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Abstract

A majority of the coastal wave modelling analysis require using historical data from

physical observations or from computer simulations. Such simulators are often com-

putationally expensive (takes long for a single evaluation run) and therefore it is

normally a bottleneck in the analysis. Meta models are increasingly used as sur-

rogates of the complex simulators to improve the efficiency of the bottleneck step.

The performance of the meta model is vital when selecting the model as this would

greatly influence the conclusions that are drawn from the analysis.

In this thesis we apply the Gaussian Process Emulator as a meta model of a wave

transformation simulator, SWAN. The GPE is advantageous compared to other

meta models as the predictions from the GPE are in the form of a distribution

(mean and variance) and predicting at an event used to train the GPE returns

perfect predictions with no uncertainty. Univariate and multivariate approaches of

the GPE are presented and compared in case studies. In addition simple diagnostics

to validate the GPE are discussed.

Look–up table (LUT) approach is a commonly used traditional meta model in

coastal modelling. This is based on multidimensional linear interpolation of points

on a regular grid. A case study shows the performance improvement that can be

gained by using GPE over this traditional LUT approach. The GPE needs less than

2% of the simulator runs required for the LUT to obtain a similar accuracy.

When introducing the multivariate GPE we identify two types of multiple out-
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puts. We present a principal component GPE (PC-GPE) and a separable GPE

for highly correlated and high dimensional output. These methods are compared

to fitting multiple univariate GPE’s. In terms of accuracy the multiple univari-

ate GPE outperformed the other methods however the PC-GPE tends to be more

efficient with only a small compromise on accuracy. For low dimensional output

that is weekly correlated we present the linear model of coregionalisation (LMC)

GPE which is a more flexible technique than the separable GPE. We compared this

with the separable GPE and to fitting multiple univariate GPEs. The LMC GPE

gave similar results as the multiple univariate GPE, but it is unstable and took a

significant amount of time to fit.

Finally, we describe three approaches of selecting a design (simulator runs used

to train the GPE). We aim to select a design that will maximise the information we

can get from the simulator in order to inform the GPE given the limited simulator

runs.

The aim of this thesis is to present the GPE methodology in a concise manner

with running examples throughout. The novelty here is to show the application

of GPEs to coastal wave modelling in order to help alleviate the computational

burden and improve accuracy when using meta-models to avoid the bottleneck in

the analysis.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Coastal modelling

Coastal modelling applications typically include the analysis of ocean waves to design

and manage offshore and coastal structures (e.g. harbours, bays, piers, jetties, dykes,

wind farms, etc.). Following a detailed analysis, engineers and contractors may need

to adapt the design of a structure to wave loads on site, they may want the structure

to be able to withstand extreme wave conditions, or they may also want to perform

fatigue analysis of the structure (analysing the weakening effect of constant load on

a structure). The analysis may also be used to study the operability of the structure,

how or when it would be safe to construct the structure or access it for maintenance,

or to analyse the safety of a structure that may, for example, be prone to flooding.

Other applications of coastal modelling include performing risk analysis of a certain

event happening (e.g. coastal flood risk analysis), prediction of waves at a particular

location and defining the wave climate (a long term distribution of sea states) which

maybe be useful for applications that require, for example, the analysis of sediment

transport.

1



1.1. Motivation Chapter 1

These applications typically require data related to wave properties at a partic-

ular site near or on the shore. Often buoy measurements, if available, may be many

kilometers away from the site of interest. Moreover, it is seldom possible to get a

long enough time series from these buoys for an extreme value analysis, so modelled

data is often used instead. Additionally, the data that is readily available from re-

gional or global models (such as the WAM model (The WAMDI Group, 1988) or the

WAVEWATCH3 model (Tolman, 2009)) are based on coarse grids (between 5-20km)

and generously account for deep water processes. However for applications such as

the ones mentioned earlier, it is necessary for the data to account for shallow water

processes that may be specific to the path travelled by a wave. Factors such as the

slope and geometry of the sea bed and local wind play a significant role in how waves

transform as they approach the shore compared to how waves behave in deep wa-

ters. Moreover, as per The British Standards Institution (2013), it is necessary for

the deeper water waves to be “transformed to the point of interest, taking account

of shallow water effects which act at the location such as bed friction, refraction,

shoaling, breaking, reflection and diffraction.” Often computer models (henceforth

referred to as simulators) are used to model such wave transformation processes.

1.1.2 Simulators and “events”

Simulators, in general, are a set of computer codes used to compute a set of output

variable(s) based on a given set of input variables. Very simply, we can think of a

simulator as a function, η(.) where we have some inputs x and the function returns

some output y such that y = η(x). We suppose that the relationship between the

inputs and outputs is complex enough that a closed form expression is not available.

We define a simulator run as a single evaluation of η(.) at a certain choice of

inputs, x. An event is defined as a vector of inputs, x, that is required for a single

simulator run.

2



Chapter 1 1.1. Motivation

Simulators can be computationally expensive to run if the underlying physi-

cal processes represented by the model are complex. For example, coastal process

simulations, flood risk analysis and flood forecasting can all require substantial com-

putational resources. When uncertainty, and the associated sensitivity analysis, also

needs to be evaluated, the computing demand can increase by orders of magnitude.

It is therefore common practice to apply statistical approximation techniques to pre-

dict the outcome of computationally intensive models, without necessarily running

the simulator for every case of interest.

1.1.3 Meta models and emulators

Meta-models (defined by Thode (1988) as a “model of the model”) are used to

approximate complex simulators by constructing lower-cost statistical models that

are used as a surrogate to the complex simulators. Modern meta-modelling ap-

proaches include: Polynomial regression (Jin et al., 2001), simple look up table ap-

proaches, (Artificial) Neural Networks (Kalra et al., 2005; Maier and Dandy, 2000),

Multivariate Adaptive Regression Splines (Friedman, 1991), Radial basis functions

(Buhmann, 2003) and Gaussian Process Emulators (GPE). A comparison of several

combinations of these methods in different applications can be found in Jin et al.

(2001), Kalra et al. (2005), Ajeesh and Deka (2015), Clarke et al. (2005) and Storlie

et al. (2009).

These approaches typically draw upon a smaller subset of representative events

defined by some selection criteria. The simulator is used to derive the output vari-

ables for this representative subset. A meta-model is then fitted to these events and

the corresponding outputs. It is then used as an approximation tool to predict the

output for any new event. The accuracy of the meta-model will depend on the size

and design of the representative subset and the interpolation technique used.

This research focuses on using a Gaussian Process Emulaotr (GPE) - which

3



1.1. Motivation Chapter 1

is a meta-model that takes a Bayesian approach in modelling. Compared with

other meta-modelling techniques, the GPE has two significant advantages, (Santner

et al., 2013): the Bayesian approach means that the prediction is in the form of a

distribution, thus giving point wise predictions and credible interval bounds around

this prediction as an indication of how uncertain the GPE prediction may be at a

particular point. The second advantage is that the GPE interpolates the available

simulator runs exactly: predicting at an event that was used to train the GPE results

in a perfect prediction with zero uncertainty.

1.1.4 The SWAN model

In this thesis, we use the SWAN wave transformation model (Simulating WAves

Nearshore), as the computationally expensive simulator that we would like to ap-

proximate. The SWAN model is used to derive information about the wave prop-

erties near the shore (or in shallow waters) given information about the wave prop-

erties offshore. A single run of the SWAN model can take between a few minutes

and a few hours to evaluate depending on the complexities of the model set up.

Therefore running the model for 1000 events can become computationally expensive

and time- consuming. The objective of the GPE implementation is to reduce the

computational time and resources used to manageable levels, without significantly

compromising on the accuracy of the predictions.

It is worth mentioning that the meta-models mentioned here can potentially be

used in a Bayesian setting, however there is no implementation in literature yet.

1.1.5 Design selection

Suppose X ∈ Rp is a collection of events at which we want to run the simulator.

Usually, the input domain can be represented in the form [0, 1]p and the values in

each dimension can be selected independently. Here we are choosing training events

4
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from a predetermined set x1, . . . ,xN generated from a multivariate probability dis-

tribution of interest. This is atypical and we will be investigated further in Chapter

4.

1.1.6 A typical GPE application

Figure 1.1 shows a flowchart of a typical application where a GPE would be used.

We often have a large number of events which we cannot afford to run the simulator

for. So instead, we choose (filter) a representative subset of the events to run through

the simulator (SWAN). We run the simulator for the selected events. Then, we train

the GPE using the selected events and the corresponding simulator output. We then

use the trained GPE fit to predict the output at the remaining events.

Figure 1.1: Flowchart for using a GPE in a typical application

5
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1.2 Knowledge Transfer Partnership

This thesis was part of a knowledge transfer partnership (KTP) program. This is a

part-government funded program that enables universities or academic institutions

that are knowledgeable on latest methodologies and innovation, to collaborate with

industries where these methodologies could be applied to increase efficiency, accuracy

or improve methods. This is done by a suitable associate who will lead a strategic

business project.

In the case of this project, the KTP was a collaboration between the University of

Sheffield and HR Wallingford. HR Wallingford is an independent research organisa-

tion and consultancy in civil engineering, environmental hydraulics and management

of water and water resources.

As part of their analysis, HR Wallingford have to run several numerical models

for thousands of events which can be computationally expensive and time consum-

ing. Before the start of this project, HR Wallingford used simple meta-modelling

techniques to help them overcome some of the computational burden. The objective

of this project was to research and implement advanced meta-modelling approaches

using GPE to enable them to increase their efficiency when completing their projects

and to reduce the computational burden. Some of the these techniques and com-

parisons have been recorded in this thesis.

The novelty in this research is in the application of GPE to a particular simulator

used at HR Wallingford. HR Wallingford had provided us with real life examples

used in the industry where improved meta modelling approaches are beneficial in

terms of increasing accuracy and improving efficiency. As part of the research we

were able to compare their traditional approach with the GPE. We presented the

results and published a paper for the FloodRisk 2016 conference, (Malde et al.,

2016). Moreover we have submitted a paper to the Journal of Coastal Engineering

highlighting some of the results (Malde et al., 2018).

6
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1.3 Software

In collaboration with other colleagues in this project, the methods discussed have

been programmed into an R package that is available on Github

(https://github.com/OakleyJ/MUCM.git). We have called this package MUCM

(Managing Uncertainty in Computer Models). The package includes the univariate

and multivariate GPE methodologies discussed here and it also contains a function

to select the designs using the methods discussed. We have ensured that the package

is robust, optimised and valid.

1.4 Overview of Thesis

We begin in Chapter 2 by briefly introducing the SWAN model, and detailing the

context of the case studies that we will use in the later chapters. Chapter 3 begins

with an introduction to univariate (one output variable) GPE, followed by a discus-

sion of the diagnostics for validating a GPE. We end the chapter with a case study

presenting the performance improvement gained by using a GPE over a traditional

approach.

In practice simulators often have more than one output variable (multivariate).

It is common for users to model each of these multiple outputs independently using

a univariate GPE. In Chapter 4 we present three approaches to handle multiple

outputs, and compare the performances amongst them. In Chapter 5 we introduce

some basic design selection methods based on three criteria and compare the use of

these methods in a case study. The thesis ends with a conclusion in Chapter 6 of

the main topics discussed within the thesis along with other related work carried

out as spin offs from this program.

7



Chapter 2

The simulator: SWAN

The SWAN (Simulating WAves Nearshore) model is a widely used simulator in

applications of coastal engineering that require coastal wave modelling. Booij et al.

(1999) compare and contrast SWAN to other wave models and conclude that the

results of the SWAN simulator agree well with the analytical solutions, laboratory

observations and generalised field observations. In this chapter, we briefly introduce

the SWAN model and describe the inputs and outputs that are most commonly used.

Finally, we outline the details of the three case studies that are used in the chapters.

The case studies that we present in the thesis represent typical applications of coastal

modelling with SWAN. Although SWAN is faster than other types of wave models,

it is reasonably demanding and is often the bottleneck in the complete analysis.

In the remaining chapters we describe how we use a Gaussian process emulator to

approximate the SWAN model in order to mitigate computational expenses and

time taken to run the model.

2.1 The SWAN model

SWAN, developed by the Delft University of Technology, is a third generation spec-

tral wave model for obtaining realistic estimates of wave parameters in coastal areas,
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Chapter 2 2.1. The SWAN model

lakes and estuaries for given wind, depth and current conditions (Booij et al., 2004).

The model computes the wave transformation from a point offshore to a near shore

point taking into consideration different tidal, wind and offshore wave conditions.

Basic linear wave theory states that as a wave approaches shallow water the

speed of the wave decreases, the wave length (the distance between successive crests

of a wave) decreases and the wave height (the vertical distance between a trough and

a crest) increases. However, the wave period, which is the time taken for two crests

of a wave to pass a fixed point, does not change. These differences between deep

water and shallow water wave transformations justify the use of such a simulator

over global models that only represent deep water processes. The SWAN model also

represents the following processes:

• Refraction - the bending of the waves due to varying water depths or currents.

Waves in shallow water move slower compared to waves in deeper water, thus

as waves approach the shore, they bend; (Bascom, 1964)

• Shoaling – the change in wave height as waves enter a shallow water region;

(Komar, 1976)

• Reflection - the change in direction of a wave as it encounters an obstacle;

• Diffraction - the propagation of a wave around an obstacle.

However it is not recommended to use the model in areas where variations in wave

height are large (within a horizontal scale of a few wavelengths), as the wave field

computed by SWAN will generally not be accurate in the immediate vicinity of

obstacles, for example for predicting waves in ports and harbours.

The SWAN model is ideally suited to the transformation of wave energy spectra

in relatively large areas as is often the case with such applications. This is particu-

larly true where the features of the seabed (such as offshore banks and reefs) cause

depth induced wave breaking and non-linear wave-wave interactions. The model can
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also include wave generation by wind within the model area and thus is useful for

areas where waves can be locally generated.

The input to SWAN consists of variables that describe the properties of the

wave conditions along the offshore boundary, the seabed bathymetry and the wind

forcing. These may include: significant wave height (average wave height from

trough to crest of the highest third of the waves), measured in meters; peak wave

period (Tp), measured in seconds; wave and wind direction, given in degrees; wind

speed, measured in meters per second and water level, measured in meters.

The output of SWAN comprises transformed wave conditions near shore having

taken account of shallow water processes. The outputs that we are typically inter-

ested in are near shore wave height, wave period, including mean wave period (Tm01,

Tm02, Tm−10) and wave direction.

Depending on the complexities of the study area and the associated wave bound-

ary conditions, which often govern the model grid extent and resolution, each event

(or time step) can take from several minutes to a few hours to run on a regular

computer. Thus to evaluate SWAN for 1000’s of events (which would be necessary

when for example we need to hindcast several years of conditions, or in a multi-

variate extreme value analysis) can be time consuming. The objective of the GPE

implementation is to reduce the computational time and resources used to tolerable

levels, without significantly compromising on the accuracy of the predictions.

In the context of the examples and case studies that we discuss in this thesis, we

make an assumption that the full set of events which we want to run the model for

are pre-determined. These events are often pre-determined because they result from

Monte Carlo sampling which is carried out to generate large samples of synthetic

events from historical events. This is done in order to model extreme sea conditions

using multivariate extreme value methods in order to account for global warming,

for example, (Gouldby et al., 2014). This is atypical to other GPE applications and
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the design selection methods they use.

2.2 Case studies

In this section we present three case studies that we are going to use throughout the

thesis to demonstrate the application of GPE. The case studies we present are past

projects that HR Wallingford worked on, and we believe that these case studies

in particular are sufficiently complex to provide realistic test cases to assess the

robustness and accuracy of the GPE. Here, we detail the scope of the study and

where the data comes from.

2.2.1 Case study 1: Farasin Islands, Red Sea

Saudi Aramco, a firm in Saudi Arabia, intends to construct a 400,000 barrels crude

per day grassroots refinery and terminal facilities within the economic centre of

Jazan, Red Sea. HR Wallingford was commissioned to undertake a range of specialist

hydraulic studies necessary to support the design and development of the works

including: metocean study, hydraulic design for seawater intake, berths hydraulic

studies, scour protection and sediment dispersion studies. This case study focuses

on the metocean study which entails the study of the meteorological (weather)

conditions and physical processes within the sea.

The Farasin Islands are a large group of coral islands located in the Red Sea

approximately 40 km offshore from the Port City of Jazan, in the south west of

Saudi Arabia (see Figure 2.1). Within this area, due to the sheltering effect of the

islands, wave conditions are typically locally generated. This means that some of

the islands are exposed to waves from offshore and there are large variations in fetch

lengths and bathymetry. This makes it a challenging area to predict wave conditions

using simple desk-based techniques, and therefore require the use of a simulator such
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Figure 2.1: Location map of Farasin Islands in the Red Sea showing the wave
prediction point for case study 1 marked by the green triangle

as SWAN. The complexity of the geometry and bathymetry makes this area an ideal

site to test the performance of a GPE and various design selection methods. Note,

in this case study, we only focus on the part of the project that requires the use of

the SWAN model, i.e. only the wave transformation from offshore, to a point within

the area of interest.

Offshore wind and wave conditions were derived from CFSR (Climate Forecast

System Reanalysis - a high resolution coupled atmosphere-ocean-land surface-sea

ice reanalysis, (National Center for Atmospheric Research Staff (Eds), 2016)) data.

These were used as input conditions for the SWAN model to derive the wave climate

at points around the Farasin Islands.

For this case study, the input SWAN boundary conditions were a long term

time series of significant wave height (meters), peak wave period (seconds), wind
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speed (meters per second), wave direction (degrees) and wind direction (degrees)

given by the regional wind and Wavewatch III wave model (National Center for

Atmospheric Research Staff (Eds), 2016; Tolman, 2009) and water lever (meters).

The tidal range in the Red Sea is relatively small, so the tide range was artificially

enhanced to provide a more severe test of the methods. The SWAN model predicts

the corresponding wave conditions of significant wave height, mean wave periods

(e.g. Tm02, Tm−10), peak wave period (Tp) and mean wave direction for all events

across the model domain as shown in Figure 2.1.

The full set of events we wish to hindcast are a time series of offshore wave and

wind conditions at 3 hourly time steps from 1st December 1983 to 31st December

2009 which in total leads to approximately 70,000 time steps or events. A validation

dataset was generated comprising SWAN model simulations for a subset of these

events, 2 years of continuous data containing approximately 5600 events.

2.2.2 Case study 2: Greater Wash, UK

The Greater Wash is a region on the east coast of England, UK, where the seabed

is characterised by a series of shallow banks. Due to the shallow water, open aspect,

relative stability of the banks, short distance from the coast and good wind resource,

this area is the site of several offshore wind farm arrays, including sites at Race

Bank and Docking shoal (as shown in Figure 2.2). For the design of such structures,

and planning construction and maintenance work, knowledge of the long term wave

climate is essential. Wave conditions at the site are a combination of those generated

locally by winds from the South and the West, as well as those generated in the

North Sea that propagate towards the site from the North, East and South East.

Whilst there is measured data at the sites of interest suitable for model calibration,

in the absence of long term measured data spanning several decades, there was a

requirement for a hindcast analysis. To provide a robust hindcast it was necessary
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Figure 2.2: Location map of Greater Wash, UK showing the wave prediction point
for case study 2. The depth of this area is relatively shallow and hence of interest
for wind farms.

to accurately resolve the extensive and complex bathymetry features in the area at a

relatively high spatial resolution. This requirement places computational constraints

on decadal simulations and thus meta-modelling approaches lend themselves to these

situations.

Offshore wave conditions are applied to the northern and eastern boundaries of

the SWAN model and a constant wind field applied over the area. The wind and

offshore wave conditions were from the UK Met Office European wave model. This

model provides 3 hourly wind (20m elevation) and wave records on a 25 km spatial

grid. The model is operated primarily for forecasting purposes, taking boundary

wave data from a global wave model and surface wind data from a weather model

also run for forecasting purposes. Wind data are also provided at every model point.

The six input variables for SWAN in this case study are significant wave height
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(meters), peak wave period (seconds), wind speed (meters per second), water level

(meters), wave direction (degrees) and wind direction (degrees). SWAN calculates

the corresponding transformed wave conditions at the point of interest (marked by

the star in Figure 2.2) which are significant wave height, mean period and mean

wave direction at all events across the model domain, taking account of the relevant

shallow water processes.

The full set of events at which we want to know the output from the SWAN

model are a time series of offshore wave conditions at 3 hourly time steps starting

from January 1986 to 2009, approximately 78,000 time steps. Each time-step was

considered a separate event and represented as a steady-state simulation. A dataset

containing 5430 events from 1987 and 2009 was set aside as a validation dataset

which is used for assessing the performance of the model. The output time series

provides important information on the expected sea conditions, e.g. the directional

distribution and the seasonality, for further steps in the hindcast analysis.

2.2.3 Case study 3: Dataset

For this case study, we cannot reveal the background of the study or the location of

the study due to client confidentiality agreements. However we explain the dataset

that we were allowed to use as a test case.

We use data from the SWAN model with 7 input variables at an offshore lo-

cation namely; significant wave height, period, direction of wave, spread of wave,

water level, wind speed and wind direction. The output variable considered is the

significant wave height at 189 near shore points, which are separated by approxi-

mately a mile in distance from each other. SWAN has been run for 500 events which

were selected using a design selection technique (Maximum Dissimilarity Algorithm

- MDA) from a much larger set of events. We use 250 events as training data and a

further 250 events as validation data. We do not have access to the full set of events
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from which the MDA events were originally chosen from.
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Chapter 3

GPE for univariate output

3.1 Introduction

A Gaussian Process (GP) is defined as an infinite collection of random variables such

that any finite subset has a multivariate normal distribution, (Rasmussen, 2006).

In this chapter, we first describe the history and applications of Gaussian process

emulators (GPEs). Then we introduce the notation and terminologies used and show

a detailed derivation of the univariate GPE model. We go through the derivation

of the model with a simple toy example. We review methods to diagnose a GPE

model and assess whether it can be used for prediction. We conclude the Chapter

by illustrating the benefits of using a GPE over a traditional approach using one of

the case studies from Chapter 2.

3.2 Use of Gaussian process emulators

GPs were first used as emulators for computer models by Sacks et al. (1989). They

base the model from a kriging (Matheron, 1963) perspective (spatial statistics).

Currin et al. (1991) presented a Bayesian version of the model which he thought

was a more natural way of interpreting the model for the common application areas.
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GPEs are commonly used for solving optimisation problems, model calibration,

and performing uncertainty and sensitivity analysis. Optimisation problems typ-

ically involve finding out what input values to use to get a desired output value.

Jones et al. (1998) used GPEs to replace an expensive black box function to effi-

ciently solve a global optimisation problem. Wood et al. (2015) compare the use

of GPEs with genetic algorithms for optimising the energy use of buildings. They

find that the GPE approach leads to more stable output, even with much fewer

simulation runs.

Simulators may need to be calibrated using observed data before using them to

make estimations of real world scenarios. Calibration problems involve finding in-

put values such that the output values match observed data. Kennedy and O’Hagan

(2001) have used GPEs for model calibration using a Bayesian approach. Holden

et al. (2010) present a more advanced use of the GPE for model calibration com-

bined with approximate Bayesian computation. The GPE allows for investigating

the uncertainty in climate sensitivity as a function of the input parameters to the

GENIE-1 model.

GPEs are also used to speed up sensitivity analysis and uncertainty analysis.

Sensitivity analysis seeks to investigate how simulator outputs respond to changes

in simulator inputs, (Oakley, 2011). Uncertainty analysis is about quantifying un-

certainty in model outputs induced by uncertainty in model inputs (O’Hagan, 2006).

If the simulator is computationally expensive than these analysis are often skipped

or not thoroughly done. GPEs allow for the simulator to be “replaced” by a GPE

once it has been trained on some data from the simulator. This allows for more ro-

bust analysis. Fricker et al. (2011) present two approaches to carry out probabilistic

uncertainty analysis and demonstrate this on practical examples. Moreover they

compare this approach to alternative approaches used in practice and conclude that

the suggested approach using GPEs gives a true representation of the uncertainty in
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the model. Becker et al. (2011 and 2012) suggest approaches to perform uncertainty

and sensitivity analysis using a GPE at a much lower cost. Bounceur et al. (2015)

also explores the use of GPEs with principal component analysis to perform global

sensitivity analysis on a climate vegetation system.

A GPE fits in to all the above applications because there is often a simulator

involved in the analysis that is computationally expensive. In most cases, the user

will have limited computational power or a time constraint and thus will only be able

to run a limited number of simulator runs. A GPE can be trained on the limited

simulator runs and then be used to make predictions of the simulator output at

untried events.

3.3 Notation and terminology

We first define the notation and terminology used. Let a deterministic simulator be

represented by a function η(.). By deterministic we mean that the simulator will

always produce the same output for a given set of input variables (no randomness

involved). We define a vector of all input variables required for a single simulator

run as an event. Each event is denoted as a p-element vector of input variables

x = (x1, . . . , xp). We denote the output of the simulator as y, such that y = η(x).

The requirement is to evaluate the simulator N times at X = (x1, . . . ,xN),

where N is a large number. Suppose there is however, for practical computational

reasons or limited time, a restriction on the number of simulator runs that can be

performed. These are restricted to n, where n is much smaller than N .

We carefully select n events as a representative subset of the full set of events,

X . We define the selected events as the design and denote it as X = (x1, . . . ,xn) ⊆

X . We run the simulator at the design events and the corresponding outputs are

represented as yT = (y1 = η(x1), . . . , yn = η(xn)).
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We use these design events and corresponding simulator output to train the

GPE. Then we use the GPE to predict the output for the (N − n) non-design

events, X \ X = (xn+1, . . . ,xN) where we did not run the simulator. We derive a

probability distribution for (η(xn+1), . . . , η(xN)) given the training runs, y = η(X).

This distribution is derived by modelling η(.) as a Gaussian Process (GP) and can

be used to give predictions for the simulator output evaluated at non-design events

(X \ X). The GPE can also give an uncertainty estimation about its predictions

which serves as an indicator for how confident the GPE is in predicting at that input

value. For simplicity in the mathematical detail below we use x (no subscript) to

indicate an event that we would like to predict at.

In the Bayesian approach, we treat η(.) as a random variable simply because its

unknown. The simulator can give us the value of η(x) exactly, but without running

the simulator, we are uncertain about the value of η(x). We choose to represent the

uncertainty about η(.) with a GP.

A GP distribution is fully specified by its mean and covariance functions. In this

section, we illustrate how to use a GPE as a method to predict the output, y, for

new input values x given the training runs (X,y). This Section is based heavily on

Oakley (1999).

3.3.1 Toy example: one input, one output simulator

We describe a toy simulator with p = 1 input, and q = 1 output. We use this simu-

lator as a running example as we illustrate the methodology of fitting a univariate

GPE. We define the simulator function as y = 0.2x2 + 3 exp(−x) cos(2πx) where

x ∈ [−1, 2], but we assume that the simulator is computationally expensive, and so

we can only evaluate the function at a limited number of values. There are many

ways to select a subset of points over the input space, however for this example we

just pick 9 points that are equally spread over the input space. The training inputs
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and the corresponding training outputs, from the toy simulator function, are given

below and we wish to predict the simulator at two input values: (0.5, 1.75),

X =



−1

−0.85

0

0.25

0.4

0.75

1.2

1.5

2



, y =



8.35

4.27

3

0.01

−1.59

0.11

0.57

−0.22

1.21



.

Figure 3.1 shows the output of the toy simulator plotted against the input values

that range over the input space [-1,2]. The black points represent the training runs,

and the red crosses are the events where we wish to predict the simulator output.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
5

0
5

10

Input

O
ut
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t

Figure 3.1: Univariate toy simulator - the black points indicate the training runs
and the red crosses are the events which we wish to predict.
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3.4 The formulation of a GPE

3.4.1 Partitioning property of multivariate normal distribu-

tions

A useful property of multivariate normal (MVN) distributions which carries over to

GPEs is its partitioning property. Krzanowski (1988) goes through the proof in his

book, we choose only to present the result. Suppose

Z ∼MVN(µ,Σ),

where Z is an N × 1 vector and has a multivariate normal distribution with mean

µ, and variance Σ. Now partition Z into

y1
y2

 where y1 is an n × 1 vector and y2

is an (N − n)× 1 vector and µ, and Σ are partitioned accordingly into µ =

µ1

µ2

,

and Σ =

Σ11 Σ12

Σ21 Σ22

 where E(yi) = µi and cov(yi,yj) = Σij. Then f is given by:

y2|y1 = f ∼MVN(µ2|1,Σ2|1),

where

µ2|1 = µ2 + Σ21Σ
−1
11 (f − µ1), (3.1)

Σ2|1 = Σ22 − Σ21Σ
−1
11 Σ12. (3.2)
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3.4.2 Application of partition property to GPEs

Suppose we model η(.) as a GP where,

 (η(x1), ..., η(xn))T

(η(xn+1), . . . , η(xN))T

 ∼MVN(µ,Σ). (3.3)

Using the partition property, we know (η(xn+1), . . . , η(xN))T | (η(x1), ..., η(xn)) has

a multivariate normal distribution, and thus we can evaluate the conditional mean

and variance for the distribution following the procedure discussed in Subsection

3.4.1. The prediction of the simulator output at non-design events is given by the

conditional mean. The conditional variance describes the uncertainty around this

prediction. Hence, having chosen to model η(.) as a GP, we need to decide how to

obtain E[η(x)] and cov(η(xi), η(xj)).

For the toy example, we can rewrite Equation 3.3 as

(η(−1), η(−0.85), . . . , η(2))T

(η(0.5), η(1.75))T

 ∼MVN(µ,Σ). (3.4)

3.4.3 Prior beliefs of η(x)

Prior mean of η(x)

We can describe our prior expectation of η(x) generally as:

E[η(x)|β] = h(x)Tβ, (3.5)

where the vector h(.) consists of m known regression functions of x incorporating

our beliefs about η(.), and the vector β consists of m unknown coefficients. We

expect that using this general form of prior mean will always make it possible to

describe our beliefs and choose an appropriate form of h(.). For instance, if we
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believe η(.) has linear trends in its inputs (m = p+ 1), then we can state h(X)T =

(1, XT ) =
(
1, (x1, ...,xn)T

)
and β = (β1, ..., βm)T .

For our toy example, we assume that the simulator has a linear mean function

and as discussed later we assume that β has a weak prior. Therefore we write our

prior expectation as:

E[η(x)|β] =



1 −1

1 −0.85

1 0

1 0.25

1 0.4

1 0.75

1 1.2

1 1.5

1 2



 β1

β2

 .

Prior covariance of η(x)

We consider how we expect the true function to deviate from this prior expectation.

We expect there to be a high correlation between η(x) and η(x′) if x and x′ are

sufficiently close, and we expect this correlation to decrease with an increase in

distance between x and x′. Formally we write the covariance between η(x) and

η(x′) as

Cov(η(x), η(x′)|σ2) = σ2c(x,x′), (3.6)

for some correlation function, c(x,x′) which will respect our expectations above.

The parameter σ2 is an unknown variance parameter.

Numerous kinds of correlation functions have been used in the past, but in this

Chapter we present two correlation functions. A common and convenient (tractable)
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correlation function adapted from Sacks et al. (1989) is the Gaussian correlation

function. This is given as:

c(x,x′) =

p∏
i=1

exp

[
−
(
xi − x′i
δi

)2
]
. (3.7)

where δ is the correlation length vector with length p with the i - th element denoted

δi. The parameter, δi describes the strength of the correlation in the i-th dimension of

its input. The correlation between η(x) and η(x′) depends on the distance between

x and x′. The effect of δ is to re-scale the distance between x and x′. A low value of

δi, suggests that the output values are weakly correlated over a narrow range of the

i-th input xi. More generally, this most commonly used correlation function is often

preferred because its infinitely differential and thus is very smooth. However, Stein

(1999) (cited by Rasmussen (2006)) argues that such strong smoothness assumptions

may be too unrealistic for many applications and suggests the Matern correlation

function.

The Matern correlation function is given in the general form as:

c(x,x′) = σ2 1

Γ(ν)2ν−1

(√
2νr
)ν
Kν

(√
2νr
)

(3.8)

where Γ is the gamma function, Kν is the modified Bessel function, and r is the

squared sum of distance between inputs x and x′, scaled by δ as:

r =
[(x1 − x′1)2

δ21
+ ...+

(xp − x′p)2

δ2p

]0.5
,

(Rasmussen, 2006). In general, the correlation function would be chosen based on

any prior information that you have about the model. This would include infor-

mation on the shape of the function, how “wiggly” it is, how differentiable it is,

etc. The choice of the covariance functions becomes more crucial as n gets smaller.
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Rasmussen (2006, Chapter 4) discusses these in more detail.

Prior distribution for the hyper-parameters of η(x)

The prior mean and covariance of η(x) depend on the hyper-parameters β, σ2 and

δ, respectively. For the prior distribution of β and σ2 a weak prior is used generally:

p(β, σ2) ∝ σ−2. (3.9)

However, it is possible to include prior knowledge of η(.) through the prior dis-

tribution of these hyper-parameters. Oakley (2002) introduces a way of including

expert prior knowledge about the simulator in the GPE. He also shows that where

the number of training runs is limited, then including proper prior beliefs can be

beneficial in reducing the posterior variance of the GPE.

We estimate the value of δ by maximum likelihood estimation instead of a full

proper Bayesian inference. Therefore we do not consider a prior for it, and we discuss

the estimation of δ in the next Section.

In summary, the prior model for η(.) is given by

η(.)|β, σ2, δ ∼ N
(
h(.)Tβ, σ2c(., .)

)
. (3.10)

3.4.4 Deriving the posterior distribution: η(x)|y, δ

Next, we observe η(.) at the design events x1, ...,xn. This produces simulator output

data:

yT = (y1 = η(x1), ..., yn = η(xn)).

We then update the prior distribution of η(.) using the partitioning property of
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multivariate normal distributions. Given

y|β, σ2, δ ∼MVN(Hβ, σ2A) (3.11)

where

HT = (h(x1), ...,h(xn)), (3.12)

A =



1 c(x1,x2) · · · c(x1,xn)

c(x1,x2) 1
...

...
. . .

c(xn,x1) · · · 1


, (3.13)

and equation (3.10), we can apply the partitioning property of multivariate normal

distribution to get

η(.)|β, σ2, δ,y ∼ GP (m∗(.), σ2c∗(., .)), (3.14)

where,

m∗(x) = h(x)Tβ + t(x)TA−1(y −Hβ),

c∗(x,x′) = c(x,x′)− t(x)TA−1t(x′),

t(x)T = (c(x,x1), ..., c(x,xn)),

yT = (η(x1), ..., η(xn)).

The parameters, β and σ2 are regarded as nuisance parameters, and thus we

aim to derive the distribution of η(.)|δ,y unconditional on β and σ2. To do this we

combine (3.9) and (3.11) using Bayes’ Theorem to get a posterior distribution for
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β|δ,y and σ2|δ,y. But first, we consider the likelihood of β and σ2:

f(y|β, σ2, δ) = (2πσ2)(−
n
2
) exp

{
− 1

2σ2
(y −Hβ)TA−1(y −Hβ)

}
, (3.15)

and note that

(y −Hβ)TA−1(y −Hβ) = (β − β̂)THTA−1H(β − β̂) + (n−m− 2)σ̂2, (3.16)

where

β̂ = (HTA−1H)−1HTA−1y (3.17)

σ̂2 =
yT (A−1 − A−1H(HTA−1H)−1HTA−1)y

n−m− 2
. (3.18)

The resulting posteriors are proper as long as n > m+ 2. Then applying the Bayes’

Theorem, we note that β, σ2|δ,y has a normal inverse gamma distribution:

f(β, σ2|δ,y) ∝ σ2−
n+2
2 exp

{
1

2σ2
(β − β̂)THTA−1H(β − β̂) + (n−m− 2)σ̂2

}
.

(3.19)

Given the properties of normal inverse gamma distribution, it can be seen that

β|σ2, δ,y ∼ N
(
β̂, (HTA−1H)−1

)
, (3.20)

σ2|δ,y ∼ (n−m− 2)σ̂2χ−2n−m. (3.21)

If we combine the distribution of η(.)|β, σ2, δ,y (3.14) with the distribution of

β|σ2, δ,y (3.21) and integrate out β, we obtain

η(.)|σ2, δ,y ∼ GP (m∗∗(.), σ2c∗∗(., .)), (3.22)
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where,

m∗∗(x) = h(x)T β̂ + t(x)TA−1(y −Hβ̂),

c∗∗(x,x′) = c∗(x,x′) +
(
h(x)T − t(x)TA−1H

)
× (HTA−1H)−1

(
h(x)T − t(x)TA−1H

)T
,

Similarly, if we combine the distribution of η(.)|σ2, δ,y (3.22) with the distri-

bution of σ2|δ,y (3.21) and integrate out σ2, we obtain the following distribution

conditional on δ

η(x)−m∗∗(x)√
n−m−2
n−m σ̂

√
c∗∗(x,x)

|δ,y ∼ tn−m, (3.23)

where tn−m is a student t distribution with n−m degrees of freedom.

This is written in Bastos and O’Hagan (2009) as:

η(.)|y, δ ∼ StudentProcess(n−m, m∗∗(.), σ̂2c∗∗(., .)) (3.24)

This multivariate t distribution gives us a quick approximation of η(.) for any x

as m∗∗(x) does not depend on η(x). For input point xT , the point estimate is given

by the posterior mean, m∗∗(xT ) and the posterior variance of this point estimate is

given by c∗∗(xT ,xT ). At training inputs, X, the posterior mean passes through the

observed points exactly (as shown in (3.39)) with zero variance (3.43), as expected

(explained further in Appendix 3.A).

Estimating the correlation length parameter, δ

The posterior result of the GPE is still conditional on δ. This is because the corre-

lation functions c(., .) contain a vector δ of parameters which describe the strength

of correlation between outputs in each of the input dimension. The values of these

parameters are unknown since the function η(.) is unknown, and there is no analytic
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3.4. The formulation of a GPE Chapter 3

way of dealing with this uncertainty, unlike with parameters β and σ2. The simplest

option is to keep δ fixed at a particular value, indicating an appropriate distribution

for the roughness of η(.). Prior knowledge of the roughness of η(.) may suggest a

value for δ, however, alternatively we could estimate δ from the data.

One of the ways this can be done is by using the posterior mode, as suggested

by Haylock (1997). The density function of y conditional on β, σ2 and δ is given as

f(y|β, σ2, δ) =
|A|− 1

2

(σ2)
1
2
n(2π)

n
2

exp

[
−(y −Hβ)T

A−1

2σ2
(y −Hβ)

]
, (3.25)

which can be thought of as a likelihood function for β, σ2 and δ. Taking the product

of this likelihood with the weak prior of β and σ2 (3.9), and independently an

uninformative uniform prior on δ, the posterior distribution can be obtained as:

f(β, σ2, δ|y) ∝ |A|− 1
2

(σ2)
1
2
(n+2)(2π)

p
2

exp

[
−(y −Hβ)T

A−1

2σ2
(y −Hβ)

]
. (3.26)

Integrating out β gives:

f(σ2, δ|y) ∝ |A|
− 1

2 |HTA−1H|−1

(σ2)
1
2
(n+2−m)

exp

[
−(y −Hβ̂)T

A−1

2σ2
(y −Hβ̂)

]
, (3.27)

and finally integrating out σ2 and recognising that the resulting equation is propor-

tional to an inverse gamma density function gives:

f(δ|y) ∝ (σ̂2)−
(n−m)

2 |A|−
1
2 |HTA−1H|−

1
2 . (3.28)

We find an optimal value of δ by maximising the output of this likelihood function.

Toy GPE

For our toy example, we first calculate an estimate of δ by maximising the likelihood

function (3.28). We choose to use the Gaussian correlation function (3.7). We
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estimate the value as δ = −0.65 and using this value we can calculate β̂ and σ̂2

using equations 3.17 and 3.18 respectively. We note that both these calculations

require the A matrix, which is a correlation matrix as shown in (3.13). We show

the calculations for one element of the matrix, A1,2 = c(x1, x2). We note that p = 1

and thus (3.7) reduces to

c(xi, x
′
i) = exp

[
−
(
xi − x′i
δ

)2
]
.

Substituting the relevant values will result in

c(x1, x2) = exp

[
−
(
−1−−0.85

−0.65

)2
]
.

= 0.92.

We use the same approach to calculate every element in the A matrix. Below we

show the values (to the nearest two decimal places) of β̂ and σ̂2:

β̂ =

 3.92

−2.7

 .

σ̂2 = 27.33.

We derive the GPE predictions and associated uncertainty around these predictions

as

m∗∗

 0.5

1.75

 =

 −1.83

0.72

 (3.29)

σ̂2c∗∗

 0.5

1.75
,

0.5

1.75

 =

 0.01 −0.05

−0.05 1.3

 . (3.30)
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We use this GPE to predict the simulator output and the associated prediction

uncertainty at more input values. We plot the result in Figure 3.2. The predicted

values (red dashed line) are very close to the true simulator output (black solid line)

for input values 0 and above. For the input values between [−0.8, 0] the prediction

uncertainty is quite large. This suggests that the GPE is very uncertain about

predicting at these input values. Moreover, the prediction in this area is not even

within the 95% interval. We can improve this by adding more training runs within

that interval. In the next Section we look at diagnostics which are useful to assess

the performance of the GPE and suggest ways to improve the GPE.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
5

0
5

10

Input

O
ut

pu
t

Figure 3.2: Univariate toy GPE - the points indicate the training runs, the red
crosses are the events which we predict at, the red dashed line shows the GPE
predictions and the shaded region represents the uncertainty around the predictions

3.5 Diagnostics for validating GPEs

It is important for the GPE to correctly represent the simulator, otherwise, infer-

ences made using the GPE may not be valid. It is therefore, necessary to validate

the GPE before using it for prediction and any further analysis. Invalid predictions
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could be a result of certain inappropriate assumptions that are made when fitting

the GPE. It could be that the specified prior mean and correlation function do not

appropriately represent the simulator. This could be due to the simulator being very

responsive to small changes in the inputs between certain values therefore invalidat-

ing the stationarity assumption for the prior correlation function. If this is the case,

then we expect extremely wide (narrow) credible intervals of the GPE predictions

in regions of low (high) responsiveness. A GPE may also be invalid if the estimates

of the hyper-parameters are inappropriate, which could be due to an unfortunate

choice of the training data, resulting in predictions being consistently too low (or

high) in areas of the input space.

A beneficial property of GPEs that we have seen is its ability to perfectly predict

the simulator output at a design event with zero uncertainty. This means that when

validating the GPE, we have to use events that are not included in the design. We

could leave out some of the design events when fitting the GPE so that we can use

them for validation. Suppose that the events we keep aside for validation, which

we refer to as validation events, are denoted as X̃ = (x̃1, . . . , x̃v). The result of the

GPE at validation events modelled by η(X̃)|y, is a posterior mean, E[η(X̃)|y], and a

posterior variance, V [η(X̃)|y] and
√
V [η(X̃)|y] is the posterior standard deviation.

We refer to the true simulator output for the validation events as simulator output

denoted by ỹ = (ỹ1, ..., ỹv). We refer to the predicted output for the validation

events as GPE output denoted as

E[η(X̃)|y] = (E[η(x̃1)|y, . . . E[η(x̃v)|y]) .

A common calculation that we will use when performing the diagnostics is the

residual error (or the prediction error), ε. This is given by εi where ε = (ε1, . . . , εv)
T

and

εi = (ỹi − E[η(x̃i)|y]) . (3.31)
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In this Section we discuss a series of diagnostic tests carried out to assess the

performance of GPE output against the simulator output. These diagnostics assess

the validity of some assumptions or predictions made. In some cases an appropriate

reference distribution is used for comparison. If the observed value of the diagnostics

is too extreme comparatively then we have what we call a validation failure. If this

is the case, and especially when these failures are numerous and too extreme, then

modifications need to be applied to the GPE by either rebuilding the GPE with

different training runs (or with more data) or choosing different priors. However, if

there are only a few diagnostic errors or minor validation failures then the GPE can

be declared valid and is often a logical decision. The presentation in this Section is

based on Bastos (2010) and Bastos and O’Hagan (2009).

Coverage Statistic

We define coverage as the proportion of simulator output values (for the validation

events) that lie between the 100(1−α)% range of the GPE predicted credible interval.

A typical value for α is 0.05 such that we are looking for the 95% credible interval.

If we choose a higher α, we increase the probability of having a higher proportion

of values that lie within the interval. Suppose for residual εi, the function g(εi) is

given by:

g(εi) =


1, if |εi| < tn−p;(1−α/2) ×

√
V [η(x̃i)|y],

0, otherwise.

(3.32)

Then the coverage value can be calculated by the following formula:

Coverage =

∑n
i=1

(
g(εi)

)
n

, (3.33)

where tn−p;(1−α/2) is the 100(1 − α)% quantile of a student t distribution. The

closer the coverage value is to 100(1 − α), the better the GPE calibration of the
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uncertainty intervals. This statistic can however be misleading if the average width

of the credible interval of the GPE output is high.

Normalised Root Mean Square Error (NRMSE)

RMSE is a another measure of the residual error. The RMSE is calculated by the

following formula:

RMSE =

√∑v
i=1 ε

2
i

v
.

RMSE penalises large residual errors more heavily than smaller residual errors. The

RMSE value is in the same unit as the value being predicted and its value is relative

to the range of the output. Stating the range of the output values allows for judging

how good the GPE is. A drawback for using RMSE is that it cannot be used to

compare with different outputs or even between GPE fits that use different training

data.

NRMSE is a unit form of RMSE which normalises the RMSE to the range of

the simulator output, where lower values indicate a better approximation. NRMSE

is calculated using the following formula:

NRMSE =
RMSE

(ỹmax − ỹmin)
.

Unlike the RMSE, this statistic can be used to compare results across different

GPE’s.

Standardised prediction errors (SPE)

Mathematically, the SPE is written as

DI
i (ỹi) =

εi√
V [η(x̃i)|y]

. (3.34)
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Each DI
i (ỹi) is a validation diagnostic on its own, with the standard normal distri-

bution as a reference distribution. Thus
∣∣DI

i (ỹi)
∣∣ > 1.96 indicates a conflict between

the simulator and the GPE. If there are a few SPE values that meet this criterion,

they could be ignored, or they may indicate a local problem around those events.

Further investigation can be carried out by adding more validation events around

the problematic ones to assess the situation further. A large number of values of

the same sign that meet this criterion may indicate that the prior mean function or

the estimate of β may not be appropriate. It could also mean that the stationarity

assumption is invalid. These problems could be the case especially if the errors are

of the same sign. If the large values are close to the design events then it may

indicate an overestimation of the correlation parameters, otherwise the estimate of

the hyper-parameter σ2 may be inappropriate. Complementary diagnosis apply to

unusually small SPE values.

Mahalanobis Distance (MD)

Bastos and O’Hagan (2009) define Mahalanobis Distance, DMD, as a summary

statistic of the SPE between the GPE and the simulator output as:

DMD(ỹ) = εT
(
V (η(X̃)|y

)−1
ε, (3.35)

which takes into account correlation amongst the output. The reference distribution

for DMD(ỹ) is the scaled F-Snedecor distribution with degrees of freedom as v and

(n − m) where m is the dimension of h(.). If DMD(ỹ) is too large (small) com-

pared to the reference distribution then it indicates that the GPE is over-confident

(under-confident). This suggests that the uncertainty expressed in the GPE pre-

dicted posterior variance is too low (high) compared to the observed residuals, β

has been poorly estimated and, σ2 is underestimated (overestimated) or correlation

length parameters δ have been overestimated (underestimated). A moderate value
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of DMD(ỹ) suggests the GPE is valid.

We choose to present this diagnostic graphically. We plot the probability density

of random samples drawn from a F-Snedecor distribution. We also plot the value of

DMD(ỹ) as a vertical line. We expect that the vertical line lies within the boundaries

of the distribution. If the vertical line is on the left of distribution the MD is said

to be too small. Conversely, if it is on the right of the distribution the MD is said

to be too large.

Variance Decomposition

Interpreting SPE’s may be misleading as the individual errors may be correlated, and

we may fail to recognise conflicts between GPE and simulator. Bastos and O’Hagan

(2009) define G to be a standard deviation matrix such that V [η(X̃)|y] = GGT .

Then the vector of transformed errors

DG(ỹ) = G−1ε, (3.36)

are uncorrelated and have unit variances. There are different choices of the decom-

position of G. One choice is a Cholesky decomposition, which is an upper triangular

matrix (with positive diagonal entries), denoted as R, such that V [η(X̃)|y] = RTR.

An arbitrary permutation of rows and columns of matrix V [η(X̃)|y] can lead to

a different choice of R, and thus we may be able to detect different interpretations

of the problem. Bastos and O’Hagan (2009) suggest that the most effective permu-

tation would be such that the first pivoting element index has the largest variance

conditional on the training data, the second pivoting element index has the largest

variance conditional on training data and the first pivoted element in the sequence,

the third pivoting element index has the largest variance conditional on training data

and the first two pivoted elements, and so on. They define the vector of transformed

errors with this way of permuting the elements as the pivoted Cholesky errors, which
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can be obtained by applying the pivoted Cholesky decomposition. This returns a

matrix G such that P TV [η(X̃)|y]P = RTR, where P is a permutation matrix and

R is the Cholesky decomposition matrix of V [η(X̃)|y]. Permutation matrices are

orthogonal, thus V [η(X̃)|y] can be rewritten as V [η(X̃)|y] = PRTRP T such that

G = PRT is the Pivoted Cholesky Decomposition (PCD) of V [η(X̃)|y] in (3.36)

which we refer to as DPC(ỹ).

We present this graphically by plotting the elements of the vector DPC(ỹ) against

the pivoting index. The pivoting index is based on the order of the pivoted Cholesky

errors. The error is expected to fluctuate around 0 with a constant variance and no

special patterns. Too many large errors indicate an underestimation of variance and

vice versa. Both cases can also suggest a non-stationary simulator. Extremely large

(or small) errors at the beginning of the plot (i.e. on the left side) indicates under-

estimation (or overestimation) of predictive variance or non-stationarity. However,

extreme large (small) errors at the end of the plot (i.e., on the right side) indicates

overestimation (or underestimation) of the correlation length parameters.

Quantile-Quantile (QQ) plots

Another diagnostic that we look at is the QQ plot of the pivoted Cholesky errors

(which aren’t independent). In a QQ plot if the points lie close to the 45 degree-

line through the origin, then the normality assumption of errors is a reasonable

assumption. If the points cluster around in a line with slope greater (or lesser)

than one, then the plot suggests that the predictive variability was underestimated

(or overestimated). Curvature in the plot suggests non-normality, while outliers at

either end of the plot suggests non-stationarity or local fitting problems.
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Cross Validation (CV)

Suppose, that it is only possible to model n runs from the simulator, and all the n

runs are crucial to train the GPE. In this case validation can be performed using

cross validation. This is where the dataset is split into k smaller sets and validation

is done on each of these sets in a loop using the other sets as training data. This is

known as the k-fold CV.

Given a set of n model runs in a random order, divide the training runs into k

folds. This should result in k chunks of approximately n
k

model runs each. Then,

for i = 1, . . . , k, we train the GPE using all the model runs not in fold i, and

test the GPE using the model runs in fold i using diagnostics mentioned in this

section. By using k fold CV, we may be able to identify bad GPEs, however it may

result in higher variances of the predicted values. The predicted values obtained

from performing CV can then be diagnosed using similar methods mentioned in this

section. We do not apply cross validation techniques in this thesis, but we choose

to mention it for guidance purposes.

3.6 Case Study - Greater Wash, UK

In this case study we aim to illustrate how to use a GPE in a real application context,

the benefits of using a GPE and how it performs in comparison to a traditional

method. We explore these using the context of case study 2 as described in Chapter

2.2.2.

Traditionally, at HR Wallingford, a relatively simple meta-modelling technique

has been applied to a range of applications. The technique used is called the “look up

table“ (LUT) approach. It is widely applied in relation to coastal flood forecasting

and wave modelling applications. Some examples include work done by Environ-

mental Agency and Defra (2004), Maddux et al. (2006), Chawla et al. (2012), and
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Deltares (2017), where they use the LUT table approach to speed up their analysis.

The Traditional LUT Approach

Numerous projects carried out at HR Wallingford require the SWAN model to be

evaluated at a large number of events. Typically a computational burden or time

constraint is imposed. Thus to avoid running the simulator at all the events a

representative subset of events are selected to be run by the simulator. These events

set the basis of an interpolation matrix to predict the output of the large number

of events.

The LUT approach uses a regular grid technique to select the representative

design events. For the selection of the design events, the input data are discretised

into a LUT matrix, where a user selects a number of values from each input dimen-

sion and chooses to run the model at all combinations. In practice, the modeller

would typically place constraints on the resolution and limits for the design points

based on prior knowledge of, for example, the geography of the site and boundary

conditions. We note that with this approach the selected design does not cover the

input parameter space well, as there are only a few selected design points for each

input (see Figure 3.3). Additionally, the number of events required in the design

can become excessive if the problem is defined by a large number of input variables.

Once the design is selected, the simulator is run for these events and model

evaluations are obtained. Multi-dimensional linear interpolation is then used to

evaluate the model at all the remaining events that we wish to run the simulator

for. On inspection of the results additional events can be run and used to fill in parts

of the space where it is apparent there are limitations relating to the use of linear

interpolation, i.e. where there are non-linearities in the output response surface.

For the LUT approach in this case study the time series of offshore wave and

wind conditions were discretised into a five dimension LUT comprising 8 discrete
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wave heights, 9 wave directions, 7 wind speeds, 12 wind direction sectors and 3 water

levels. Excluding combinations that did not occur in the offshore time series, this

gave a total of approximately 16,000 design points.

The GPE Approach

For the GPE approach, we also select a suitable subset of design points that represent

the full set of events. In general, in order for the GPE to give robust predictions,

it is important that the design points are selected in a way that ensures they are

well spread out, preferably as far as possible from each other, covering the entire

input parameter space. There are many different ways of selecting design points.

The regular grid method, used in the LUT approach, does not work well with GPEs

because of its collapsing property, i.e. multiple points have a fixed coordinate value

when projected onto a variable axis, (Camus et al., 2011b). For each particular

dimension (keeping values of other dimensions constant), there would only be a few

unique values to estimate from. This is because of the matrix like structure when

selecting the data.

There are alternative methods to select design points (detailed discussed in Chap-

ter 5), however here we choose to use a standard maximum dissimilarity algorithm

(MDA) approach as described by (Camus et al., 2011a’b), and as applied in the con-

text of coastal analysis by Camus et al. (2011a’ 2013); Gouldby et al. (2014). This

algorithm analyses the data using a Euclidean measure of distance between points

in the multidimensional space. Having normalized the input variables, and given an

initial value (the starting point), the MDA selects the next point that is the furthest

away in Euclidean distance in the multidimensional space. This method outputs

a set of design points which efficiently represents the full set of events. Using this

approach we select a 1000 events to represent the input parameter space.

Again, once the design is selected, the simulator is run for these events and model
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evaluations are obtained. We then fit a univariate GPE to each of the outputs from

the simulator (wave height, wave period, and wave direction) given the design events.

Note however, due to the periodic nature of the offshore wave direction, we convert

wave direction to x and y components as described further in Section 5.3. We

choose a linear mean function and a Gaussian covariance function to describe our

prior beliefs of the simulator for each of the outputs.

3.6.1 Results

Figure 3.3 shows a plot of the selected design for the two approaches overlaid on

the full set of events. For the regular grid from the LUT approach (lower triangular

matrix) the complete set of approximately 16,000 events are plotted; for the GPE

approach (upper triangular matrix) only the first 150 of the 1,000 design events

selected using MDA are plotted. The full set of events, X are plotted in a lighter

colour, and the selected design points are plotted in black. Visual inspection of

Figure 3.3 shows the design points for the LUT approach are inefficient in providing

coverage of the input variable space when compared to the MDA approach. For

example, the plot of wind speed against water level appears to have much fewer

events for the LUT approach. This is because they are in the form of a recti-linear

grid, and many events “collapse” on top of each other. For example see the water

level against wind speed in Figure 3.3; there are only three unique water levels and

seven unique wind speeds, however other combinations do exist.

This figure helps us visualise the data behind each of the approaches, and thus

gives us more confidence in the GPE approach as the MDA method ensures that we

are efficiently representing the full set of events, even with a small number of points.

The SWAN model was run for the 16,000 design points for the LUT approach

and the subsequent results at the near shore point were used to populate the LUT.

This LUT was then used to predict the output for the validation events using mul-
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Figure 3.3: Design points selected using the Regular grid (black asterisks – lower
triangular matrix) and the MDA approach (black circles – upper triangular matrix).
The lower triangular matrix shows poor coverage in each dimension compared to
the upper triangular matrix.

tidimensional linear interpolation. For the GPE approach, SWAN was run for the

1,000 design events selected using MDA. To gain an understanding of the perfor-

mance of the GPE as the number of design events increases, separate GPEs were

fitted to increasing number of design points, ranging from 10 to 1,000. The NRMSE

statistics of the LUT and GPE are presented in Figure 3.4, where the dashed line

shows the LUT NRMSE and the solid line shows the GPE NRMSE for various
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GPEs.

Figure 3.4: NRMSE for Wave height (measured in metres), period (seconds)and
direction (degrees) using LUT (dashed line – with 16000 design events) and GPE
(solid line – using between 10 to 1000 design events). The GPE outperforms the
LUT using only 200 design points. Further gains in accuracy with the GPE are
possible with more design points.

The intersection of the dashed and solid line in Figure 3.4 is where the GPE

approach starts to outperform the LUT approach. It is evident, from Figure 3.4

that in this case study the GPE approach achieves a similar level of accuracy as

the LUT approach measured by the NRMSE over the validation dataset using only

about 200 design events, in contrast to the 16,000 used for the LUT. This is a big

saving on computational time. Moreover, we can see that further gains in accuracy

can be made if more design events were used. It is noticeable that there are a

few jumps in the prediction errors in the GPE approach, on average however, the

NRMSE decreases with an increase in design events. For the subsequent analysis

on this case study, a GPE fitted to 500 design events has been used.

Figure 3.5 shows a scatter plot of the LUT (top panel) and GPE (bottom panel)

predictions against the true SWAN output for the full validation dataset. We note

that in reality it is seldom possible to obtain such a large validation dataset, however

we choose to present the following diagnostics using the full dataset to show the

comparison on performance against the LUT approach. Later, we will use a subset
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Figure 3.5: Comparison of approximations using LUT (upper panel) and GPE-
MDA (lower panel) with true SWAN output. The LUT has a wider spread of points
compared to the GPE method which indicates worse performance. The off-diagonal
cluster of points for the wave direction plots are due to the periodic nature of this
variable.

of the MDA selected design events for validating the GPE. From Figure 3.5 it is

evident that the predictions using the LUT approach show slightly more scatter

whereas the predictions from the GPE approach, appear to have a better fit. The

wave height plot shows that both methods perform well. This may be because

of a high correlation between the inputs and wave height compared to the other

outputs. From Figure 3.5 we can conclude that, overall the GPE approach results

in better predictions compared to the LUT approach and were achieved with much

fewer design points (500) compared with the LUT. Note the off diagonal cluster of
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points for the wave direction plot in Figure 3.5 are due to the periodic nature of this

variable, where 0◦ is the equivalent to 360◦ for example.

Figure 3.6: Time series plot of Significant wave height, wave period and wave di-
rection showing the predictions from LUT (dotted blue line) and GPE (dashed red
line). The shaded region represents the 95% credible interval from the GPE. The
true SWAN output is presented with a solid black line (or dots in the bottom panel)

The 5430 validation points correspond to events occurring at different times.

We select a subset of 75 consecutive times and plot their means and confidence

intervals. Figure 3.6 illustrates the predictions from both the approaches by showing

a time series of plot of these events for near shore wave height, wave period and
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wave direction for a sample within the validation dataset. In each plot, the dotted

(blue) line represents the predictions from the LUT approach and the dashed (red)

lines represent the GPE approach. The shaded region in the top and middle panel

represents the 95% credible intervals for the GPE approach which represents the

emulator uncertainty around the GPE prediction. For the top panel it is evident

from the graph that both approximation methods very accurately reproduce the

SWAN model predictions of near shore wave height for this time period. Moreover

the 95% credible interval is very narrow suggesting that the GPE has high levels of

confidence about its prediction.

The middle panel shows that the GPE approach provides a better (or similar)

estimate of SWAN output than the LUT approach as the GPE line appears closer to

the SWAN line compared to the LUT line. Moreover, it also shows that the SWAN

output appears between the 95% credible intervals of the GPE for a majority of

time. It is also evident that the credible intervals widens and narrows depending on

how uncertain the predictor may be at a particular event based on how close it is to

a design event. Note that for when time (x axis) is about 105 hours it is evident that

the GPE credible interval reduces to zero and the prediction for the GPE approach

is exact. This is because that event is a design event used to train the GPE. This

property holds for all design events in the GPE approach. From the bottom panel

it is also evident that the LUT predictions are slightly further away from SWAN

when compared to the GPE predictions.

Next, we validate the GPE’s (fitted with 500 design events) that we use to predict

near shore wave height and wave period (we do not include direction here, because

we have used x and y components rather than degrees (more details in Section 5.3)).

In a more realistic validation scenario we would not have a large number of events

where we can validate the GPE. Here, we choose to validate the GPE based on the

next 100 MDA selected events (i.e. MDA event numbers 501 to 600). We use the
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MDA selected events because these are the events from the full dataset that are the

most distinct from each other, hence enabling us to validate the GPE on the most

difficult subset for the GPE.

Figure 3.7: Validation plot of the GPE fit for Wave height (Hsig)

The top left plot in Figure 3.7 and Figure 3.8 shows the GPE predictions plotted

against the true simulator output. The diagonal line represents perfect predictions

and the error bars represent the 95% credible interval from the GPE prediction. This

plot helps to add value to the coverage statistic. The coverage statistic summarises
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Figure 3.8: Validation plot of the GPE fit for Wave period (Tm02)

the percentage of error bars that pass through the straight line. We also note how

wide the error bars are and if the they are consistently too wide or too narrow.

We note that the coverage value for GPE predictions for wave height is 0.88

and for wave period is 0.84. This means that true simulator wave height and wave

period lie within the GPE predicted uncertainty 88% and 84% of the times. We can

deduce that the GPE is slightly over confident about its predictions. It is evident

from the top left plot in Figure 3.7 and Figure 3.8 that although it looks like the
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GPE predicts SWAN well, the estimated uncertainty is quite small for around 15%

of the points. The latter is less clear in Figure 3.7.

We note that the NRMSE for wave height GPE predictions is 0.01 and for wave

period is 0.07. This suggests that the predictions are really close to the true simulator

value.

The top right plot in Figure 3.7 and Figure 3.8 shows a QQ plot of the pivoted

Cholesky errors. It is evident from Figure 3.7 that most of the points lie close to

the 45 degree-line. We note that the cluster of points has a gradient greater than

one, which again suggests the posterior variance was underestimated, (Bastos and

O’Hagan, 2009). Similarly for Figure 3.8, we note that the gradient of the cluster of

points is greater than one. However we also note that the points curve off in the tail

of the distribution which may suggest non-normality. Moreover, we note for both

figures that they are a few outliers in the tail of distribution which suggest local

fitting problems.

The bottom left plot in Figure 3.7 and Figure 3.8 shows a plot of the pivoted

Cholesky errors against the pivoting index. We note that most of the points lie

between the two dotted lines that represent two standard deviations of a standard

normal distribution. For both plots there are a few points that are above and below

the dotted lines, but there does not seem to be a recognisable pattern. This can

suggest a non-stationarity simulator but the errors are not large enough to suggest

critical failures.

The bottom right plot in Figure 3.7 and Figure 3.8 shows the MD statistic (the

red vertical line) overlaid on a reference distribution. For both the plots the red line

lies on the right hand side of the distribution. It is evident that the DMD(Ỹ ) value

is moderately big and suggests that the GPE is slightly overconfident.

For the GPE for wave height and wave period, the validation failures are due to

the overconfidence in the GPE and hence the predicted variance is low. To some
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extent this is a tolerable validation failure and can be overlooked. Alternatively,

if time permits, we could try to overcome this problem by refitting the GPE to a

different set of design events, choose different priori, or we could increase the number

of our design events, although this may not always be possible.

3.6.2 Discussion of results

The performance of two meta-modelling techniques has been compared for the spec-

tral wave model SWAN, which can be expensive to run. The traditional LUT

approach uses a regular grid and multidimensional linear interpolation techniques,

whilst the GPE approach uses a design selection method that chooses the most

dissimilar events from a dataset (MDA) and then uses the GPE to approximate.

We have shown the regular grid does not usually cover the marginal input space

efficiently except possibly when combined with the modeller’s prior knowledge so

that the grid resolution may be increased around important areas. The number of

design points required increases quickly with the number of input dimensions when

using the regular grid approach. The linear interpolation technique, although easy

to understand and implement, only utilises the input-output relationship from the

closest design points rather than from potentially a much wider range as the GPE

does. As a result, the LUT approach requires a much higher number of training

runs in order to match the accuracy of the MDA approach, thus proving to be

computationally expensive in comparison with the MDA approach.

In contrast, for the GPE approach, the design points provide efficient coverage

both marginally and multi-dimensionally and the selection can be performed with

limited prior knowledge. The GPE approximation technique is also superior to linear

interpolation in a way that the trend of the output is estimated from all points in the

design, rather than only the nearest points, as is in linear interpolation. The GPE

allows modelling of fairly complicated functional forms. Another advantage of the
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GPE is that the output is a distribution. This can be used as an input for subsequent

models, or sensitivity and uncertainty analysis as uncertainty can be appropriately

evaluated using the relevant posterior distributions. For this case study, it has been

shown that the GPE approach is better than the traditional LUT approach in terms

of overall computational efficiency and accuracy. The GPE approach can achieve

similar RMSE with less than 10% of the design points used by the LUT approach.

We note that it is necessary to realise the context of the application, i.e. if

accurate predictions are all that is necessary, over or under estimation of the pre-

dictive uncertainty may not be worthwhile investigating further. However if the

predictions and uncertainty around these predictions are both required for further

analysis then it may be more critical to investigate these errors. Nevertheless, it is

always advisable to examine the diagnostics to ensure that nothing unexpected is

going on.

3.7 Conclusion

In this Chapter, we have shown that a basic univariate GPE approach, with only a

limited number of design events, can give quite accurate predictions and prediction

uncertainty estimates. We also describe several diagnostics that can be used to

assess the performance of the GPE. We go on to compare a basic GPE with a

traditional approach and prove that the GPE can give accurate predictions compared

to the conventional approach. In the case study presented in this chapter, we use a

univariate GPE for each output assuming that the output variables are independent.

Further gains are expected to be made using multivariate GPE approaches which will

enable us to model all the outputs jointly to incorporate the dependencies between

output variables. The next Chapter will look at approaches to modelling multiple

outputs jointly.
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Moreover, by requiring fewer simulator runs to training a GPE compared to

traditional methods, the use of the GPE approach allows a potential increase in

the spatial resolution or complexity of the model. For example, one could compare

how close to the physical observation SWAN is and focus on how to close this gap,

through modelling more of the physical processes and at higher resolutions. The

GPE approach also facilitates an efficient uncertainty and sensitivity analysis.

This method has proven to be effective in practice at HR Wallingford. A recent

national scale analysis undertaken in England has used the MDA and GPE technique

to generate a large near shore wave dataset. This data set has the potential to be

used for a wide-range of purposes including a coastal flood risk assessment, and for

use in climate change impact assessments and coastal flood forecasting (Wyncoll

et al., 2016; Gouldby et al., 2016).
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Appendix

3.A Perfect prediction at training event

In this appendix, we first show that the posterior mean is equal to the simulator

output if predicting at one of the training events. Then, we show that this prediction

has zero posterior variance.

We recall that the posterior mean of η(.)|δ,y is given by the equation:

m∗∗(x) = h(x)T β̂ + t(x)TA−1(y −Hβ̂)

Note that

Hβ̂ =


h(x1)

T

...

h(xn)T

 β̂. (3.37)

Note also that we can write A = (t(x1), . . . , t(xn)). It then follows that

AA−1 =


t(x1)

T

...

t(xn)T

A−1 =



1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1
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and that

t(xi)
TA−1 =

(
0 . . . 0 1 0 . . . 0

)
(3.38)

Then for a single point xi

m∗∗(xi) = h(xi)
T β̂ + t(xi)

TA−1(y −Hβ̂)

= h(xi)
T β̂ + (yi − h(xi)

T β̂) (from equation (3.37) and (3.38))

= yi (3.39)

Similarly, the posterior variance of η(.)|δ,y is given by the equation: σ2c∗∗(., .),

where:

c∗∗(x,x′) = c∗(x,x′) +
(
h(x)T − t(x)TA−1H

)
× (HTA−1H)−1

(
h(x)T − t(x)TA−1H

)T
.

We note that for any input i

t(xi) = c(xi,xi) (3.40)

and

c(xi,xi) = 1 (3.41)

For a single point xi

c∗(xi,xi) = c(xi,xi)− t(xi)TA−1t(xi) (from equation 3.14)

= 1− t(xi) (from equation 3.40 and 3.41)

= 0 (from equation 3.41) (3.42)

55



3.A. Perfect prediction at training event Chapter 3

The posterior variance for point xi is

c∗∗(xi,xi) = c∗(xi,xi) +
(
h(xi)

T − t(xi)TA−1h(xi)
T
)

× (HTA−1H)−1
(
h(xi)

T − t(xi)TA−1h(xi)
T
)T

=
(
h(xi)

T − h(xi)
T
)

(HTA−1H)−1
(
h(xi)

T − h(xi)
T
)T

(from equation 3.42 and 3.38)

= 0 (3.43)
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Chapter 4

GPEs for multivariate output

4.1 Introduction

In this Chapter we first discuss types of multivariate output and common approaches

of emulating these multiple outputs. We split the remainder of the Chapter to the

two types of outputs discussed in Section 4.2; field type outputs (same variable

varying across time or space) and multiple-type outputs (multiple types of variables,

representing varied quantities).

Under field type outputs in Subsection 4.3.2 we review an approach to use princi-

pal component analysis (PCA) to emulate multiple field type outputs. In Subsection

4.3.3 we describe work presented by Conti and O‘Hagan (2010) on separable GPEs.

This appeals as it is a simple extension to the univariate emulator theory presented

in Chapter 3. However, it assumes that all the outputs have the same correlation

lengths, which may be too restrictive in some cases. We compare these approaches

against emulating each output independently in a case study.

Under multiple-type output, in Section 4.4, we review the linear model of core-

gionalisation (LMC) method of handling multiple-type output. We assume that the

multiple outputs represent a variety of different quantities, hence it would not be
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sensible to impose a parametric form for the between output dependencies, (Fricker

et al., 2013). We review work carried out by Fricker et al. (2013) on the LMC model,

which is presented as a more flexible method of emulating multiple output as it al-

lows for variation in correlation lengths amongst outputs. We compare this approach

to the separable GPE and to emulating each output independently in a case study.

We conclude the Chapter by discussing the approaches and best practices to use

when dealing with multiple output simulators.

4.2 Multivariate output and common emulation

techniques

Gaussian process emulators have become popular in the statistical analysis of de-

terministic simulators, particularly those that require a long time to run each ob-

servation. In practice, simulators often have more than one output variable. For a

nonexpert, a common practice to model multivariate output using GPE is to apply

univariate emulators for each output independently. In a situation where the simu-

lator, and essentially the emulator, has to be run for many input values for multiple

outputs, the computational time taken to generate results can be very high and

the task can be laborious. More importantly, it is possible that multiple outputs

from the simulator are correlated in some way, and applying univariate emulators

to each output independently may result in loss of information. Some vital informa-

tion about between output correlations may also be lost due to modelling the prior

beliefs independently.

Fricker et al. (2013) categorise multivariate output into two classes. One class

is where multiple outputs represent a certain value at various locations in the field,

or at various timestamps. Often the name of the output is like an index to specify

the particular location or time. This is referred to as field output. An example
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of this kind of output using SWAN as the simulator would be where there is one

offshore point, but we are interested in transformed wave height at multiple near

shore locations. The number of near shore locations could range between two to

a couple hundred locations. It would be really time consuming to fit a GPE for

each location. Moreover, it is unlikely that the near shore locations that are close

together will have that much variance in output. In other words, these multiple field

outputs tend to be highly correlated with each other.

One approach to emulating multiple field type output is by using dimension

reduction techniques. There exists numerous methods for both linear and non-

linear dimension reduction. Maaten et al. (2009) believe that PCA is the most

popular linear dimension reduction technique. They compare numerous non-linear

techniques using the PCA as a benchmark and conclude that these techniques do not

outperform the traditional PCA yet. Therefore, and similar to Higdon et al. (2008),

in this thesis, we choose to focus on emulating a simulator with high dimensional

field output with principal component analysis to reduce the dimensionality.

We use PCA to condense the information from a large number of variables into

a smaller number of principal components. These principal components are inde-

pendent from each other and thus we can safely use multiple univariate GPEs inde-

pendently to predict the outcome of the simulator at other input variables. These

predictions will be in terms of the principal components and thus we will need to

convert them back to the form of the simulator output.

Chen et al. (2011) also use a similar approach to emulate their complex simulator

with high dimensional time-space-dependent output. They demonstrate that the use

of PCA in conjunction with the GPE was effective and efficient. Other examples

include work done by Wilkinson (2010), Bounceur et al. (2015), Gómez-Dans et al.

(2016) and Camus et al. (2013). Xing et al. (2014) use kernel PCA, a non-linear

dimension reduction technique as they believe that the linear representation of the
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high dimensional output is not a faithful representation of their data. Liu and

Guillas (2016) use gradient-based kernel dimension reduction technique in the input

space, but this could easily be applied in the output space as well.

Another approach that we consider in this thesis, is the separable GPE. Conti

and O‘Hagan (2010) propose this emulator as a simple extension of the univariate

emulator discussed in Chapter 3 with a strong assumption that the outputs have the

same correlation lengths. They compare this GPE to independent univariate GPE’s

and to a time input emulator (where time is included as an extra input). They

conclude that the separable GPE is the simplest in terms of computation. However

in terms of flexibility it is more restrictive than multiple independent univariate

GPE. This is because the separable GPE shares a common set of correlation length

parameters amongst all the output whereas the latter allows each output to be fitted

with unique parameters. This restricted flexibility can be reasonable in some cases

(where changes in input settings have similar effects to all outputs) and can be

efficient.

Kennedy and O’Hagan (2001) consider emulating field output by including the

index as an input parameter, and then applying standard univariate GPEs, however

this becomes impractical for emulating whole maps (very high dimension) of output.

Rougier (2008) demonstrates yet another type of multivariate GPE which he calls

the outer-product emulators. He states that the separable GPE is a special case of

the outer-product emulator. He also claims that the outer-product emulator is faster

to compute, is more memory-efficient and more stable. Boukouvalas and Cornford

(2008) consider alternative ways to reduce dimensionality and other structural forms

of GPEs that can be used. However these approaches are beyond the scope of this

thesis.

The second class of multivariate output according to Fricker et al. (2013) “arises

from simulators that simulate different types of quantities simultaneously, and the
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index of the output is merely a label.” This is referred to as multiple-type output.

Often each output may also vary in units. We have already seen an example of this

type of output with the SWAN model. This model outputs the properties of the

waves at near shore locations, which include the wave height, wave period and wave

direction. We note that these output variables all represent different quantities and

have different units. Multiple-type output is often not highly correlated and not

high dimensional thus dimension reduction techniques are not effective. Moreover,

because the outputs represent a variety of quantities, a shared correlation length

parameter would be too restrictive and hence separable GPE’s are also not appro-

priate.

Fricker et al. (2013) propose a more flexible approach that allows each output

to have different correlation length parameters. They propose two nonseparable

GPE approaches; one approach is using convolution methods. We do not discuss

this approach in this thesis, but some references include Ver Hoef and Barry (1998);

Boyle and Frean (2005); Álvarez and Lawrence (2009); Higdon (2002). Another

approach Fricker et al. (2013) suggests is the LMC model, which they extend from

geostatistics (Goulard and Voltz, 1992; Journel and Huijbregts, 1978; Wackernagel,

1995; Gelfand et al., 2005). This method allows the variations in correlation length

parameters of the multiple outputs to occur on different scales as output processes

are constructed as linear combinations of independent univariate GPEs.

4.3 Field type outputs

In general, simulator output can have many dimensions. The higher the dimensions

of the output, the harder it is and the longer it takes to emulate the simulator.

Two methodologies are presented here to emulate multiple field type outputs using

GPE. We first introduce the PCA methodology followed by the separable GPE. In
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this section we assume that the outputs that we are dealing with are field type and

therefore the conclusions drawn in this section may not apply for other output types.

4.3.1 Toy example: one input, two field output simulator

We use a toy example in this section to illustrate the mathematical detail as we

present the two methodologies. Here, we describe a toy simulator with p = 1

input, and q = 2 outputs. We assume this simulator is computationally expensive

and so we can only evaluate it at a limited number of values. Let’s assume in

this example, a simulator is represented by y = η(x), where y can be written as

y = (y1, y2) =
(
η1(x), η2(x)

)
. Suppose we run the simulator seven times for input

values (x1, ...,x7), which we denote X, which are selected randomly over the input

space. The simulator output for these values is denoted Y = η(X) = (y1, ...,y7),

where yi = (yi,1, yi,2). The values for X and Y are given as below:

X =



−4

−2.5

−1

1

2.25

3

4



, Y =



−4 −3.7

−2.5 −2.75

−1 −1.3

1 0.95

2.25 2.5

3 3.2

4 3.8



.

and we wish to predict the simulator at four input values: (-3, -2, 0, 2).

Figure 4.1 shows the outputs of the toy simulator plotted against the input values

that range over the input space [-4,4]. The black points represent the training runs,

and the red crosses are the events where we wish to predict the simulator output.

The red points illustrate the true output at the prediction points.
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Figure 4.1: Multivariate (field-type output) toy simulator. The black points high-
light the training runs, the red crosses are the events which we wish to predict at
and the red points are true simulator output for these events.

4.3.2 Principal Components GPE (PC-GPE)

One way of emulating multiple field type outputs is to use PCA. We use PCA

to transform the data so that it is expressed as a set of orthogonal coordinates

such that the sample variances of the data with respect to these coordinates are in

decreasing order of magnitude. In other words, the projection of the points onto the

first principal component has maximal variance among all such linear projections.

The projection of the points onto the second principal component has orthogonal

projection to that of the first principal component, and so on. We can reduce the

dimensions of the transformed data set by ignoring some of the latter components,

and then performing emulation with the reduced transformed dataset as the output

variables.

Dimension reduction techniques are more appropriate for emulating multiple field
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output as with high correlation and high dimensional output, the variation in the

outputs can be represented by only a few components.

   −4

   −3

   −2

   −1

   0

   1

   2

   3

   4

−4 −3 −2 −1 1 2 3 4

y1

y2

Component 2 Component 1

Figure 4.2: Multivariate (field-type output) toy simulator plotted with the principal
components (component 1 and component 2) of the data.

Figure 4.2, shows a scatter plot of the simulator output, Y (blue points). The

arrow labelled “Component 1” represents the first principal component and the

arrow labelled “Component 2” represents the second principal component. These

two vectors can be interpreted as the “new” axes over which the transformed set of

orthogonal coordinates have been plotted, as shown in Figure 4.3. It is evident from

this graph that the data does not vary much in the direction of Component 2 .
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   −7    −5    −3    −1    1     3    5     7

−1

 1
Component 2

Component 1

Figure 4.3: Multivariate (field-type output) simulator output plotted on transformed
axis - the principal components.

The mean value of each output in Y and the variance of Y , denoted Ȳ and S

respectively, are as follows:

Ȳ =

(∑
7
i=1

yi,1
n

∑
7
i=1

yi,2
n

)
=

(
0.393 0.386

)
(4.1)

S =

 8.87 8.88

8.88 8.96

 . (4.2)

Let λ1 and λ2 denote the eigenvalues of S in descending order of magnitude, b1 and

b2 denote the corresponding normalised eigenvectors and B denote the matrix of

all the eigenvectors. The eigenvalues and eigenvectors are computed and given as
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below:

λ1 = 17.8 (4.3)

λ2 = 0.03 (4.4)

B =

(
b1 b2

)
(4.5)

=

 0.705 −0.709

0.709 0.705

 . (4.6)

Define ζ(x) =

(
ζ1(x) ζ2(x)

)
to represent a transformation of y = η(x)

using PCA, where

ζ(x) =
(
η(x)− Ȳ

)
B. (4.7)

Then ζ(x) gives the coordinates of y on the transformed axes and

η(x) = Ȳ + ζ(x)BT . (4.8)

Define ζ(X) =

(
ζ1(X) ζ2(X)

)
to represent the transformation of Y as in Equa-

tion 4.7. ζ(X) is calculated as follows:

ζ(X) =
[(

y1 y2

)
− Ȳ

](
b1 b2

)

=



−5.99 0.23

−4.26 −0.16

−2.18 −0.2

0.83 −0.03

2.81 0.18

3.83 0.14

4.96 −0.15



.
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The blue points in Figure 4.3 have coordinates given by the values in ζ(X). It is

clear to see from the values of ζ(X) that ζ2(X) ≈ 0 ∀x, so we use the approximation

η(x) ≈ Ȳ +

(
ζ1(x) 0

)
BT . (4.9)

Effectively, we have reduced the dimension of the data, as now we only need to

emulate ζ1(x), which is much easier to emulate using a univariate emulator. If there

were more components at this stage, then each of the components would be emulated

independently using univariate GPEs. The principal components are independent

from each other thus independently emulating the multiple principal components

does not risk loss of information.

The ratio
λj

λ1+λ2
indicates the proportion of the variance of the data represented

by the j-th component (j = 1 or 2). Component 1 represents 99.82% of the variance

of Y and Component 2 only represents 0.18% of the variance. These ratios can be

used to evaluate the importance of each component.

Next, we fit an emulator using training inputs X and the values for the first

component ζ1(X). We then use this to predict the output values of ζ1(X̃),where

X̃ = (x̃1, ..., x̃5)
T =

(
−3 −2 0 2

)T
. Let E(ζ1(X̃)|ζ1(X)) denote the poste-

rior mean of the emulator, which is the predicted output of ζ1(X̃). Similarly, let

V (ζ1(X̃)|ζ1(X)) denote the posterior variance covariance matrix of the emulator

prediction.

The values for the emulator prediction E(ζ1(X̃)|ζ1(X)) and the true output,

ζ1(X̃) are given below. The calculation for the RMSE is also shown.
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E(ζ1(X̃)|ζ1(X)) =

(
−4.88 −3.6 −0.72 2.43

)T
, (4.10)

ζ1(X̃) =

(
−5.08 −3.66 −0.76 2.42

)T
, (4.11)

RMSE =

√√√√∑4
i=1

(
ζ1(x̃i)− E

(
ζ1(x̃i)|ζ1(xi)

))2
4

(4.12)

= 0.17. (4.13)

The RMSE suggests a good level of accuracy given that the data ranges from -5.08

to 2.42. The NRMSE is 0.03.

In order to get E(ζ1(X̃)|ζ1(X)) in terms of y1 and y2, which we denote as Ỹ ∗,

we apply Equation 4.9 as follows:

Ỹ ∗ =

(
0.393 0.386

)
+



−4.88 0

−3.6 0

−0.72 0

2.43 0


 0.705 0.709

−0.709 0.705



=



−3.05 −3.07

−2.14 −2.16

−0.12 −0.13

2.11 2.11


.

The true output of the simulator evaluated at X̃ is

η(X̃) =



−3 −3.4

−2 −2.4

0 −0.3

2 2.2


.
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Again we calculate the RMSE as follows:

√√√√∑4
i=1

(
ỹi − η̃(x̃i)2

)
4

= 0.1.

The range of the data here is between -3.4 and 2.2, hence this value suggests a good

level of accuracy. The NRMSE is 0.01. Note that, we have lost some information

about the simulator by not emulating component 2, however, it was a compromise

to having to emulate only one component. We have to keep that in mind while

judging the RMSE.

Similarly, for each new input x̃i, the posterior variance V (ζ(x̃i)|ζ1(X)) can be

written in terms of y1, y2, denoted, Ṽi, using the following formula where the result

is a variance covariance matrix of y1 and y2:

Ṽi = bT1 V (ζ(x̃i)|ζ1(X))bT1 (4.14)

We calculate Ṽ1 for the new input x1 as follows:

Ṽ1 =

 0.705441

0.708768

( 0.000485

)(
0.705441 0.708768

)

=

 2e− 04 2e− 04

2e− 04 2e− 04

 .

The diagonal elements of Ṽ1 represent the uncertainty gauged by the emulator for

its prediction of η1(x1) and η2(x1).

Figure 4.4 shows the result of the GPE predictions on a plot. The red points here

represent the GPE predictions at the input values marked with crosses. We have

not plotted the error bars as the uncertainty around these predictions is calculated

to be minimal. It is evident that the red dots lie very close to the true simulator
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output (black line).
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Figure 4.4: Multivariate (field-type output) toy GPE. The black points highlight
the training runs, the red crosses are the events we predicted using the GPE and
the red points are the predicted simulator output.

In general, for q dimensional simulators, B is the matrix of eigenvectors b1, ..., bq,

that correspond to eigenvalues λ1, ..., λq. Let ζ(X) =

(
ζ1(X) . . . ζq(X)

)
rep-

resent a transformation of Y, given by Equation 4.8. The ratio
∑c

i λi∑q
i λi

indicates the

total proportion of the variance of the data represented by the first c components.

Choose c such that components greater then c represent minimal information of the

data that can be ignored. Set ζj(X) = 0 ∀j > c.

Next, we fit a univariate GPE with inputsX to each of the outputs ζ1(X), ..., ζc(X)

and use it to predict the output values of ζ1(X̃), ..., ζc(X̃) for inputs X̃. To transform

the emulator predictions of the components back in terms of the original data, we

use a generalisation of Equation 4.9

η(x) ≈ Ȳ +

(
ζ1(X̃) . . . ζc(X̃) 0 . . . 0

)
BT . (4.15)
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Similarly, to transform the posterior variance for each new input, V (ζ(x̃i)|ζ1(X)),

(for convenience we use the shorthand V (ζ(x̃i)), we use a generalisation of Equation

4.14

Ṽi =


b1
...

bc





V (ζ1(x̃i)) 0 . . . 0

0
. . .

...

...
. . . 0

0 . . . 0 V (ζc(x̃i))


(
b1 . . . bc

)
.

Generally, if the multiple outputs are highly correlated then PCA can be used

to significantly lower the number of dimensions with minimal loss of accuracy.

4.3.3 Separable GPE

Another approach to emulating multiple field type output is using a separable GPE.

This type of GPE is a simple extension of the univariate GPE. This approach is

particularly useful when dimensionality is not a problem, i.e. it is not necessary

to reduce the dimensions of the simulator. It is also useful when the simulator

outputs are highly correlated. This method shares a common set of correlation

length parameters across all outputs and therefore it efficiently fits a single GPE for

all the outputs. However, if the simulator output is not well correlated, a common

set of correlation length parameters may be an unrealistic assumption. The rest of

this Subsection is based on Conti and O’hagan (2010).

Following a similar setup as used to describe the univariate GPE approach in

Chapter 3, we derive a probability distribution of η(xn+1), ...,η(xN)) given the

training runs, Y by modelling η(.) as a q-dimensional Gaussian Process

η(x)|B,Σ, r ∼ GP (m(.),Σc(., .))
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conditional on hyper- parameters B,Σ and r. These hyper-parameters are unknown

parameters in the mean and covariance functions which are described in a later

subsection.

Prior beliefs of η(x)

We can describe our prior mean and covariance for η(x) as:

E[η(x)|B,Σ, r] = m(x) (4.16)

Cov[η(x),η(x′)|B,Σ, r] = Σc(x,x′) (4.17)

where c(., .) is a positive definite function that provides spatial correlation over

the inputs such that c(x,x) = 1 ∀x and Σ which should also be a positive definite

matrix represents the between outputs covariance at any given input. This structure

assumes the spatial correlation and the between output covariances can be separated.

That is why this approach is called the separable GPE.

Similar to the univariate GPE we model the mean function using a generic specifi-

cation which will always make it possible to describe our beliefs about the simulator.

We choose the correlation function to be the Gaussian correlation function expressed

in multivariate notation as follows:

m(x) = BTh(x)T , (4.18)

c(x,x′) = exp[−(x− x′)TR(x− x′)]. (4.19)

Here, the vector h(.) consists of m known regression functions h1(x), ..., hm(x)

shared by each individual function ηj(.) where j = 1, ..., q. The matrix B =

[β1, ...,βq] is a m × q matrix of regression coefficients and R is a diagonal matrix

of p correlation length parameters such that R = diag{r} = diag{r−2i }. (Note that

Conti and O‘Hagan (2010) refer to R as the matrix of roughness parameters which
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is the squared inverse of the correlation length parameter). The form of the corre-

lation function in (4.19) is a generalisation of the univariate Gaussian correlation

function and assumes that ηj(.) are analytical functions, which may not be a real-

istic assumption for some simulators. However, the Gaussian correlation function is

convenient for illustrating the theory due to its mathematical tractability.

In summary, the prior distribution for η(x) is given by

η(x)|B,Σ, r ∼ N(BTh(x)T ,Σc(., .)) (4.20)

The prior mean and variance for η(x) depend on the hyper-parameters B, Σ,

and r. Similar to the prior for the hyperparameters of the univariate GPE prior, a

weak prior for the prior distribution for B and Σ independent of r is used:

p(B,Σ|r) ∝ |Σ|−
q+1
2 . (4.21)

Analogous to the estimation of δ in the univariate GPE here we also estimate the

value of r by maximum likelihood estimation instead of a full proper Bayesian

inference which we discuss in a latter Subsection.

Deriving the posterior distribution: η(x)|r, Y

Next, we observe η(X) at the training inputs X = {x1, ...,xn}, which produces

simulator output data

(y1, . . . ,yn) = Y = η(X) = (η(x1)), . . . ,η(xn)).

We then update the prior distribution of η(.) using the partitioning property of

multivariate normal distributions. Given that the joint matrix-Normal distribution
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of Y conditional on the hyper-parameters B,Σ and r is:

Y |B,Σ, r ∼ Nn,q(HB, A,Σ) (4.22)

where HT = [h(x1), ...,h(xn)] ∈ Rm,n and A = [c(x,x′)] ∈ R+
n,n, and equation

(4.20), we can apply the partitioning property of multivariate normal distribution

to get

η(x)|B,Σ, r, Y ∼ GP (m∗(.),Σc∗(., .)), (4.23)

where,

m∗(x) = BTh(x)T + (Y −HB)TA−1t(x),

c∗(x,x′) = c(x,x′)− t(x)TA−1t(x′),

t(x)T = (c(x,x1), ..., c(x,xn)).

To derive the posterior distribution of η(x) conditional only on r, we integrate

(4.23) with respect to the posterior distribution of B and Σ. We first integrate out

B from the product of (4.23), (4.22) and (4.28) which gives:

η(x)|Σ, r, Y ∼ GP (m∗∗(.),Σc∗∗(., .)), (4.24)

where,

m∗∗(x) = B̂
T
h(x)T + (Y −HB̂)TA−1t(x),

c∗∗(x,x′) = c∗(x,x′)+

[h(x)−HTA−1t(x)].(HTA−1H)−1[h(x′)−HTA−1t(x′)]
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and

B̂ = (HTA−1H)−1HTA−1Y, (4.25)

is the generalised least squares (GLS) estimator of B. The resulting posteriors are

proper as long as n ≥ m+ q.

Similarly, we integrate out Σ and obtain the following q-variate T process con-

ditional on r

η(.)|r, Y ∼ T(m∗∗(.), Σ̂c∗∗(., .); n−m), (4.26)

where T is such that the distribution of an arbitrary collection of vectors is matrix

variate T with n−m degrees of freedom, and

Σ̂ = (n−m)−1(Y −HB̂)TA−1(Y −HB̂) (4.27)

which denotes the GLS estimator of Σ.

Estimating the correlation length parameter r

We cannot derive analytically an estimate for the correlation length parameter and

carrying out a full MCMC based marginalisation of (4.26) with respect to unknown

smoothness in R would be too computationally expensive. Similar to the univari-

ate GPE, the simplest option is to plug in estimates of r = (r−21 , ..., r−2p ). Prior

knowledge or experience of the smoothness of the simulator may suggest a value.

Alternatively, we could estimate r from the data by maximising the likelihood func-

tion as derived below.

The prior distribution for the hyper-parameters has the form:

p(B,Σ, r) ∝ pR(r)|Σ|−
q+1
2 . (4.28)

Using Bayes’ theorem to combine this prior (4.28) with the likelihood function 4.22,
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the full posterior is

p(B,Σ, r|Y ) ∝ pR(r)|A|−
q
2 |Σ|−

n−m+q+1
2

exp
[
− 1

2

(
Tr[Y TGY Σ−1] + Tr[(B − B̂)THTA−1H(B − B̂)Σ−1]

)]
.

Integrating out the hyper-parameter matrices B and Σ gives:

p(r|Y ) ∝ pR(r)|A|−
q
2 |HTA−1H|−

q
2 |Y TGY |−

n−m
2 , (4.29)

where, G = A−1 − A−1H(HTA−1H)−1HTA−1. The estimates of r can then be

obtained my maximising (4.29).

Toy GPE

For our toy example, we assume that this multivariate simulator has a linear mean

function. We write this as:

m(x) =



1 −4

1 −2.5

1 −1

1 1

1 2.25

1 3

1 4



 β1,1 β2,1

β1,2 β2,2

 .

We also assume that this simulator has a Gaussian correlation function (4.19).

We estimate the value of r as 0.66 by maximising the likelihood function (4.29).

Using this value we can calculate B̂ and Σ̂ with equations (4.25) and (4.27) respec-

tively. We note that both these calculations require the A matrix. We show the

calculations for one element of the matrix, A1,2 = c(x1, x2). We note that p = 1 and
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substituting the relevant values we get

c(x1, x2) = exp

[
−
(
−4−−2.5

0.66

)2
]
.

= exp [−0.6]

= 0.55.

We use the same approach to calculate every element in the A matrix. Below

we show the values of B̂ and Σ̂:

B̂ =

 0 −0.05

1 0.94

 , Σ̂ =

 0 0

0 0.3

 . (4.30)

We can then derive the GPE predictions and associated uncertainty around these

predictions as

m∗∗



−3

−2

0

2


=



−3 −3.09

−2 −2.33

0 −0.21

2 2.21


(4.31)

Σ̂c∗∗



−3

−2

0

2

,

−3

−2

0

2


=



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0.0059 −0.0049 0.0049 −3e− 04

0 0 0 0 −0.0049 0.0046 −0.0057 4e− 04

0 0 0 0 0.0049 −0.0057 0.0108 −0.0011

0 0 0 0 −3e− 04 4e− 04 −0.0011 2e− 04



.

(4.32)
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Note that the posterior variance is a Kronecker product of Σ̂ - the between

outputs correlation, and c∗∗(., .) the covariance amongst the inputs that we are

interested in predicting.

The RMSE for the separable GPE is 0.08 and the NRMSE is 0.01. This RMSE

and NRMSE is lower than that of the PC-GPE, remember however that we loss

information by reducing the dimension for the PC-GPE. We choose not to plot

the posterior toy GPE because the predictions are very close to the truth and the

uncertainty bands around the predictions are extremely small that they would not

be visible on the plot. In the next Subsection we compare the two approaches in a

case study using the SWAN simulator example.

4.3.4 Case Study - Farasin Islands, Red Sea

In this case study we aim to compare three ways of emulating multiple field type

output: fitting a univariate GPE independently to each of the simulator output

(IND), fitting a univariate GPE independently to a reduced number of principal

components of the simulator output (PC-GPE) and fitting a single separable GPE

to all of the simulator output (SEP). We explore these methods using the context

of case study 3 as described in Chapter 2.2.3.

As a summary, the SWAN model used in this case study has p = 7 input variables

which we denote x = (x1, ..., x7). The output variable considered is the significant

wave height at q = 189 near shore points denoted as y1, ...,y189. This is the field

output class of multivariate data. We use n = 250 runs as training data and a

further 250 runs as validation data to compare how accurate the predictions are.

Figure 4.5 shows a pair wise plot of the 500 events of input data. The 250 runs

selected as training data are highlighted in black. This plot shows that the training

data effectively represents the entire input dataset. Figure 4.6 shows correlation

matrix of all the output variables. We can see that the majority of the variables are
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Figure 4.5: Design selected as training inputs using the MDA method. The black
dots represent the design and the grey dots in the background represent all the
events.

highly correlated.

Independent method

For the IND method, we fit a univariate GPE (Chapter 3) to each SWAN output

(189). We use the same input values for all the GPEs. We use a linear prior mean

and a Gaussian correlation function to describe our prior beliefs of the simulator for
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Figure 4.6: Correlation between the simulator outputs 1:189

each of the outputs. We handle the directional variables using X and Y components

due to the periodic nature of the offshore wave direction as described further in

Subsection 5.3.1.

Using the corresponding GPE fit, we predict the simulator values for each output

variable. We also look at the validation plots, as described in Chapter 3, for each

GPE fit and analyse them in the same way as mentioned in Chapter 3. Once we are

happy with the validation plots, we compare the predictions to the true simulator
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output. In the case where the validation plot shows a significant validation failure we

would try to refit the model by removing one row in the training dataset. Another

solution would be to consider a different correlation function. We note the NRMSE

and the coverage values for a comparison with the other methods, discussed in the

results section.

Note that by fitting a univariate GPE to each of the simulator outputs, we assume

that the outputs are independent and as a result we may have lost information about

the between output dependence.

PC-GPE method

As we can see in Figure 4.6, the multiple outputs are highly correlated, and hence

we could effectively use PCA to reduce the dimensions of the data. First, we convert

the simulator output to principal components. Figure 4.7 shows the proportion of

variance explained by each additional principal component. We can see that the

first component explains approximately 91% of the variance in the simulator data.

The second and third component represents 4% and 3% of the data, respectively.

In other words, the first three components represent 98% of the variability of the

simulator data. This is very useful as we can potentially reduce the dimensions of

our dataset from 189 to three with minimal loss of information.

Figure 4.8 shows the effect that the number of principal components chosen has

on the NRMSE. This data has been obtained by fitting a univariate GPE to c com-

ponents, predicting at new input values, converting the predictions from the GPE

to the simulator output variables and then calculating the NRMSE of the predicted

values, where c ranges from 1 to 45. The red line shows the NRMSE generated from

the IND method. We aim to get as close as possible to the red line using the least

number of principal components. The blue dotted line shows the NRMSE generated

by fitting only the first 6 principal components (ζ1(X), ..., ζ6(X)). It is evident from
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Figure 4.7: Proportion of variance explained by each additional principal component

the graph that increasing the number of principal components higher than c = 6

does not lead to a noteworthy reduction in NRMSE. Any additional component

here would not help to significantly increase the accuracy of the predictions of the

simulator output.

In a realistic application, we would often not have time or resources to calculate

the results plotted on Figure 4.8. In this case, we can set a threshold of the percent-

age of the data that the principal components should represent (for example, 99%),
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Figure 4.8: Effect of increasing PC on NRMSE. The red line represents the NRMSE
generated from the IND method. The blue dotted line shows the NRMSE generated
by fitting the first 6 components.

and using the cumulative proportion of the variance we can select the number of

principal components to use. The first six components represents 99.4% of the data.

We choose to fit a univariate GPE to 6 principal components. Theoretically, the

6 principal components are independent to each other, therefore we can reasonably

assume that no information is lost by modelling these components independently.

We use these GPE fits, to predict the outcome of the new input values in terms of
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the principal components. Next, we assess the validation plots for each of the GPE

fits. If there are no validation failures, we convert the predicted values (posterior

mean and variance) back to the original unit of the simulator. We compare the

predictions with the true output in terms of the NRMSE and the coverage values.

We use this for comparison with the other methods.

Note that although the PCA method may not give the same accuracy of results

as fitting each emulator independently, it reduces computational time by over 95%.

Separable method

For the SEP method, we fit a single separable GPE to all the output variables. We

use a linear prior mean and a Gaussian correlation function to describe our prior

beliefs of the simulator. We predict the simulator output for all the output variables.

Validation of the separable GPE fit is done using the same techniques as mentioned

in Section 3.5, one output variable at a time.

Figure 4.9 shows a plot of the predicted values using the SEP GPE and simulator

output for one variable. Notice that the 95% confidence interval ribbon is quite wide,

which may suggest that the SEP GPE is under confident about its predictions.

Results

Figure 4.10 shows the NRMSE obtained using different emulation techniques for

each output variable. Notice that overall, the IND and PC-GPE method are quite

comparable to each other, however the SEP GPE is worse off. This may be because

of the common correlation length parameters for all the outputs. However note that

overall the NRMSE is roughly centred around 0.065 for all values. For the PC-GPE

the NRMSE is higher (even higher than SEP for some outputs) for simulator output

175 onwards (remember these were the less well correlated outputs from Figure 4.6).

Figure 4.11 shows the coverage values for all the methods for all the output
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Figure 4.9: Predicted and simulated values for one output variable using the SEP
GPE

variables. For the SEP method the coverage value is 1 for all the output variables.

This (and the validation plots) suggest that the GPE is under confident about its

predictions and hence the 95% credible intervals are wide and the residual errors

always fall within the interval. For the PC-GPE, the coverage values centred around

0.8, which is reasonable, however, it suggests that the PC-GPEs were over confident

about the predictions. For the IND method the coverage values are around 0.85

which is also reasonable.
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Figure 4.10: NRMSE for all the output variables and methods for the field-type
output.

Discussion

From the results above we can see that the IND method outperformed the other

methods in terms of posterior mean and variance. However it is laborious to fit 189

univariate GPEs and predicting the simulator output using the corresponding fit.

It may also be very time consuming depending on the size of the data and number

of output variables.

One of the main arguments against the IND method is that we would lose in-

formation regarding the between output correlations. In this case study we have

only compared the marginal predictions of individual outputs, but if we compared
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Figure 4.11: Coverage values for all the output variables and methods for the field-
type output.

a scalar-valued function of these outputs, we would find that the predictions would

likely be underconfident or overconfident.

The PC-GPE method is also comparable to the IND method in terms of marginal

predictions and coverage values. Moreover, we only have to fit GPEs to a reduced

set of principal components. Note here that there is no risk of loosing information

about the between output correlation as the principal components are independent.

This can help speed up analysis by over an order of magnitude. To improve the

results for the PC-GPE, we could try using different prior mean assumptions.

The SEP method requires the least amount of effort and the point predictions
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are quite accurate, however the uncertainty associated around these predictions is

often underestimated.

It is also worth noting, that for this particular case study, it took 21 seconds to

fit a single univariate GPE. Therefore the total time taken to fit all the GPEs for the

IND method was approximately 4000s, compared to 126s for the PC-GPE method.

The SEP GPE took only 80s. This would play a big role in helping to decide which

method to pick when the dataset is large.

4.4 Multiple-type output

We saw in the previous section how PC-GPE and separable GPE can be used to

model multiple field outputs. In this section we shift our interest towards modelling

multiple-type output. When modelling multiple-type outputs, it is important to

note that multiple outputs often represent different physical quantities. In practice

a typical simulator can have numerous outputs.

PC-GPE is less likely to be effective when applied to these scenarios as each

output may vary on a different scale. Additionally, if outputs do not have a high

correlation, and the number of outputs is small than we are unlikely to achieve useful

dimension reduction.

Moreover, a considerable drawback for separable GPE’s is that when the multi-

ple outputs represent different physical quantities, one spatial correlation function

amongst all outputs is too restrictive. This leads to poor performance of the emu-

lator.

In this section we look at non-separable emulators as an alternate method. This

method is promising as the covariance function allows multiple spatial correlation

functions to be incorporated into the analysis. Fricker et al. (2013) describe two

approaches to specify non-separable covariance functions: convolution and core-
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gionalisation models. We chose to only focus on the latter.

In the Subsections that follow, we describe an approach to modelling multiple-

type outputs using the linear model of coregionalisation (LMC) GPE as presented

by Fricker et al. (2013). We first introduce a toy simulator and use this simulator

as a simple example as we go through the detailed mathematical concepts. Later,

we present a case study comparing the LMC GPE to the separable GPE.

4.4.1 Toy example: one input, two multiple-type outputs

simulator

We use an example in this section to illustrate the detail as we present the LMC

GPE. Here we describe a toy simulator with p = 1 input variable, and q = 2 out-

put variables. Let’s assume in this example, a simulator is represented by y = η(x),

where y can be written as y = (y1, y2) =
(
η1(x), η2(x)

)
. Suppose we run the simula-

tor nine times for input values (x1, ...,x9), which we denote X. The simulator output

for these values is denoted Y = η(X) = (y1, ...,y9), where yi = (yi,1, yi,2). Using

the GPE approach, we derive a probability distribution of η(x10), . . . ,η(xN) given

the training runs: X, Y by modelling η(.) as a 2-dimensional Gaussian Process.

Again, we assume that this simulator is computationally expensive and so we

can only evaluate it at a limited number of values. There are many ways to select

a subset of points over the input space, however for this example we just pick nine

points that are equally spread over the input space.

Figure 4.12 shows the output of the toy simulator plotted against input values

that range over the input space [0,5]. The training inputs and the corresponding

89



4.4. Multiple-type output Chapter 4

0 1 2 3 4 5

−
2

0
2

4

Toy Simulator

Input

O
ut

pu
t 1

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Toy Simulator

Input

O
ut

pu
t 2

Figure 4.12: Multivariate (multiple-type output) toy simulator (1 input, 2 output).
The black points highlight the training runs, the red crosses are the events which
we wish to predict at and the red points are true simulator output for these events.

training outputs from the toy simulator function are given as follows:

X =



0

0.62

1.25

1.88

2.5

3.12

3.75

4.38

5



, Y =



−3 0

1.21 0.22

0.31 0.42

0.38 0.61

1.5 0.77

1.86 0.89

2.81 0.97

3.85 1

4.98 0.98



.

We wish to evaluate the function at the four input values: 0.8, 1.5, 2, 3.5.
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4.4.2 LMC GPE

The LMC was developed within geostatistics as a tool for modelling multivariate

spatial processes (Journel and Huijbregts (1978), Wackernagel (1995), Goulard and

Voltz (1992)).

For a model with q outputs, we represent our uncertainty in the function η(.) by

the multivariate GP prior:

η(.) = m(.) + z(.),

m(.) = (Iq ⊗ h(.)T )β, (4.33)

z(.)|θ ∼ GPq[0,C(., .)],

where the function m(.) represents the mean function, and C(., .) represents the

covariance function for the GP modelled by z(.).

Fricker et al. (2013) describe that the approach to LMC is to construct output

processes z(.) as linear combinations of a number of building-block processes, written

as

z(.) = Ru(.).

Here we construct an LMC with q building-block processes where R is a q × q

full rank matrix, and u(.) is a vector of q independent GPs with zero mean and

unit variance with spatial correlation functions c1(., .), . . . , cq(., .) that depend on

some hyperparameters, θ. Each correlation function ci(., .) could be any function as

described in Chapter 3.3.

Two types of correlations are taken into consideration within C(., .). First, the

between-output correlation - which considers the dependencies of all the output

parameters to the same inputs of the simulator. Second, the spatial correlation for

each output over the input space - which relies on the assumption that neighbouring

points in the input parameter space have similar output values.
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The corresponding variance covariance function for the residual process, z(.) is

given by

C(x,x′) = R[diag{c1(., .), . . . , cq(., .)}]RT (4.34)

=

q∑
j=1

Σjcj(x,x
′). (4.35)

where for j = 1 . . . q, Σj = rjr
T
j with rj the j − th column of R which is a q × q

full rank matrix.

The variance covariance matrix

v(X,X) =

q∑
j=1

Σj ⊗ cj(X,X)

is a combination of correlation functions for each output as a weighted sum of

functions c1(., .), . . . , cq(., .). These weights are given by Σj which is known as the

coregionalisation matrix. This way of representing the covariance matrix allows for

incorporating variation occurring on different scales.

Note that since square root of matrices are not unique, the between-outputs co-

variance for LMC emulator, Σ = RRT is not unique and can lead to different models

with the same Σ. To overcome this, Fricker et al. (2013) choose to parameterise the

model over Σ and then calculating a specific R by an eigendecomposition.

Fricker et al. (2013) emphasize that choosing a decomposition method requires

considerable amount of attention, and a method should not simply be chosen be-

cause of its computational ease. Gelfand et al. (2004) use the Cholesky decompo-

sition mainly for its computational ease, however this decomposition method is not

invariant to the order of the outputs. In most real world applications there may be

no obvious hierarchy of dependence of outputs.

The eigendecomposition of Σ is given by R = Λ
√
DΛT , where Λ is the orthogo-
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nal matrix of normalised eigenvectors of Σ, D is a diagonal matrix of the eigenvalues

of Σ, and the resulting matrix R is a symmetric matrix. Here, the order of outputs

will have no impact on the end result.

We can describe our prior mean of η(.) as:

E[η(x)|β,Σ,Φ] = m(x) (4.36)

where we model the mean functions as m(x) = H(x)β, where

β = [β1,1, . . . , β1,m1 , . . . , βq,1, . . . , βq,mq ] is a column vector of unknown coefficients

(hyperparameters) of length qm and βi,1, . . . , βi,mi
refer to the unknown coefficients

of output i. The mean function is typically non-constant, and represents the global

trend of the model output across input space. The mean function helps the emulator

to predict outputs in regions of the input space that are sparsely populated and when

predicting outputs that are outside the input space (extrapolation).

We define the vector hi(.) to consist of mi regressor functions of x incorporat-

ing our beliefs of the i-th output of computer model η(.). We also define Hi =(
hi(x1), . . . ,hi(xn)

)T
to be a n×mi matrix representing the regressor functions for

output i. Then, H is a qn× qm matrix (m = m1 + . . .+mq) written as

H =



H1 0 · · · 0

0 H2
...

...
. . . 0

0 · · · 0 Hq


. (4.37)

The prior mean and variance for η(x) depend on the hyperparameters β,Σ,

and Φ. The hyperparameters in the LMC covariance function are Σ and Φ =

{φ1, . . . ,φq}, where φi denotes the collection of hyperparameters from the basis

correlation function ci(x,x) (equivalent to δ in the univariate GPE). The prior
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distributions of Φ and Σ are covered separately in a latter Subsection. We use a

weak prior for β:

pβ(β) ∝ 1. (4.38)

In summary, the prior distribution for η(x) is given by

η(x)|β,Σ,Φ ∼ N
(
H(x)β,v(x,x′)

)
(4.39)

The linear model of coregionalisation (LMC) emulator

We observe η(X) at the training inputs X = x1, ...,xn, which produces data as

tabulated in Y such that:

Y =



η1(x1) η2(x1) · · · ηq(x1)

η1(x2) η2(x2) · · · ηq(x2)

...
...

...
...

η1(xn) η2(xn) · · · ηq(xn)


. (4.40)

Let ~Y be a column vector of Y such that

~Y T =
(
η1(x1), . . . ,η1(xn), . . . ,ηq(x1), . . . ,ηq(xn)

)
.

The likelihood function of the data is given as

~Y |β,Σ,Φ ∼ Nn,q(Hβ, V ), (4.41)

where H ∈ R+
qn,mq and V = v(X,X) =

∑q
j=1 Σj ⊗ cj(X,X) ∈ R+

qn,qn.

Let X́ = xn+1, . . . ,xN , denote the new points that we would like to evaluate the

function at. Then, given the prior distribution (4.38) and the likelihood function,
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we update the distribution of η(.) using the partitioning property of multivariate

normal distributions to get

η(X́)|β,Σ,Φ, ~Y ∼ GP (m∗(.),v∗(., .)), (4.42)

where,

m∗(X́) = H(X́)Tβ + u(X́)V −1(~Y −Hβ)T

v∗(X́, X́) = v(X́, X́)− u(X́)TV −1u(X́)

u(X́)T = v(X, X́).

To derive the posterior distribution of η(X́)|Σ,Φ, we integrate (4.42) with re-

spect to β which gives

η(X́)|Σ,Φ, ~Y ∼ GP (m∗∗(.),v∗∗(., .)), (4.43)

where,

m∗∗(X́) = H(X́)T β̂ + u(X́)V −1(~Y −Hβ̂)T (4.44)

v∗∗(X́, X́) = v(X́, X́)− u(X́)TV −1u(X́)+ (4.45)

(H(X́)− u(X́)TV −1H)(HTV −1H)−1(H(X́)− u(X́)TV −1H)T

(4.46)

β̂ = (HTV −1HT )−1HTV −1 ~Y (4.47)

The resulting posteriors are proper as long as n > mq + q. This multivariate

approach for approximating η(X́) is conditional on hyperparameters Σ and Φ which

cannot be analytically derived. Therefore, these hyperparameters need to be esti-

mated by maximising their likelihood function (See the following Subsection). Sim-
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ilar to the univariate and separable emulators, the posterior mean, m∗∗(.) smoothly

interpolates the training data to predict the output of the computer model at new

inputs. The posterior variance covariance matrix v∗∗(., .) quantifies the uncertainty

associated with these predictions. Note that the two important properties of the

emulator still hold: predicting at the training inputs replicates the training outputs

exactly and with zero uncertainty.

Estimating the hyperparameters Φ and Σ

The prior distribution for the hyperparameters has the form:

p(β,Σ,Φ) ∝ p(Φ)|Σ|−
q+1
2 . (4.48)

Using Bayes’ theorem to combine 4.41 with 4.48, the full posterior is

p(β,Σ,Φ|~Y ) ∝ p(Σ,Φ)|V |−
1
2 exp

[
− 1

2
(~Y −Hβ)TV −1(~Y −Hβ)

]
(4.49)

Integrating out the matrix β and simplifying gives:

p(Σ,Φ|~Y ) ∝ p(Σ,Φ)|V |−
1
2 |HTV −1H|−

1
2 (4.50)

exp

[
− 1

2
(~Y −Hβ̂)TV −1(~Y −Hβ̂)

]
. (4.51)

We find an optimal value for Φ and Σ by maximising the likelihood function.

Toy GPE

For our toy example, we assume the simulator has a linear mean function. We write

this as:
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m(x) =



1 0 0 0

1 0.62 0 0

1 1.25 0 0

1 1.88 0 0

1 2.5 0 0

1 3.12 0 0

1 3.75 0 0

1 4.38 0 0

1 5 0 0

0 0 1 0

0 0 1 0.62

0 0 1 1.25

0 0 1 1.88

0 0 1 2.5

0 0 1 3.12

0 0 1 3.75

0 0 1 4.38

0 0 1 5





β1,1

β1,2

β2,1

β2,2


.

We also assume that this simulator has a Gaussian correlation function (4.19).

We estimate the value of Φ as (0.46, 2.04) and Σ as below by maximising the like-

lihood function (4.50). Using these values we can calculate β̂ with equation (4.47).

Σ̂ =

 53.53 3.4× 10−5

3.4× 10−5 1.9

 . (4.52)

We note that this calculation requires the V matrix. We show the calculations
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for one element of the matrix, v(x2,x1) = Σ2c2(x2, x1). We note that

c(x2, x1) = exp

[
−
(
x2 − x1
φ2

)2
]
.

Substituting the relevant values will get

c(x2, x1) = exp

[
−
(

0− 0.62

2.04

)2
]
.

= exp [−0.01]

= 0.99.

To calculate the V matrix, we first calculate the A matrix (like in separable GPE

or Univariate GPE) for all outputs. Also calculate the corresponding Σi for each

output. Then, add together the Kronecker products of Σi and Ai for each output.

Below we show the values of β̂:

β̂ =


y1 y2

−9.22 −0.52

3.58 −0.05

 . (4.53)

We derive the GPE predictions and associated standard deviation around these
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predictions as:

m∗∗



0.8

1.5

2

3.5


=



1.2 0.28

4e− 02 0.5

0.63 0.64

2.33 0.94


(4.54)

v∗∗



0.8

1.5

2

3.5

,

0.8

1.5

2

3.5


=



4e− 04 −3e− 04 1e− 04 2e− 04 0 0 0 0

−3e− 04 2e− 04 −1e− 04 −1e− 04 0 0 0 0

1e− 04 −1e− 04 0 1e− 04 0 0 0 0

2e− 04 −1e− 04 1e− 04 2e− 04 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



.

(4.55)

Figure 4.13 shows the posterior distribution of the toy simulator given it was

fit to the points indicated by the black dots. The red dots indicate the predictions

made using the LMC GPE, and the red ribbon indicates the 95% uncertainty around

these predictions.

The NRMSE for the LMC GPE is 0.33 for output 1 and 2.64× 10−8 for output

2. We can see that for the toy example the GPE predicted the second output

variable accurately with minimal uncertainty. For output 1, the prediction and the

uncertainty have been poorly estimated. In this case, it may be worth adding more

training events for the GPE.
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Figure 4.13: Multivariate (multiple-type output) toy simulator (1 input, 2 output).
The black points highlight the training runs, the red crosses are the events which
we wish to predict at and the red points are GPE predictions for these events. The
red shaded region represents the GPE uncertainty around these predictions.

4.4.3 Case Study - Greater Wash, UK

In this case study we aim to illustrate the LMC GPE method in comparison to inde-

pendently fitting univariate GPEs to the output (IND) and to fitting the separable

GPE (SEP) mentioned in Section 4.3.3. We explore these methods using the context

of case study 2 as described in Chapter 2.2.2 and as an extension to the case study

in Section 3.6.

For all the methods, we use a design selected using the MDA method where the

first 150 design events are plotted on the upper triangular matrix in Figure 3.3. We

use a linear prior mean function and a Gaussian correlation function to describe our

prior beliefs of the simulator for all methods. We also handle the directional input

and output variables by converting them to X and Y components to account for the

periodicity (see Subsection 5.3.1 for more details).

100



Chapter 4 4.4. Multiple-type output

Figure 4.14: Correlation between the simulator outputs for the multiple-type output.

Results

Figure 4.14 shows a correlation plot of the output variables. From this plot, it is

evident that these variables are not strongly correlated to each other and with only

four output variables PC-GPE may not achieve useful dimension reduction. More-

over, we expect that one set of correlation length parameters may be too restrictive

to explain the variance in all the outputs.

Table 4.1 and 4.2 show the estimated correlation length parameters for all the
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LMC.Hsig LMC.Tm02 LMC.DirX LMC.DirY
WindSpeed 1.98 -0.01 1.05 1.40
WaveHeight 0.64 0.25 6.17 0.70

PeakWavePeriod 2.24 1.44 0.55 1.87
WaterLevel 2.42 2.70 2.49 2.07
WindDirX 1.30 2.19 -0.07 0.58
WindDirY 1.69 2.16 0.17 -0.37
WaveDirX 0.48 0.55 -0.04 0.36
WaveDirY 0.84 1.14 0.03 -0.24

Table 4.1: Correlation length parameters for the LMC GPE at n = 500

SEP IND.Hsig IND.Tm02 IND.DirX IND.DirY
WindSpeed 1.16 1.97 -0.00 1.06 1.41
WaveHeight 0.18 0.59 0.25 5.06 0.72

PeakWavePeriod 1.84 2.22 1.44 0.56 1.87
WaterLevel 2.01 2.35 2.72 2.44 2.06
WindDirX 0.76 1.21 2.14 -0.07 0.57
WindDirY 0.42 1.63 2.17 0.18 -0.37
WaveDirX 0.14 0.51 0.54 -0.04 0.35
WaveDirY 0.39 0.86 1.15 0.02 -0.25

Table 4.2: Correlation length parameters for the Separable and Independent GPE
at n = 500

methods. For the LMC and IND methods, we have a different set of correlation

length parameters for each output. Notice that for each output, the correlation

length parameters from the IND and LMC method are very similar, unlike the

SEP method. This is expected, as the LMC model estimates correlation length

parameters for each correlation function per output variable. On the other hand,

the SEP method estimates one value to be used amongst all the output variables.

Note also that there is a variation in the correlation length parameters amongst the

inputs.

For the SEP method and for each GPE in the IND method, we estimate (using

maximum likelihood estimation) eight values for the correlation length parameters

(number of inputs including the X and Y components of the directional variables).

For the LMC GPE, we have to estimate 10 values for Σ which is a 4× 4 symmetric

matrix and 8× 4 = 32 correlation length parameters. This can get time consuming
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and challenging to optimise. Optimising such large numbers of values can lead to

convergence issues where the optimiser can get stuck in a local minima or maxima.

The time taken to fit the three GPEs is shown in Figure 4.15 which is plotted on

a log scale. We can see that the LMC method takes very long to fit, and we know

that it is spending a majority of the time optimising the hyperparameters. The SEP

method is the quickest.

Figure 4.15: Comparison of time taken to fit GPEs to all the output variables for
each method.

Figure 4.16 shows the NRMSE for the output variables and for Wave Direction

(in degrees) and steepness where steepness is a function of Hsig and Tm02 given as:

steepness =
2× π ×Hsig
9.81× Tm022

.
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We introduce steepness here as a function of two of the simulator outputs in order

to assess the accuracy of the joint prediction distribution. This function to calculate

steepness is used within HR Wallingford to feed into the next model in the chain.

We can see that all the methods lead to very similar NRMSE. The IND method

and the LMC method are often very similar and better than the SEP method, which

is expected. The cases where the LMC is worse off in comparison to the IND method

may suggest convergence problems with the optimisation. Notice how the difference

between the methods for output variable Hsig and Tm02 change when we compare

steepness predictions, particularly at n = 500. The IND method and the LMC

method are significantly worse off than the SEP method. This is not the case for

n < 500 which may suggest that for the LMC GPE the correlation between Hsig

and Tm02 may not have been captured properly. For the IND GPE, we expect that

it is worse off when predicting the joint distribution of multiple outputs.

Figure 4.17 shows the coverage values for the output variables. We can see

that in general, all the methods converge quickly to good and comparable coverage

values. For Hsig, however, the IND and LMC GPE are overconfident about their

predictions. This could be because of the high correlation between input wave height

and output wave height.

Figure 4.18 shows the prediction output against the simulator output for the

different output variables and methods. We used n = 500 here. Similar to the

observation we made on the previous plot, all the methods are over confident about

their predictions for Hsig. However, we note that this is not a problem as the

predictions are very accurate. For the other output variables, we can see that each

of the methods have very similar uncertainty bands and prediction accuracy and

that neither are noticeably over or under confident about their predictions.
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Figure 4.16: NRMSE for all the output variables and methods for the multiple-type
outputs.

Discussion of results

We compared three methods of emulating multiple-type outputs. All the methods

lead to very good and comparable results. The SEP method on the whole is slightly

worse off than the other two methods, but there is little evidence to suggest that

the LMC GPE method is better than the IND method.

It may be worth comparing the predicted joint distribution of a function that

combines correlated outputs. In this case we tried to show this with steepness,

however the outputs (Hsig and Tm02) were moderately correlated. Moreover they

may have higher correlations with input values that may affect the prediction.
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Figure 4.17: Coverage values for all the output variables and methods for the
multiple-type outputs. The dotted line represents 95% coverage.

Ultimately the decision depends on what the user would like to do with the

predictions. If we are only interested in using the marginal point estimates and

uncertainties, then it can be argued that the simple IND approach may be used.

However if predictions of joint distributions of correlated outputs are of interest

than it may be worth exploring the LMC GPE and SEP GPE to the particular

application.

In theory, we expect that LMC GPE would be better than the SEP GPE and the

IND method, however because of the high number of values the LMC GPE needs to

optimise, there is a possibility of false convergence of the optimiser which can lead
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Figure 4.18: Comparison of predicted and simulated values for all output variables
using all the methods.
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to a poor GPE. Moreover the time taken to fit a LMC GPE is significantly higher

than the other methods, therefore this method may still not be appealing.

4.5 Conclusion

In this Chapter we have discussed ways of emulating simulators which have multiple

outputs. We split the multiple outputs to field type outputs and multiple-type

outputs. Under each type of output we discussed one or two ways of emulating and

compared the methods against each other and to fitting multiple univariate GPEs

independently.

Under the field type outputs, we noted that these outputs are highly correlated

and often high dimensional. We discussed two methods that are commonly used.

The PC-GPE is an ideal way of reducing the number of univariate GPE’s to fit

and yet maintain a high level of accuracy. We also discussed the separable GPE

which performed well in terms of RMSE, however it was under confident about its

predictions.

Under the multiple-type outputs, for uncorrelated outputs, we discussed using

the LMC GPE. There was not enough evidence to suggest that the LMC GPE

is better than the independent GPE even though the theory suggests otherwise.

Potentially, if we are able to help the optimiser by giving it sensible starting values,

then the LMC may be able to select better estimates for the hyperparameters and

it may take less time to fit a LMC GPE.

Overall, when it comes to deciding which method to choose when emulating

simulators which have multiple outputs, it is advisable to categorise the type of

outputs into either field type outputs or multiple-type outputs. Once categorised,

a test can be carried out on a small subset of the data to see which method under

the chosen category is most accurate for that particular simulator, bearing in mind
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what the end goal is (marginal versus joint predictions). This way a more informed

decision can be made on the choice of methodology. Note that the time taken to fit

the GPE may also be a factor that would need to be taken into consideration.
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Design Selection

5.1 Introduction

For a given set of events, X = x1, . . . ,xN , that are sampled from a certain dis-

tribution of interest, we want to evaluate η(x1), . . . , η(xN), where η(.) represents a

computationally intensive simulator. However, we are restricted to evaluating only

a limited subset of these events through the simulator due to time or computational

constraints. A GPE will be used to predict the response for the events where we

cannot afford to run the simulator. In this Chapter we discuss various methods for

selecting the “best” representative subset of events, referred to as design, D, from

the set of all events X.

Due to the limit on number of events that can be run through the simulator, we

propose methods to fine tune the selection of the design. We do this by first defining

some criterion that describes a good design, and then selecting the design such that

it best satisfies the criterion. In this Chapter we look at three design criteria. We

compare the results of the performance of the GPE fit to data selected using each of

the suggested methodologies in a case study. We end the Chapter with a discussion

on design selection methods in a more generic context.
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5.2 Common design selection methods

In general, in order for the GPE to give robust predictions, it is important that the

design events are selected in a way that ensures they are well spread out, preferably

as far as possible from each other, covering the entire input variable space, (Iooss

et al., 2010). There are many different ways of selecting design points.

The regular grid method, used in the LUT approach explored in Section 3.6, does

not work well with GPEs because of its collapsing property. This is when multiple

points have a fixed coordinate value when projected onto a variable axis, (Camus

et al., 2011b). Moreover, with the regular grid method, the number of events in the

design increases rapidly as we increase the dimensions.

A popular design selection method for GPEs is Latin Hypercube Sampling

(LHS), see for example (Urban and Fricker, 2010), where a set of design points

are selected subject to an input probability density constraint that ensures that

across each input dimension, values are evenly spread. It is similar to the regular

grid method, in that a single value is selected within each defined grid (or hyper-

cube), however, unlike the regular grid method, no two design events have the same

value for a single parameter. Urban and Fricker (2010) compare the Latin hypercube

and grid ensemble designs for a multivariate GPE. They discuss the advantages and

disadvantages of each of the methods. They recommend that although the grid de-

sign selection may be appropriate in some cases when looking at sensitivity analysis,

the Latin hypercube designs should be used over the grid ensemble designs when

the primary concern is to use the GPE for prediction. Iooss et al. (2010) discuss

that as LHS is merely a form of stratified random sampling, it is not related to

a particular criterion, and therefore the GPE prediction may have poor accuracy.

Further enhancements have been applied to LHS to adopt an optimality criterion

such as entropy, maximin and minimax distances. More information about these

designs can be found in Morris and Mitchell (1995); Johnson et al. (1990); Jones
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and Johnson (2009); Oakley (1999).

Other approaches that have been considered in the past are sequential design

selections. This is when a number of events are selected to run initially, a GPE is

fit to these events. Then predictions are made on the simulator output, and further

events are selected based on the predicted response to minimise (or maximise) a

certain criterion. Typically this criterion is such that the events chosen in the

iterative steps are those with highest prediction variance. Such designs can improve

the performance of the GPE in a very efficient way, (Iooss et al., 2010), but of

course they have to be combined with another design selection method to make the

initial choice of design events. Sobol sequences are a common technique under this

kind of design selection and are advantageous over Latin hypercube design because

they can be built sequentially, (Caflisch and Morokoff, 1994). However, they do not

guarantee that each dimension will have a uniform selection of events.

In this thesis, we assume that the data used here cannot be defined by closed-

form expressions of probability density. In other words, we assume that we already

have a set of predetermined events where we would like to run the simulator. Other

combinations of parameter values for an event may not be a plausible scenario

to model. Therefore, the Latin hypercube approach is less appropriate for our

application.

As an alternative, in this thesis, we explore the maximum dissimilarity algorithm

(MDA) approach as described by (Camus et al., 2011a), and as applied in the

context of coastal analysis by (Camus et al., 2011b; Gouldby et al., 2014). This

algorithm analyses the events using a measure of the distance between points in the

multidimensional space. Having normalized the input variables, and given an initial

event (the starting point), the MDA selects the next point that is the furthest away

in Euclidean distance in the multidimensional space. This method outputs a set of

design points which efficiently represents all the events in X.
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Selecting the “best” design

Selecting the “best” design depends on how the user would describe best. Would

they like to minimise the error over the entire input space? Would they like to

minimise the posterior variance over the input space? Would they like simply to

classify events and the actual value of the output is not as important? It is evident

that selecting the best design is quite subjective and depends on what the user

would like to use the GPE predictions for. It is important that these are clear

before selecting a design selection method and ultimately a design.

In most applications, it may be of interest to minimise the root mean square

prediction error of all the events in X. Mathematically, the criterion we are trying

to minimise can be written as:√√√√∑N
i=1

(
η(xi)− E

[
η(xi)|D

])2
N

,

where η(x) represents the simulator output and E
[
η(xi)|D

]
denotes the posterior

mean prediction of an event derived from a GPE fitted using the design, D. In

this case, the design we select would include events that are well spread out and

efficiently cover the entire event parameter space. The design selection method that

we propose for this criterion is the MDA technique.

In other applications, it may be of interest to minimise the RMSE error on a pre-

determined selection of events. In this case the design may include more events that

would fall into the pre-determined selection and may be more clustered compared to

a design selected using MDA. The design selection method that we propose for this

criterion is a weighted MDA. This is similar to MDA but has a weight associated

with each event. The Euclidean distance between two events is then multiplied with

the weights associated to the events. The weighted distance of two higher weighted

events will appear to be larger than that of two lower weighted events given a fixed
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Euclidean distance between them.

Finally we also look at an application where it may be of interest only in the

correct classification of events. This applies to scenarios where the accuracy of the

predicted simulator output is not important, but the classification is. For this case,

we propose a sequential design where first we select a small amount of events (using

MDA for example), fit a GPE to it. Then we use the GPE to predict the simulator

output for all other events, and select design events based on the uncertainty around

its classification (using both the mean and standard deviation from the GPE

predictions).

In the Sections that follow we consider these three different applications and

explore the associated design selection method in more depth. Moreover we present a

case study to compare the proposed design selection methods with randomly selected

designs.

5.3 Criterion 1

In this Section, we consider the most common criterion of design selection. We

assume that the modeller would like to accurately predict the outcome for every

event. In this case, every event is equally important regardless of the input or output

value(s) of the event. An example of this scenario would be when the modeller would

like to model the entire wave climate for a given number of years.

In this application we are trying to minimise the following criterion:

√√√√∑N
i=1

(
η(xi)− E

[
η(xi)|D

])2
N

where D will be the design selected to fit the GPE.

Camus et al (2011) use MDA to select a representative set of events. They found
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that the MDA selects events diversely distributed over the data, exploring the edges

of the parameter space and sampling a variety of events, which in turn improves the

emulator.

5.3.1 Maximum dissimilarity algorithm (MDA)

MDA is a sampling technique that is based on the Euclidean distance in multi-

dimensional space from each event. Given an initial event, the algorithm chooses

the remaining events iteratively based on the events that are the furthest away in

Euclidean distance from all of the events that have already been selected.

More formally, for a given sample of data X = x1, . . .xN , we want to select

n events that represent our design, D. Let DR = {d0, . . . ,dR} ∈ X contain the

selected events at iteration R in the selection process. The vector d0 is pre-defined

by the user as an initial starting event(s).

At iteration R, the dissimilarity between an event i in the data sample XR =

X\DR and the j-th event in the subset DR is calculated as follows:

dissi,j = ‖xi − dj‖ for i = 1, . . . , (N −R) and j = 1, . . . , R, (5.1)

where

‖xi − dj‖ =

√√√√ p∑
k=1

(xi,k − dj,k)2,

and ‖.‖ denotes Euclidean distance. Subsequently, the dissimilarity dissi,DR
, be-

tween the vector i and the subset DR, is calculated as:

dissi,DR
= min{dissi,j} for i = 1, . . . , (N −R) and j = 1, . . . , R.
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Finally, the point that is selected is the point with largest dissimilarity such that

dR+1 = xmax{dissi,DR
}.

Conceptually, calculating dissi,j for i = 1 and j = 1, . . . , R gives the Euclidean

distances between all the selected points (DR) and xi. To select the point that is

furthest away from all the previously selected points we must maximise the minimum

distance between the selected points and the point that is chosen.
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Figure 5.1: Explaining the MDA diagrammatically - Having selected points 1 and
3, the next most dissimilar point to be selected is point 2.

Figure 5.1 shows an illustration of how MDA works using an example. Suppose

we have already selected the points marked with an asterix (points 1 and 3). At the

current iteration we have to select the most dissimilar point that has not yet been

selected (point 2 and 4). We calculate the distances between point 1 and point 2
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and 4, and the distances between point 3 and point 2 and 4. These are indicated

in the figure using dotted lines and dashed lines respectively with the calculated

distances displayed nearby. With each unselected point, we note the selected point

that is closest. Point 1 is closest to point 4 with a distance of 2.24 units and point 3

is closest to point 2 with a distance of 3 units. The point that is chosen is the point

that has the largest distance to the closest point. Therefore, point 2 is selected.

Before applying the MDA technique to a dataset, we need to make sure that

{x1, . . . , xp} have the same unit of measure. One way to overcome this is by nor-

malising the data. This will ensure that equal weighting is applied to each distance.

In the SWAN model, at least one of the parameters is a directional variable

ranging between 0◦ and 360◦. When calculating the distance for this variable we

have to ensure that we take the smallest angular distance between the two points.

To do this, Camus et al (2011) suggest using a Euclidean-circular (EC) distance

where the ‘E’ is for the Euclidean distance in the scalar variables and ‘C’ is for

the circular (or angular) distance in directional variables. The scalar variables are

normalised between 0 and 1 using the formula below:

xi −min(x)

max(x)−min(x)
for i = 1, . . . n.

For the directional variables, we note that the maximum difference between any two

directions xi and xj, max(xi − xj) = 180◦, while min(xi − xj) = 0◦. Therefore

the normalisation formula from above reduces to xi
180◦

for directional variables. This

effectively rescales the directional variables between [0, 2] such that the circular

distance between any two directional variables would range between [0, 1].

Following this, if, for example, we want to calculate the EC distance between xi

and xj where xi = [hi, θi] and h denotes normalised wave height ranging between

[0,1] and θ denotes normalised wave direction ranging between [0,2]. Then the EC
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distance is calculated as:

‖xi − xj‖ =

√
(hi − hj)2 +min

(
|θi − θj|, (2− |θi − θj|)

)2
and ‖ ‖ denotes the EC distance.

Another solution to the problem associated with directional variables would be

to convert the direction, θ, to vector components in x (horizontal) and y (vertical)

directions such that

x = cos

(
2πθ

360

)
and y = sin

(
2πθ

360

)
.

This will result in x and y values ranging between 0 and 1. However, a disadvantage

of this method is that for every directional variable you have, you will have one

extra parameter in the input space. This may affect your model if you already have

many parameters. Nevertheless if you only have a few parameters, then we found

that this method works better in terms of performance of the GPE.

5.4 Criterion 2

In this Section, we consider another criterion for design selection. We assume

that the modeller would like to accurately predict the outcome for certain events

more than others. These events have to be pre-determined. Let’s suppose that for

xi ∈ X,wi represents the weighting associated to the event, where wi ∈ [0, 1]. This

weighting represents the modellers interest in the importance of accurately predict-

ing event i, where wi = 1 represents highest importance, and wi = 0 represents

the least importance. To account for this, we can expect that the design selection

method will bias event selection to higher weight.

An example of this scenario would be when the modeller would be more interested
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in wave heights above a specified threshold (for instance where waves below 0.5

meters may not have any significant impact on a particular study). Another example

would be when waves from certain directions may be assumed to have a higher

impact to the offshore wave height due to the bathymetry for a particular site.

In this application, we aim to minimise the weighted Euclidean distances by

minimising the following criterion:

√√√√∑N
i=1wi

(
η(xi)− E

[
η(xi)|D

])2
N

.

5.4.1 Weighted maximum dissimilarity algorithm (WMDA)

The design selection method we propose here is a slight modification of the MDA

method defined earlier. The method we propose here is a weighted MDA (WMDA).

This algorithm chooses points based on the weighted Euclidean distance in multidi-

mensional space from each event.

The intention is that with the limited number of events that we can evaluate

the simulator for, we want to make the best choice of design so that the events

that we are most interested in (higher wi) are as accurate as possible with a slight

compromise on the accuracy of the lower weighted events.

Following the same setup as the MDA method, we calculate the dissimilarity

between an event i in the data sample XR and the j − th event in the subset DR as

follows:

dissi,j = ‖xi − dj‖ × wiwj for i = 1, . . . , (N −R) and j = 1, . . . , R, (5.2)

where ‖.‖ denotes the Euclidean distance.

Multiplying the Euclidean distance by a weight factor has the effect of length-

ening or shortening the distance by factor w. If i and j are highly weighted events,
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then diss(i, j) would be greater than if i and j were unfavourably weighted events.

Assigning a weight of zero to an event is effectively saying that this event is not

important at all and thus will not get chosen. The rest of the analysis remains the

same as MDA.
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Figure 5.2: Explaining the WMDA diagrammatically - Having selected points 1 and
3, the next most dissimilar point to be selected using weighted distances is point 4.

Figure 5.2 shows an illustration of how WMDA works using an example following

the same set up as Figure 5.1. We assign weighting to each of the points as indicated

on the graph. Suppose we have already selected the points marked with an asterix
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(points 1 and 3). At the current iteration we have to select the most dissimilar point

that has not yet been selected (point 2 and 4). The Euclidean distances between the

points are shown on the graph. We also calculate the weighted Euclidean distances

between the points (abbreviated as WD on the graph). This would be a multipli-

cation of the weights of each point and the Euclidean distance between them. For

each unselected point, we note the selected point that is closest. Point 1 is closest

to point 4 with a weighted Euclidean distance of 0.72 units and point 3 is closest to

point 2 with a weighted Euclidean distance of 0.45 units. The point that is chosen

is the point that has the largest distance to the closest point. Therefore, point 4 is

selected.

5.5 Criterion 3

In this Section, we assume that the modeller would like to accurately classify a set of

events and where accurate predictions of the simulator output itself are unimportant.

An example of this scenario would be when the modeller is assessing a flood

defence of a certain height. The modeller does not care about the specific value of

the output wave height, but whether the wave height is higher than the height of

the flood defense.

We present here a sequential design where we first propose to fit a GPE to a

space filling design (e.g. MDA) for a small number of points. We then predict

the output of the non design events using the fitted GPE. The idea is to update

our design based on the uncertainty associated with the correct classification of the

predicted events (by taking into consideration the posterior mean and variance).

Suppose a modeller is interested in correctly classifying whether the simulator

output will lie within a certain interval or not. we define such an interval as R =
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[a, b]. The criterion that we are trying to minimise is as follows:

∑
x′∈X\D

∣∣1R(η(x′))− 1R(E
[
η(x′)|D

]
)
∣∣

where

1R(z) =


1, if z ∈ R.

0, if z /∈ R.

5.5.1 Pivoted Cholesky decomposition

Formally, suppose that the main interest is in determining whether, for event x, the

simulator output η(x) will lie in some interval R = [a, b]. We define a new function

g(x) such that:

g(x) =


1, if η(x) ∈ R,

0, otherwise.

(5.3)

For a given sample of data X = {x1, . . . ,xN}, suppose that we have already

selected an initial design, D1 = {x1, . . . ,xn1)} with a small number of design events

where n1 < n. We run the simulator at these events, and use the output to fit a

GPE. We then use this GPE to predict the simulator output at all events in X.

Note that evaluating η(x) will also give us a value of g(x). For the second design

in the sequence, the idea is to select the events where:

• we have the greatest uncertainty about g(x)

• and by avoiding events that are close together: if xi and xj are close together,

evaluating η(xi) is likely to give us an accurate value of g(xj) (in addition

to g(xi)), because once we learn η(xi), we will have little uncertainty about

η(xj).
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Next, we obtain the variance-covariance matrix V of {g(x1), . . . , g(xN)}, and use

pivoted Cholesky decomposition on V to find the event x(1) where g(x(1)) has the

largest variance, the event x(2) where g(x(2)) has the largest variance conditional on

g(x(1)) and so on. The rest of this Section explains how to calculate V.

From the emulator, for a non design event, xi (not used to fit the GPE), suppose

we have

η(xi) ∼ N(mi, s
2
i ).

where mi = E{η(xi)|D1} and s2i = var{η(xi)|D1}. We define g(xi) to have a

Bernoulli distribution with probability pi as follows:

g(xi) ∼ Bernoulli(pi),

where

pi = Φ

(
b−mi

si

)
− Φ

(
a−mi

si

)
and Φ is the CDF of the standard normal distribution. We can compute

V ar{g(xi)} = pi(1− pi)

to give us the diagonal elements of V. For the off-diagonal elements of V we need

Cov{g(xi), g(xj)} = E{g(xi)g(xj)} − E{g(xi)}E{g(xj)} (5.4)

= E{g(xi)g(xj)} − pipj, (5.5)

where

E{g(xi)g(xj)} = P{g(xi) = 1, g(xj) = 1} (5.6)

= P{η(xi) ∈ [a, b], η(xj) ∈ [a, b].} (5.7)

124



Chapter 5 5.6. Case Study

This probability can be calculated using a bivariate normal CDF with

(
η(xi)

η(xj)

)
∼ N

((
mi

mj

)
,

(
s2i ci,j
ci,j s2i

))
,

where ci,j is the emulator posterior covariance between η(xi) and η(xj).

Now that we can define V , we calculate the pivoted Cholesly decomposition of

V . This will result in a ranked order matrix of events that have the largest variance

conditional on the previous events. We select the top (n− n1) events that we need

to update our design.

Although this method appears theoretically sound, when implementing it to a

large dataset we faced severe computational burdens and hence were not able to

implement in to the case study that follows. However simpler test cases have proved

that there is definitely some scope for this method where a modeller is faced with

such a scenario.

5.6 Case Study

The aim of this case study is to compare design selection methods. We explore the

design selection methods using the context of case study 1 as described in Chapter

2.2.1.

The design selection methods that we are going to compare are: two randomly

generated designs (abbreviated as RG1 and RG2), one design generated using the

MDA method (abbreviated as MDA), and one design generated using the WMDA

method (abbreviated as WMDA). We will try to minimise criterion 1 to illustrate

how the MDA compares to RG1 and RG2 and simultaneously try to minimise cri-

terion 2 to see how WMDA compares to MDA, RG1 and RG2.

We evaluate the SWAN model at the designs obtained by each design selection

method. Next, we fit separate GPEs to each of the selected designs for each SWAN
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output. We use these fits to predict the simulator output for a fixed subset of

events. We compare the design selection methods by comparing the performance of

each GPE in predicting the events.

The basic setup is as follows. We have a full set of events, N = 69494 events

where we would like to evaluate the SWAN model. Suppose that we are limited to

only n = 500 SWAN model runs. The input variables of SWAN are wind speed, wave

height, peak period, wind and wave direction. The output variables are nearshore

wave properties described with wave height (Hsig), wave period (Tm02) and wave

direction (Dir). We have true SWAN output for approximately 5600 events which

we will use for assessing the design selection method. For MDA and WMDA, we

initialise the algorithm at the event where the wave height is the highest.

Note that two of our input variables and one output variable are directional

variables: wave direction, wind direction and nearshore wave direction. We calculate

the x and y components for each variable as discussed in Subsection 5.3.1. It follows

that our input space is now increased by 2 variables from five to seven. This method

of handling the directional variables was selected as it gave a better RMSE for initial

tests.

For the design of coastal structures, in general, the higher wave conditions are

likely to be of more relevance. Assuming that higher offshore waves lead to higher

waves at the site of interest, rather than proceed with the MDA algorithm, it is

desirable to focus the design points to cover higher wave conditions, i.e. targeting

increased resolution of design points towards an area of the input parameter space

more likely to result in higher wave heights. This can be achieved with the WMDA

approach by weighting high waves more than low waves. Moreover the selected

wave prediction point (as shown in Figure 2.1) is sheltered to waves from several

directional sectors. Therefore, it would not be as useful to run SWAN model for

the events which have these wave directions as the SWAN output may result in low
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wave conditions. As a result higher weights were assigned to each event proportional

to wave height and to events where the offshore wave direction was between 170 to

200 and 300 to 330 degrees. Figure 5.3 shows the weighting applied according to

offshore wave height and offshore wave direction.

It is important to note that the weighting can only be based on the input variables

as the SWAN output will not be available. Additionally note that the stronger the

weighting, the greater the effect WMDA will have to bias the selection of events

to the higher weighted events. Note this effect is also based on how correlated the

input variables are to the output variable of interest.

Figure 5.3: Weight assigned to each event based on the events input wave height
and wave direction values.
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5.6.1 Results and discussion

Figure 5.4 shows the design for the two randomly selected design points, while Figure

5.5 shows the design selected using MDA and WMDA. In both figures the blue dots

represent the entire set of events where we would like to evaluate SWAN, while the

grey dots represent the selected design events. Notice how for RG1 and RG2 the

selected events are mainly concentrated around the more dense regions of the data,

as the events have a higher chance of getting picked. Also notice that there is a

large variation between the two designs (RG1 and RG2). This is due to the random

element in the method.

On the other hand notice that for the MDA method, the selected events are

more spread out and cover the entire space of the data for all parameters. Each

time MDA (or WMDA) is used to select a design with the same initial conditions

and variables, the resulting design is identical. For the WMDA method, the selected

events are concentrated where the wave height is bigger and the wave direction is

between 170 to 200 and 300 to 330 degrees.

For the GPE, the closer the prediction event is to the design event, the more

accurate the prediction. Thus the design for RG1 and RG2 might work well with

smaller n as most of the prediction events are centred around the design, but as we

increase n, RG1 and RG2 will continue picking points that are in the denser regions.

This is where MDA is better as it ensures that the event it chooses at each iteration

is the furthest away from all the selected events, thus effectively exploring the entire

input parameter space.

Once we have selected the design and run these through the SWAN model, the

next step is to fit the GPE to the events. We fit a separate GPE for each design and

each output variable. After fitting the GPEs, we can use it to predict the output

of the model at the validation events. We compare the performance of predictions

made using the four designs.
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Figure 5.4: Designs selected using a random selection (RG1 and RG2)

In order to minimise criterion 1, we can look at the RMSE error. Figure 5.6

shows how the NRMSE varies as we increase the number of design events used

to fit the GPE for each of design selection methods. Notice in this column that

where n is small, all the methods seem to be predicting the SWAN output with

similar accuracy. On some occasions the random designs seem to be better than the

MDA. However, as you increase n, the MDA (and WMDA) method outperforms

RG1 and RG2. This is because the MDA method ensures that the design events
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Figure 5.5: Designs selected using MDA (upper triangle) and WMDA (lower trian-
gle) designs

are as far away from each other, whereas for the random designs, the events which

are clustered together have a higher chance of being picked and thus most of the

events may be close to each other. Therefore, adding more events does not seem to

be informative for the GPE.

In general, the NRMSE of the MDA method follows a downward trend as you

increase the number of training runs. This is not consistently the case for RG1 and

RG2 especially for wave height and wave period. The overall performance for the
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RG1 and RG2 is inconsistent and unreliable compared to the MDA method.

Figure 5.6: Comparison of NRMSE of GPE’s fitted to different designs for varying
sizes of designs

In order to minimise criterion 2, we can look at the weighted RMSE error which

is calculated as: √√√√∑N
i=1

1
wi

(
η(xi)− E

[
η(xi)|D

])2
N

.

Figure 5.7 shows a plot of the weighted RMSE against the number of design events.

The random design selection methods are clearly worse off than the other methods.

The MDA and the WMDA method follow similar patterns. In this case, the MDA

method outperforms the WMDA for Hsig and Tm02. This may be because of the

low correlation between the input wave height and the output wave height and wave
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period for this particular nearshore point that we are predicting at. We can see

that for output wave direction (Dir), the WMDA performs better than the MDA

for most of the number of design events. On average, for wind direction WMDA

can achieve the same accuracy as MDA with fewer (about 100) design events. In a

more realistic use case, this gain in accuracy in the higher weighted regions would

be very significant.

Figure 5.7: Comparison of weighted RMSE of GPE’s fitted to different designs for
varying sizes of designs

Unfortunately, in this case study, we cannot demonstrate the benefits of the

WMDA design selection method as well as we intended. In the paper, (Malde et al.,

2018), we show another case study of WMDA where it outperforms the MDA.
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In general, the effect of weighting depends on how well the assumptions between

the input and output correlations are understood. These often vary case by case

and thus is difficult (without expert knowledge) to appropriately assign a weight to

each event in advance of running the simulator. A more appropriate weight could

be assigned by using a sequential approach. A standard design selection method

(MDA) could be applied at first to choose a small number of design events. The

simulator can be run for these events, and a GPE can be fitted to the simulator

input and output. A prediction of the simulator output can be made at all other

events. This may be a poor prediction, but it can be used to get an understanding

of the input and output correlation structure. This can help with assigning more

appropriate weights to each event.

Other factors that we have found to affect the performance of WMDA in compar-

ison to MDA, is how strong a weight applied to a particular event is in comparison

to the weighting of the remaining events. In general, the stronger the weight, the

higher the chances of it being picked. However, this may have adverse effects on the

performance of predicting the lower weighted events.

5.7 Conclusion

In this Chapter we have identified three different criteria that a user maybe interested

in achieving. For each criterion, we have presented a design selection method that

would be appropriate to implement. In the case study, we showed that the MDA

method resulted in the better GPE predictions then all the other methods. We

showed an example of a case where WMDA can be applied, and although we did

not prove that it was better than the MDA method, we referenced a paper which

goes through a similar comparison and shows that it can be. The performance of

WMDA is heavily dependent on the assigned weights and the assumed relationship
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between the inputs and outputs.

In this thesis, we are limited to a design selection method that allows us to

select a design from a predetermined set of events. However, without this restriction

there are many design selection methods available. The way to choose to the most

appropriate method will depend on the specific use case of the final output. This

objective should be defined earlier in order to target events appropriately when

selecting the design.

In general, a good design is one where, events are well spread out in all input

dimensions; events cover the extent of the input parameter space (such that we

are interpolating when predicting events), and where design is representative of all

events.

It is also important to consider how the simulator is going to be run. By this

we mean, is it going to run numerous runs in parallel? If so running one simulator

run would take the same time as running multiple. It may be worth taking this into

account when selecting the design to avoid “wastage of resources.” This may also

be used to determine how many runs to select for each step in a sequential design

selection method.
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Conclusion

A majority of the coastal modelling applications require using historic data from

physical observations or from computer simulations. A variety of simulators exist

and range in complexity and accuracy of approximating real world scenarios. In

general, the really accurate simulators are often very complex and take a long time

to complete a single run and require a lot of computer resources. Ideally for a

complete study, a large quantity of data is required. If this is to be derived from the

simulator, it can often be challenging. Hence companies such as HR Wallingford,

have adapted meta models to help reduce the burden.

In this thesis we have considered the application of Gaussian process emulators

(GPE) to coastal wave modelling. We have explored different types of GPEs and

applied it to a variety of applications in the case studies presented. We used a wave

transformation model (SWAN) as the simulator that we fit the GPE to, however

the details discussed in this thesis are easily applicable to other simulators which

are computationally expensive and time consuming to run.

We choose to use GPEs compared to other meta-models as it has two significant

advantages. Since GPE uses a Bayesian approach in modelling, the predictions of

the simulator are in terms of a distribution. This means that we can get point
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wise predictions and credible intervals around these predictions which represent the

GPEs uncertainty around the predicted value. Moreover using the GPE to predict

at an event that was used to train it, will give 100% accurate predictions with zero

uncertainty. Additionally, although not explored in this thesis, GPEs can also be

used to carry out uncertainty and sensitivity analysis much more efficiently.

In this thesis we first introduced a univariate GPE in Chapter 3 where we used a

toy simulator to explain the mathematical details. In the case study we illustrated

the benefit of using GPEs over the traditional look up table approach that was used.

We showed that the GPE approach required much fewer number of simulator runs

and resulted in higher accuracy than the look up table approach. We note that

limited expert knowledge about the simulator is required. This was not the case in

the look up table approach.

In the next Chapter we extended the basic univariate GPE to applications where

the simulator has multiple outputs. We identified two types of multiple output and

illustrated the methodology to emulate the simulator for each type. For high dimen-

sional and strongly correlated outputs, we illustrate the use of principal component

analysis to reduce the dimension of the output and then fit the GPE to the reduced

number of principal components. We showed that this method works well if the

output is highly correlated. We reviewed an alternative multivariate GPE approach

referred to as the separable GPE. The limitation with this method is that it only

uses a single correlation length parameter amongst all the outputs, which tends to

be quite restrictive.

For low dimensional output that is not strongly correlated we explore the linear

model of coregionalisation (LMC) GPE. This is more flexible than the separable

GPE as the output processes are constructed as linear combinations of independent

univariate GPEs. Therefore this method allows a different set of correlation length

parameters for each output. A limitation to this method is the number of parameters
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it has to estimate using maximum likelihood estimation. This can result in the op-

timiser falsely converging at a local maxima/minima which can lead to a poor GPE.

There is scope for improving the computer implementation of this methodology in

terms of making it more efficient and robust to optimise the hyperparameters.

In separate case studies we demonstrated which method would be more suitable

depending on the type of output. We concluded that it is best to carry out a small

test case where the methods are compared based on what the end goal is. In general,

if the interest is in using just the marginal point predictions of the output variables,

then it may suffice to use multiple univariate GPEs independently if the number

of outputs is not too large. Otherwise, principal component analysis can be used.

However, if the interest is in using a joint distribution then it may be better to use

the separable or LMC GPE depending on how similar the output variables are to

each other.

An important aspect of fitting a GPE to a simulator is the design selection.

In Chapter 5 we discuss ways of selecting a design such that we maximise the

information we can get from the simulator to inform the GPE when we are limited

to a number of simulator runs. In this thesis we are limited to selecting a design

based on a set of pre-determined events. We discuss three approaches to select a

design based on three different criteria we may want to optimise over. However,

without this limitation there are a number of other methods that can be applied. In

general an objective should be defined prior to choosing the design selection method.

For instance, an objective could be to minimise the RMSE of the predictions.

Knowledge Transfer Partnership (KTP)

This thesis was written as part of the KTP program. The objective of this program,

which was to research and implement advanced meta-modelling approaches has been

successfully met. At HR Wallingford, there has already been a noticeable reduction
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in computational burden and an improvement of accuracy in approximating the

simulator compared to their traditional methods. Moreover, at HR Wallingford,

there has been an interest in other applications where GPEs can be applied. These

are explained in more detail in the next section.

6.1 Other applications of GPE at HR Wallingford

6.1.1 Bayonet GPE

Together with other colleagues at HR Wallingford, we have designed an overtopping

model using GPE which will be used industry wide, (Pullen et al., 2018). The new

model offers several advantages over the previous neural network based model. It

provides better accuracy and a more explicit and complete representation of un-

certainty. Moreover the predictions can be obtained instantaneously. The design

used here consisted of all the data from an existing database of physically modelled

results.

GPEs have zero variance at the design points and away from the design points

the variance is non-zero, realistically reflecting uncertainty through consideration

of distance from the design points. Where it is known the data themselves contain

uncertainty (noise), as is the case with data from physical model experiments, this is

included within the model fitting through an error term known as a “nugget”, (An-

drianakis and Challenor, 2012). The output predictions from the GPE are therefore

capable of including the sources of uncertainty associated with model fit in relation

to distance from design points and this additional source of uncertainty.

6.1.2 SWAN calibration using GPE

Calibration of simulators such as SWAN can be a laborious and an expensive task.

Automatic calibration techniques exist e.g. based on the minimisation of a pre-
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scribed objective function, but rely on many simulator runs. For simulators such as

SWAN taking several minutes or hours to run, this is typically not a viable option.

However, a GPE can be setup to cover the space not only of the offshore wind,

wave and water conditions, but also the model settings used to tune the simulator.

Then, automatic calibration becomes viable. Early tests show that the minimisa-

tion of an objective function, e.g. the RMSE in wave height, for a time series or

storm peaks can be determined. The downside is that separate GPEs are (proba-

bly) required for different formulations for model settings to be considered, but this

requires significantly smaller number of SWAN runs. More tests are ongoing.

6.1.3 Applying GPE to other simulators

SWAN is one of several simulators used in coastal modelling studies, but is generally

limited in use to open waters. In order to accurately represent the important pro-

cesses of diffraction and reflection and the associated interference patterns within

enclosed areas such as ports and harbours we require the application phase resolving

simulators. Several model types exist including simulators based on the linear Mild

Slope Equation and non-linear Boussinesq type equations. These simulators are

significantly more computationally expensive compared with SWAN, so may also

benefit from use of GPEs. A GPE of the Mild Slope Equation model - ARTEMIS

at HR Wallingford has already proven to be successful, and further work could be

done using a GPE for the non-linear Boussinesq type simulators.

6.1.4 Wave forecasting

The computational efficiency of the GPE compared to the model provides the po-

tential for applications requiring efficient computing. Wave forecasting is one such

area, where the model runs need to be sufficiently fast to produce a forecast of future

conditions, not only before the conditions have occurred, but to provide sufficient
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time to enable appropriate action, e.g placement of flood gates, evacuation, etc. Cur-

rently look-up-table approaches are sometimes applied, but the advantages of GPEs

should mean that GPEs will take over this role, particularly where probabilistic fore-

casting using ensembles are used. For example, downscaling a deterministic offshore

wave forecast to nearshore which comprises of one forecast for each time step using

SWAN is often viable. However, downscaling a probabilistic offshore wave forecast

comprising e.g. 12, 24 or 50 member ensemble for each time step without a super-

computer requires a meta-modelling technique such as GPE. Testing is currently

underway to see if GPEs can be used.
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