section 2.5.4. Further, we use the family
T ann
ij , i ∈ Z, j ∈ N of random variables introduced in Lemma 2.5.6. By construction, the number

of times (Yn)n∈N0
visits any node in ω which is not in the interior of a trap piece can be bounded

by the number of times (Y p
n )n∈N0 visits the corresponding node in ωp. This holds in particular

for all trap entrances. By Lemma 2.5.9, there exist regeneration points of (Y p
n )n∈N0 . These also

are regeneration points for (Yn)n∈N0
. We have

P◦
(
τ traps
1 ≥ n,Xk ≥ 1 for all k ∈ N

)
≤ P◦

( T∑
i=1

Vi∑
j=1

Tij ≥ n
)
≤ P◦

( ρp1∑
i=1

τp
1∑

j=1

T ann
ij ≥ n

)
,

where T is the number of traps in [0, ρ1), Vi is the number of visits to the ith trap, Tij is the
time (Yn)n∈N0

spends during the jth excursion into the ith trap, and (T ann
ij )i,j∈N is a family of

random variables independent of (ωp, (Y p
n )n∈N0

) such that the T ann
ij , i, j ∈ N are independent

given the family (`i)i∈N with T ann
ij being distributed as the duration of one excursion of (Yn)n∈N0

under Pω,λ into a trap of length `i. Since (ρp
1 , τ

p
1 ) and (T ann

ij )i,j∈N are independent, we can write
this as

P◦
( ρp1∑
i=1

τp
1∑

j=1

T ann
ij ≥ n

)
=

∞∑
k=1

∞∑
l=1

P◦
(
ρp

1 = k, τp
1 = l,

k∑
i=1

l∑
j=1

T ann
ij ≥ n

)

=

∞∑
k=1

∞∑
l=1

P◦
(
ρp

1 = k, τp
1 = l

)
· P
( k∑
i=1

l∑
j=1

T ann
ij ≥ n

)
.(2.5.8)
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First look at P
(∑l

j=1 T
ann
ij ≥ n

)
for fixed i and l ∈ N. We write this as

P
( l∑
j=1

T ann
ij ≥ n

)
= P

( l∑
j=1

T ann
ij ≥ n, `i < m0 ∨m1

)
+ P

( l∑
j=1

T ann
ij ≥ n, `i ≥ m0 ∨m1

)
,

with m0,m1 as in Lemma 2.5.6. With Pm,λ and T qu
ij , i, j ∈ N as in Lemma 2.5.5, Markov’s

inequality and the convexity of x 7→ xα+1 on [0,∞) give

P
( l∑
j=1

T ann
ij ≥ n, `i < m0 ∨m1

)
=

m0∨m1−1∑
m=1

Pp(`i = m)Pm,λ

( l∑
j=1

T qu
ij ≥ n

)

≤ (m0 ∨m1) max
m∈{1,...,m0∨m1−1}

Em,λ

[( l∑
j=1

T qu
ij

)α+1]
n−(α+1)

≤ (m0 ∨m1) max
m∈{1,...,m0∨m1−1}

Em,λ

[
lα

l∑
j=1

(T qu
ij )α+1

]
n−(α+1)

= (m0 ∨m1)lα+1n−(α+1) max
m∈{1,...,m0∨m1−1}

Em,λ
[
(T qu
i1 )α+1

]
.

Let N(k) be the number of times the walk (Sn)n∈N0
visits vertex k ∈ {1, . . . ,m}. Note that

in order to describe T qu
i1 , we also need to take lazy steps into account. This means that, under

Pm,λ, we have the following identity in law,

T qu
i1

law=

m∑
k=1

N(k)∑
l=1

(1 + Zk,l)

where N(k) has distribution geom(ek) and the Zk,l’s are a family of independent random vari-

ables, independent of (N(1), . . . , N(k)), with distribution geom
(

eλ+e−λ

eλ+1+e−λ

)
for k = 1, . . . ,m− 1,

l ∈ N and geom
(

e−λ

eλ+1+e−λ

)
for k = m, l ∈ N, respectively.

Since m < m0 ∨ m1 and the escape probability ek is nonincreasing in k, we can bound ek by
em0∨m1

for all k ∈ {1, . . . ,m}. We use this to stochastically bound N(k). In combination with
the convexity of x 7→ xα+1 on [0,∞) this leads to

Em,λ
[
(T qu
i1 )α+1

]
= Em,λ

[( m∑
k=1

N(k)∑
l=1

(1+Zk,l)

)α+1]
≤ mα

m∑
k=1

Em,λ
[
N(k)α+1

]
Em,λ

[
(1+Zk,m)α+1

]
≤ (m0 ∨m1)α+1Em,λ[Nα+1]Em,λ[(1+Z)α+1]

where N ∼ geom(em0∨m1
) and Z ∼ geom

(
e−λ

eλ+1+e−λ

)
. Thus

max
m∈{1,...,m0∨m1−1}

Em,λ
[
(T qu
i1 )α+1

]
≤ c(m0,m1, λ) = c(λ)

for some constant c(λ). Combining this with the estimate for
∑l
j=1 T

ann
ij in the case of traps of

length larger or equal to m0 ∨m1 from Lemma 2.5.6, we get that there exists d′ = d′(p, λ) > 0
such that

P
( l∑
j=1

T ann
ij ≥ n

)
≤ d′

(
lα+1n−(α+1) + lα+1n−α + le

−µ n
6lrλ

)
.
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We further conclude

P
( k∑
i=1

l∑
j=1

T ann
ij ≥ n

)
≤ kP

( l∑
j=1

T ann
1j ≥

n

k

)
≤ kd′

(
lα+1

(n
k

)−(α+1)

+ lα+1
(n
k

)−α
+ le

−µ n
6lrλk

)
≤ kα+2lα+1d′

(
o(n−α) + n−α

)
+ kld′e

−µ n
6lrλk .(2.5.9)

Note that when estimating τ1 under P, all calculations using Lemma 2.5.6 involve an additional
factor of log n. Combining (2.5.8) and (2.5.9), we get

P◦
(
τ traps
1 ≥ n

)
≤ d′

∞∑
k,l=1

P◦
(
ρp

1 = k, τp
1 = l

)
kα+2lα+1n−α(1 + on(1))

+ d′
∞∑

k,l=1

P◦
(
ρp

1 = k, τp
1 = l

)
kle
−µ n

6lrλk .(2.5.10)

For k, l ∈ N, we write

P◦
(
ρp

1 = k, τp
1 = l

)
= P◦

(
τp
1 = l

)
· P◦
(
ρp

1 = k | τp
1 = l

)
.

As the second factor vanishes for k > l, we get

∞∑
k,l=1

P◦
(
ρp

1 = k, τp
1 = l

)
kα+2lα+1 =

∞∑
l=1

P◦
(
τp
1 = l

)
lα+1

l∑
k=1

P◦
(
ρp

1 = k | τp
1 = l

)
kα+2

≤
∞∑
l=1

P◦
(
τp
1 = l

)
l2α+4.

Hence, it follows from Lemma 2.5.10 that the first sum on the right-hand side of (2.5.10) is
bounded by a constant times n−α. For τ1 under P, this becomes a constant times n−α log n. It
also follows from Lemma 2.5.10 and Markov’s inequality that for any κ > 0

∞∑
k,l=1

P◦
(
ρp

1 = k, τp
1 = l

)
kle
−µ n

6lrλk =

∞∑
l=1

P◦(τp
1 = l)l

l∑
k=1

P◦
(
ρp

1 = k | τp
1 = l

)
ke
−µ n

6lrλk

≤
∞∑
l=1

P◦
(
τp
1 = l

)
l3e
−µ n

6l2rλ ≤ E◦
[
(τp

1 )κ
] ∞∑
l=1

l−κ+3e
−µ n

6l2rλ .

Setting l∗ :=
√

µ
6rλ(α+1)

n
logn we get

∞∑
l=1

l−κ+3e
−µ n

6l2rλ =
∑
l≤l∗

l−κ+3e
−µ n

6l2rλ +
∑
l>l∗

l−κ+3e
−µ n

6l2rλ

≤ e−µ
n

6rλ(l∗)2
∞∑
l=1

l−κ+3 + (l∗)
−κ+3

2

∞∑
l=1

l
−κ+3

2 = o(n−α)

for sufficiently large κ. �
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2.6. Displacement results

The main results of this thesis concern the speed of biased random walk in the sub-ballistic regime.
If the bias is critical (λ = λc), we see that Xn is of order n/ log n. This is in alignment with
simulation results for biased random walk on the infinite cluster of supercritical bond percolation
in Zd in [19].

Theorem 2.6.1. In the case λ = λc, there exist constants 0 < a < b <∞ such that

lim
n→∞

P
(

Xn
n/ logn ∈ [a, b]

)
= 1.

The proof of Theorem 2.6.1 is based on the fine estimates for the tails of τ2 − τ1 in Proposition
2.3.5. Less accurate estimates for the tails of the regeneration times which were derived in [23]
revealed a second phase transition at λ = λc/2. Namely, a central limit theorem for (Xn)n∈N0

with square-root scaling holds if and only if λ < λc/2. More precisely, let us denote a standard
one-dimensional Brownian motion starting at the origin by (B(t))t∈[0,1], and define

Bn(t) :=
1√
n

(Xbntc − bntcv), 0 ≤ t ≤ 1.

The processes (Bn(t))t∈[0,1] and (B(t))t∈[0,1] take values in the Skorohod space D[0, 1] of real-
valued functions that are right-continuous with finite left limits.

Proposition 2.6.2 (Theorem 2.6 in [23]). Let λ ∈ (0, λc/2). Then there is a constant σ =
σ(p, λ) ∈ (0,∞) such that

(2.6.1) (Bn(t))t∈[0,1]
d→ (σB(t))t∈[0,1] under P,

If λ ≥ λc/2, then (2.6.1) fails to hold.

With the finer tail estimates derived in Proposition 2.3.5, we can determine the fluctuations of
(Xn)n∈N0

in the remaining parameter range λ ∈ [λc/2,∞).

Theorem 2.6.3. Suppose that λ ≥ λc/2, λ 6= λc.

(a) Let λ = λc/2, i.e., α = 2. Then the laws of
(
Xn−nv√
n logn

)
n≥2

under P are tight.

(b) Let λ ∈ (λc/2, λc), i.e., α ∈ (1, 2). Then the laws of
(
Xn−nv
n1/α

)
n∈N under P are tight.

(c) Let λ > λc, i.e., α ∈ (0, 1). Then the laws of
(
Xn
nα

)
n∈N under P are tight.

In all three cases overed by Theorem 2.6.3, it is doubtful whether tightness can be strenghtened
to convergence in distribution due to a lack of regular variation of the tails of the regeneration
times, see Lemma 2.5.6 and the proof thereof. Numerical simulations in the case of supercritical
bond percolation on Zd also indicate cyclic behaviour, cf. [43]. Instead, only convergence along
certain subsequences as found for biased random walk on Galton-Watson trees can be expected,
cf. [8] and [14].
From Lemma 2.3.4, we infer that the τn, n ∈ N are the points of a delayed renewal process on
the integers. The corresponding renewal counting process and first passage times, we denote by

k(n) := max
{
k ∈ N0 : τk ≤ n

}
and ν(n) := k(n) + 1,

respectively, where n ∈ N0. Notice that k(n) = max{k ∈ N0 : ρk ≤ Xn}, n ∈ N0.
To infer Theorems 2.6.1 and 2.6.3 from Proposition 2.3.5, we shall choose a sequence (ξk)k∈N of
independent random variables of whom ξk, k ≥ 2 are i.i.d. with τ2−τ1 4 ξ2 and P(ξ2 > n) ∼ dn−α
as n → ∞ (where d is chosen as in Proposition 2.3.5). Then the law of ξ2 is in the (normal)
domain of attraction of an α-stable law. From general theory it then follows that, after a

suitable renormalisation, the first passage times νξ(t) := inf
{
k ∈ N :

∑k
i=1 ξi > t} converge

in distribution as t → ∞. This will imply tightness of the first passage times ν(n) with the
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same renormalisation. From this, we shall derive the dual results for Xn which translate into the
statements of Theorems 2.6.1 and 2.6.3. We begin with the proof of the results in the subballistic
regimes.

Proof of Theorem 2.6.1 and Theorem 2.6.3(c). Suppose that λ ≥ λc so that α ∈
(0, 1]. Let an := nα if α ∈ (0, 1) and an := n/ log n if α = 1. For n ∈ N, we have

(2.6.2)
ρk(n)

an
≤ Xn

an
≤
ρν(n)

an
=
ρν(n)

ν(n)

ν(n)

an
.

Since ν(n)→∞ P-a. s. as n→∞, Lemma 2.3.4 and the strong law of large numbers imply

ρν(n)

ν(n)
=

1

ν(n)

ν(n)∑
k=1

(ρk−ρk−1)→ E[ρ2−ρ1] P-a. s.

Using Proposition 2.3.5, we can find independent random variables ηk, k ∈ N and ξk, k ∈ N such
that η1, η2, . . . are i.i.d. and ξ2, ξ3, . . . are i.i.d. and such that ηk 4 τk−τk−1 4 ξk for all k ∈ N
and

P(η1 > n) ∼ cn−α and P(ξ2 > n) ∼ dn−α as n→∞.

Further, we may choose ξ1 independent of ξ2, ξ3, . . . such that P(ξ1 > n) ∼ dn−α log n as n→∞.

We set νη(n) := inf{k ∈ N :
∑k
i=1 ηi > n} and νξ(n) := inf{k ∈ N :

∑k
i=1 ξi > n}. Then it holds

that νξ(n) 4 ν(n) 4 νη(n) for all n ∈ N0. Furthermore, Theorem 3a in [12] says that there is an
α-stable subordinator (Yα(t))t≥0 with Laplace exponent logE[exp(−sYα(t))] = −tsα for s, t ≥ 0
such that

(2.6.3) a−1
n νη(n) d→ cηXα and a−1

n νξ(n) d→ cξXα

where Xα = sup{t ≥ 0 : Yα(t) ≤ 1} and 0 < cξ ≤ cη <∞. (Notice that other than in [12], here
we allow ξ1 to have a distribution different than that of ξ2, ξ3, . . ., but the contribution of the
first step vanishes as n→∞.) The difference of upper and lower bound in (2.6.2) satisfies

(2.6.4)
ρν(n)

an
−
ρk(n)

an
=
ρν(n) − ρν(n)−1

ν(n)

ν(n)

an
P→ 0 as n→∞.

Indeed, the first factor on the right-hand side converges to 0 P-a. s. as n → ∞ due to Lemma
2.3.4(b) and [26, Theorem 1.2.3(i)] while the family of laws corresponding to the second factor
are tight by (2.6.3). Consequently, the difference in (2.6.4) converges to 0 in distribution and
thus in P-probability.
Now suppose α = 1. Then Y1(t) = t P-a. s. and hence X1 = 1 P-a. s. The convergence in (2.6.3)
thus is in fact convergence in probability. This completes the proof of Theorem 2.6.1.
Finally, if 0 < α < 1, then (2.6.3) and νξ(n) 4 ν(n) 4 νη(n) for all n ∈ N0 imply that the family
of laws of (ν(n)/nα)n∈N is tight. From (2.6.2) and (2.6.4) we conclude that this carries over to
the family of laws of (Xn/n

α)n∈N. �

We now turn to the proof of the main results for noncritical biases.

Proof of Theorem 2.6.3. We prove (a) and (b) simultaneously. Let an := n1/α in the
case α ∈ (1, 2) and an :=

√
n log n if α = 2. For n ∈ N, we have

ρk(n) − nv

an
≤ Xn − nv

an
≤
ρν(n) − nv

an
.
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By the strong law of large numbers, ν(n)/n → 1/E[τ2 − τ1] ∈ (0,∞) P-a. s. This together with
Lemma 2.3.4 and [26, Theorem 1.2.3(i)] implies (ρν(n)−ρk(n))/an → 0 P-a. s. On the other hand,

ρν(n) − nv

an
=
ρν(n) − ν(n)E[ρ2−ρ1]

an
+
ν(n)E[ρ2−ρ1]− nv

an
.

The first summand converges to 0 P-a. s. by [26, Theorem 1.2.3(ii)] if α ∈ (1, 2) and it converges
to 0 in P-probability by [26, Theorem 1.3.1] if α = 2. It thus remains to check tightness of the
family of laws of

ν(n)E[ρ2−ρ1]− nv

an
= E[ρ2−ρ1]

ν(n)− n/E[τ2−τ1]

an
, n ∈ N.

For this, uniform integrability of the sequence (a−1
n (ν(n)−n/E[τ2− τ1]))n∈N is sufficient. It thus

remains to refer to Proposition A.1.1 in the appendix. �

2.6.1. Almost sure behaviour. From our fine estimates for the tails of the regeneration
times of the walk we can further infer P-almost sure properties of the walk. Namely, under
suitable renormalisation, a law of iterated logarithm holds.
Usually, the notion of a law of iterated logarithm is tied to the following statement which can
e. g. be found in [7, Theorem VII.31.1]. Let A1, A2, . . . be a family of i.i.d. real-valued random
variables on a probability space (Ω,A, P ) with mean 0 and finite variance σ2 ∈ (0,∞). Then,
P -almost surely

lim sup
n→∞

∑n
k=1Ak√

2n log log n
= σ.

Based on our fine estimates for the i.i.d. sequence of regeneration times (τk+1− τk)k∈N, we want
to derive a similar result for (Yn)n∈N0

. In our case, however, for λ ≥ λc/2 the second moment
of the time interval τ2 − τ1 is infinite. Therefore, a different renormalisation scheme is required.
In [16], for a sequence B1, B2, . . . of i.i.d. real-valued random variables on a probability space
(Ω,A, P ) that are distributed according to a symmetric, α-stable law where α ∈ (0, 2), it was
shown that

lim sup
n→∞

∣∣∣∣∑n
k=1Bk
n1/α

∣∣∣∣1/ log logn

= e1/α

almost surely under P . Roughly speaking, this says that for large n, the absolute value of the
partial sums of (Bk)k∈N takes order (n log n)1/α. We will make use of the following refinement
which due to Li and Chen [34].

Lemma 2.6.4 (Theorems 2.3 and 2.5 in [34]). let B,B1, B2, . . . be a family of i.i.d. real-valued
random variables on a probability space (Ω,A,P).

(a) Let α ∈ (0, 1), β ∈ R. Then

lim sup
n→∞

∣∣∣∣∑n
k=1Bk
n1/α

∣∣∣∣1/ log logn

= eβ P-almost surely

if and only if β = inf
{
b ∈ R : E

[ |B|α
(log(e∨|B|))bα

]
<∞

}
.

(b) Let α ∈ (1, 2), β ∈ R. Then

lim sup
n→∞

∣∣∣∣∑n
k=1Bk
n1/α

∣∣∣∣1/ log logn

= eβ P-almost surely

if and only if E(B) = 0 and β = inf
{
b ∈ R : E

[ |B|α
(log(e∨|B|))bα

]
<∞

}
.

In conjunction with Proposition 2.3.5, this leads to the following law(s) of iterated logarithm.

Theorem 2.6.5. Suppose that λ > λc/2, λ 6= λc.
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(A) Let λ ∈ (λc/2, λc), i.e., α ∈ (1, 2). Then

lim sup
n→∞

∣∣∣∣Xn − nv

n1/α

∣∣∣∣1/ log logn

= e1/α P-almost surely.

(B) Let λ > λc, i.e., α ∈ (0, 1). Then

lim inf
n→∞

∣∣∣∣Xn

nα

∣∣∣∣1/ log logn

= e−1 P-almost surely.

proof of Theorem 2.6.5(a). Suppose that α ∈ (1, 2). For n ∈ N, we have

Xn − nv

n1/α
=
Xn − ν(n)E[ρ2 − ρ1]

n1/α
+ v

ν(n)E[τ2 − τ1]− n
n1/α

=: An + v
ν(n)E[τ2 − τ1]− n

n1/α
.(2.6.5)

For a, b ∈ R, the triangle inequality and monotonicity of the p-norms on R2 imply

|a+ b|1/ log logn − |b|1/ log logn

≤
((
|a|1/ log logn

)log logn
+
(
|b|1/ log logn

)log logn
)1/ log logn

− |b|1/ log logn

≤
∥∥∥(|a|1/ log logn

|b|1/ log logn

)∥∥∥
1
− |b|1/ log logn

= |a|1/ log logn,

where ‖ · ‖1 denotes the 1-norm on R2, ‖x‖1 := |x1|+ |x2|, and vice versa

|a+ b|1/ log logn − |b|1/ log logn ≥ −|a|1/ log logn.

Hence

(2.6.6)
∣∣|a+ b|1/ log logn − |b|1/ log logn

∣∣ ≤ |a|1/ log logn.

We write An as

An =
Xn − ρν(n)

n1/α
+
ρν(n) − ν(n)E[ρ2 − ρ1]

n1/α
.

The second summand converges to 0 P-a.s. by [26, Theorem 1.2.3(ii)]. On the other hand, the
absolute value of the first summand is bounded by (ρν(n) − ρk(n))/n

1/α. By the strong law of
large numbers, ν(n)/n → 1/E[τ2 − τ1] ∈ (0,∞) P-a.s. Together with Lemma 2.3.4 and [26,
Theorem 1.2.3(i)], this implies that (Xn − ρν(n))/n

1/α → 0 P-a.s. Hence, An → 0 P-a.s. and as

1/ log log n < 1 for sufficiently large n, |An|1/ log logn → 0 P-a.s. In conjunction with (2.6.5) and
(2.6.6), this implies

lim sup
n→∞

∣∣∣∣Xn − nv

n1/α

∣∣∣∣1/ log logn

= lim sup
n→∞

∣∣∣∣vν(n)E[τ2 − τ1]− n
n1/α

∣∣∣∣1/ log logn

P-almost surely.

Due to the fact that ν(n)/n → 1/E[τ2 − τ1] ∈ (0,∞) P-a.s. by the strong law of large numbers,
we get

lim sup
n→∞

∣∣∣∣Xn − nv

n1/α

∣∣∣∣1/ log logn

= lim sup
n→∞

∣∣∣∣v(ν(n)

n

)1/α∣∣∣∣1/ log logn∣∣∣∣ν(n)E[τ2 − τ1]− n
ν(n)1/α

∣∣∣∣1/ log logn

= lim sup
n→∞

∣∣∣∣ν(n)E[τ2 − τ1]− n
ν(n)1/α

∣∣∣∣1/ log logn

P-almost surely.
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For n ∈ N, set Sn :=
∑n
k=1 τk+1 − τk. It follows from the definition of k(n) and ν(n) = k(n) + 1

that Sk(n) ≤ n ≤ Sν(n). Hence, the usual sandwich estimate with the renewal counting process
and the first passage time gives

(2.6.7)
ν(n)E[τ2 − τ1]− Sν(n)

ν(n)1/α
≤ ν(n)E[τ2 − τ1]− n

ν(n)1/α
≤
ν(n)E[τ2 − τ1]− Sk(n)

ν(n)1/α
.

Note that the right-hand side of (2.6.7) can be written as

ν(n)E[τ2 − τ1]− Sk(n)

ν(n)1/α
=
k(n)E[τ2 − τ1]− Sk(n)

k(n)1/α

(
k(n)

ν(n)

)1/α

+
E[τ2 − τ1]

ν(n)1/α
,

and that due to the fact that ν(n) = k(n) + 1 → ∞ P-a.s., we have k(n)/ν(n) → 1 and
E[τ2 − τ1]/ν(n)1/α → 0 P-a.s.
From Lemma 2.6.4, it follows that

lim sup
n→∞

∣∣∣∣Sn − nE[τ2 − τ1]

n1/α

∣∣∣∣1/ log logn

= eβ P-almost surely

where β = inf
{
b ∈ R : E

[ (τ2−τ1)α

(log(e∨(τ2−τ1)))bα

]
< ∞

}
. Our fine estimates for the tails of the

regeneration times from Proposition 2.3.5 imply β = 1/α.
As τk+1 − τk ≥ 1 for all k ∈ N, it follows that the sets {Sn − nE[τ2 − τ1] : n ∈ N} and
{Sν(n) − ν(n)E[τ2 − τ1] : n ∈ N} coincide. Therefor,

lim sup
n→∞

∣∣∣∣Sν(n) − ν(n)E[τ2 − τ1]

ν(n)1/α

∣∣∣∣1/ log log ν(n)

= lim sup
n→∞

∣∣∣∣Sn − nE[τ2 − τ1]

n1/α

∣∣∣∣1/ log logn

= e1/α P-almost surely.(2.6.8)

Since ν(n) = k(n) + 1, the same holds true when ν(n) is replaced by k(n).
Writing 1/ log log n as

1

log log n
=

1

log log ν(n)

log
(

log n+ log ν(n)
n

)
log log n

,

we see that the second factor on the right-hand side of this equation converges to 1 P-a.s. as
n→∞. This remains true when ν(n) is replaced by k(n). Thus, the limit in (2.6.8) carries over
to the upper and lower bound in (2.6.7), completing the proof. �

proof of Theorem 2.6.5(b). Suppose that α ∈ (0, 1). Along the same lines as in the
proof of Theorem 2.6.3 (c), we write

(2.6.9)
ρk(n)

k(n)

k(n)

nα
=
ρk(n)

nα
≤ Xn

nα
≤
ρν(n)

nα
=
ρν(n)

ν(n)

ν(n)

nα
.

We perform the following estimates only for the upper bound, as the lower bound can be treated
along exactly the same lines. Since ν(n) → ∞ P-a.s. as n → ∞, Lemma 2.3.4 and the law of
large numbers imply

ρν(n)

ν(n)
=

1

ν(n)

ν(n)∑
k=1

(ρk − ρk−1)→ E[ρ2 − ρ1] P-almost surely.

Thus, we can neglect the factor ρν(n)/ν(n) in the | · |1/ log logn-scaling,

(2.6.10) lim inf
n→∞

∣∣∣∣ρν(n)

nα

∣∣∣∣1/ log logn

= lim inf
n→∞

∣∣∣∣ν(n)

nα

∣∣∣∣1/ log logn

P-almost surely.
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We investigate the reciprocal of the remaining factor. More precisely, we estimate n/ν(n)1/α.
Let Sn :=

∑n
k=1 τk+1 − τk, k ∈ N. It follows from the definition of k(n) and ν(n) that

(2.6.11)
Sν(n)

ν(n)1/α
≤ n

ν(n)1/α
≤

Sk(n)

(k(n) + 1)1/α
.

Now, Lemma 2.6.4 gives

lim sup
n→∞

∣∣∣∣ Snn1/α

∣∣∣∣1/ log logn

= eβ P-almost surely

where β = inf
{
b ∈ R : E

[ (τ2−τ1)α

(log(e∨(τ2−τ1)))bα

]
<∞

}
. Our estimates for the tails of the regeneration

times from Proposition 2.3.5 imply β = 1/α.
As τk+1 − τk ≥ 1 for all k ∈ N, the sets {Sn : n ∈ N}, {Sν(n) : n ∈ N} and {Sk(n) : n ∈ N}
coincide up to a single point. Therefor, the limit transfers to the upper and lower bounds in
(2.6.11). More precisely,

(2.6.12) lim sup
n→∞

∣∣∣∣ Sk(n)

k(n)1/α

∣∣∣∣1/ log log k(n)

= lim sup
n→∞

∣∣∣∣ Sν(n)

ν(n)1/α

∣∣∣∣1/ log log ν(n)

= e1/α P-almost surely.

Due to the fact that k(n)/(k(n) + 1)→ 1 P-a.s., the limit remains unchanged when the denom-
inator in the first term of (2.6.12) is replaced by k(n) + 1. Writing 1/ log log n as

1

log log n
=

1

log log ν(n)

log
(

log n+ log ν(n)
n

)
log log n

,

we see that the second factor on the right-hand side of this equation converges to 1 P-a.s. as
n → ∞. The same holds true when ν(n) is replaced by k(n). Therefor, with (2.6.10), (2.6.11)
and (2.6.12) we infer

lim inf
n→∞

∣∣∣∣ρν(n)

nα

∣∣∣∣1/ log logn

= lim inf
n→∞

∣∣∣∣( n

ν(n)1/α

)−α∣∣∣∣1/ log logn

=

(
lim sup
n→∞

∣∣∣∣ n

ν(n)1/α

∣∣∣∣1/ log logn)−α
= e−1 P-almost surely.

Since the analogue estimate for the lower bound in (2.6.9) leads to the same limit, this concludes
the proof. �



APPENDIX A

Uniform integrability of renewal counting processes

In our proof of Theorem 2.6.3, we use that the suitably renormalised renewal counting process of
a delayed renewal process is uniformly integrable. The following result is (more than) sufficient
for our purposes.

Proposition A.1.1. Let ξ2, ξ3, . . . be a sequence of i.i.d. random variables independent of ξ1
such that P(ξk > 0) = 1 for k ∈ N, where P denotes the underlying probability measure. Suppose
there are constants d > 0 and α ∈ (1, 2] such that P(ξ2 > t) ≤ dt−α for all t ≥ 1. Then, with
µ := E[ξ2], Sn :=

∑n
k=1 ξk, ν(t) := inf{n ∈ N : Sn > t} and a(t) := t1/α if α ∈ (1, 2) and

a(t) :=
√
t log t if α = 2, it holds that

(A.1.1)

(
exp

(
θ
ν(t)− t/µ

a(t)

))
t≥2

is uniformly integrable for every θ > 0

and

(A.1.2)

((ν(t)− t/µ
a(t)

)p
−

)
t≥2

is uniformly integrable for every p ∈ (1, α)

for which there exists an r > p with E[ξr1 ] <∞.

The statements (A.1.1) and (A.1.2) have been shown in [29] in the case where the ξk, k ∈ N are
i.i.d. and ξ1 is in the domain of attraction of an α-stable law. Unfortunately, we have not been
able to apply a coupling argument in order to deduce uniform integrability here from the main
results in the cited source. However, the proofs given in [29] apply. We will provide a sketch of
these proofs with the necessary changes needed here.

Sketch of the proof of Proposition A.1.1. Let θ > 0, and denote by ψ and ϕ the
Laplace transforms of ξ1 and ξ2, respectively, i.e., ψ(λ) = E[exp(−λξ1)] and ϕ(λ) := E[exp(−λξ2)]
for λ ≥ 0. Arguing as in (2.2) of [29], we infer

E
[

exp
(
θ
ν(t)− t/µ

a(t)

)]
≤ 1 +

ψ(λ)

ϕ(λ)

(
eλµϕ(λ)

) t
µ

∫ ∞
0

exϕ(λ)
xa(t)
θ −1 dx

where the difference to (2.2) in [29] is a factor ψ(λ)/ϕ(λ), which appears here since we allow
the first step to have a different law than the other steps. Equation (2.7) in [20, XIII.2] and
Proposition 2.3.5 give

ϕ(λ) = 1− µλ+ λ

∫ ∞
0

(1− e−λx)P(ξ2 > x) dx ≤ 1− µλ+

∫ ∞
0

(1− eλx)(1 ∧ dx−α) dx .

The third summand on the right hand side is the second-order term of the Laplace transform of
a random variable with tail probability 1 ∧ dx−α for x > 0. From [13, Theorem 8.1.6], we thus
infer that it is O(λα) as λ → 0 if α ∈ (1, 2) and O(λ2| log λ|) if α = 2. Choosing λ∗ := λ/a(t),
this gives

eλ
∗µϕ(λ∗) ≤

(
1 +

µλ

a(t)
+O

(
t−

2
α

))(
1− µλ

a(t)
+

λ

a(t)

∫ ∞
0

(
1−e−

λx
a(t)
)
(1 ∧ dx−α) dx

)
= 1 +O(t−1),
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thus
sup
t≥2

(
eλ
∗µϕ(λ∗)

)t/µ
<∞.

Further, the proof of (2.3) in [29] applies and gives

sup
t≥t0

∫ ∞
0

exϕ(λ∗)
xa(t)
θ −1 dx <∞

for t0 and λ sufficiently large. Uniform integrability of (exp(θ ν(t)−t/µ
a(t) ))t≥2 now follows from the

Vallée-Poussin criterion.
Turning to the second assertion, pick 1 < p < α and r ∈ (p, α) such that E[ξr1 ] < ∞. Following
the proof of (2.5) in [29] with mild adaptions, we obtain

E
[
(ν
(
E[Sn]

)
− n)r−

]
≤ r + const · E[|Sn − E[Sn]|r] = O

(
a(n)r

)
as n→∞. Here, the last step follows from

E[|Sn − nµ|r] ≤ 2r−1
(
E[|S1 − µ|r] + E[|Sn − S1 − (n− 1)µ|r]

)
.

By assumption, E[Sr1 ] = E[ξr1 ] < ∞. Further, positive and negative part of ξ2 − µ can be
stochastically dominated by a nonnegative random variable with tails of order x−α. Hence it
follows from [28, Lemma 5.2.2] that

E[|Sn − S1 − (n− 1)µ|r] = O(a(n)r) as n→∞.
The rest of the proof is as in [29]. �
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