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Abstract 

The European Union Survey on Income and Living Conditions (EU-SILC) is the main source of information about 

living standards and poverty in the EU member states. We compare different parametric models for the Lorenz 

curve (LC) with an empirical analysis of the income distributions of 26 European countries in the year 2017. The 

objective of our empirical study is to verify whether simple mono-parametric models for the LCs can represent 

similarities or differences between European income distributions in sufficient detail, or whether an alternative, 

more sophisticated multi-parametric model should be used instead. In particular, we consider the power LC, the 

Pareto LC, the Lamè LC, a generalised bi-parametric version of the Lamè LC, a bi-parametric mixture of power 

LCs and the recently introduced arctan family of LCs. Whilst the first three families are ordered, in that different 

parametric values correspond to a situation of Lorenz ordering, the latter three may also identify the ambiguous 

situation of intersecting LCs. Therefore, besides focusing on the goodness-of-fit of the models considered and their 

mathematical simplicity, we evaluate the effectiveness of multi-parametric models in identifying the non-dominated 

cases. 
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1. Introduction 

The reduction of disparities in the European Union 

(EU) has become an important goal since its latest en-

largements in 2004, 2007 and most recently in 2013. 

The accession of new members, each with less than half 

the GDP per capita of original EU member states (be-

fore 2004), has brought new challenges for a reinforced 

cohesion policy. Such a policy takes as its inspiration 

Article 130a of the Treaty on European Union and in-

tends to reduce disparities between the levels of devel-

opment of the various countries and especially regions, 

and the backwardness of the least favoured countries, 

resp. regions including rural areas (European Com-

mission, 1996). 

1.1 Economic background 

At present, more than of two thirds of the European 

Structural and Investment Funds budget is allocated to 

countries with regions in which GDP per capita lags be-

hind the EU average. Disparities have been extensively 

investigated in the economic literature by considering 

GDP per capita as a measure of disparity. The effec-

tiveness of interventionist regional policies has often 

been evaluated in terms of convergence or divergence 

of per capita income across countries and specific re-

gions, eventually giving each region a weight propor-

tional to its population size (see, among others, Barro 

and Sala-i-Martin, 1991, 1995; Quah, 1996; Le Gallo, 

2004; Pittau and Zelli, 2006; Sala-I-Martin, 2006; All-

mendinger and Driesch, 2014). Findings are contingent 

upon the time span examined, the number of countries 

and hence number of regions, the level of disaggrega-

tion and the statistical method used. There is wide-

spread agreement that income disparities across Euro-

pean regions belonging to the EU151 have narrowed 

over time, but the reduction of income disparities across 

regions cannot be equated with a reduction in dispari-

ties within regions. That is, a region with high GDP per 

                                                             
1 The EU15 comprised the following 15 counties: Austria, 

Belgium, Denmark, Finland, France, Germany, Greece, Ire-

land, Italy, Luxembourg, Netherlands, Portugal, Spain, Swe-

den, and United Kingdom. 

capita may have substantial pockets of poverty, and a 

region with low GDP per capita may have some areas 

of prosperity. The directives of the European Commis-

sion implicitly assume not only that the funding re-

ceived by a region will be converted to greater prosper-

ity on average, but also reduce existing disparities in the 

region (De Rynck and McAleavey, 2001). Resources 

awarded to a region whose average income level is low 

may simply result in additional well-paid jobs for the 

narrow upper-middle class and ultimately lead to 

greater inequality. 

Inequality and growth are interlinked, but it is diffi-

cult to establish the direction of causality (Aghion and 

Howitt, 1988). Studies of the effect of growth on ine-

quality traditionally refer to the hypothesis of Kuznets 

(1955). This states that economic inequality increases 

over time while an area is developing, until it reaches a 

certain level of per capita GDP. After that, inequality 

begins to decrease. At the same time, the level of ine-

quality may affect, positively or negatively, economic 

growth via distinct channels: accumulation of physical 

and human capital, redistributive public policies and 

political and social uncertainty (Weil, 2005), as also 

highlighted by Longford et al. (2010). 

The regional (that is, sub-national) dimension en-

riches the debate on growth and income inequality. 

Monitoring income inequality as well as other indica-

tors related to personal income distribution within Eu-

ropean countries is reliant on comparable and interna-

tionally harmonised estimates for the EU member 

states (Staníčková, 2017). Comparable data on personal 

income distribution at the national level are difficult to 

obtain. Focusing on the EU, the annual European Sta-

tistics on Income and Living Conditions Survey (EU-

SILC) is a principal source of data regarding the socio-

economic conditions of individuals and households in 

the EU countries and their regions. The Survey is an-
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nual and has a longitudinal and cross-sectional compo-

nent. Therefore, EU-SILC is a reference source for 

comparative statistics on income, poverty and social 

exclusion. The survey design seeks to obtain repre-

sentative samples at both EU and country levels, as well 

as for several subgroups, such as sex, household size, 

household type and socio-economic group 

(EUROSTAT, 2018). 

1.2 Representation of income: main issues and ob-

jectives of the study 

The Lorenz curve (LC) is a basic tool for the represen-

tation of income inequality (Lorenz, 1905). By defini-

tion, the LC evaluated in 𝑝 ∈ [0,1] gives the proportion 

of the total wealth corresponding to the 𝑝100% poorer 

part of the population, where perfect equality is repre-

sented by a LC with equation 𝐿(𝑝) = 𝑝. Consequently, 

if the LC of a distribution is uniformly higher than the 

LC of another, we may argue that the first distribution 

exhibits a lesser degree of inequality compared to the 

other. Such a criterion is generally referred to as the Lo-

renz order, or Lorenz dominance (LD). However, we 

may note that the LD is not a complete order, that is, it 

is possible to find pairs of intersecting LCs, where nei-

ther of the two dominates the other. In particular, many 

empirical studies have revealed that such ambiguous 

cases are extremely frequent in practice, that is, many 

pairs of distributions cannot be ranked based on the LD. 

In such cases, we can compare intersecting distribu-

tions by relying on weaker orders of inequality, such as 

the LD of the second degree, as studied by Aaberge 

(2009).  

In this paper, we are primarily concerned with the 

issue of finding a parametric functional form to repre-

sent the LC, and to investigate the effectiveness of a 

model in identifying dominated and non-dominated 

pairs of LCs. In this regard, many different functional 

forms for the LC have been proposed in the literature. 

Some belong to mono-parametric families, which may 

be denoted as ordered families of LCs. The main prop-

erty of such families is that the LD is fully characterised 

by the value of a unique parameter. This may be con-

sidered an advantage in terms of simplicity of interpre-

tation, although multi-parametric families generally 

yield better performances in terms of goodness-of-fit. 

However, by construction, ordered families do not per-

mit LCs to cross, and this lack of flexibility may be in-

appropriate in a number of cases. 

In section 2 we study some different families of par-

ametric LCs, namely the power Lorenz curve (PLC); 

the Pareto LC (PARLC); the Lamè class of LCs (LLC) 

(Sarabia et al., 2017), which actually consists of two 

slightly different formulas; a generalised version of the 

Lamè curve (GLLC) studied by Sarabia et al. (1999); 

the mixed power LC (MPLC), that is, a bi-parametric 

mixture of PLCs; and the arctan family of LCs, recently 

introduced by Gòmez-Dèniz (2016). Whilst the PLC, 

the PARLC and the LLC are mono-parametric ordered 

families, the GLLC, MPLC and arctan families depend 

on two parameters, where different parametric combi-

nations may yield intersecting LCs. Therefore, the main 

objectives of this paper are: 

 To study the suitability of these different fami-

lies in modelling income distribution in terms of 

goodness-of-fit. Special attention is given to the 

advantages/disadvantages of mono-parametric 

models with respect to multi-parametric models; 

 To study the usefulness of multi-parametric 

families in describing non-dominated situations 

(i.e., cases of intersecting LCs). In particular, a 

multi-parametric model should be able to iden-

tify most of the crossing pairs of LCs. 

For this purpose, in section 3 we perform an empir-

ical analysis of the LCs of 26 European countries in 

2017. The data have been downloaded from Eurostat’s 

database (EUROSTAT, 2018). Section 4 discusses the 

results and draws conclusions. 

2. Theory and methods 

We first introduce some basic notation and definitions. 

We recall that a preorder is a binary relation ≤ over a 

set 𝑆 that is reflexive and transitive. In particular, ob-

serve that a preorder ≤ does not generally satisfy the 

antisymmetric property (that is, 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 does 

not necessarily imply 𝑎 = 𝑏) and it is generally not 

complete (that is, each pair 𝑎, 𝑏 in 𝑆 is not necessarily 

related by ≤).  

Let 𝐹 be a non-negative distribution with positive 

and finite expectation 𝜇𝐹. The (generalised) inverse or 

quantile function of 𝐹 is given by 

𝐹−1(𝑝) = inf{𝑧: 𝐹(𝑧) ≥ 𝑝}𝑝 ∈ (0,1). (1) 

The Lorenz curve is an increasing and convex func-

tion 𝐿𝐹 : [0,1] → [0,1] defined as follows (Gastwirth, 

1971): 

𝐿𝐹(𝑝) =
1

𝜇𝐹
∫ 𝐹−1(𝑡)𝑑𝑡

𝑝

0
, 𝑝 ∈ (0,1).     (2) 

We recall that the Gini index is given by twice the 

area between the Lorenz curve and the 45° line: 

Γ(𝐹) = 1 − 2 ∫ 𝐿𝐹(𝑡)𝑑𝑡
1

0
. (3) 

In fact, for a given percentage 𝑝, 𝐿𝐹(𝑝) represents 

the percentage of total possessed by the low 100𝑝% 

part of the distribution. It is well-known that the higher 

of two non-intersecting Lorenz curves can be obtained 

from the lower by a sequence of income transfers from 

richer to poorer individuals. This criterion has been 

called the Pigou-Dalton condition. For this reason, in 

an economic framework the higher of two non-inter-

secting LCs should be preferred, in that it shows less 
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inequality compared with the lower. This idea defines 

the LD, that is, a preorder (≤𝐿) in the space of non-neg-

ative distributions (with finite mean). 

Definition 1: We write 𝐹 ≤𝐿 𝐺 if and only if 𝐿𝐹(𝑝) ≥
𝐿𝐺(𝑝), ∀ 𝑝 ∈ (0,1).  

However, the LD is not a complete order, that is, it 

is possible to find pairs of LCs that are not ranked by 

the LD. Indeed, LCs may cross once or several times. 

Ranking such ambiguous situations represents a funda-

mental issue in the literature, in that is has been empir-

ically shown that intersecting LCs constitute an ex-

tremely frequent situation in practice. To address this 

issue and obtain unambiguous rankings, some weaker 

criteria have been introduced in the literature. Muliere 

and Scarsini (1989) and Aaberge (2009) suggest cumu-

lating LCs from the left or right, that is, attaching more 

weighting to low or top incomes. Lando and Bertoli-

Barsotti (2016) suggest cumulating from both tails of 

the distribution towards the centre, that is, attaching 

more weighting to low and top incomes simultane-

ously. 

In order to understand the relations between the 

models analysed in the sequel, we provide the defini-

tion of a dual LC. For a given LC 𝐿𝐹, we can compute 

the complementary LC 

�̅�𝐹(𝑝) =
1

𝜇𝐹

∫ 𝐹−1(1 − 𝑡)𝑑𝑡
𝑝

0

 

= 1 − 𝐿𝐹(1 − 𝑝), 𝑝 (0,1) 

(4) 

that is, an increasing and concave curve �̅�𝐹: [0,1] →
[0,1] which represents the proportion of total wealth 

corresponding to the top 𝑝100% richer part of the pop-

ulation. Whilst �̅�𝐹 cannot be considered a LC, its in-

verse function �̅�𝐹
−1 does. In particular, 

�̅�𝐹
−1(𝑝) = 1 − 𝐿𝐹

−1(1 − 𝑝)  (5) 

represents the proportion of population that holds the 

top 100𝑝% part of the total wealth. We observe that 

�̅�𝐹
−1 is also a LC, in that it is non-decreasing, convex, 

differentiable almost everywhere and defined on the set 

[0,1] (�̅�𝐹
−1(0) = 0, �̅�𝐹

−1(1) = 1). From a geometrical 

point of view, the LC �̅�𝐹
−1 is symmetrical with respect 

to the LC 𝐿𝐹, where the axis of symmetry is the line 𝑡 =
1 − 𝑝. We define �̅�𝐹

−1 as the dual version if the LC 𝐿𝐹. 

Among the different functional forms that have 

been proposed to approximate the LCs of income dis-

tributions, we propose the following. 

Definition 2: The power LC.  

The PLC is defined by the following formula: 

𝐿𝑃(𝑝, 𝑎) = 𝑝𝑎, 𝑝 ∈ (0,1), 𝑎 ≥ 1.     (6) 

This basic model is clearly ordered with respect to 

the parameter 𝑎, as 𝐿𝑃(𝑝, 𝑎1) ≥ 𝐿𝑃(𝑝, 𝑎2) iff 𝑎1 ≤ 𝑎2. 

For 𝑎 = 1 we obtain the equality line. 

Definition 3: The Pareto LC.  

The PARLC is dual to the PLC and is defined by 

the following formula: 

𝐿𝑃𝐴𝑅(𝑝, 𝑎) = 1 − 𝐿𝑃
−1(𝑝, 1/𝑎) = 1 − (1 −

𝑝)𝑎, 𝑝 ∈ (0,1), 𝑎 ∈ (0,1]. (7) 

Whilst the PLC is more suitable to represent ine-

quality in the left tail, given its shape, the PARLC is 

more suitable to represent inequality in the right one. 

This model is ordered with respect to the parame-

ter 𝑎, as 𝐿𝑃𝐴𝑅(𝑝, 𝑎1) ≥ 𝐿𝑃𝐴𝑅(𝑝, 𝑎2) iff 𝑎1 ≥ 𝑎2. For 

𝑎 = 1 we obtain the equality line. 

Definition 4: The Lamè LC.  

The LLC is closely related to the PARLC and is de-

fined by the following two different formulas (LLC(1) 

and LLC(2), respectively): 

𝐿𝐿1(𝑝, 𝑎) = 𝐿𝑃𝐴𝑅(𝑝, 𝑎)1/𝑎 = [1 − (1 −
𝑝)𝑎]1/𝑎,    𝑝 ∈ (0,1), 𝑎 ∈ (0,1] (8) 

𝐿𝐿2(𝑝, 𝑎) = 1 − (1 − 𝑝𝑎)1/𝑎, 𝑝 ∈ (0,1), 𝑎 ≥
1. 

(9) 

In both cases, for 𝑎 = 1 we obtain the equality line. The 

LLC has been introduced by Henle et al. (2008) and has 

more recently been studied by Sarabia et al. (2017). 

Both curves are ordered with respect to the parame-

ter 𝑎, in particular: 

𝐿𝐿1(𝑝, 𝑎1) ≤ 𝐿𝐿1(𝑝, 𝑎2) iff 𝑎1 ≤ 𝑎2, 

𝐿𝐿2(𝑝, 𝑎1) ≤ 𝐿𝐿2(𝑝, 𝑎2) iff 𝑎1 ≥ 𝑎2. 

Definition 5: The generalised Lamè LC. 

The GLLC is defined by the following formula: 

𝐿𝐺𝐿(𝑝, 𝑎, 𝑏) = 𝐿𝑃𝐴𝑅(𝑝, 𝑎)𝑏 = [1 − (1 −
𝑝)𝑎]𝑏,   𝑝 ∈ (0,1), 𝑎 ∈ (0,1], 𝑏 ≥ 1. 

(10) 

For 𝑎 = 𝑏 = 1 we obtain the equality line. In con-

trast to 𝐿𝑃 , 𝐿𝐿1 and 𝐿𝐿2, this family is not ordered, in 

that different combinations of 𝑎 and 𝑏 may yield inter-

secting LCs. 

In order to better-identify intersecting situations, we 

introduce another bi-parametric model.  

Definition 6: The mixed power LC. 

The MPLC is defined by the formula 

𝐿𝑀(𝑝, 𝑎, 𝑏) = 𝑏𝑝𝑎 + (1 − 𝑏)(1 − (1 −
𝑝)1/𝑎) 𝑏 ∈ [0,1], 𝑎 ≥ 1.            

(11) 

Then, 𝐿𝑀 is simply a mixture of a PLC 𝑝𝑎 and its 

dual version, i.e., the PARLC 1 − (1 − 𝑝)1/𝑎. For 𝑎 =
1 we obtain perfect equality, regardless of 𝑏. The mix-

ing parameter 𝑏 may determine a PLC (𝑏 = 1) or a 

PARLC (𝑏 = 0), and different combinations of 𝑏s may 

determine a large number of intersecting cases. We also 

note that the MPLC is closely related to the LLCs, as 

well as the PLC. Indeed, 𝐿𝐿2(𝑝, 𝑎) = 1 − (1 −
𝑝𝑎)1/𝑎 = 𝐿𝑀(𝑝𝑎, 𝑎, 0). Therefore, we might also gen-

eralise the LLC with an alternative mixed approach by 
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considering, for instance, 𝐿𝑀(𝑝𝑎 , 𝑎, 𝑏). In so doing, for 

𝑏 = 1 we obtain the PLC, for 𝑏 = 0 we obtain the 

LLC(2). 

Definition 7: The arctan LC. 

The arctan-LC, recently proposed by Gòmez-Dèniz 

(2016), is defined by the following formula 

𝐿𝐴𝑅𝐶 (𝑝, 𝑏) = 1 −
arctan(𝑏(1−𝑝))

arctan 𝑏
, 𝑏 ∈ ℝ .     (12) 

Given that the composition of LCs yields a LC, for 

a given LC, say 𝐿, 𝐿𝐴𝑅𝐶(𝐿(𝑝), 𝑏) is again a LC. In par-

ticular we consider 𝐿𝐴𝑅𝐶 (𝑝𝑎 , 𝑏), 𝐿𝐴𝑅𝐶(𝐿𝑃𝐴𝑅(𝑝, 𝑎), 𝑏), 

𝐿𝐴𝑅𝐶 (𝐿𝐿1(𝑝, 𝑎), 𝑏), namely the arctan-PLC, arctan-

PARLC, arctan-LLC(1) and arctan-LLC(2). 

In the next section, we compare the performance of 

these different parametric models in terms of goodness-

of-fit, and we also analyse the effectiveness of the bi-

parametric models in identifying non-dominated cases. 

3. Empirical analysis  

Many European countries have faced sluggish growth 

over the past decades and the trend has worsened in re-

cent years. Contrary to economic booms, when most in-

dividuals are likely to see substantial increases in in-

come, low growth tends to engender concerns about 

stagnating incomes, rising inequality and poverty. 

While inequality is often viewed from a national per-

spective, there are good reasons to analyse it for the EU 

as a whole.  

Data have been retrieved online from Eurostat’s 

website (the data have also been studied in Lando et al., 

2017). In particular, Eurostat (EUROSTAT, 2018) pro-

vides distributions of income by quantiles with two op-

tions in terms of income and living conditions indica-

tors, namely: i) top cut-off point, which represents the 

income of the individual at the right end of the given 

quantile and; ii) share of national equalised income, 

which is the share of the total income belonging to a 

given interval. Eurostat provides i) and ii) for the three 

quartiles, the four quintiles, the nine deciles and the first 

(and last) five percentiles. It should be stressed that 

some countries present negative incomes in the first 1–

2 percentiles. Clearly, the presence of negative incomes 

contradicts the assumption of non-negativity of income 

distribution. Moreover, smaller percentile values are 

generally less reliable and accurate. Thus, we decided 

to consider the LCs, starting with 𝑝 = 0.03. Indeed, by 

properly cumulating the shares of national equalised in-

come we can obtain the values of the LC for  

𝑝 = 0,0.03,0.04,0.05,0.1,0.2,0.25,0.3,0.4,0.5, 

0.6,0.7,0.75,0.8,0.9,0.94,0.95,0.96,0.97,0.98,0.99,1,  

that is, a LC with 20 nodes (excluding 0 and 1). We 

denote the set of 20 values above as 𝑆20.  

The first step of our analysis consists of analysing 

the empirical LCs computed from the observed data. 

For the year 2017, we obtained the LCs of 26 countries 

and compared each pair of LCs (i.e., 26×25/2 pairs) 

based on the LD relation. We find that the LD can rank 

only 44% of the pairs, while the remaining 56% of the 

pairs present intersecting LCs (i.e., with one or more 

crossings). Thus, LD seems not to be an effective crite-

rion in comparing the LCs of European countries, be-

cause it cannot rank even half of the pairs. In particular, 

we find that 67% of crossing cases present one single 

crossing, 29% present two crossings and only 0.2% pre-

sent more than two crossings. 

As a second step, we then estimated the parametric 

models studied in section 2 by fitting them to the 26 

observed LC discussed above. For the sake of simplic-

ity, we used the least squares method, seeks to find the 

parametric values that minimise the square of the dis-

tance between the observed LC and the model consid-

ered. Such distance is actually a sum of quadratic dif-

ferences, evaluated in all 20 nodes of the observed LCs. 

In particular, let 𝐿𝑜𝑏𝑠 be the empirical (observed) LC 

and let 𝐿𝜶 be the parametric LC, where 𝜶 is a parameter 

(possibly vectorial). We find the parametric value �̂� 

that minimises the distance.  

𝑆𝑄𝐸(𝜶) = ∑ (𝐿𝑜𝑏𝑠(𝑝) − 𝐿𝜶(𝑝))2
𝑝∈𝑆20

.    (13) 

By dividing this distance by the number of nodes 

(20) and computing its square root, we obtain the root 

mean squared error (MSE), i.e. 𝑅𝑀𝑆𝐸( �̂�) =

√𝑆𝑄𝐸( �̂�)/20, which can be used as a measure of 

goodness-of-fit. We computed the RMSEs over the 26 

LCs, for all the models considered, and obtained the 

following results. We also report the values of the Gini 

index, because the fit may be related to the shape of the 

LCs (logically, all the models would provide perfect fit 

to those LCs that correspond to the equality line, i.e., 

yield values of the Gini index equal to 0). 

In Table 1, the results show that the LLC (in both 

versions) provide an excellent performance in approxi-

mating the LC, whilst the PLC and the PARLC are not 

well-fitting. The arctan family, in its different combi-

nations, always provides a worse fit, besides having 

two parameters, compared to the mono-parametric 

LLCs. Therefore, we shall exclude the arctan family 

from the following discussion. The GLLC and the 

MPLC provide smaller RMSEs compared to the LLCs 

(obviously) but the improvement is questionable, espe-

cially if we are interested in the goodness-of-fit as well 

as the mathematical simplicity of the models consid-

ered. Indeed, the LLCs perform extremely well besides 

having just one parameter. Moreover, we compute the 

correlation between the RMSEs and the values of the 

Gini index. The results are: 0.57 for the PLC, 0.65 for 

the PARLC, 0.22 for the LLC(1), 0.25 for the LLC(2), 
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0.07 for the GLLC and 0.43 for the MPLC. Thus, the 

performance of the GLLC seems to be independent 

from the shape of the LC, unlike that of other models. 

In particular, the models related to the Lamè class seem 

to be less sensitive to the shape, whilst the power and 

Pareto-type models seem to be more suitable for LCs 

that show a more even distribution of income. The mo-

tivation can be found in the shape of the LCs consid-

ered. In particular, we found that income distribution in 

Europe is quite evenly distributed in the centre, whilst 

inequality is generally concentrated in the tails (i.e., low 

and high incomes); in Figure 1 displayed generally 

across the EU countries, and in Figures 2 and 3 for se-

lected states. Therefore, the PLC may be inaccurate for 

representing the right tail, whilst the PARLC may be 

inaccurate for representing the left one. The goodness-

of-fit analysis does not reveal whether the models con-

sidered are effective at identifying dominated or non-

dominated pairs of LCs. As discussed in section 2, all 

of the ordered families cannot generate crossing LCs by 

construction. The next step of our study is focused 

simply on the GLLC and the MPLC. We compute the 

number of times when observed LCs cross as well as 

estimated LCs vs. the times when LCs do not cross but 

the estimated ones do, and so on. In particular, we find 

that the GLLC is able to identify the LD in 69% of cases 

whilst the PMLC in 74% (these percentages are com-

puted over the number of cases when the LD holds). On 

the other hand, the percentage of cases when intersect-

ing estimated LCs correspond to intersecting observed 

LCs (computed over the set of intersecting observed 

LCs) is 76% and 68% for the GLLC and the PMLC, 

respectively. 

 

Table 1 RMSEs of the models considered and values of the Gini index  

 PLC PARLC LLC(1) LLC(2) GLLC MPLC arc-PLC 
arc-

PARLC 

arc-

LLC(1) 

arc-

LLC(2) 
Gini 

BE 0.025 0.027 0.003 0.003 0.002 0.001 0.020 0.008 0.007 0.010 0.259 

BG 0.055 0.030 0.012 0.010 0.006 0.005 0.047 0.013 0.016 0.022 0.399 

CZ 0.032 0.018 0.006 0.006 0.002 0.002 0.025 0.006 0.011 0.015 0.245 

DK 0.038 0.020 0.012 0.011 0.008 0.007 0.033 0.012 0.017 0.021 0.273 

DE 0.033 0.026 0.004 0.003 0.003 0.002 0.027 0.009 0.009 0.013 0.289 

EE 0.023 0.041 0.012 0.013 0.005 0.008 0.015 0.007 0.005 0.003 0.315 

EL 0.034 0.033 0.004 0.003 0.004 0.003 0.028 0.011 0.008 0.013 0.330 

ES 0.028 0.039 0.007 0.008 0.001 0.003 0.022 0.011 0.003 0.007 0.338 

FR 0.040 0.021 0.010 0.009 0.004 0.003 0.033 0.009 0.014 0.019 0.290 

HR 0.025 0.034 0.006 0.007 0.001 0.002 0.019 0.009 0.003 0.007 0.297 

IT 0.031 0.034 0.004 0.004 0.003 0.004 0.026 0.012 0.007 0.011 0.325 

CY 0.041 0.022 0.009 0.008 0.003 0.001 0.032 0.007 0.012 0.016 0.306 

LV 0.030 0.039 0.006 0.007 0.002 0.005 0.023 0.008 0.002 0.006 0.344 

LT 0.040 0.036 0.001 0.002 0.001 0.005 0.032 0.009 0.005 0.011 0.371 

LU 0.032 0.031 0.001 0.002 0.001 0.003 0.025 0.008 0.006 0.010 0.309 

HU 0.030 0.026 0.002 0.002 0.002 0.003 0.024 0.008 0.008 0.012 0.279 

MT 0.032 0.026 0.002 0.002 0.001 0.003 0.024 0.006 0.007 0.011 0.283 

NL 0.031 0.024 0.003 0.002 0.002 0.002 0.024 0.008 0.009 0.013 0.268 

AT 0.030 0.026 0.003 0.002 0.003 0.003 0.025 0.009 0.009 0.013 0.277 

PL 0.032 0.027 0.002 0.002 0.001 0.003 0.026 0.008 0.008 0.012 0.290 

PT 0.039 0.030 0.003 0.003 0.001 0.004 0.031 0.008 0.008 0.014 0.333 

RO 0.023 0.042 0.011 0.012 0.001 0.003 0.018 0.011 0.004 0.005 0.327 

SI 0.022 0.025 0.002 0.002 0.000 0.002 0.017 0.006 0.005 0.008 0.235 

SK 0.019 0.027 0.006 0.006 0.003 0.004 0.016 0.009 0.006 0.009 0.230 

FI 0.032 0.019 0.006 0.006 0.002 0.001 0.025 0.006 0.011 0.014 0.253 

SE 0.033 0.025 0.008 0.007 0.007 0.005 0.028 0.012 0.013 0.017 0.278 

Mean 0.032 0.029 0.006 0.005 0.003 0.003 0.025 0.009 0.008 0.012 0.298 
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Figure 1 Geographical distribution of Gini index across the EU countries. 

Thus, from these results, the PMLC seems to be 

more effective in identifying the dominated pairs whilst 

the GLLC seems to be more effective in identifying the 

non-dominated ones. We stress, however, that such per-

centages should be interpreted logically. Indeed, all of 

the ordered families of LCs would identify LD in 100% 

of the pairs in which LD is verified, just by construc-

tion. Therefore, given that the percentage of effective-

ness in the non-dominated pairs is more reliable, we ar-

gue that the GLLC is preferable to the PMLC in terms 

of identification of the LD. The empirical results also 

reveal that inequality has been declining in most EU 

countries (Halásková et al., 2017).  

 

 

 
Figure 2 LC of the Czech Republic and Italy. Observed LCs (dashed line) vs. estimated LCs (MPLC, dotted line). The observed 

and estimated curves match almost perfectly, the LC of Czech Republic is never below that of Italy (LD is verified). 
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Figure 3 LC of Spain and France. Observed LCs (dashed line) vs. estimated LCs (MPLC, dotted line). The observed and esti-

mated curves match almost perfectly; the LC of Spain starts below that of France and crosses in a neighbourhood of 0.9 (LD is 

not verified). 

4. Conclusion 

Our results highlight some of the advantages and disad-

vantages of ordered families of LCs compared to bi-

parametric families. Ordered families are easy to inter-

pret and may provide an extremely accurate approxi-

mation: this is the case, for instance, of the Lamè class, 

which seems to be able to capture the shape of an LC, 

at least with regard to the data set considered. Moreo-

ver, the unique parameter contains most of the infor-

mation regarding the characteristics and concentration 

patterns of the population, and can therefore be used as 

an index of inequality, just like the Gini index. On the 

other hand, the two bi-parametric models examined 

generalise i) the Lamè class by introducing an addi-

tional power parameter; and ii) the power class, by in-

troducing an additional mixing parameter. As an obvi-

ous consequence, the fit is enhanced, although this may 

be insufficient to justifying the use of a bi-parametric 

model. In this regard, the main advantage of a general-

ised model is the possibility of generating scenarios of 

crossing LCs, which happen to be quite frequent in 

practical situations. Indeed, our analysis shows that 

LCs of European countries cross more than half the 

time, hence it may be inappropriate to describe a par-

tially ordered set of LCs with a totally ordered family. 

In contrast, the GLLC and the MPLC partially address 

this issue by supporting some of the cases when LCs do 

(or do not) cross. We conclude by noting that the LCs 

of the data set considered provide very similar shapes 

and concentration values, presenting most of their dif-

ferences (of shape) in the tails. 

Considering inequality in the European Union as a 

whole enables us to see what differences in income 

growth per decile has implied for inequality between 

individuals in the organisation, given that in parallel to 

changes in the distribution of income within countries, 

some economies have grown more rapidly than others. 

Second, we can no longer assume that all EU countries 

are comfortably on the downward part of the Kuznets 

curve, with inequality falling over time. 

Poor growth performance in recent decades in Eu-

rope has crystallised concerns for rising income disper-

sion and social exclusion. European authorities have 

launched the Europe 2020 Strategy with the objective 

of reducing social inclusion in Europe on top of already 

existing European regional policies aimed at reducing 

regional disparities through stimulating growth in areas 

where incomes are relatively low. While it is most com-

mon to confine measures of inequality to national bor-

ders, the existence of such union-wide objectives and 

policies motivates measuring income dispersion among 

all Europeans in this paper. Towards the end of the 

2000s, the income distribution in Europe was more un-

equal than in the average OECD country, albeit notably 

less so than in the United States. It is the within-country 

not between-country dimension that appears to be most 

important. Inequality in Europe has risen quite substan-

tially since the mid-1980s. While the EU enlargement 

process has contributed to this, it is not the only expla-

nation because inequality has also increased within a 

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0



T. Lando, M. Staníčková, J. Franek – Parametric Families for the Lorenz Curve: An Analysis of Income Distribution in… 

 
59 

core of European countries. Large income gains among 

the 10% of top earners seem to constitute a primary 

driver behind this phenomenon.  

References 

AABERGE, R. (2009). Ranking intersecting Lorenz 

curves. Social Choice and Welfare 33: 235–259. 

https://doi.org/10.1007/s00355-008-0354-4 

AGHION, P., HOWITT, P. (1998). Endogenous 

growth theory. Cambridge: MIT Press. 

ALLMENDINGER, J., DRIESCH, E. (2014). Social 

inequalities in Europe: Facing the challenge. Discus-

sion Paper P 2014–005. Berlin: Social Science Center. 

BARRO, R., SALA-I-MARTIN, X. (1995). Economic 

growth. New York: McGraw Hill. 

BARRO, R., SALA-I-MARTIN, X. (1991). Conver-

gence across states and regions. Brooking Papers on 

Economic Activity 22, 107–182. 

https://doi.org/ 10.2307/2534639 

DE RYNCK, S., MCALEAVEY P. (2001). The Cohe-

sion deficit in Structural Fund Policy. Journal of Euro-

pean Public Policy 8: 541–557.  

https://doi.org/ 10.1080/13501760110064384 

EUROPEAN COMMISSION. (1996). First Report on 

Economic and Social Cohesion. Luxembourg: Publica-

tion Office of the European Union. 

GASTWIRTH, J.L. (1971). A general definition of the 

Lorenz curve. Econometrica 39: 1037–1039. 

https://doi.org/10.2307/1909675 

GÓMEZ-DÉNIZ, E. (2016). A family of arctan Lorenz 

curves. Empirical Economics 51(3): 1215–1233. 

https://doi.org/10.1007/s00181-015-1031-y 

HALÁSKOVÁ, R., MERIČKOVÁ MIKUŠOVÁ, B. 

(2017). Socio-economic development, income inequal-

ity and redistribution. Ekonomická revue – Central Eu-

ropean Review of Economic Issues 20: 29–41. 

https://doi.org/10.7327/cerei.2017.03.03 

HENLE, J.M., HORTON, N.J., JAKUS, S.J. (2008). 

Modelling inequality with a single parameter. In Mod-

eling income distributions and Lorenz curves, 255–269. 

New York: Springer.  

https://doi.org/10.1007/978-0-387-72796-7_14 

KUZNETS, S. (1955). Economic growth and income 

inequality. American Economic Review 45: 1–28. 

https://doi.org/10.2307/1811581 

LANDO, T., BERTOLI-BARSOTTI, L. (2016). Weak 

orderings for intersecting Lorenz curves. Metron 74(2): 

177–192.  

https://doi.org/10.1007/s40300-016-0087-6 

LANDO, T., BERTOLI-BARSOTTI, L., 

STANÍČKOVÁ, M. (2017). Weak orders for Intersect-

ing Lorenz Curves: Analysis of income distribution in 

European countries. In: Proceedings of the 35th Inter-

national Conference on Mathematical Methods in Eco-

nomics. University of Hradec Králové, 402–407. 

LE GALLO, J. (2004). Space-time analysis of GDP dis-

parities among European regions. International Re-

gional Science Review 27: 138–163. 

https://doi.org/10.1177/0160017603262402 

LONGFORD, N.T., PITTAU, M.G., ZELLI, R., 

MASSARI, R. (2010). Measures of poverty and ine-

quality in the countries and regions of EU. Working Pa-

per Series – ECINEQ WP 2010 – 182, 1–30. Rome: So-

ciety for the Study of Economic Inequality. 

LORENZ, M.O. (1905). Methods of measuring the 

concentration of wealth. Publications of the American 

Statistical Association. 970: 209–219. 

https://doi.org/10.2307/2276207 

MULIERE P., SCARSINI M. (1989). A note on sto-

chastic dominance and inequality measures. Journal of 

Economic Theory 49(2): 314–323.  

https://doi.org/10.1016/0022-0531(89)90084-7 

PITTAU, M.G., ZELLI, R. (2006). Empirical Evidence 

of Income Dynamic across EU Regions. Journal of Ap-

plied Econometrics 21: 605–628.  

https://doi.org/10.1002/jae.855 

QUAH, D. (1996). Regional convergence clusters in 

Europe. European Economic Review 35: 951–958. 

https://doi.org/10.1023/A:1009781613339 

SALA-I-MARTIN, X. (2006). The world distribution 

of income: Falling poverty and… convergence, period. 

The Quarterly Journal of Economics 121(2): 351–397. 

https://doi.org/10.1162/qjec.2006.121.2.351 

SARABIA, J.M., CASTILLO, E., SLOTTJE, D.J. 

(1999). An ordered family of Lorenz curves. Journal of 

Econometrics 91(1): 43–60.  

https://doi.org/10.1016/ S0304-4076(98)00048-7 

SARABIA, J.M., JORDÁ, V., TRUEBA, C. (2017). 

The Lamé class of Lorenz curves. Communications in 

Statistics-Theory and Methods 46(11): 5311–5326. 

https://doi.org/10.1080/03610926.2013.775306 

STANÍČKOVÁ, M. (2017). Can the implementation of 

the Europe 2020 Strategy goals be efficient? The chal-

lenge for achieving social equality in the European Un-

ion. Equilibrium. Quarterly Journal of Economics and 

Economic Policy 12(3): 383–398.  

https://doi.org/10.24136/eq.v12i3.20 

WEIL, D.N. (2005). Economic Growth. London: Pear-

son Education. 



 Ekonomická revue – Central European Review of Economic Issues 21, 2018 

 
60 

Additional resources 

EUROSTAT (2018). Mean and Median Income by Age 

and Sex - EU-SILC Survey. [Online], accessed at 20. 

10. 2018. Available from: <https://ec.europa.eu/euro-

stat/data/database>. 

 

 


