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ABSTRACT

The thesis deals with the improvement in the tracking in model predictive control

(MPC). The main motivation is to explore high embedding performance controllers with

constraint handling capabilities in a simple fashion. There are several techniques available

for effectively using an infinite horizon rather than a finite horizon. First, there has been

relatively little discussion so far on how to make effective use of advance information on

target changes in the predictive control literature. While earlier work has indicated that the

default solutions from conventional algorithms are often poor, very few alternatives have

been proposed. This thesis demonstrates the impact of future information about target

changes on performance, and proposes a pragmatic method for identifying the amount of

future information on the target that can be utilised effectively in infinite horizon algorithms.

Numerical illustrations in MATLAB demonstrate that the proposal is both systematic and

beneficial.

This thesis introduces several important issues related to model predictive control (MPC)

tracking that have been hitherto neglected in the literature, by first deriving a control law

for future information about target changes within optimal predictive control (OMPC) for

both nominal and constraints cases. This thesis proposes a pragmatic design for scenarios in

which the target is unreachable. In order to deal with an unreachable target, the proposed

design allows an artificial target into the MPC optimisation problem. Numerical illustrations

in MATLAB provide evidence of the efficacy of the proposals.

This thesis extends efficient, robust model predictive control (MPC) approaches for

Linear Parameter-Varying (LPV) systems to tracking scenarios. A dual-mode approach is

used and future information about target changes is included in the optimisation tracking

problem. The controller guarantees recursive feasibility by adding an artificial target as an

extra degree of freedom. Convergence to admissible targets is ensured by constructing a

robustly invariant set to track any admissible target. The efficacy of the proposed algorithm
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is demonstrated by MATLAB simulation.

The thesis considers the tractability of parametric solvers for predictive control based

optimisations, when future target information is incorporated. It is shown that the inclusion

of future target information can significantly increase the implied parametric dimension to

an extent that is undesirable and likely to lead to intractable problems. The thesis then

proposes some alternative methods for incorporating the desired target information, while

minimising the implied growth in the parametric dimensions, at some possibly small cost

to optimality.

Feasibility is an important issue in predictive control, but the influence of many impor-

tant parameters such as the desired steady-state, the target and the current value of the

input is rarely discussed in the literature. At this point, the thesis makes two contribu-

tions. First, it gives visibility to the issue that including the core parameters, such as the

target and the current input, vastly increases the dimension of the parametric space, with

possible consequences on the complexity of any parametric solutions. Secondly, it is shown

that a simple re-parametrization of the degrees of freedom to take advantage of allowing

steady-state offset can lead to large increases in the feasible volumes, with no increases in

the dimension of the required optimisation variables. Simulation with MATLAB 2017a

provides the evidence of the efficacy of all proposals.
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Chapter 1

INTRODUCTION

In the past, the control was performed manually where operators control certain variables,

such as temperature, speed, and other variables available in the industrial field. The chal-

lenge with manual control is the need for better quality. With the rise of the industrial

revolution, the automatic control system has been built up to enforce the control scheme.

Automatic control theory has played a key role in the development of the industry. This is

because of the increase in production processes and quality improvement of manufactured

goods.

This control system comprises the main element (controller) which executes the control

task. Perhaps one of the most important controller types within the industry is the PID

controller [102, 68, 81]. For PID tuning, there are many methods such as Tyreus–Luyben

settings, Ziegler–Nichols, and reaction curve methods [155]. However, this controller suffers

from some restrictions.

The PID controller is perfect for some scenarios and often fails to control time delayed

and multi-variable processes effectively. Also, this controller is unable to handle system

constraints systematically. Therefore, there is a demand for control strategies that are

better than a PID controller.

Several methods were introduced in 1970’s, such as Minimum variance (MV), Smith Pre-

dictor control (SPC), Generalised Minimum Variance (GMV), and Pole Placement (PP).

Although these methods provide improved performance compared to PID, they suffer from

some limitations in certain scenarios [61]. This led to the development of more sophisticated

control approaches, and now MPC is one of the most successful advanced control approaches

1
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in the industrial field [129, 101, 120, 49]. This is largely due to its ability to handle input and

state constraints and multi-variable processes. Furthermore, it has the potential to include

feed-forward information systematically rather than as a separate design. The evidence is

presented in [120], [13], [127], [29], and [175]. Since then MPC has become a popular control

approach in the industrial field. This approach uses a model of the system to produce a

prediction of its future behaviour.

The basic concepts of model predictive control are well illustrated and understood, e.g.

[145, 167, 19]. A brief illustration of MPC is demonstrated in the following sections.

1.1 MPC strategy

Figure 1.1: MPC strategy[13]

A typical MPC strategy is illustrated in Fig 1.1 [13]. It proposes a sequence of candidate

future input moves which are expected to give the best predicted performance, where per-

formance is assessed using a defined performance index. Usually, MPC utilises only the
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first move of the control candidate sequence, while ongoing measurement and optimisation

are used continually to improve the planning for each sample. This philosophy is called

receding horizon control (RHC).

1.2 MPC structure

A typical MPC implementation structure is shown in Figure 1.2 [13]. The MPC is based

on an internal model which is used to predict the future process outputs. This controller

manipulates the difference between the set point (SP) and the feedback process variable

(PV) to provide manipulated variables (MV) to the controlled object. The disturbance is

rejected by disturbance cancellation inside the controller.

Figure 1.2: Basic MPC structure [13]
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1.3 MPC methods

MPC has developed gradually starting from a simple controller such as a minimum variance

(MV) introduced in the 1970s to a Generalized Predictive Control (GPC) [27, 26] in the

1980s then to an optimal control in the 1990s, e.g. Model Algorithmic Control (MAC),

Dynamic Matrix Control (DMC) [99, 147, 103], Predictive Functional control (PFC) [130,

132, 129], Extended Prediction Self-Adaptive Control(EPSAC) [136], Generalized Predictive

Control (GPC) [26, 27, 55], and Internal model control (IMC) [44, 47, 38].

Generalized Predictive Control (GPC) and Dynamic Matrix Control (DMC) were popular

MPC algorithms. These MPC strategies were based on modelling the controlled process

and prediction over a finite horizon which is chosen with weighting factors as the tuning

parameters. The weakness of these algorithms is that the performance can be poor if the

tuning parameters are poorly chosen. It is also shown that it is difficult to guarantee

asymptotic stability with finite horizons in a predictive control approach. Recently, infinite

horizon algorithms have been developed [95], such as Optimal Model Predictive Control

(OMPC) or dual-mode algorithms, that tackled some of the weaknesses associated with the

finite horizon methods. Since then they have become popular algorithms in the literature.

The methods introduced in this section are discussed in [61].

1.4 Research challenges

One key advantage of MPC is it can make systematic use of advance information. However,

although in principle MPC can use future information about set point and disturbances

systematically, often the default use of this information is poor. An open question in the

literature is how this information is used effectively.

Most of the literature on model predictive control (MPC) ignores the use of advance knowl-

edge, and therefore implicitly ignores the feed-forward design in MPC. In a typical dual-

mode approach, it is assumed that the target is fixed. However, there are scenarios where

it is necessary to consider the time-varying target in the case of using advance knowledge.
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Therefore the performance index requires some minor changes to allow for time-varying

future targets.

Typical MPC performance indices penalise the errors between the future set point and the

predicted output. This is known as a tracking scenario; however, one of the challenges

within a tracking scenario is the need to ensure feasibility, in order to guarantee that the

class of predictions available to the MPC algorithm can indeed satisfy all of the constraints

simultaneously. However, even putting a side issues linked to model uncertainty, feasibility

can easily be lost during rapid or large set point changes and disturbance changes, both

of which have a strong impact on the terminal constraints [145]. Consequently, there is a

strong link between set point tracking and feasibility; the feasibility of the controller may

be lost, and the controller becomes ill-defined, or not defined at all [126], in the case of

any set point changes. A convenient and essential component for guaranteeing the stability

of the MPC algorithms is to ensure feasibility; that is, to ensure the existence of a set of

future controls which are within the input constraints and meet suitable terminal constraint.

Assuming a suitable underlying MPC approach such as dual-mode [145, 153], a feasibility

guarantee is often sufficient to enable a simple guarantee of nominal (and at times robust)

closed-loop stability for the controller.

Several authors have tackled this tracking problem, that is the loss of feasibility, by develop-

ing modified formulations for the MPC algorithm to deal with different scenarios. Recently,

novel cost function formulations have been devised to guarantee feasibility and stability in

MPC tracking. This novel cost formulation penalises the deviation from an artificial steady-

state target and the terminal state in addition to penalising the deviation of the artificial

steady-state target from the true steady-state target, e.g, [143, 137, 86]. They achieved

good results ensuring feasibility retention and hence stability guarantees. Nevertheless, the

range of solutions and approaches in the literature remains relatively limited.

There is a strong link between the feed-forward and degrees of freedom (d.o.f) used for

constraint handling, as these impact on the closed-loop. It has been shown in [144] that it

is possible and probably advantageous to use a feed-forward design to deal with constraints,

thus shifting the major computational load to an off-line problem. The optimisation of

the d.o.f then need only focus on feedback aspects that arise from parameter uncertainty
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and disturbances. The most appropriate methods for this issue are multi-parametric MPC

methods.

1.5 Thesis objectives

There are several objectives related to tracking MPC improvement presented in this thesis.

These objectives are discussed briefly in the following subsections.

1.5.1 Fixed feed-forward designs

It has been shown in [145] that the default feed-forward arising from a conventional MPC

algorithm may be ineffective because the assumptions implicit in the optimisation are rela-

tively limited and only valid for fixed set points. If the future set point is changing, then the

optimisation and degrees of freedom within it need essential modification. It is logical to

consider whether a two stage design will provide better choices for the feed-forward; in other

words: (i) first design the feedback loop for robust performance and (ii) secondly, design a

feed-forward to give optimum tracking, assuming the inner loop is known. Regarding this

concept, it is necessary to clarify exactly how the design can be performed and to what

extent such a design can handle constraints. Consequently, a key objective is to define an

algorithm that can make effective use of a predefined feed-forward; that is, to embed this

into the on-line optimisation and evaluate the approach compared to more conventional

methods. Another issue to consider is the extent to which the future values of the target

can be treated as states in a parametric optimisation. A main objective of this thesis is to

improve MPC tracking through the use of dual-mode algorithms that have the potential to

be implemented in industrial contexts.

1.5.2 Artificial targets in MPC

In practice, there is a scenario where the constraints are active in the steady-state and this

can make the desired target unreachable. Recent work has proposed an artificial target



1.6 Supporting publications 7

which is reachable, but the challenge here is how to compute and choose this target and

incorporate it in the MPC optimization. Therefore, it is logical to devise a novel algorithm

that computes and chooses an artificial target and incorporates it into the performance

index using both finite and infinite horizon algorithms to show the impact of the terminal

constraints on feasibility. Another important and linked issue is to optimise the artificial

target using parametric methods.

1.5.3 The robust case

It has been shown that model parameter uncertainty can cause a loss of feasibility, in which

case MPC would become undefined; therefore, it is useful to analyse the existing approaches

that are robust to parameter uncertainty and then to propose some modifications to tracking

approaches, which guarantee this robustness. Recent work has been done on this issue such

as a robust invariant set approach but this is limited to specific scenarios. The objective

here is to use an artificial target which is more flexible and easier than the conventional

approach of tubes [80, 123].

1.6 Supporting publications

The work in this thesis is supported by the following publications :

1.6.1 Conference papers

1. S. Dughman and J. A. Rossiter. A survey of guaranteeing feasibility and stability in

MPC during target changes. IFAC-Papers OnLine, 48(8):813818, 2015.

2. S. Dughman and J. Rossiter. Systematic and simple guidance for feed-forward design

in model predictive control. 18th International Conference on Control Science and

System Engineering, 2016.
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3. S. Dughman and J. A. Rossiter. Efficient feed forward design within MPC. In Control

Conference (ECC), 2016 European, pages 1341–1346. IEEE, 2016.

4. SS Dughman and JA Rossiter. Efficient Robust Feed-Forward Model Predictive Con-

trol with Tracking. UKACC ,11th International Conference, 2016.

5. S. Dughman and J. Rossiter. The feasibility of parametric approaches to predictive

control when using far future feed-forward information. In Control and Automation

(ICCA), 2017 13th IEEE International Conference on, pages 1101–1106. IEEE, 2017.

6. S. Dughman and J. Rossiter. The impact of the input parameterisation on the feasi-

bility of MPC and its parametric solution. In Proceedings of the European Control

Conference. IEEE, 2018.

1.6.2 Journal papers

1. S. Dughman and J. Rossiter. Systematic and effective embedding of feed-forward of

target information into MPC. International Journal of Control, pages 1-15, 2017.

1.7 Thesis overview

This section gives an overview of this thesis in the following subsections: The aim of this

thesis is to implement algorithms that design an efficient feed-forward for tracking MPC

through the use of future information about target and disturbance changes and guaran-

teeing the feasibility hence ensuring closed-loop stability. Moreover, efficient feed-forward

is also extended to be designed for the robust case. Finally, the feed-forward is improved

by implementing a multi-parametric quadratic programming method.

Chapter 2, introduces the background on MPC and Chapter 3, describes the literature

review on MPC algorithms.

Chapter 4, presents the feed-forward designs with the use of future information about tar-



1.7 Thesis overview 9

get and disturbance changes for dual-mode or Optimal Model Predictive Control (OMPC)

algorithms. Efficient algorithms are demonstrated for both unconstrained and constrained

cases.

Chapter 5, discusses the artificial targets in MPC demonstrating the use of advance knowl-

edge when the target is unreachable during transient and steady-states.

Chapter 6, presents robust tracking with advance knowledge by proposed an algorithm for

Linear Parametric Varying (LPV) systems with the presence of uncertainty.

Chapter 7, demonstrates complexity anf feasibility of a multi-parametric quadratic pro-

gramming (mp-QP) technique within MPC tracking using advance information of target

changes.

Chapter 8, studies the implementation of the proposed OMP feed-forward algorithms to

different industrial processes, for both nominal and robust design.

Finally, the conclusions and future work recommendations are presented in Chapter 9.

Appendix A, presents some details for Chapter 7.

Appendix B, presents state space parameters for large models, presented in Chapters 4

and 8.



Chapter 2

BACKGROUND ON MPC

This chapter presents the background on MPC and is divided in two parts. Part I in-

troduces some of the components which are essential for MPC implementation. These are

presented mathematically in the subsequent sections based on the full state space formu-

lation. Section 2.1 presents the system model description. Predictions based on the use of

one step ahead model are detailed in Section 2.2. Common cost functions are presented in

Section 2.3. Section 2.4 defines the constraints for finite horizon approaches, while Section

2.5 describes the constraints for an infinite horizon. Section 2.6 presents the optimisation

and degrees of freedom.

Part II introduces the stability issue with infinite horizon predictions, together with a

background on the dual-mode MPC approach. Section 2.7 discusses the dual-mode MPC

approach while, Section 2.8 explores the closed-loop paradigm. The feed-forward compen-

sator is presented in Section 2.9 and multi-parametric quadratic programming is described

in Section 2.10. Finally, a summary of this chapter is provided in Section 2.11.

2.1 System Models

This section describes the system modelling assumptions and the different types of predic-

tions.

10
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2.1.1 Typical models

There are two main models used in model predictive control to describe the processes. These

are a transfer function model and a state space model. For convenience, the preferred model

type used in the MPC is the state space model. This is due to its ability to handle multi-

variable systems more easily than a transfer function model. The state space model is

assumed to be used for an open-loop stable and/or unstable plants and can be represented

as follows.

xk+1 = Axk +Buk, yk = Cxk +Duk (2.1)

where xk, yk, uk are states, process output and process inputs respectively and A,B,C,D are

the matrices defining the model; in this thesis, we assume a strictly proper system (D = 0).

An output disturbance dk can be incorporated into the model with a small modification as:

xk+1 = Axk +Buk, yk = Cxk + dk (2.2)

where the disturbance dk is assumed to be varying slowly and can be estimated.

In this case, the observer models are augmented to include the disturbance in the system

dynamics and equation (2.2) can be replaced by:

xk+1

dk+1


︸ ︷︷ ︸

xk+1

=

A 0

0 I

xk
dk


︸ ︷︷ ︸

xk

+

B
0

uk; yk =
[
C I

]xk
dk

 (2.3)

The system model can also be described in terms of the control increments as the augmented

state space model which is given by:

xk+1

uk


︸ ︷︷ ︸
x̃k+1

=

A B

0 I


︸ ︷︷ ︸

Ã

 xk

uk−1


︸ ︷︷ ︸

x̃

+

B
I


︸ ︷︷ ︸
B̃

4uk (2.4)
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yk =
[
C D

]
︸ ︷︷ ︸

C̃

 xk

uk−1

 (2.5)

To ensure an absence of bias in steady-state predictions, this model should satisfy the

prediction consistency condition; that is:

y = r =⇒ 4u = 0 (2.6)

For convenience this thesis uses x̃ = x to reduce the notation.

2.1.2 Steady state model

The model can also be formulated in terms of steady-state input and state as shown below.

Considering the state space model with output disturbance (2.2), the expected steady-state

in the future can be defined as follows.

xss = Axss +Buss

yss = Cxss + dk
(2.7)

where xss, uss, yss are the state, input, and output steady-state values, respectively.

The steady-states values xss, uss can be computed by solving equation (2.7) as follows.

yss − d
0

 =

 C 0

A− I B

xss
uss

 (2.8)

 C 0

A− I B

−1 yss − d
0

 =

xss
uss

 (2.9)

Hence, one can define the deviation variables as:

x̂ = xk − xss; ûk = uk − uss; ŷ = yk − yss (2.10)
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where x̂k, ûk, ŷk are state, input, and output deviation variables respectively.

Using superposition between equation (2.7) and equation (2.10), one can obtain a state

space model in terms of the deviation variables as:

x̂k+1 = Ax̂k +Bûk

ŷk = Cx̂k
(2.11)

It is noted in equation (2.11) that the disturbance dk has been absorbed in the estimation

of the correct steady-state.

Remark 2.1 To ensure a lack of bias in steady-state prediction, this mode should satisfy

that: as the disturbance (dk) varies, the implied steady-state values of u and x in the model

(2.4, 2.5) can move to ensure that (2.6) holds.

2.2 Predictions

Predictions can be expressed in open-loop or closed-loop fashion. This section presents the

different types of predictions, as shown in the following subsections:

2.2.1 Open-loop predictions

For the open-loop fashion, one can consider the common state space model which gives one

step ahead predictions:

xk+1 = Axk +Buk, yk+1 = Cxk+1 + dk+1 (2.12)

It is assumed that (dk+i = dk, i = 0, . . . , n) because the disturbance varies slowly and

the future disturbance is unknown.
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The one-step ahead prediction can be used recursively to find an n-step ahead prediction,

as follows.

At the time step k+2, equation (2.12) is given by:

xk+2 = Axk+1 +Buk+1; yk+2 = Cxk+2 + dk+2 (2.13)

Substituting for xk+1 into (2.13) gives:

xk+2 = A2xk +ABuk +Buk+1; yk+2 = Cxk+2 + dk+2 (2.14)

At the time step k + 3, the prediction using equation (2.14) is given by:

xk+3 = A2xk+1 +ABuk+1 +Buk+2; yk+3 = Cxk+3 + dk+3 (2.15)

Substituting for xk+1 in equation (2.15) gives:

xk+3 = A3xk +A2Buk +ABuk+1 +Buk+2; yk+3 = Cxk+3 + dk+3 (2.16)

A general expression of the n-step ahead predictions can be given as:

xk+n = Anxk +An−1Buk +An−2Buk+1 + .....+Buk+n−1

yk+n = Cxk+n + dk+n

(2.17)

Assuming dk+i = dk, i = 0, · · · , n, the state and output predictions can be expressed for

a future horizon up to ny using arrow notation and vectors as:
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xk+1

xk+2

xk+3

...

xk+ny


︸ ︷︷ ︸

x−→k

=



A

A2

A3

...

An


︸ ︷︷ ︸
Px

xk +



B 0 0 ..

AB B 0 ..

A2B AB B ..
...

...
...

...

Any−1B Any−2B Any−3B :


︸ ︷︷ ︸

Hx



uk

uk+1

uk+2

...

uk+ny−1


︸ ︷︷ ︸

u−→k−1

(2.18)



yk+1

yk+2

yk+3

...

yk+ny


︸ ︷︷ ︸

y
−→k

=



CA

CA2

CA3

...

CAn


︸ ︷︷ ︸

Py

xk +



CB 0 ..

CAB CB ..

CA2B CAB ..
...

...
...

CAny−1B CAny−2B :


︸ ︷︷ ︸

Hy



uk

uk+1

uk+2

...

uk+ny−1


︸ ︷︷ ︸

u−→k−1

+



dk

dk

dk
...

dk


︸ ︷︷ ︸
Ldk

(2.19)

Writing equations (2.18) and (2.19) in a compact form, we have:

x−→k
= Pxxk +Hxu→k−1

y
−→k

= Pyxk +Hy u→k−1
+ Ldk

(2.20)

where L =


I

I
...

 , xk is an augmented state and dk is the disturbance estimate.

It is shown from equation (2.20) that the prediction structure includes parts (based on

the current measurements, xk) and parts (based on the decision variable, uk yet to be

determined).

2.2.2 Unbiased predictions

Unbiased prediction means consistency between the future output predictions and the sys-

tem steady-state values. This can be ensured by using different methods, but there is a
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suitable mechanism used with the state space model that is the steady-state estimates. The

idea is to estimate the expected steady-state values for the state, input and disturbance to

meet a given steady-state output and then use deviations about this point.

Considering the state space model (2.11), and following equation (2.20), one can define the

unbiased state and output predictions in terms of deviation variables as:

x̂−→k
= Pxx̂k +Hx û→k−1

y
−→k

= Pyx̂k + Lyss +Hy û→k−1

; y
−→k

= ŷ
−→k

+ L yss (2.21)

These predictions of (2.21) are based on the state and future input deviations (x̂k, û→k−1
)

and the steady-state output (yss).

2.2.3 Closed loop prediction

It was demonstrated in Subsection 2.2.1 how to define predictions in an open-loop fashion.

This subsection describes the closed-loop predictions for state space models, which can be

deployed in MPC algorithms.

Using the typical stabilising state feedback uk = −Kxk, the equations within the closed-loop

during prediction can be given by:

xk+1 = Axk +Buk; uk = −Kxk. (2.22)

Removing the dependent variable uk gives:

xk+1 = [A−BK]xk; uk = −Kxk (2.23)

Simulating these forward in time with Φ = A−BK, one gets:
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x−→k
=



Φ

Φ2

Φ3

...

Φn


︸ ︷︷ ︸
Pcl

xk. (2.24)

Equation (2.24) can be expressed in compact form as:

x−→k
= Pclxk (2.25)

The corresponding input predictions can be written as:

u−→k
=


−K

−KΦ

−KΦ2

...


︸ ︷︷ ︸

Pclu

xk. (2.26)

or in a compact form as:

u−→k
= Pcluxk (2.27)

The state can be defined after nc steps to give the form:

xk+nc = Pcl2xk (2.28)

where xk+nc is the state value predicted at k + nc

It is shown in equation (2.28) that the prediction is a function of the current state xk.
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2.2.4 Basic results:

It is common to use state space models in MPC. This section has shown that:

1. It is common to use discrete state space models for predictions.

2. Predictions are based on current measurements and the degree of freedom (d.o.f) .

3. Unbiased predictions can be ensured if the steady-state values (xss, uss, yss) are con-

sistent.

4. Open loop predictions are given by:

x̂−→k
= Pxx̂k +Hx û→k−1

y
−→k

= Pyx̂k + Lyss +Hy û→k−1

5. Closed loop predictions are given by:

x−→k
= Pclxk, u−→k

= Pcluxk

2.3 The performance index (cost function)

For a typical MPC algorithm, the control law is based on the optimization of the pre-

dicted performance based on a performance index. In this thesis, we use the terminology

’performance index’ and ’cost function’ interchangeably.

This section will present the common cost functions used in MPC approaches.

2.3.1 Typical cost functions

A typical common performance index, e.g. [145, 143], penalizes the weighted squares of

both predicted tracking errors and the control increments/deviations; that is:
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J =

ny∑
i=1

∥∥∥rk+i − yk+i

∥∥∥2

2
+

nu−1∑
i=0

∥∥∥W (uk − uss)
∥∥∥2

2
+
∥∥∥Wd4uk

∥∥∥2

2
(2.29)

where uss is the expected steady-states of the input which enable rk+i → yk+i asymptot-

ically, rk+i being the notional true output target. Nevertheless, the treatment of tracking

has led to some minor changes to this popular index where the horizons ny, nu are large

(or infinite) and it is impossible for the output prediction to reach the desired target while

satisfying the constraints so that J could become unbounded.

A typical performance index can also be defined over the infinite horizon; for example

J =
∞∑
i=0

{
xTk+i+1Qxk+i+1 + uTk+iRuk+i

}
(2.30)

This performance index provides a sensible definition of the optimum solutions for linear

systems.

2.3.2 An alternative cost function

In practice, it is common for [101, 145] to define the disturbance estimate as the difference

between the process output and model output (d = yp − ym). This disturbance estimate is

used in combination with the desired target r in order to determine the steady-state values

of the state (xss) and input (uss), which provide an offset-free tracking scenario. Embedding

these disturbance estimates dk and targets rk into the control design is known as a tracking

scenario.

There are circumstances where the typical performance index J (2.30) cannot be used due

to the presence of model uncertainty. Therefore, an alternative performance index can

be described that is conceptually the same as J but uses deviation variables rather than

absolute variables (e.g. [145]).

J =
∞∑
i=0

{
(xk+i+1 − xss)TQ(xk+i+1 − xss) + (uk+i − uss)TR(uk+i − uss)

}
(2.31)
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where Q,R are positive definite weighting matrices, uss, xss are the expected steady-states

of the input and states which enable y → rk asymptotically, with rk being the desired

target at sample k. Unbiased definitions of uss, xss and their linear dependence on the

current disturbance estimate dk and target rk are well known in the literature (e.g. [101])

and subsection (2.1.2), and can be defined for suitable Kxr,Kur as follows.

xss
uss

 =

Kxr

Kur

 (rk − dk) (2.32)

As part of this thesis, we will consider scenarios in which xss and uss violate the constraints.

The cost function of (2.31) can also be expressed in a compact form as:

J =
∞∑
i=0

{
(x̂k+i+1)TQ(x̂k+i+1) + (ûk+i)

TR(ûk+i)
}

(2.33)

where x̂ = xk+i+1− xss and û = uk+i− uss are the state and input deviations, respectively.

2.4 Constraints with finite horizons

Many processes contain constraints such as upper and lower limits on the input (input con-

straint), input rate (input rate constraint), and output (state constraint). Input constraints

are usually referred to as hard constraints which must be satisfied, while output/state con-

straints may be referred to as soft constraints which should be satisfied if possible. More

complex constraints can also be included without any modification being made to the con-

cepts presented here. Assuming a linear model, these constraints can be captured as linear

inequalities in the assumed future control moves and hence combined with the performance

index to give a quadratic programming optimization which defines the control law. The key

point is that the constraints should be described in terms of the degree of freedom (d.o.f);

in this case, u−→k−1
.

This section will illustrate how to define these constraints in a standard form.
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2.4.1 Input rate constraints

The input rate constraints at each sample can be expressed as:

4u ≤ 4uk ≤ 4u (2.34)

The constraints on nu future predicted input increments can be expressed in matrix in-

equality form as:

 I

−I


︸ ︷︷ ︸
Cδu


∆uk

∆uk+1

...

∆uk+nu−1


︸ ︷︷ ︸
4u
→ k−1

≤



4u

4u
...

−4u
...

−4u


︸ ︷︷ ︸

∆U

(2.35)

The control input can be described in terms of the future input increments as:

uk+i = uk−1 +4uk +4uk+1 + · · ·+4uk+i, i = 0, 1, ...., nu − 1. (2.36)

Building on equation (2.36), the future inputs can be described in a matrix form as:


uk

uk+1

...

uk+nu−1


︸ ︷︷ ︸

u→k−1

=


I 0 0 · · · 0

I I 0 · · ·
...

...
...

...
...

...

I I I · · · I


︸ ︷︷ ︸

E


4uk
4uk+1

...

4uk+nu−1


︸ ︷︷ ︸
4u
→ k−1

+


I

I
...

I


︸︷︷︸
L

uk−1 (2.37)

Thus, the future input increments can be expressed in terms of the degrees of freedom (d.o.f)

as:
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4u
→ k−1

= E∆ u−→k−1
− E∆Luk−1 (2.38)

where E∆ = (E)−1.

Combining equations (2.35) and (2.38) and with some algebra, as seen in [145], one can

express the input rate constraints as:

CδuE∆︸ ︷︷ ︸
C∆u

u−→k−1
≤ ∆U + CδuE∆Luk−1︸ ︷︷ ︸

f∆u

(2.39)

or in a compact form:

C∆u u−→k−1
≤ f∆u (2.40)

where C∆u is a suitable matrix, u−→k−1
are the degrees of freedom (d.o.f), and f∆u is a vector

of the limits.

2.4.2 Absolute input constraints

The upper and lower inputs on the input can be expressed as:

u ≤ uk ≤ u (2.41)

The constraints on nu future predicted inputs can be also expressed in matrix form as:

 I

−I


︸ ︷︷ ︸
Cu


uk

uk+1

...

uk+nu−1


︸ ︷︷ ︸

u−→k−1

≤



u

u
...

−u
...

−u


︸ ︷︷ ︸
fu

(2.42)
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or in a compact form:

Cuu→k−1
≤ fu (2.43)

where Cu is a suitable matrix, u−→k−1
are the degrees of freedom (d.o.f), and fu is a vector

of the limits.

2.4.3 State constraints

The state constraints at each sample can be described as:

x ≤ xk ≤ x (2.44)

Expressing the state constraints on nu future predicted states using a matrix inequality

yields:

 I

−I


︸ ︷︷ ︸
Cx


xk

xk+1

...

xk+nu−1


︸ ︷︷ ︸

x−→k

≤



x

x
...

−x
...

−x


︸ ︷︷ ︸
fx

(2.45)

Cx x−→k
≤ fx (2.46)

Substituting the state prediction (2.20) into (2.46) gives:

CxPx︸ ︷︷ ︸
Mx

xk + CxHx︸ ︷︷ ︸
Nx

u
→k−1

≤ fx (2.47)
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or in a compact form:

Mxxk +Nxu→k−1
≤ fx (2.48)

where Mx, Nx are suitable matrices and fx is a vector of the limits.

In summary, the input rate, input and output constraints must be satisfied simultaneously;

hence, equations (2.40, 2.43, 2.48) can be combined into a single set of linear inequalities of

the form:


0

0

Mx


︸ ︷︷ ︸

κ

xk +


C∆u

Cu

Nx


︸ ︷︷ ︸

ν

u−→k−1
≤


f∆u

fu

fx


︸ ︷︷ ︸

τ

(2.49)

or in a standard form which is suitable for QP optimisation:

ν u−→k−1
≤ τ − κxk (2.50)

where κ, ν are the constant matrices, u−→k−1
are the degrees of freedom (d.o.f), and τ is a

vector of the limits.

2.5 Constraints with infinite horizons

The previous section demonstrated how input and state constraints can be tested over finite

horizons. A key challenge is how these constraints can be tested over an infinite horizon

while ensuring a finite computation load; that is, it is required for constraints’ satisfaction to

be captured over an infinite horizon, but using a finite number of inequalities. One method

for achieving this was provided by [52] , using the concept of admissible sets. This section

will briefly discuss this approach.
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2.5.1 Maximal Admissible Set (MAS)

The admissible set algorithm is used for constraint handling to define the constraints over

an infinite prediction horizon in terms of a finite set of inequalities linked to the d.o.f. It is

based on an assumption that the predictions and constraints can be expressed as:

xk+1 = Φxk, Gxk ≤ f, ∀k (2.51)

where Φ is a transition matrix. It is implicit that all of the eigenvalues of (Φ) lie strictly

inside the unit circle.

The key concept is to test the constraints for the first n samples alone and then prove that

the constraints must automatically be satisfied for all of the samples beyond that. If this

is the case, then we can present constraints over an infinite horizon using only predictions

over a horizon of n. A suitable value for n can be determined using the approach outlined

in this section.

Remark 2.2 Given a stability of Φ, limk→∞ xk = 0. Assume Gx0 < f and for an asymp-

totic steady-state which is not on origin, a shift can be used to obtain an equivalent result.

Algorithm 2.1 The inequalities can be given for a specific horizon ’n’ as:



G

GΦ

GΦ2

...

GΦn


︸ ︷︷ ︸

F

xk ≤



f

f

f

f
...


︸︷︷︸
t

(2.52)

The key part of the algorithm is based on the following:

Assume that the transition matrix has stable properties, in which case we know that a suitable

n must exist because
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lim
k→∞

Φk = 0. (2.53)

1. For a given ’n’, try and find a value xk which violates the constraints at ’n + 1’ but

satisfies constraints (2.52).

2. To do this, we substitute for state predictions in terms of the degrees of freedom u−→k−1

and use this optimisation for the upper limits:

For each row (i) of C, find the maximum value of state xmax as:

xmax(i) = max
xk

eTi GΦn+1xk s.t. constraint of (2.52) (2.54)

3. If we cannot force a violation (i.e eTi Gxmax > f(i), then ’n’ is sufficiently large;

otherwise, increase ’n’ and go to 1

Details of how to express the predictions and constraints in the form of (2.51) for different

MPC are included as required in later chapters.

2.5.2 Basic observations

This section has shown that:

1. Constraints satisfaction for prediction can be tested over an infinite horizon using a

finite number of inequalities.

2. It is essential that the prediction dynamic is strictly convergent.

3. It is necessary for the asymptotic values not to lie on a boundary.

4. The set defined by these inequalities is often called a maximal admissible set or MAS

[52].
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2.6 Optimization and degrees of freedom (d.o.f) for finite horizons

Optimization is one of the main components of MPC algorithms. It describes the solution

to the problem of optimizing the performance index J subject to system constraints. It is

common to describe this optimization problem as a quadratic programming problem (QP),

which can be solved to determine the desired optimal control input sequences.

Optimization for the finite horizon can be performed using equations (2.29, 2.50) and takes

the general form:

min
u−→k

J s.t. constraint of (2.50) (2.55)

There are standard solvers for the QP methods which can provide an optimum solution.

Popular methods are the active set method and the interior point methods [115, 170].

2.7 Dual mode (infinite horizon) MPC overview

The major weakness of the finite horizon algorithm is that using small control horizons

nu, ny may result in poor performance and it is also known that it is difficult to guaran-

tee asymptotic stability with finite horizons in MPC. This has led to the development of

alternative infinite horizon algorithms to improve performance.

This section provides an overview of the most common infinite horizon approach; that is,

the OMPC or dual-mode MPC approach [160, 153]. Although a dual-mode approach is

more complex than a finite horizon because it includes terminal constraints, it has better

properties.

2.7.1 Definition

The dual mode can be defined as a control strategy which has two modes. One mode is

used when the system predictions are far away from the operating point (transient mode).
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The second mode is used when the system predictions are close to the desired operating

point (terminal mode). This is shown in Figure 2.1

Figure 2.1: Basic dual-mode MPC structure

2.7.2 Degrees of freedom (d.o.f) with dual-mode MPC

It is common to define the degrees of freedom as the first nc control increments (or moves);

that is, uk, · · · , uk+nc−1. In the case of open-loop predictions, the first nc control effort uk

are free and the remaining moves are given by a fixed feedback control law. Thus, one can

define the predicted control values for the dual-mode as:

uk − uss = uk − uss, k < nc

uk − uss = −K(xk − xss), k ≥ nc
(2.56)

In this case, the degrees of freedom are uk, k = 0, · · · , nc − 1.
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2.7.3 Dual mode and definition of the tail

The two main conditions which are sufficient to guarantee nominal stability are the use of

an infinite horizon and the inclusion of the tail, which is defined next. A dual mode control

uses infinite horizons and includes the tail. Hence, dual-mode algorithms can guarantee

stability. Moreover, these allow a reduction in the number of d.o.f to be handled while still

allowing the use of infinite input and output prediction horizons. This section defines ’the

tail’.

The tail can be defined as the part of the optimum policy decided at the previous sample

that has yet to be implemented.

Let the optimal predictions at sampling instant k be:

uk|k, uk+1|k, uk+2|k, uk+3|k, · · · , uk+nc−2|k, uk+nc−1|k, uss, uss, uss (2.57)

The tail from the previous sample is defined as:

uk|k−1, uk+1|k−1, uk+2|k−1, uk+3|k−1, · · · , uk+nc−1|k−1, uss, uss, uss. (2.58)

The tail is included in the current prediction, if one can choose the degrees of freedom at

the current sample, such that uk+i|k = uk+i|k−1. i = 0, 1, 2, .., nc − 1.

Remark 2.3 It is obvious from (2.57) and (2.58) that the tail is included in the class of

predictions of (2.56) and thus meets a fundamental requirement for expecting good a priori

stability.

2.8 Closed-Loop (CLP) Paradigm

The closed-loop paradigm was originally proposed in [55] and provided better numerical op-

timisation conditioning [75]. The CLP uses perturbations about the unconstrained optimal
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control law as the degrees of freedom (d.o.f). This formulation provides a good insight into

the impact of constraints on performance and improves the conditioning of the optimisation.

This section introduces the closed-loop paradigm. Subsection 2.8.1 explores the structure

of the CLP dual-mode while Subsection 2.8.2 explores the dual predictions and autonomous

mode formulation. Subsection 2.8.3 describes the typical cost function used in dual-mode

algorithms and Subsection 2.8.4 derives the dual-mode unconstrained control law. Subsec-

tion 2.8.5 describes how to define the constraints with the dual-mode while Subsection 2.8.6

defines the constrained control law for the dual-mode with constraints.

2.8.1 Dual mode prediction structure with the CLP

The closed-loop paradigm can be implemented as a dual-mode approach in which the initial

state requires nc moves to reach the terminal region.

For convenience, with infinite horizon algorithms, the d.o.f (or input parametrisation (2.56))

can be equivalently parametrised [146] as perturbations ck about a nominal stabilising con-

trol law. Thus, unbiased state and input predictions in terms of deviation variables can be

given as:

xk+1 − xss = A(xk − xss) +B(uk − uss); uk − uss = −K(xk − xss) + ck, k < nc

xk+1 − xss = A(xk − xss) +B(uk − uss); uk − uss = −K(xk − xss), k ≥ nc
(2.59)

Let x̂ = (xk − xss) and û = (uk − uss) be the state and input deviations respectively. One

can then express the predictions of (2.59) in the form:

x̂k+1 = Ax̂+Bû; ûk = −Kx̂+ ck, k < nc

x̂k+1 = Ax̂+Bû; ûk = −Kx̂, k ≥ nc
(2.60)

.

The predicted state and input evolution is conveniently captured from equation (2.60). With

Φ = A−BK, a one-step ahead prediction model is:
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x̂k+1 = Φx̂k +Bck; ûk = −Kx̂k + ck, k < nc

x̂k+1 = Φx̂k; ûk = −Kx̂k, k ≥ nc
(2.61)

The model of (2.61) is commonly called dual-mode prediction because it contains two clearly

distinct dynamics, one for transients (Transient mode k < nc) and the other for asymptotic

behaviour (Terminal mode k ≥ nc).

Now, it is obvious that the degrees of freedom are ck.

2.8.2 CLP Predictions and autonomous model formulation

To deploy the concept of the MAS of (2.51) in dual-mode algorithms, it is convenient to

capture both the transient and terminal modes of the predictions in a single mode as this

enables us to deploy standard algebraic techniques, such as Lyapunov equations and global

stability tests, more easily. A standard method for doing this is to construct an equivalent

state-space model which incorporates the predictions of (2.61) by adding the d.o.f. c−→k
as

additional states.

The formulation which captures the two modes (2.61) in a single state space model can be

given by the following augmented states:

Zk+1 = ΨZk; Zk = [x̂Tk , c−→
T

k
]T ; Ψ =

Φ [B, 0, .., 0]

0 Dc

 (2.62)

where:

c−→k
=


ck

ck+1

...

ck+nc−1

 ; Dc =



0 I 0 · · · 0

0 0 I · · · · · ·
...

...
...

...
...

0 0 0 · · · I

0 0 0 · · · 0


(2.63)

Thus, the state deviation x̂k can be described in terms of the autonomous model of equation

(2.62), given that:
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x̂k = ΓZk; Γ = [I, 0, · · · ] (2.64)

The input deviation ûk can also be described as:

ûk = −KZZk; KZ = [−K, [1, 0, 0, 0 · · · ]] (2.65)

The autonomous models (2.62) and (2.65) describe a state space representation of the dual-

mode predictions.

2.8.3 The cost function of dual-mode MPC

In the most recent literature [128, 95], a typical infinite horizon algorithm cost function,

assuming a non-zero target, is given by (2.31). This cost function can be optimized to

determine the optimum value of the perturbation terms c−→k
. This subsection defines the

cost function for a dual-mode algorithm in the absence of constraints.

A suitable cost function for the dual-mode MPC approach can be defined based on a math-

ematical illustration as follows.

As shown in equation (2.33), the cost function, which includes state and input deviation, is

given by:

J =
∞∑
i=0

x̂Tk+i+1Qx̂k+i+1 + ûTk+iRûk+i (2.66)

State and input deviations, which are described in terms of the autonomous model states

(2.62), are described in (2.64, 2.65), respectively, given that:

x̂k = ΓZk; Γ = [I, 0, · · · ] (2.67)
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ûk = −KzZk; Kz = [−K, [I, 0, · · · ]] (2.68)

Substituting (2.67, 2.68) into the performance index (2.66) gives a simple compact form:

J =
∞∑
i=0

ZTk+iΓ
TQΓZk+i + ZTk K

T
z RKzZk (2.69)

Substituting (2.62) into the performance index of (2.69) gives:

J =

∞∑
i=0

ZTk [ΨTΓTQΓΨ +KT
z RKz]Zk (2.70)

The cost function of (2.70) can be described in a compact form as:

J = ZTk [
∞∑
i=0

(Ψi)TΨTΓTQΓΨ +KT
z RKzΨ

i]Zk (2.71)

Assuming that:

Sz =
∑∞

i=0(Ψi)TΨTΓTQΓΨ +KT
z RKzΨ

i and W = ΨTΓTQΓΨ +KT
z RKz.

Thus, the cost function of J of (2.71) can be expressed in a simplified form [145]:

J = ZTk SzZk; (2.72)

Now, the term Sz can be expressed in terms of the term W as:

Sz =
∞∑
i=0

(Ψi)TWΨi (2.73)

Splitting the equation (2.73) into two parts, one part is the first component of the sum

infinite of the number of terms and the other part is the rest of the sum infinite, giving:
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Sz = W +
∞∑
i=1

(Ψi)TWΨi (2.74)

Expressing the equation (2.74) in a compact form yields:

Sz −W =
∞∑
i=1

(Ψi)TWΨi (2.75)

Multiplying the equation (2.73) by Ψ and ΨT gives:

ΨTSzΨ =
∞∑
i=0

(Ψ)T (Ψi)TWΨiΨ (2.76)

which is equivalent to:

ΨTSzΨ =
∞∑
i=1

(Ψi)TWΨi (2.77)

Thus, it is straightforward to define the Lyapunonv identity based on equations (2.77) and

(2.75) as follows.

ΨTSzΨ = Sz −W (2.78)

Sz is the sum of the infinite number of terms and can be solved using a simple matrix form

in terms of W and Ψ using some linear equalities given that:

Sz =

Sx Sxc

STxc Sc

 (2.79)

Hence, the cost function (2.72) can be expressed as:

J =

 x̂k
c−→k

T Sz
 x̂k
c−→k

 ; Sz =

Sx Sxc

STxc Sc

 (2.80)
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Now, the compact cost function can be expanded to:

J = x̂Tk Sxx̂k + 2x̂TScx c−→k
+ c−→

T

k
Sc c−→k

(2.81)

2.8.4 Optimisation and the unconstrained dual-mode control law

Minimising the performance index (2.81) w.r.t to the perturbation c−→k
to determine the

optimum solution requires the derivatives of J to be zero. This can be given as:

dJ

d c−→k

= 2Sc c−→k
+ 2STxcx̂k = 0 (2.82)

Consequently:

c−→k
= −[Sc]

−1STcxx̂k (2.83)

The perturbation ck is the first element of c−→k
and can be expressed as:

ck = −eTI [Sc]
−1STcxx̂k; eTI = [I, 0, 0 · · · ] (2.84)

The unconstrained control law can be defined as:

ûk = −Kx̂k + ck (2.85)

Substituting (2.84) into (2.85), we get the unconstrained control law:

ûk = − [K − [Sc]
−1STcx]︸ ︷︷ ︸

K̂

x̂k; i < nc (2.86)

Or, in a compact form:
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ûk = −K̂x̂k (2.87)

Remark 2.4 By definition, the optimal behaviour is given from ûk = −Kx̂k; therefore, by

definition, the optimal value of ck must be zero, therefore Sxc = 0.

Although this means the optimal c−→k
= 0 in unconstrained case, this is laying important

ground work for constraint handling, which will be discussed next.

2.8.5 Including the constraints into dual-mode MPC

This subsection will show how to define the constraints over the infinite horizon for the

dual-mode.

Considering the predictions model (2.11), the input constraint at each sample can be ex-

pressed in terms of the steady-state values as:

u ≤ ûk + uss ≤ u (2.88)

Expressing input constraints in terms of the augmented state and input (2.62, 2.65) gives:

−KZ

KZ

Zk ≤
 u

−u

+

−uss
uss

 ∀k (2.89)

The state constraint (2.44) at each sample can be also expressed in terms of the steady-state

values as:

Cx(x̂+ xss) ≤ x, ∀k (2.90)

Thus, the state constraints can be expressed in terms of the augmented state, which gives:
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[
Cx 0

]
Zk ≤ x− Cxxss (2.91)


−KZ

KZ

Cx 0


︸ ︷︷ ︸

G

Zk ≤


u

−u

x

+


−uss

uss

−Cxxss


︸ ︷︷ ︸

f

(2.92)

The steady-state values xss and uss in equation (2.92), can be described in terms of the

desired target and disturbance estimate gives:


−KZ

KZ

Cx 0


︸ ︷︷ ︸

G

Zk ≤


u

−u

x

+


−Kur

Kur

−CxKxr

 (rk − dk)

︸ ︷︷ ︸
f

, ∀k. (2.93)

GZk ≤ f (2.94)

Lemma 2.1 Constraint handling with dual-mode MPC can be described in a standard form

for the MAS.

Proof: Using equations (2.62) and (2.94) is equivalent to equation (2.51); therefore, using

the theory of the admissible sets [52], one can define an admissible set in the form:

[
M N

]
︸ ︷︷ ︸

F

 x̂k
c−→k


︸ ︷︷ ︸
Zk

≤ t (2.95)

or, in a compact form:

SMCAS =
{
x̂ : ∃ c−→k

s.t Mx̂k +N c−→k
≤ t
}

(2.96)

where M and N are suitable matrices and t is a vector of the limits.
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The corresponding set is called th maximal controlled admissible set (MCAS), since it

includes the d.o.f within ck as well as the initial states.

Remark 2.5 The inequalities in (2.93) depend upon the expected steady-state and this may

change with both the target and disturbance estimate. This would be difficult for typical

MAS algorithms [52] because they assume fixed targets.

One challenge in this thesis is how to construct the MCAS for time-varying targets. This

will be discussed later, in Chapter 4.

2.8.6 Optimisation and the constrained dual-mode control law

Subsection 2.8.4 demonstrates the derivation of the control law for unconstrained systems

for the regulation case. For constrained systems, a typical algorithm minimises a perfor-

mance index (J) subject to the corresponding constraints SMCAS and, using an input tra-

jectory/d.o.f. of the optimised c−→k
, only the first value ck is deployed and the optimisation

is repeated for every sample.

It is shown in [145] that the cost function of (2.81) can be reduced to a simple form as:

min
c−→k

J = c−→
T

k
Sc c−→k

(2.97)

Thus, the dual-mode optimisation can be given by:

min
c−→k

J = c−→
T

k
Sc c−→k

s.t. Mx̂k +N c−→k
≤ t (2.98)

The constrained control law is then defined as:

ûk = −Kx̂k + ck. (2.99)



2.9 Feed-Forward (FF) Compensator 39

2.9 Feed-Forward (FF) Compensator

One purported advantage of MPC is that it includes information about future targets, r−→
[145]. This section will show that the MPC control law includes future information about set

point changes and it is expected that including this future information in the optimization

of the predicted performance index will improve tracking. However, the inappropriate use

of future information may result in poor performance.

For simplicity, we will consider that the augmented state space model of (2.3) with the

corresponding unconstrained control law is given by:

uk = −K(xk − xss) + uss (2.100)

Substituting the xss and uss of (2.32) into (2.100) gives:

uk = −K̃kxk + Prrk (2.101)

where K̃ = K + [KKxr +Kur], Pr = KKxr +Kur, xk =

xk
dk

is the augmented state.

Remark 2.6 The control law (2.101) includes a feed-forward term Prr. Although just on

current target rk+1.

Ideally, one should use more information from the target. i.e rk+1, rk+2, . . . , rk+ny . There-

fore, one can define a more generic feed-forward term as:

Pr r−→k+1
=
[
P1 P2 · · · Pny

]

rk+1

rk+2

...

rk+ny

 (2.102)

where r−→k+1
is the future target and Pr is a feed-forward term.



40 Background on MPC

It is shown from equations ((2.101), (2.102)) that the future targets have a direct impact

on the future current control move.

In many MPC algorithms, a default value of Pr, can be defined, but this value is often poor,

as will be discussed further in Chapter 4.

2.10 Multi-Parametric Quadratic Programming (mp-QP)

Model predictive control can successfully handle constrained multi-variable control prob-

lems. The solution to the MPC control problem is to compute the control input uk at each

sampling time by optimising a quadratic performance index over a finite horizon. This is

known as a quadratic programming (QP) problem [39]. Solving the QP problem is based on

the current state measurement xk and repeated optimisation at each sampling time. This

may result in a significant on-line computation burden hence limiting the application of the

MPC to slow or small systems. Therefore, an alternative method, such as Multi-Parametric

Quadratic Programming (mp-QP) [67, 15, 101], has been presented to reduce the on-line

computational load. Those mp-QP methods can be used to reduce the computational load

by moving as much of the constraint handling as possible to off-line computation rather

than on-line optimisation. It is shown in [15] that the MPC optimisation problem can be

reformulated as an mp-QP problem.

The standard mp-QP problems take the form:

V (x) = min
U

1

2
UTHU + xTF TU s.t. GU ≤W + Ex (2.103)

where the column vector U =
[
uT0 , u

T
1 , · · · , uTN−1

]T
∈ Rm is denoted as the optimisation

vector, x ∈ Rn is a parameter and H,G,W,E and F are the real matrices which can be

obtained from Q and R.

It is useful to define:

z = U +H−1F Tx (2.104)
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z ∈ Rs , and to reformulate the problem of (2.103) as:

Vz(x) = min
z

1

2
zTHz s.t. Gz ≤W + Sx (2.105)

where S = E +GH−1F T and Vz(x) = Vx − 1
2FH

−1F Tx

The main objective of the mp-QP algorithm is to solve the QP off-line for all x to determine

the MPC control law u(x) explicitly, assuming that H = HT � 0. It is also assumed that

all constraints on x are included in (2.50), without any redundant constraints [163].

The solution of the QP problem (2.105) can be defined using an explicit piecewise affine

MPC control law as:

u(x) =


F1x+ g1

...

Fmx+ gm

if

H1x ≤ K1

...

Hmx ≤ Km

(2.106)

It is shown in the literature [15] that the linear MPC controller is a continuous piecewise

affine function of the state x . Equation (2.106) is the mp-QP solution.

2.11 Summary of the basic results

This section summarises some of the key points that can be extracted from the above MPC

background representation.

1. It is convenient to use unbiased predictions in MPC algorithms.

2. Constraints satisfaction for input and output predictions can be tested over both finite

and infinite horizons, using a finite number of inequalities.

3. The closed-loop paradigm uses perturbations to the unconstrained optimal control law

as the degrees of freedom. This provides a useful insight into the impact of constraints
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on performance and improves the conditioning of the optimisation.

4. The CLP MPC control law in the unconstrained state space case is equivalent to a

fixed state feedback.

5. The computation of the MPC control law using CLP reduces the solution of a quadratic

programming problem.

6. The constraint equations are affined in the d.o.f, the current state, target and the

limits.

7. A MCAS can be constructed for dual-mode MPC algorithms. This set ensures that

the predictions satisfy the constraints over an infinite horizon using a finite number

of inequalities.



Chapter 3

LITERATURE REVIEW

There are some useful MPC books and publications, such as ([145, 19, 90, 96, 167, 73]) can be

found, showing various interesting insights into predictive control. On the other hand, there

is much other literature on this field. This chapter presents a literature review of the model

predictive control approaches with an emphasis on efficient algorithms and components

which would be useful for real application. Section 3.1 describes some of the industrial

processes which deploy different strategies for the predictive control approach. Section

3.2 introduces several works on infinite horizon predictive control. Section 3.3 reviews the

feasibility and stability issues in the constrained predictive control approaches, including

two common strategies for handling these issues. Section 3.4 presents several works on the

offset-free control methods. Section 3.5 describes the preview and feed-forward options in

the predictive control approach. Section 3.6 presents an overview of the MPC algorithms

which handle uncertain systems, while Section 3.7 describes an optimisation method (mp-

QP) to be implemented in MPC for fast applications. Finally, a list of observations is

provided in Section 3.8.

3.1 Model predictive control with industrial process control

Applications of model predictive control (MPC) to the process industry were presented in

[19], including a brief history of industrial MPC technology. Furthermore, various MPC

approaches were examined and analysed, demonstrating the potential of the MPC control.

A good survey of the application in the industry can be also found in [119, 120]. In their

survey, the authors showed that predictive control has been successfully applied to several

43



44 Literature review

industrial processes such as food processing, automotive, aerospace and chemical processes

with low sampling requirements. They also found that the majority of the non-linear MPC

applications were found in the chemicals, air/gas, and polymer industries. However, recently,

it has been demonstrated that model predictive control can be implemented to control other

processes such as electrical machines and drives [32, 171]. In this section, an overview of the

most commonly used three strategies of model predictive control, with a brief description of

some of their implementation regarding process control, is provided, showing their efficacy

and success in the industry.

3.1.1 Dynamic Matrix Control (DMC/QDMC)

The Dynamic Matrix Control (DMC) technique [33] is one of the most popular techniques in

industry. It uses a step response model of the process to create the predictions. The objective

of the DMC controller is to drive the output as close to the set point as possible using a

least squares problem with a performance index over a finite prediction horizon. Several

works have been found in the literature that demonstrate the success of the implementation

of the DMC in industrial processes as described in this subsection.

The details of the unconstrained multi-variable control algorithms (DMC) are presented in

[33]. Cutler and Ramaker [33] demonstrated improved control quality for furnace temper-

ature control application when the DMC algorithm is implemented. A minor modification

was made to the DMC algorithm by Cutler and Ramaker [33]. This modification was

based on considering the DMC algorithm as a quadratic program (QP), in which the input

and output constraints appear explicitly. This modified algorithm was denoted the QDMC

algorithm.

An application of DMC technology to an FCCU reactor/regenerator control, in which the

algorithm was modified to handle non-linearity and constraints was presented in [118]. The

author modified the algorithm to prevent absolute input constraint violation.

The advantages of the DMC algorithm and indeed its capability with regard to constraint

handling were explored in [49]. It was shown that the DMC approach can be applied in
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both linear and non-linear systems successfully, particularly in the petrochemical industry,

with multi-variable processes [120, 64].

Garcia and Morshedi [48] presented results from a pyrolysis furnace application and adopted

the QDMC algorithm to control stream temperature in the furnace. The authors demon-

strated that the QDMC algorithm provides a systematic way of handling input and output

constraints, thereby providing good results for such an application.

The design of a DMC to control the outlet temperature of a water heater was introduced

in [19]. It was shown in this work that the DMC controller provides a fast response to set

point change and is able to reject the applied measurable disturbance. The authors also

discussed the application of the DMC to a multi-variable process such as a chemical jacket

reactor, and demonstrated that the output follows the temperature reference satisfactorily

in the case of a temperature reference change.

Summary: All of the industrial applications described in this subsection show the success of

the DMC in dealing with various industrial processes. However, the DMC does not perform

well in the case of constraints, except for the QDMC, which provides a systematic methods

for implementing input and output constraints. Moreover, there was no clear strategy for

dealing with an infeasible solution.

3.1.2 Predictive Functional Control (PFC)

Predictive Functional Control (PFC) is an MPC formulation that is used on a wide range

of applications but often differs from the traditional DMC. The key objective of the PFC

which distinguishes it from the MPC algorithms, is its focus on the simplicity of the concept

as well as the coding. Therefore, it can be implemented successfully for many industrial pro-

cesses [133]. This controller uses a simplified optimisation procedure by only taking specific

coincidence points rather than minimising a cost function, providing a faster calculation

of the control input. Moreover, the algorithm uses basis functions in order to construct

the control signal which permits the controller to track different targets. Evidence of the

success of PFC’s application in industry will be provided in this subsection as follows.
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The PFC control technique was applied in [77] to an elastic industrial robot. Kuntzee et

al [77] demonstrated that the controller provided both excellent tracking behaviour and

robustness with respect to parameter variations.

The applications of PFC to several process control such as the thickness of a cold rolling

mill and the water level of the Rhone River, together with the position of a fast robot, were

described in [31]. The obtained results showed the success of the PFC implementation with

regard to such process control.

The PFC’s application to a missile control system was presented in [65] to study the robust-

ness and tracking performance. Jianbo et al [65] showed that the PFC controller provided

a simple calculation, strong robustness, disturbance attenuation and high control precision.

The implementation of the PFC approach to a chemical batch jacketed reactor to control the

outlet temperature, was applied by Bouhenchir et al [18]. The authors demonstrated that

the PFC technique can be considered a suitable solution for controlling the batch reactors

temperature, and that the developed PFC framework can be applied to control industrial

batch reactors.

Maalouf [89] demonstrated the possibility of using the PFC algorithm to control an H4

parallel robot and showed that the controller provides an equilibrium point for the closed-

loop system and track at the same time reference.

In [58], a PFC algorithm was installed successfully for the control of two distillation columns

and a reactor at a petro-chemical plant. It is shown that the control behaviour was robust,

reliable, and suitable for such processes.

Recently, the PFC algorithm has been implemented in [82] to control the permanent mag-

netic synchronous motor servo system. The author verified that the controller is effective

and can ensure closed-loop optimal performance.

More recently, an PFC strategy based on a novel formulation of the state space model in the

presence of plant model mismatch was introduced in [174]. The strategy has been applied

to the outlet radiation temperature control of the coke furnace. Zhang et al [174] showed
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that the PFC controller successfully maintained the required set-point, thereby providing

satisfactory tracking performance and robustness.

Summary: The review presented in this subsection shows that the PFC can provide good

performance particularly for fast processes due to its fast control moves calculations. How-

ever, except for the recent work [174], applications of PFC have largely been restricted to

single input single output and two input two output processes [131] because the simplicity

of the control definition will not in general handle interaction effectively.

3.1.3 Generalized Predictive Control (GPC)

Generalized predictive control (GPC) [26] is a popular predictive control approach that can

handle industrial processes successfully [27]. The GPC strategy is based on a description of

the system by a Controlled Auto-Regressive Integrated Moving Average (CARIMA) model

and a cost function which penalises predicted deviations from a constant reference. The cost

function is then minimised to obtain the optimal control law. This subsection will focus on

reviewing some of the existing work in this approach showing it’s application within process

control.

An application of GPC to some industrial processes such as a cement mill, a spray-drying

tower, and compliant robot arms was introduced in [27], showing the efficacy of the GPC

approach for a self-tuning control of industrial processes. It was also shown that the GPC

approach outperformed a fully tuned PID control on an industrial processes.

To design an effective MPC approach for systems with constraints, Tsang and Clarke [164]

proposed a GPC algorithm which handles constraints and improves the closed-loop perfor-

mance. The proposed algorithm was implemented on a single-link flexible robot arm. It was

shown that this algorithm provides good performance and is computationally acceptable.

MPC algorithms can be implemented for different systems and provide good results. For

example, in [30], in which a novel algorithm was proposed, it was demonstrated that a GPC

approach is suitable for controlling complex plants, such as unstable systems. Furthermore,

it was shown that the algorithms can be used for several industrial processes.
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In [142], a design study on a model of a boiler-turbine system using the GPC algorithm was

presented. The controller provided set point tracking with minimal control action. Rossiter

et al [142] demonstrated that the GPC is efficient for use with multi-variable systems.

Regarding to the stability issue, a novel MPC framework that uses the idea of the GPC

was proposed in [74]. This framework guarantees system stability by ensuring that the

optimal predicted cost is a Lyapunov function for the closed-loop system and reduces the

computational burden associated with a computer-based implementation of the method.

In [104], the GPC was applied to a linear gas turbine model of power generation. It was

shown that the GPC provides good results for the constrained case.

Camacho and Bordons [19], discussed the success of GPC implementation in various indus-

trial SISO processes, such as a simple furnace and an evaporator, as well as MIMO processes,

such as a stirred tank reactor, a distillation column and an air compressor. It was shown

in [19] that the GPC algorithms can provide good behaviour, in which the output variables

reach their set point in a very short time and reduce the interaction between the controlled

variables in the case of MIMO systems.

Recently, in [46], the GPC strategy has been applied to a complex industrial process, that is

polyvinyl chloride (PVC) polymerisation reactors, to control their non-linear temperature.

It has been demonstrated in this work that the GPC controller improves the quality of the

PVC product and reduces the production costs.

More recently, the application of the GPC approach to the hydrocarbon temperature of a

process control model was described in [124]. It was shown from the result obtained from

this work was that the GPC algorithm provides good, accurate tracking performance in the

presence of disturbance.

A novel MPC formulation which is linked to GPC, called constrained receding horizon con-

trol (CRHPC), was developed in [28] for stabilising unstable, non-minimum phase, and

dead-time plants. It was demonstrated that this framework provides good behaviour even

with unobservable systems. This technique proved that the CRHPC approach can outper-

form the existing methods such as generalised minimum variance and pole placement as
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well as a fully tuned self-tuning application.

Summary: As shown in this subsection, many frameworks have studied the GPC model

predictive control approaches for various systems in industry and these approaches are often

effective in many scenarios. However, there is one notable issue that has yet to be considered,

specifically, the design of the feed-forward component. It is shown in [145] that the default

feed-forward from a GPC type of algorithm is often poor due to the mismatch between the

predicted and desired behaviour that may result from the optimisation problem. Therefore,

there is a need for a mechanism of how to improve the design of the feed-forward.

3.1.4 Summary

The industrial applications described in this section show that predictive control is a suc-

cessful approach to various industrial processes. This is logical since it possesses several

characteristics which lead to this success such as the systematic handling of constraints,

being easy to explain and understand, and the availability of their software tools [90]. In

particular, the DMC and GPC algorithms are based on a finite prediction horizon and are

good enough to deal with most industrial processes while PFC tends to be restricted to

processes with low computations. However, a severe problem with GPC is that it does not

have a feasibility and stability guarantee, which is linked to the use of infinite horizons.

Therefore, there is a need to use infinite horizons in advanced MPC process applications.

3.2 Infinite horizon predictive control algorithms

Regarding the recent development of predictive control, the literature shows that infinite

horizon predictive control algorithms can guarantee the convergence of the predicted tra-

jectories. This section will review some of the existing work on these algorithms to explore

the benefits of using an infinite horizon in predictive control.

An original approach to infinite horizon predictive control was presented in [128]. It was

demonstrated in this work that the infinite horizon in predictive control can guarantee

stability for both unconstrained and constrained cases.
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In [101], a unified framework of the existing MPC concepts based on stabilizing, infinite

horizon, linear quadratic regulator was discussed. The framework offers the flexibility to

handle various systems, such as non-square systems, noisy inputs and outputs, non-zero

input and output and state disturbances. Furthermore, this framework removes the steady-

state offset by including the integral action and state estimation within the controller.

Stability with the infinite horizon algorithms was discussed in [138], by deploying neces-

sary and sufficient conditions for the convergence of the predicted trajectories. Also an

alternative means of computing the implied infinite horizon GPC cost was presented. In

[22], an alternative infinite horizon predictive control algorithm was introduced. This al-

gorithm also guarantees closed-loop stability for both stable and unstable systems under

input constraints.

Maciejowski [90] examined the use of infinite horizons in predictive control and showed that

this provides stability. The author also demonstrated that stability can be achieved for both

constrained stable and unstable plants.

The advantages of infinite horizon optimal control were demonstrated in [95], based on

a discussion of the stability and optimality of the infinite horizon predictive control for

both linear and non-linear systems with constraints. It was found from this discussion that

several factors are useful in developing stabilizing model predictive controllers and that

these controllers can be stabilized under sufficient conditions for both nominal and robust

cases.

In terms of work on infinite horizon predictive control, one challenge is the computational

load that results from the optimisation of the performance index over infinite horizons.

This challenge has been tackled using an appropriate approach, such as the dual-mode

MPC approach [153, 145], which allows a reduction to a quadratic program with a finite

number of degrees of freedom and a finite number of constraints.

A dual-mode MPC approach in the form of a constrained linear quadratic regulator (LQR)

was presented in [153]. Scokaert and Rawlings [153] showed that the presented regulator

improves performance and removes the parameter which is required for tuning the controller.

Moreover, the LQR regulator can remove the mismatch between open-loop and closed-loop
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nominal behaviour. Scokaert and Rawlings observed that the algorithm can be applied to

any stable system.

Rossiter [145] mentioned that the dual-mode paradigm is computationally tractable and

relatively simple to implement. Rossiter [145] also stated that the significant issue in dual-

mode MPC design is the trade-off between the terminal set and good performance. However,

this issue has been tackled by a closed-loop dual-mode paradigm.

Recently, the dual-mode MPC paradigm based on the concept of the invariant set, was

described in greater detail in [73]. The authors introduced an algorithm which guarantees an

asymptotic convergence of the state and Lypunov stability and showed that the introduced

algorithm is recursively feasible.

Summary: All infinite horizon algorithms described in this section exhibited stability prop-

erties with satisfactory performance for the applied control schemes. In particular the op-

timal predictive control or dual-mode approach, which is deemed to be rigorous and can

guarantee feasibility, hence enables guarantees of nominal and robust closed-loop stability

for the controller [145]. Therefore, the focus of this thesis will be on dual-mode or OMPC

predictive control approaches as the basic tools used in this research.

3.3 Feasibility and stability within constrained MPC tracking

It is common to embed several future values of the desired target, r, and disturbance es-

timate d, in the optimisation control problem. Applying these data to the optimisation

problem within MPC is known as a MPC tracking problem. It is striking that MPC track-

ing solutions have largely been considered as regulating problems, about a steady-state

operating point, rather than full tracking problems. This section demonstrates the recent

work on important issues in predictive control, such as the feasibility and stability guarantee

within a MPC tracking problem. The following subsection presents a brief description of

the feasibility and stability problems within the tracking scenario, followed by a comprehen-

sive literature review covering the discussion on the solution to the feasibility and stability

problems of the associated MPC optimizations.
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3.3.1 Feasibility and stability problems

One of the challenges associated with a tracking scenario is the need to ensure feasibility,

which can guarantee that the class of predictions available to the MPC algorithm can indeed

satisfy all of the constraints simultaneously. However, even putting aside issues linked to

model uncertainty, feasibility can easily be lost during rapid or large set point changes

and disturbance changes, both of which have a strong impact on the terminal constraints

[86, 145]. Consequently, a strong link exists between set point tracking and feasibility; the

feasibility of the controller may be lost and the controller ill-defined, or not defined at all

[126], in the case of certain set point changes.

A convenient and essential component for enabling stability guarantees of MPC algorithms

is to ensure feasibility; that is, to ensure the class of predictions over which an optimisation

is being performed, and to include at least one which is able to satisfy all of the constraints,

including the terminal constraint. That is, for a suitable underlying MPC approach such as

dual-mode [153, 146], a feasibility guarantee is often sufficient to enable a simple guarantee

of nominal (and at times robust) closed-loop stability for the controller. However, it is

shown in [19, 90] that the inclusion of hard constraints may result in an infeasible optimisa-

tion problem and lead to closed-loop instability even when the unconstrained optimisation

problem would lead to a system that is stable in a closed-loop.

Two common strategies have been applied to address the problem of infeasibility and insta-

bility during large disturbances, plant model mismatch, and rapid set point changes. These

strategies are denoted in the literature as output or state soft constraints [90, 1] and the

set point management [145, 1]. An overview of some of these strategies is presented in the

following subsections.

3.3.2 Soft constraints with predictive control

Soft constraints [90, 154] is a technique that allows state or output constraint violations but,

an additional slack variable that penalises the constraint violation is included in the cost

function of the predictive control. This is considered one of the most popular techniques for
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addressing infeasibility and instability problems. Several algorithms for this technique may

be found in literature. In the following subsections, an overview of some of these algorithms

will be presented.

Quadratic (l2) penalty formulation methods

Zafiriou and Chiou [172] presented an output soft constrained MPC formulation for a SISO

system to address the problem of stability induced by step output disturbance. In this

work output constraints are softened by adding a squared penalty with a softening weight

parameter to the cost function. At this point, Zafiriou and Chiou [172] provided a technique

for computing the largest softening weight that will not cause any stability problems. Under

certain assumptions, the softening weight can be obtained numerically or from the Nyquist

plot. Moreover, the author reported that this technique can be extended to the MIMO case

as well as the case of modelling error.

An alternative MPC formulation, that penalizes a square of the peak violation over the

horizon, weighted by a constant weight, in the cost function was presented in [175]. The

authors studied the stability and showed that the global asymptotic stability of linear time-

invariant discrete time systems with mixed hard and soft constraints could be guaranteed

with poles inside the closed unit disc subject to hard input constraints and soft output con-

straints. The advantage of this formulation is that it is computationally cheap and requires

the solution to a single QP problem. However, it provides poor performance and tuning

difficulties. Moreover, for some cases such as non-minimum phase plants, this becomes a

multi-objective minimization as discussed in [154].

Rossiter and Kouvaritakis [140] presented a solution which enforces soft constraints by

minimizing the maximum value of the state constraint violation. This value is minimized

by using a different optimization problem that is solving the constrained QP as an iteration

of weighted least square optimization problems.
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Linear (l1 / l∞) norm penalty function methods

It is desired to soften the state constraints only when the optimization is infeasible. This can

be achieved by using the concept of an exact penalty function [43]. This idea is exploited

by several authors to formulate an exact soft constrained MPC [35, 154, 69].

Kerrigan and Maciejowski [69] introduced a method for calculating a lower limit for the

weight of the constraint violation penalty. In this work, Kerrigan and Maciejowski [69]

showed that the lower limit can be calculated by means of a linear programs’ problem

solution based on the KKT conditions. The authors also demonstrated that, in order to

guarantee that the solution with soft constraints is equal to that with hard constraints for

all feasible considered conditions, the weight of the constraint violation which is used in the

soft constrained cost function must exceed the maximum norm of the Lagrange multiplier.

Kerrigan and Maciejowski [69] reported that this method can guarantee that the lower

bound has been found. However, this can prove an intractable problem [63].

Maciejowski [90] discussed how to solve the infeasibility problem induced by the presence

of modelling error and disturbances, using both the l1 norm and l∞ norm penalty function

approaches for the output soft constraints. With regard to modelling error, the author

demonstrated that the inexactness of the penalty function leads to some constraint being

violated, whereas other constraints are not, despite the infeasibility induced by the mod-

elling error; hence, it is difficult to predict the circumstances in which infeasibility will be

encountered. In the case of disturbances, the author also showed the efficacy of softening

constraints and that the inexactness can create a useful compromise between the hardness

and sponginess of set point specification.

Wills and Heath [169] argued that choosing a large linear term in the cost function in order

to obtain exact penalty function may not be useful for system dynamics. Therefore, they

proposed a two-stage process which includes the exact penalty method as a special case,

such that the feasibility of the MPC optimization problem is determined first, and then the

MPC problem depending on the new information is solved. This development is discussed

based on the classical exterior/interior point framework [42], which allows for an intuitive



3.3 Feasibility and stability within constrained MPC tracking 55

tuning procedure. They have shown that this proposal can improve performance by using

a heuristic choice of the soft constraint penalty scaling factor.

Hovd [63] proposed an alternative method for ensuring exact soft constraints by computing

a sufficient maximum value of the l1 norm and l∞ norm of the Lagrange multiplier for the

standard QP problem using a multi-level programming.

A new MPC formulation for soft constraints was proposed in [173] for tracking linear con-

strained systems. The proposed formulation can guarantee stability for both stable and

unstable systems. The concept is to relax the terminal constraints using an enlarged termi-

nal set and to soften the other constraints by using both the quadratic l2 and linear l1/l∞

norm penalties. The controller allows tuning performance and the constraint violation de-

gree to guarantee stability. Moreover, feasibility can be ensured in a large region of the state

space based on imposing hard constraints in the design. Zeilinger et al [173] also proposed

a framework which combines the proposed soft constrained formulation with a robust ap-

proach, to satisfy constraints in the presence of a disturbance, while using soft constraints

to ensure feasibility and stability for exceeding disturbances. The authors showed that the

stability results extend to the case of a significant size of disturbances to ensure safety and

feasibility during on-line operation.

Combined linear and quadratic penalties methods

De Oliveira and Biegler [35] discussed three different relaxation strategies of output con-

straints using penalty functions. The first is the use of the quadratic penalty function, in

which a scalar penalty parameter and a squared slack variable which is a measure of the

original constraint violation are included in the cost function. The idea is to determine an

appropriate finite maximum value of the penalty parameter that can be used for tuning

and tolerated for stability. De Oliveira and Biegler [35] showed that the stability of the soft

constraint MPC problem is equivalent to that of the unconstrained MPC problem, with a

simple change in the tuning parameters. However, the drawback of this approach is that it

is combinatorial in the length of the predictive horizon due to the dependence of the penalty

parameter on the current active set.
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The second approach is the use of the exact penalty function. This requires the penalty

parameter to be sufficiently large to satisfy the exact function. This can be done by ensuring

that a finite value of the penalty parameter must be larger than the norm of the Lagrange

multipliers of the constraints in the original problem [43]. This can lead to a constrained

formulation which has the same bounded stability properties as exist in the absence of

the soft constraints. De Oliveira and Biegler [35] showed that this exact penalty approach

is simpler to apply to time-varying and non-linear systems compared with the quadratic

penalty approach. However, it is difficult to decide exactly how large the penalty parameters

should be, since the Lagrange multipliers depend on the current state (Maciejowski [90]).

The third approach is to use the l∞ norm. In this case, the result obtained from the previous

approach is extended to the case of this approach and it was shown that a stronger bound

for the Lagrange multipliers exist. De Oliveira and Biegler [35] reported that the exact

penalty strategy using either the l1 norm or the l∞ norm can avoid unnecessary constraint

violations and that these are well-suited for soft constraints.

Scokaert and Rawlings [152] presented an approach for handling soft state constraints for

addressing infeasibility, by incorporating a combination of l1 norms and squared l2 norms

of the state constraint violations into the MPC cost function. In order to ensure the exact

penalty property [43], Scokaert and Rawlings [152] introduced a method that determines a

conservative state dependent upper bound for the optimal multiplier for the original MPC

problem by using the Lipschitz continuity of the quadratic problem [59]. However, it is

unclear exactly how to implement this for a whole feasible state space [69].

Scokaert and Rawlings [154] analysed the soft constraint approach introduced by [175] and

explored its strengths and weaknesses. The authors showed that it is computationally cheap,

requiring a simple QP and stabilizing , with the Lipschitz continuous in the state. However,

they also showed that in some cases, such as minimum phase plants, the optimisation of

constraint violations is a multi-objective problem since, as the size of the violation is reduced

an increase in duration occurs. Moreover, it provides a significant mismatch between open-

loop predictions and closed-loop behavior as well as tuning difficulties when choosing the

weight matrices.
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In order to overcome the difficulties encountered in [175], Scokaert and Rawlings [154]

proposed a new soft constraint MPC approach, where the total sum of the square values of

the constraint violations rather than the peak value violation is penalized at each time step

along the prediction horizon. This is achieved by adding a combined quadratic and linear

term of constraint violation penalization to the cost function. The purpose in penalizing

the weighted l1 norm of the sum of the predicted constraint violations to allow the use of

exact penalties, while adding the quadratic penalty to enhance flexibility. The quadratic

penalty also results in a well-posed quadratic program. Scokaert and Rawlings [154] showed

that it is possible to achieve trade-off between the peak value and duration of the violations

by tuning the quadratic soft constraint penalty and that open-loop predictions match the

nominal closed-loop behavior for all choices of tuning parameter.

Alternative methods

A novel soft output constraints approach was used in [116] to develop a robust constraint

MPC controller for linear systems that provides robustness against model plant uncertainty.

In this work, output constraints are relaxed by introducing a penalty function such that it is

zero or almost zero within the dead zone within the soft limits. This dead zone reduces the

sensitivity of the controller to noise and uncertainty when the process output approaches

its target. Prasath et al [116] demonstrated that the proposed controller does not degrade

much in the nominal case, but improves significantly in the case of plant model mismatch.

They also demonstrated that the controller can be efficiently implemented into the process

with the significant model uncertainties that arise from the plant such as a Cement Mill

process [117].

Recently, an alternative technique of output soft constraint for fast algorithms was proposed

by [135]. The idea is to introduce a method which completely avoids the inclusion of any

additional slack variables. The method is based on the introduction of an approximated vi-

olation penalty directly into the cost function, using the Kreisselmeier-Steinhauser function

[76]. Richards [135] demonstrated that the proposed formulation can be applied to the fast

algorithm of [134] efficiently, retaining the favourable matrix structure of the original fast
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MPC. However, the proposed method comes at the cost of the approximation of the soft

constraint penalty [45].

Summary: All of the soft constraints algorithms described in this subsection, except for the

algorithm of [135], share the common concept of constraint relaxation, that is, the inclusion

of a slack variable within the cost function and the penalisation of output or state constraints

but they differ regarding the type of the penalisation. It has been shown [35] that the linear

penalty (l1 norm or l∞ norm) is well-suited for constraint relaxation. However, all of these

methods focussed on constraint management rather than the cause, i.e an over-ambitious

target.

3.3.3 Set point management and reference governor methods

Another popular way of addressing feasibility and stability problems during rapid set point

changes is the use of the set point management and reference governor methods [145]. In

this manner, several results have been obtained for the feasibility and stability of MPC for

tracking scenarios [143, 10, 158, 126], which are described as follows.

In [143], a Constrained Stable Generalised Predictive controller (CSGPC) for SISO plants is

presented; the proposed controller ensures feasibility by deploying, temporarily, an artificial

reference as a degree of freedom (d.o.f) and convergence is ensured by means of a conservative

constraint based on the artificial reference. This approach is extended in [137] for more

general terminal conditions and to make use of invariant sets to handle the constraints. In

this work, it is demonstrated that changes to the loop target can provide a highly effective

mechanism for increasing the volume of feasible regions; consequently an artificial target

can provide a more useful degree of freedom within MPC than the more normal choice of

future control increments.

An alternative, well-known approach for dealing with temporary infeasibility due to changes

in the target is a command governor (CG), whose action is based on the current state, set

point and prescribed constraints [10, 50]. One example of this approach is the addition

to the system of a non-linear low-pass filter, which is selected to ensure the satisfaction

of the constraints while retaining offset-free tracking behaviour. The command governor
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approaches have a strong synergy with the closed-loop paradigm implementations of MPC.

Their main weakness is their simplicity; that is, they sacrifice transient performance to

ensure an effective but simple approach.

Similar ideas have been applied in conjunction with non-square techniques [158] which

investigate the impact of non-square systems on feasibility in tracking problems in linear

MPC. In this work consideration was given to cases where the target was unreachable in

the steady-state. This line of approach was extended in [157] to consider the impact of

uncertainty on the control law’s ability to find the optimum steady-state for unreachable

targets.

In [25], a novel algorithm for tracking a piecewise constant reference for a linear system

subject to input/state constraints and bounded disturbance was proposed. The core concept

is to deploy predictive regulator whenever feasibility holds and deploy feasibility recovery

in the case of feasibility loss due to set point changes. Chisci et al [25] demonstrated

that the proposed algorithm can provide good tracking performance with robust constraint

satisfaction and yield a reasonable on-line computational burden.

In [3], a novel approach for a discrete time linear system under input and state constraints

to track a piecewise reference signal was introduced. The idea is to combine the concept of

a command governor with the conventional MPC algorithm. This approach is effective but

only for specific scenarios where the set point is fixed.

In [86, 40], a slight variation on MPC for tracking changing constant references for both

constrained linear and non-linear systems was presented. These controllers ensure feasi-

bility by means of adding an artificial steady-state and input as a degree of freedom of

the optimization problem. Convergence to an admissible target steady-state is ensured by

using a modified cost function and a stabilizing extended terminal constraint. Optimality

is ensured by means of an offset cost function which penalizes the difference between the

artificial reference and the real one.

A subtlety of interest here is the recovery of local optimality [40] despite the use of a bias

term in the performance index. It is proved that the proposed controller steers the system

to the target, if this is admissible. If not, the controller converges to an admissible steady-
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state optimum according to the modified performance index. This approach was extended

in [41] by considering an alternative offset cost function based on the infinity norm, as it

was shown that this enabled the recovery of a local optimality property while retaining all

of the key properties of the original formulation.

In [125], a new infinite horizon MPC formulation for the case of active steady-state con-

straints is implemented and discussed. This new formulation is based on an iterative algo-

rithm that determines the optimal solution to the control problem within a user-specified

tolerance.

In [126], the case of unreachable set points is considered; here, the authors propose that the

performance index should be based on the distance from the unreachable set point rather

than the artificial, reachable one. The authors proved the asymptotic stability and the

convergence to the steady-state values with a desired tracking response, despite the fact

that the performance index is technically unbounded.

A novel predictive control formulation for tracking a known periodic reference signals was

proposed in [84]. The concept is to consider both the predicted system input and the pseudo-

reachable target as the degrees of freedom and, moreover, to consider a performance index

that includes a penalization of both the tracking error with the pseudo reference and the

difference between the pseudo reference and the known future reference. Stability is guar-

anteed by adding a terminal constraint to the predicted trajectory alongside the constraint

that forces the artificial reference to be periodic. Limon et al [84] proved that the proposed

controller provides a recursive feasibility with the controlled system that ensures the hard

constraints satisfaction. It is also proved that the proposed controller is asymptotically

stable and converges to the most reachable target trajectory.

A simple model predictive control framework for a random reference tracking linear systems

was presented in [39]. The key idea is to add a constraint to the optimisation problem and

to select a virtual reference that maintains the trajectory in a specific set. The proposed

approach with the virtual reference ensures that all trajectories remain within a compact

set.

A different strategy when tracking a random reference was considered in [93]. The proposed
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control strategy also employs an artificial reference as a state variable rather than a control

variable. The controlled system is subject to input and state constraints as well as the

following terminal constraints. In this work, [93] showed that the state converges to the

steady-state value and that the tracking error is bounded.

In [87], a new MPC method for tracking arbitrary periodic references was presented. The

concept is to combine the trajectory planner with the tracking MPC formulation in a single

optimization problem such that the degrees of freedom are a planned reachable trajectory

and the input signals sequence is as predicted. The key point here is that the loss of

feasibility is avoided since the set of constraints of this optimization problem do not rely on

the reference signal. By using a slightly modified Lyapunov theorem [127], Limon et al [87]

proved that the controller can guarantee asymptotic stability and ensure feasibility even in

the presence of sudden target reference changes.

Recently, the stability and recursive feasibility of nominal MPC under reasonable condi-

tions were shown in [95], and [56] showed that recursive feasibility and stability can be

ensured avoiding a terminal stability constraint and that many properties of terminal con-

strained NMPC schemes can also be derived without terminal constraints. Moreover, they

demonstrated that, by avoiding terminal constraints, NMPC can yield controllers with large

operating regions even for very short optimization horizons. On the other hand, [93] argued

that the inclusion of explicit or implicit terminal constraints in the optimal control problem

is essential for ensuring both stability and recursive feasibility.

More recently, Santos [151] introduced a modification to the MPC formulation for tracking

piecewise constant references using a simplified parametrisation of steady-state, avoiding

the use of additional decision variables in the optimisation problem by building on [86, 40].

In this work, the artificial references are obtained from the terminal state and the terminal

control by means of the simplified parametrisation. Moreover, the author also proposed

a modified algorithm that ia able to recover the feasible region provided by the MPC for

tracking with an artificial target [86, 40]
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Summary: The set point management algorithms typically deploy two different concepts:

one is the use of the reference governor method while the other is based on the inclusion of an

artificial target in the cost function for the associated optimisation problem. The weakness of

command governor approaches is their simplicity; that is, they sacrifice transient performance

to ensure an effective but simple approach. On the other hand, artificial reference approaches

possess strengths in that they can be deployed for both reachable and unreachable targets

for time-varying systems.

3.3.4 Section summary

We can now summarise the MPC algorithms discussed in Subsections (3.3.2, 3.3.3) that

guarantee feasibility and the stability of the closed-loop of the associated control as follows.

Infeasibility and instability problems which are encountered due to a rapid set point changes

and disturbances or modelling error can be solved efficiently by using soft constraints or

set point modification methods. While the work mentioned above achieved good results,

ensuring feasibility retention and stability guarantees, nevertheless, the range of solutions

and approaches presented in the literature for handling future target information remains

limited. Specifically, there has been a tacit avoidance of the impact of feed-forward, as the

solutions have generally focused on cases where the future target is assumed to be constant,

which implicitly means that no feed-forward information about future target changes exists.

This thesis will focus on the concept of artificial targets since this concept focuses on the

over-ambitious targets. This will be discussed in Chapter 5.

3.4 Offset-free tracking model predictive control

One of the main issues that must be considered when developing of efficient industrial MPC

control approaches is the offset-free tracking problem, which can be defined as the problem

of tracking a reference set point and achieving zero offset in the presence of persistent

disturbances and plant model mismatch [100, 110, 91]. Several strategies have been proposed

to solve this problem. This section will focus on reviewing the developed algorithms within
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the tracking scenarios.

3.4.1 Disturbance model

In order to account for the disturbances or plant model error, a standard strategy is to

augment the model of state with the model of disturbance using an estimator. Several

algorithms have been proposed based on this strategy, which can be described as follows.

Muske and Badgwell [100] presented a solution to the problem of offset-free control by adding

a general disturbance model for linear MPC, which contains unmeasured disturbances en-

tering through the process input, state, or output. The authors showed that the states of

the process and unmeasured disturbance model must be estimated simultaneously by using

an appropriate stable estimator. They also showed that the steady-state input and state

target vectors, which are required for removing the effect of the estimated disturbances,

can be determined by using a QP problem solution. For the combination of the estimator,

steady-state target calculation and controller dynamics, Muske and Badgwell [100] derived

sufficient conditions to achieve zero offset control, such that the augmented model must

satisfy the detectability condition and the total number of unmeasured disturbances and

the number of measured outputs must be equal. It is demonstrated in this work that offset-

free control occurs in the presence of significant model error and suggested that control

performance may be improved by using state or input disturbance models.

In [110], an MPC algorithm which solves the offset-free control problem was designed by

augmenting the process model by integrating disturbances and using a steady-state Kalman

filter to estimate both the state and the disturbance based on the availability of the measure-

ments of the plant. In this work, general conditions which allow the design of an offset-free

algorithm were derived such that the augmented system must be detectable and the max-

imum number of the added disturbances must be equal to the number of measurements.

Pannocchia and Rawlings [110] demonstrated that all detectable disturbance models guar-

antee offset-free performance. The results reveal that the plant follows the non-linear model

as well as the linearised model used by the controller. However, it was shown that, for ill-

conditioned processes, the request for a zero steady-state offset in all output variables can
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lead to closed-loop instability in the case of incorrect model identification. In this manner,

Pannocchia and Rawlings [110] suggested that in order to maintain closed-loop stability, it

is possible to relax the offset-free performance related to the least important variables .

Pannocchia and Kerrigan [108] presented a new MPC algorithm for controlling constrained

linear systems with time-varying targets in the presence of unmeasured, bounded distur-

bances. This algorithm is based on designing a dynamic controller, which includes a dead-

beat observer for disturbance estimate, target calculation for steady-state values and a static

state feedback gain to regulate the plant model to a steady-state. The key idea in this work

is to incorporate both the transient and limiting effect of all allowable future disturbance and

set point sequences to the controller formulation. Pannocchia and Kerrigan [108] demon-

strated that the proposed algorithm is guaranteed to achieve a zero steady-state offset as

the disturbances reach an unknown steady-state value even if modelling errors exist. They

also showed that offset-free control holds independently of the actual plant dynamics.

A novel method for addressing the offset-free model predictive control problem was proposed

in [107]. The method is based on the integrating process model design with its associated

observer. In order to minimize the impact of the unmeasured disturbances and plant model

error on the output prediction, the author introduced a dynamic observer nominal design

by means of an H∞ control problem solution. In order to create a compromise between

the effectiveness in achieving zero offset control and low noise sensitivity, a scalar tuning

parameter is performed in the design. Pannocchia and Bemporad [107] showed that when

offset-free control is required, the designed observer is equivalent to selecting an integrating

disturbance model and a state observer for the augmented system.

In [2], a new MPC offset-free tracking algorithm design was presented. This algorithm is

able to enforce output offset-free tracking of the reference input with constraints satisfaction

when unmeasured disturbances are available. This algorithm consists of two parts. In the

first part, a stabilizing linear time invariant controller is designed to achieve a zero offset

tracking advantage due to the dynamics structure augmentation. In the second part, this

advantage is then supported by selecting the MPC controller design in which the state

and input constraints are explicitly included in the MPC controller and therefore robust

constraint satisfaction is guaranteed. In addition, the presented algorithm can satisfy the
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offset-free tracking of all reference inputs, which can be described in the rational transfer

function form with no disturbance estimating requirement.

In [91], the offset-free MPC problem for tracking a fixed reference was addressed. In this

work, an additional disturbance was added to the system to be estimated using a linear

disturbance observer and simple conditions that ensure that the offset-free performance of

both the estimator and the controller has been derived. Maeder et al [91] discussed the case

whereby the number of disturbances and the number of measured variables are equivalent,

and reported that this may lead to greater complexity when more disturbances than the

number of controlled variable are introduced. Moreover, they discussed the case whereby

the number of disturbances is equal to the number of tracked variables but smaller than the

measured variables and designed an observer such that the offset is eliminated in selected

variables, thereby providing an MPC with minimal complexity. Finally, Maeder et al [91]

provided insights into the zero steady-state offset when the performance index is one or

infinity norm objective functions, and when explicit MPC is implemented for complexity

reduction.

It has been shown in [122] that, for linear models, the choice of the disturbance model has

no effect on the closed-loop performance if suitable covariances are used to specify the state

estimator. In this manner, Rajamani et al [121] presented the Auto-covariance Least Square

(ALS) technique [121] to calculate the appropriate covariance of the disturbance model

based on steady-state data irrespective of the actual unknown plant disturbance source.

The estimated covariances are then used to calculate the estimator gain. It is shown that

the incorrect selection of the disturbance source in the disturbance model is compensated for

by the estimated covariances and the resulting gain of the estimator. It was demonstrated

that as the estimator gain is determined from the covariances estimated using the auto-

covariance of the data, the inputs equal the outputs and hence are indistinguishable by

means of two different (either deterministic or stochastic) disturbance models.

Maeder and Morari [92] presented a method for offset-free model predictive control for

reference tracking and disturbance rejection. They considered reference and disturbance

signals generated by arbitrary, unstable linear model dynamics. Maeder and Morari [92]

constructed a disturbance model, which includes the reference dynamics and input distur-
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bance and proposed an algorithm that computes the target trajectory. Under this method,

a linear observer was employed to estimate the state and disturbance, assuming that the

augmented system is observable. The key points here are that the disturbance model must

satisfy the internal model condition (that is, the dynamic matrix of the disturbance model

must contain the dynamic matrix of the reference model) and the augmented system must

be observable. Moreover, the target trajectory conditions must be derived to be added

to the MPC problem such that the modal composition of the reference and disturbance is

trivial. Offset-free is achieved assuming that the disturbance and reference dynamics are

appropriately embedded into the prediction model , thereby providing reference feasibility.

A novel MPC offset-free formulation was developed in [62]. The core idea is to combine

one basic MPC controller with another MPC controller with integral action, to achieve

zero offset control and also deal with known and unknown disturbances. One controller

is appropriate for control in the presence of known disturbance while the other can reject

unknown disturbances. In order to maintain the task of the proposed controllers, the balance

between the two actions is purchased by combining the two performance indices. Horvath

et al. [62] applied the proposed controller structure to control the level of open channels and

showed that the developed offset-free method is able to eliminate the steady-state offset,

while also taking into account the known and unknown disturbances.

3.4.2 State disturbance observer

An alternative strategy for the offset-free problem is the state disturbance observer. This

strategy is not based on an augmented system in which the current state is estimated using

an observer with an additional output correction term, which is necessary to ensure offset-

free tracking. Several algorithms based on this strategy may be found in the literature to

date, so we will describe more recent approaches in the following.

An offset-free MPC approach with linear state space system was presented in [161] for

constant unmeasured external and plant model mismatch and asymptotically constant ref-

erences. This approach is based on the technique of state disturbance prediction; that is,

the use of a suitable state disturbances structure in the model for output state prediction.
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Tatjewski [161] recalled that in the case of a measured state, using constant state distur-

bance prediction enables offset-free control without the need for a disturbance observer or

filter. Regarding the unmeasured state (where the process outputs alone are measured),

only the process state must be estimated, using a general Kalman filter with the addition

of a suitable correction term for the output prediction. The author proved that the use of

this technique, in this case, enables offset-free tracking.

Recently, Tatjewski [162] extended the work of [161] to non-linear state space systems. The

presented approach uses a formulation for non-linear models and for the MPC cost function,

which includes predicted control errors and process input increments. This work provided a

theoretical analysis of the offset-free tracking property with less restrictive conditions than

is the case under the conventional approach. The advantage of the proposed controller is

that it is simple and easy to design with less restrictive applicability conditions than the

conventional approach with extended process and disturbance state estimation. Another

advantage is the avoidance of the need to select a limited number of disturbances and their

inclusion in the process model.

3.4.3 Velocity form

Another alternative strategy for offset-free tracking problem is to compose the enlarged

state by the state increment and the output error, while the manipulated variable is the

control increment. In the literature, this strategy is called the velocity form model. Various

solutions based on this strategy have been proposed in the literature. An overview of some

of these solutions is presented below.

The velocity algorithm was studied under the general LQ regulators formulation in [109].

The idea is to derive the initial estimate and its covariance matrix in the velocity form

based on the initial estimates in the state space traditional and use the augmented variables

in the LQ regulator formulation to define a suitable control law. It was shown that offset-

free control properties are guaranteed without the use of an explicit disturbance model,

since the target of the state increment is always zero even in the presence of plant model

mismatch [111]. Pannoccia and Rawlings [109] compared the results obtained by using the
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velocity algorithm with the standard state space model and showed that, when the velocity

algorithm is used with correct initialisation, the disturbance entering the plant is completely

rejected while, when using the traditional state space model, the offset occurs.

In [53], a discussion about ensuring offset-free control for a linear stable state space model,

using the velocity form model was presented. The author showed that the system described

by the complete velocity form model, where the states and input increments are considered,

can lead to offset-free control under two conditions. One condition is to obtain unbiased

steady-state predictions, which is achieved by adding an integral action to the observer. In

this manner, the author demonstrated that the integrating model embedded by the com-

plete velocity model into the observer ensures that the output estimation reaches the true

plant output value. The other condition is to design a well-constructed MPC optimisation

problem. It is shown in this work that the cost function contains the augmented state

vector, which is penalised to achieve zero state increment and the output is equal to the set

point.

In [16], a new model predictive control algorithm for offset-free tracking piecewise constant

reference signals in the presence of unknown disturbance and model plant mismatch was

proposed. In this algorithm, the offset-free tracking is guaranteed by enlarging the control

loop with integrators and describing the system to be controlled in velocity form. Gonzalez

et al [53] showed that , under the proposed algorithm, the controller can track any admissible

reference signal without any error and reject the influences of both plant model mismatch

and the unknown disturbance. They also showed that stability is guaranteed through a

suitable definition of the auxiliary control law and the terminal set used in the MPC problem

framework.

Recently, Pannocchia [106] reviewed the disturbance model approach and the other two

alternatives, the state disturbance observer model approach [161] and the so-called velocity

form model approach, within a coherent framework. It was shown in this work that the two

alternative formulations are considered particular cases of the disturbance model approach.

By comparing the two alternatives with the disturbance model method individually, Pan-

nocchia [106] has shown that by using suitable matrices for disturbance model matrices

and for the prediction output and augmented observer gain vectors, both the augmented
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systems and the augmented observer dynamics satisfy the detectability and the dead-beat

conditions respectively, and are equivalent to the alternatives. They have also shown that

the simple tuning for the state disturbance model approach can be applied to the three

approaches.

3.4.4 Section summary

Now, we will summarise some of the strengths and weaknesses of the offset-free control

methods described in Subsections (3.4.1-3.4.3).

The offset-free strategies described above share the concept of including an integral action in

the control loop but each one has its own specific strengths and weaknesses. The disturbance

model method is simple and straightforward to generalise but its weakness is that it is

unclear how it is effectively chosen in suitable MPC algorithms. In addition, the observer

may encounter tuning-related difficulties [161].

On the other hand the velocity form method is rarely used in offset-free control since, in

principle, a problem may arise when using the infinite prediction horizon to ensure that

the loop is stable. This occurs when the integrating states which include the velocity

model result in a permanent output error, which is hence dramatically doubled in regard

to unbounded costs [109]. Moreover, using this form can lead to computational costs due

to the increase in the state dimension. Nevertheless, it offers an advantage in that it does

not require either the choice of a disturbance model or a steady-state calculation. However,

recently, it has been shown [106] that it can be treated as a special case of the disturbance

model. This would avoid the question of which is more effective or beneficial. In this thesis,

we will deploy the disturbance model method since it seems to be popular, effective and

consistent with the assumption that disturbance varies slowly.

3.5 Preview (advance knowledge) and feed-forward

In order to review the inclusion of feed-forward in the model predictive control, we define

three important components [54] related to this; namely, preview, which is advance informa-
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tion about future target or disturbance changes. It is clear that such information is useful

for feed-forward control design since it allows the controller to prepare for target or refer-

ence changes. It is shown in [98] that preview offers significant performance advantages;

feed-forward, which is part of the control action applied to the reference signal without

correction for the measured response; and feedback, which is the closed-loop control action

with error correction for the observed response. In this thesis, we use the terminology,

advance knowledge or preview.

MPC has the potential to include feed-forward information systematically rather than as a

separate design. However, assuming, for simplicity that the feed-forward (FF) is related to

tracking scenarios (FF for disturbances would give equivalent observations), the literature

as a whole is relatively vague on how to make effective use of information on future target

values within MPC optimisation.

The relative neglect of feed-forward arises partly because the most common assumption

adopted is that, for any given sample, the future target is assumed to be constant. Typically

the literature focuses on scenarios with constant targets but as a consequence aspects of

some results may not be representative when the target changes frequently. Moreover,

even where target changes are considered, most of the literature ignores the feed-forward

term since it tacitly assumes that there is no advance information on any changes that do

occur. Nevertheless, a few works have explicitly considered the impact of including advance

information on target values into an MPC optimisation and this forms the focus of the

current thesis.

Early work [139] established that the default feed-forward from a GPC algorithm could be

a poor choice, but may be improved by a different parametrisation of the degrees of freedom

or reducing the amount of advance information used in the optimisation. The focus was

solely on step changes in the target.

These insights were extended slightly in [144, 166] where it was demonstrated that for a

finite horizon algorithm with a small control input horizon nu, the best feed-forward depends

upon the shape of the set point trajectory and, more specifically, is not usually the same

as the default that arises from an MPC optimisation. Finite horizon algorithms remain
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important due to their prevalence in the industry but obviously with the increasing trend

towards dual-mode algorithms, these must also be considered and here it was noted that

the best choice of feed-forward was less dependent on the target trajectory.

In [54], a novel strategy for MPC design which incorporates feedback, reference feed-forward

and preview was formulated. The concept here is similar to that in [144, 166], as suggested

in [54], which separated the feed-forward design from the feedback loop controller. In this

strategy, the feed-forward was selected as a signal rather than a compensator to optimise

performance/tracking whereas the loop controller focused on robustness. Goodwin et al [54]

demonstrated that for certain scenarios proposed controller vastly improves the performance

of time-varying reference tracking and that the model uncertainty is corrected and the

majority of the tracking performance recovered when the constraints are included in the

feed-forward optimisation stage. Nevertheless, this work did not discuss how much advance

information about the target was useful and instead focused on the concept of there being

a two stage design. Moreover, the feed-forward signal was designed as an on-off and used

in its entirety with the feedback added on top to correct for uncertainty, whereas in fact

the feed-forward contribution could be modified as new information on the target becomes

available.

In [21], the concept of preview and feed-forward in MPC, introduced in [54], was extended to

a framework that guarantees robust stability. In this work, the author considered constant

reference signals to be tracked. Carrasco and Goodwin [21] argued that the proposed

strategy is always useful or at least not detrimental, since feedback optimisation can correct

the additional feed-forward signal at any time if the system’s stability is endangered by this

feed-forward signal.
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Summary: The importance of incorporating a feed-forward compensator with preview, par-

ticularly for constrained MPC, has been described above as providing good results. However,

there remain some outstanding questions. The extent to which one can make statements

about how much advance information on the target is useful remains unclear, which is one

of the focuses of the current thesis. Following this, little consideration has been made in

the literature outside of [54] regarding how off-line decisions on the handling of feed-forward

information can be effectively incorporated into MPC optimisation. This will be discussed

in the following chapter.

3.6 Overview of robust MPC

Robust model predictive control has often been studied as a regulation problem [13, 71,

34]. Such approaches are based on Min-Max optimisations using linear matrix inequalities

techniques. Robust stability properties are studied in [23].

The use of LMI optimisations implies a substantial on-line computational load and hence,

in [75], an alternative algorithm was proposed which provides a significant reduction in

computational costs by adding degrees of freedom and utilising off-line computations effec-

tively. Nevertheless, the implicit reliance on ellipsoidal invariant sets restricts the regions

of applicability of these approaches.

In [114, 113], a mechanism was proposed for developing robust invariant sets based on linear

rather than quadratic inequalities. This simple set definition allowed a volumetric increase

of the infeasible regions and for the definition of a simple robust MPC algorithm for LPV

systems that requires only quadratic programming optimisation while retaining the core

properties of recursive feasibility and guaranteed convergence.

Another thread in robust predictive control research is the so-called tube based approaches

[80, 123, 24]. The idea is to form a tube (equivalently a set) which contains all of the

possible evolutions of the system predictions for a given level of uncertainty. However,

such approaches have focused primarily on uncertainty due to exogenous signals such as

disturbances and also require significant off-line computations which are challenging with
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large state dimensions and large disturbances and thus are considered no further here.

In [94], a simple output feedback model predictive controller was developed for constrained

linear systems with input and output disturbances, using a Luenberger observer as the state

estimator. The proposal used an invariant set that bounds the estimation error but notably

relied on a tube-based robust model predictive controller approach.

A critical observation is that the vast majority of work on robust MPC has focused on

the regulation scenario that has a fixed set point/target. However, in many scenarios, a

key role of MPC is to help to track the target changes in the presence of input and state

constraints. One key concept here is advance knowledge [139]; that is, how many samples

into the future is the set point trajectory known and available to the MPC algorithm.

Therefore, this thesis will focus on the potential robust MPC approaches which explicitly

include the tracking scenario. A key challenge when the set point changes is to ensure both

recursive feasibility and stability in the presence of model uncertainty.

Consideration was given in [158] to cases where the target was unreachable in the steady-

state and also to the inclusion of non-square linear systems. Thus a key objective was to

consider what modifications to an MPC algorithm are needed to guarantee feasibility during

target changes. The chosen line of approach was extended in [156] to consider the impact

of uncertainty on the control law’s ability to find the optimum steady-state for unreachable

targets. However, these works considered fixed targets only, in the absence of any advance

knowledge.

In [5], a novel formulation of a robust output feedback model predictive controller was

proposed to track piecewise constant references for a linear system with additive bounded

uncertainties on the states. The proposed MPC can steer the uncertain system in an

admissible evolution to any admissible steady-state; that is, under any change of the set

point. This controller is applied successfully in industry [6], but again assumes no advance

knowledge.

The design procedure for a robust MPC for tracking constrained linear systems with additive

disturbances is presented in [85]. The paper utilises the notion of a tube of trajectories, to

achieve robust stability and convergence and also uses LMI based design procedures and
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algorithms for the calculation of invariant sets. Again, no advance knowledge is considered.

A robust model predictive control algorithm for solving the tracking and infeasible reference

problems for constrained systems subject to bounded disturbances is presented in [17].

A robust tracking MPC for input constrained uncertain systems, that is, based on the

construction of a feasible and invariant set is introduced in [105, 83].

Summary: Different robust MPC approaches have been described in this section. While

these approaches give a good closed performance and are guaranteed to satisfy the process

constraints, no advance knowledge is considered. In this thesis, we propose a modified robust

MPC formulation that can handle parametric uncertainty considering future information

about target changes.

3.7 Literature review on improving mp-QP

It is shown in the literature that the linear MPC optimization problem, with a quadratic

cost function and linear state and input constraints, can be solved via multi-parametric

programming (mp-QP) techniques for instance; [14], [149]. It is shown in this literature that

the obtained controller is piecewise linear and continuous and provides all of the stability

and performance properties of MPC. Furthermore, the on-line computation is reduced to a

simple linear function evaluation rather than the expensive quadratic program. The benefit

of this solution is the potential reduction of the computational burden that arises from the

on-line optimization.

In [66], an explicit solution to the infinite-horizon LQR problem with state and input con-

straints based on receding horizon real-time quadratic programming was developed, elimi-

nating the need for real-time optimization. The computer memory and processing capacity

requirements of the explicit solution are addressed by suggesting a strategy, based on a

suboptimal choice of a finite horizon and imposing additional limitations on the allowed

switching between active constraint sets on the horizon. It is shown that the resulting feed-

back controller is piecewise linear, in order to analyse stability and performance as well as

efficient real time implementation.
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In [11], an explicit RHC law for linear systems with input and state constraints was com-

puted by using the mp-QP technique. In this work, the problem of finding approximate

solutions to mp-QP was addressed, where the degree of approximation is arbitrary and al-

lows a trade-off between optimality and a smaller number of cells in the piecewise affine

solution. Furthermore, the obtained law provides closed-loop stability and constraint fulfil-

ment.

The properties of the polyhedral partition of the state space induced by the multi-parametric

piecewise affine solution were discussed in [163] using a new mp-QP solver. Compared to the

existing algorithms, this approach adopts a different exploration strategy for subdividing

the parameter space, avoiding unnecessary partitioning and QP problem solving, with a

significant improvement in efficiency.

An efficient algorithm for mp-QP was presented in [9], using, Karush Kuhn Tucker (KKT)

conditions to characterize polyhedral critical regions and the corresponding optimal solution.

However, in this work the unnecessary partitioning of the parameter space was avoided by

using a direct exploration strategy. The neighbourhood of the initial critical region was

explored by crossing each of the faces and checking if a feasible neighbouring critical region

exists. This procedure is then repeated iteratively with all newly generated regions.

Another approach was introduced in [79] to reduce the mp-QP complexity. The key idea is

to separate the regions that contain a saturated control law. This can be performed by using

the linear programming (LP) method. However, the drawback is that these approaches are

applicable only for small systems.

In [57], a new approach was presented for reducing the combinatorial complexity of the

optimization method that resulted in the previous approaches. The main idea is to exploit

all of the space using a minimum number of space partitions.

A novel algorithm for the mp-QP optimization problem was presented in [148]; this algo-

rithm enumerates all of the possible combinations of the active sets. Although the algorithm

is systematic and effective, it may result in a combinatorial complexity difficulty.

In [70], an alternative approach was proposed to minimize the combinatorial complexity.
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This approach implements an algorithm based on the relaxation of infeasible constraint

combination and exploiting the geometric properties of the mp-QP constraints to increase

the efficiency of the combinatorial enumeration. However, this algorithm may cause an

increase in the complexity of the constraints polyhedrons.

Summary: Critically, the existing work has not considered how to handle systems with lots

of states and information about the future target, so one can propose a new formulation that

addresses this challenge. This will be discussed later in this thesis.

3.8 The key observations on the literature review

It was demonstrated that, while many solutions have appeared in the literature, these do

not offer comprehensive or systematic solutions to several key scenarios. Consequently, this

section presents several issues for further study, as detailed below:

1. Infinite horizon or OMPC tracking algorithms are effective but in general have been

limited to fixed set points scenarios.

2. In tracking OMPC algorithms the effective use of future knowledge about set point

changes is ignored in the literature for both nominal and robust cases. In Chapter

4, we will introduce an efficient algorithm that makes effective use of future set point

information for nominal cases. This efficient algorithm is extended to be implemented

in robust cases, as will be discussed in Chapter 6.

3. The theory of the maximal admissible sets (MAS) for infinite horizon algorithms for

constrained systems with time-varying targets and uncertain systems has not been

fully exploited. We will illustrate how to construct an admissible set for systems with

time-varying targets for both nominal and uncertain cases in Chapters 4 and 6.

4. The issues of feasibility and stability are discussed in the literature. However, the

scenario where the target is unreachable is not widely considered in the literature.

Therefore, we will study in Chapter 5 the feasibility and stability of both reachable

and unreachable targets for the nominal case, using the artificial target approach.
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5. Modifications to an MPC algorithm are needed to guarantee feasibility during target

changes for the robust case. The design of an efficient algorithm will be explored in

Chapter 6.

6. It is possible to implement the parametric (mp-QP) technique for the implementation

of feed-forward with advance knowledge, using an appropriate algorithm but this

has not yet been discussed in the literature. This algorithm will be introduced and

illustrated in Chapter 7.

7. Feasibility issues with the inclusion of the current input and steady state offset within

a parametric approach will also be investigated in Chapter 7.



Chapter 4

FIXED FEED-FORWARD DESIGN WITHIN

DUAL-MODE APPROACH

This chapter constitutes a core contribution to the thesis. It was mentioned in the previous

chapter, Subsection 3.1.3, that the default feed-forward arising from a conventional MPC

algorithm may be inadequate because the assumptions implicit in the optimisation are

relatively limited and may only be valid for fixed set points. If the future set point changes,

then the optimization and degrees of freedom within it need essential modification.

It is logical to consider whether a two stage design would be a better choice for feed-forward,

in other words: (i) first design the feedback loop for robust performance and (ii) second,

design a feed-forward to give optimum tracking, assuming that the inner loop is known.

Regarding this concept, it is necessary to clarify how exactly the design can be created and

to what extent such a design can handle the constraints. Consequently, a key objective

is to define an algorithm that can make effective use of a predefined feed-forward; that is,

to embed this into the on-line optimisation and evaluate this approach compared to more

conventional methods.

This chapter is organised as follows. Section 4.1 illustrates how to include time-varying

target information into dual-mode algorithms. Section 4.2 presents the derivation of a

control law for an OMPC approach, using future information about target changes. Section

4.3 introduces two useful proposals for the effective use of advance knowledge in feed-

forward design. Section 4.4 illustrates numerically the use of advance knowledge on the

OMPC for an unconstrained case. Section 4.5 presents a novel formulation which handles

the constraints for feed-forward with advance knowledge. Section 4.6 presents numerical

78
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examples for embedding advance knowledge with constrained OMPC. Section 4.7 discusses

the insight of embedding advance knowledge for both constrained and unconstrained cases.

Finally, Section 4.8 presents the conclusions to the chapter.

4.1 OMPC dual-mode with a time-varying target

The literature on dual-mode MPC tends to assume that the expected steady-states xss, uss

of (2.32) are fixed which effectively means that the target is fixed and no advance information

is introduced into this performance index. This section explores how to handle time-varying

targets in feed-forward design within an OMPC dual-mode formulation.

This section shows how to define an autonomous model for model predictions, a performance

index and a control law for an OMPC dual-mode approach, including future information

about target changes. It will also show explicitly how the incorporation of future information

about target changes has an impact on the optimum feedback.

4.1.1 Closed-loop predictions for a time-varying target

In Chapter 2, state and input predictions were described in terms of the deviation variables

(2.59). However, these predictions are only suitable for a fixed target. In this chapter, we

aim to describe predictions which incorporate time-varying targets. In this case, one can

rewrite equation (2.59), such that the target is no longer fixed as:

The state predictions are given by: xk+i+1 − xss|k+i+1 = A(xk+i − xss|k+i) +B(uk+i − uss|k+i), ........ i ≤ nc

xk+i+1 − xss|k+i+1 = A(xk+i − xss|k+i) +B(uk+i − uss|k+i), .......... i > nc
(4.1)

Similarly, the input predictions can also be described as: uk+i − uss|k+i = −K(xk+i − xss|k+i) + ck+i, ............ i ≤ nc

uk+i − uss|k+i = −K(xk+i − xss|k+i), .......... i > nc
(4.2)
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where uss|k, xss|k are the estimated steady-states of the input and states which enable y → rk

asymptotically, rk being the desired target at sample k.

Unbiased definitions of uss|k, xss|k and their linear dependence on current disturbance es-

timate dk and target rk are well known in the literature e.g, [101], and can be defined for

suitable Kxr,Kur as follows.xss|k+i+1

uss|k+i

 =

Kxr

Kur

 (rk+i+1 − dk) .......................i ≥ 0 (4.3)

Remark 4.1 This thesis focuses on infinite horizon algorithms due to their superior a priori

stability properties. To simplify the presentation of the algebra, the disturbance estimate dk

is omitted from the equations hereafter; it is straightforward to include where required and

so is included in some of the numerical illustrations.

Thus, the predicted state and input evolution is conveniently captured by combining (4.2)

and (4.3) to form a one-step ahead prediction model:

xk+1+i = Φxk+i + [I − Φ]Kxr(rk+1+i) +Bck

uk+i = −Kxk+i + [KKxr +Kur](rk+1+i) + ck
(4.4)

4.2 OMPC dual-mode control law for constraint free case

This section shows how to derive a control law for an OMPC or dual-mode approach,

including future information about target changes.

4.2.1 Autonomous model for predictions with a time-varying target

In order to derive a control law for a dual-mode for the unconstrained case with the inclusion

of advance information about the targets, it is convenient to construct an equivalent state-

space model which incorporates the predictions of (4.4) by adding the d.o.f. c→k
as additional

states. It is also necessary to incorporate information about future target values r→k+1
, so

they become states in an augmented model.
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The explicit assumption in this section is that the target is known na steps ahead and is

assumed to be constant thereafter; hence (rk+na+i = rk+na, i ≥ 0). A transition matrix

linking the future target values can be constructed as follows.



rk+2

rk+3

...

rk+na

rk+na+1


︸ ︷︷ ︸

r→k+2

=



0 I 0 · · · 0

0 0 I · · · :

: : : : :

0 0 0 · · · I

0 0 0 · · · I


︸ ︷︷ ︸

DR



rk+1

rk+2

...

rk+na−1

rk+na


︸ ︷︷ ︸

r→k+1

(4.5)

where the notation r→k+1
means the future value of rk.

Similarly, a transition matrix can be used to capture the future values of the d.o.f. c→k
for

each sample within the prediction such that (ck+nc+i = 0, i ≥ 1), given that:



ck+1

ck+2

...

ck+nc−1

ck+nc


︸ ︷︷ ︸

c→k+1

=



0 I 0 · · · 0

0 0 I · · · :

: : : : :

: : : : I

0 0 0 · · · 0


︸ ︷︷ ︸

DC



ck

ck+1

ck+2

...

ck+nc−1


︸ ︷︷ ︸

c→k

(4.6)

It is convenient to combine the update equations (4.4-4.6) in a single autonomous model

with an augmented state, giving the form:

Zk = [xTk , c→
T

k
, r→k+1

T ]T ; Zk+1 = [xTk+1, c→
T

k+1
, r→k+2

T ]T (4.7)

The prediction model is given as:

Zk+1 = ΨZk; where Ψ =


Φ [B, 0, 0, ...] [(I − Φ)Kxr, 0, .., 0]

0 DC 0

0 0 DR

 (4.8)
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4.2.2 Proposed Performance index with future target information

For a time-varying target, it is also convenient to incorporate changes in the target into

the cost function of (2.31) as this is a precursor to the systematic design of a default FF

compensator. An obvious change to this performance index is:

J =
∞∑
i=1

{
(xk+i+1 − xss|k+i+1)TQ(xk+i+1 − xss|k+i+1) + (uk+i − uss|k+i)

TR(uk+i − uss|k+i)
}

(4.9)

where uss|k, xss|k are the estimated steady-states of the input and states which enable y → rk

asymptotically, rk being the desired target at sample k.

Summary: The closed-loop paradigm prediction structure of (4.2) is deployed as this is

known to offer numerous numerical advantages [146] and indeed is now commonly adopted.

Moreover, building on the performance index of (4.9) provides unique insights that are

unavailable with the more conventional open-loop prediction formats.

Now, in order to define a suitable unbiased performance index which includes future infor-

mation about set point changes, it is convenient to describe the deviation from the state in

terms of the augmented state Zk as illustrated below:

xk − xss|k =
[
I, 0, .., 0

]
−
[
0 0 [Kxr, 0, 0, ..0]

]
︸ ︷︷ ︸

Kxss

Zk (4.10)

Similarly, the deviation on the input can be described as:

uk − uss|k = −
[
K, 0, .., 0

]
−
[
0 0 [Kur, 0, , ..., 0]

]
︸ ︷︷ ︸

Kuss

Zk (4.11)

Substituting (4.8), (4.10) and (4.11) into the performance index (4.9), one can express J in

terms of the augmented state as:

J =
∞∑
i=0

ZTk+i[Ψ
TKT

xssQKxssΨ +KT
zssRKzss]Zk+i (4.12)

Analogous to the illustration in Chapter 2, Section 2.8.3, the performance index (4.12) can

be expressed in a simplified form,using the standard Lyapunov solution as:

J = ZTk SzZk; (4.13)
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Remark 4.2 The use of performance index (4.13) allows the user to formulate the explicit

dependence of the control law on future target information.

The matrix Sz can be decomposed into its individual block elements which show the links

between the states xk, r→k+1
, c→k

within the cost function

Sz =


Sx Sxc Sxr

STxc Sc Scr

STxr STcr Sr

 (4.14)

We use the decomposition of (4.14) to expand (4.13) as:

J = xTk Sxxk + 2xTk Sxc c→k
+ c→

T

k
Sc c→k

+ r→
T

k+1
Sr r→k+1

+ 2xTk Sxr r→k+1
+ 2 c→

T

k
Scr r→k+1

(4.15)

However, within the optimisation of J , one can ignore the terms based on Sx, Sxr as these

contain no d.o.f. and hence:

arg min
c→k

J ≡ arg min
c→k

{ c→
T

k
Sc c→k

+ 2 c→
T

k
Scr r→k+1

+ 2xTk Sxc c→k
} (4.16)

4.2.3 The final OMPC control law

Now, building on the corresponding performance J of (4.16), it is straightforward to define

a control law by minimising the J w.r.t c→k
, given that:

dJ

d c−→k

= 0⇒ c−→k
= −S−1

c [Scr r−→k+1
+ Sxcxk]. (4.17)

c−→k
= Pr r−→k+1

− S−1
c Sxcxk. (4.18)

where Pr r−→k+1
= −S−1

c Scr r−→k+1
is the feed-forward term. This control law depends on the

future target information and the current state.

Remark 4.3 By definition the optimal behaviour is given from uk+i−uss|k+i = −K(xk+i−

xss|k+i), so, by definition, the optimal value of ck must be zero, therefore Sxc = 0.
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Thus, the optimum c−→ can be defined as:

c−→k
= Pr r−→k+1

. (4.19)

Hence, the feed-forward term, in the unconstrained case, is given by Pr and the dependence

on r→k+1
is explicit.

Corollary 4.1 The summation of the block elements of the matrix Pr must be equal to zero.

This follows immediately from the observation that if the future target is constant then the

optimum unconstrained value is ck = 0 and hence Pr r→k+1
= 0. This reinforces the message

that the feed-forward term is only active when advance information of target changes is

used within the performance index.

4.3 The effective use of advance knowledge for unconstrained systems

It was shown in the previous section that the results for optimising performance suggested

that the optimum value of c→k
depends upon the future target values, through the feed-

forward Pr, so the obvious inference is that one will obtain better performance by using

this information and moreover using as large a na as possible. Surprisingly however, this

intuitive expectation is incorrect. In fact, including the feed-forward term can cause a

deterioration in closed-loop performance as will be shown below.

More specifically, this section seeks to provide more systematic guidance on how much feed-

forward information is useful for improving output tracking performance and also, what

constitutes too much feed-forward information which cannot be used effectively and thus

can provide undesired results.

4.3.1 The impact of using advance target knowledge with optimal MPC

Most of the literature using OMPC algorithms ignores advance knowledge of target changes;

that is, it tacitly assumes that, for the purpose of prediction and optimisation, na = 1 and
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rk+i = rk+1,∀i > 0. This also means that, within the predictions, xss|k, uss|k are constant.

Moreover, it can be shown [145] that in this case the optimum unconstrained choice of the

d.o.f. is c→k
= 0. This provides a useful observation which is a helpful insight for the control

operator, as we develop the contributions of this thesis. When na = 1, that is no advance

knowledge and the optimisation is reduced to minimising the weighted norm of the input

perturbations c→k
so the magnitude of c→ is a direct indicator of the impact of the constraints

on the input choices.

Summary: If c→k
= 0, the constraints do not affect the choice of control inputs.

On the other hand, a key point to note from (4.17) is that, with the use of na > 1, the

optimum values of input perturbations ck are no longer zero, even in the unconstrained

case, and now depend explicitly on the future target values as well as constraints. This is

illustrated numerically in Section 4.4.

4.3.2 Determining the appropriate amount of advance knowledge

This subsection introduces two useful methods for selecting the optimum amount of advance

knowledge for unconstrained systems. While these methods may seem somewhat simple or

lacking in rigour, both offer the advantage of being easy to code/implement in practice which

is a core aim of this thesis and moreover provides insights that allow the easy extension of

the constraint handling case.

Method 1: Trial and error

This method uses trial and error to select the optimum amount of advance knowledge for

unconstrained systems, introducing an effective procedure as follows:

1. For values na from 1 to ny, simulate the process (for a specified target) and compute

the cost J using the performance index (4.9) by summing the terms over the entire

runtime (until all terms have converged to zero). Plot the cost J vs na .
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2. Select the smallest na giving an acceptable J cost on the basis that a smaller na may

be preferable if the loss in performance is minimal compared to a larger na.

Method 2: Alternative efficient proposal

The link with loop dynamics indicated in the controlled systems, suggests the potential for a

more precise design guideline. It is desirable to obtain an output response in which the error

before and after the set point change is balanced and the closed-loop settling time settles to

within 10% of the steady-state. Therefore, one can argue from engineering common sense

that the best choice of na, in the unconstrained case, lies between nc and nc+ns/2 where ns

is the closed-loop settling time. Building on this concept, we introduce an alternative algo-

rithm to determine the optimum amount of advance knowledge for unconstrained systems

as follows:

Algorithm 4.1 The algorithm of our proposal is listed as:

1. Determine the closed-loop settling-time ns using a measure such as settling to within

10% of the steady-state.

2. Choose na = n∗a = nc + ns/2.

4.4 Numerical illustration of advance knowledge within the unconstrained

case

This section discusses numerically by means of several examples, the embedding the advance

knowledge, showing its effect on the performance and its effective use in the unconstrained

OMPC approaches. Firstly, the section demonstrates the impact of the inclusion of advance

information about set point changes (na > 1) on system performance. Moreover, the opti-

mum answer is highly dependent on both the closed-loop dynamics and nc. Secondly, this

section evaluates the methods proposed in the previous section. Finally, the section ends

with a comparison between the proposed methods followed by a section summary.
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4.4.1 The impact of advance knowledge about the target changes on system performance

In order to illustrate the impact of advance knowledge on system performance, we will

present two benchmark examples of different plant models. One example describes a four

dimensional state, SISO system, the other example describes a large scale MIMO system as

follows.

Example 1: SISO System

In this example, we consider the model of the water heater studied in [19]. The model

matrices which describe the plant are given by:

A =


0.8351 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

 , B =


0.5

0

0

0

 , C =
[
0 0 0.5426 0

]
, D = 0 (4.20)

In this system, the output is tracking a step input with an amplitude r = 1. The tuning

parameter of the control input is nc = 2, and the weighting matrices are R = 0.1I and

Q = CTC. Both the inputs and states are unconstrained. By using the model (4.20),

a discussion of three output tracking performances with and without the inclusion of ad-

vance knowledge and indeed the anticipation expected of a predictive control law deploying

advance knowledge, are clearly demonstrated.

Figure 4.1 shows the tracking one response (lower plot) without advance knowledge (na = 1)

and two responses with advance knowledge (na = 5 (upper right plots) and na = 15 (upper

left plot)).

It is clear from Figure 4.1 that, for na = 1, the input perturbation term ck is zero. However,

for na = 5 and na = 15, ck is non-zero during transients. It is also clear that the maximum

input of the upper right plot remains far closer to the input steady-state than that of the

lower one. Moreover, it is clear that at set point changes, the top plot anticipates more than

the lower one and the upper right plot provides a faster output response and less aggressive
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initial control moves than the lower one.

Raising the advance knowledge to a very large value provides a slow drift (unnecessary

anticipation) before moving quickly near the time of th significant set point change as

shown in the upper left plot, so that the excessive use of advance knowledge (na = 15) in

conjunction with a low nc = 2 is not useful.

In this particular case, it might be argued whether the J is larger or not. This is proved, as

shown in Table 4.1, where the plot with this advance knowledge provides a smaller J but

the key point is that this much anticipation is undesirable, even if the technical performance

improves slightly.
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Figure 4.1: Closed-loop step responses for the SISO system (4.20) with na = 1, 5 and 15.

Example 2: the MIMO System

In this example, we consider the compressor model, studied in [19]. The discrete time

transfer function of the model is given by:

Gcomp =

10−4z−14(0.7619z−1+0.7307z−2)
1−1.8806z−1+0.8819z−2

0.022z−1

1−0.9761z−1

10−2z−6(0.7619z−1+0.7307z−2)
1−1.8534z−1+0.8598z−2

10−2z−19(0.7619z−1+0.7307z−2)
1−1.2919z−1+0.306z−2

 (4.21)
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The model consists of 59 states with two manipulated variables and two controlled outputs,

The matrices, A, B, C and D, which describe the model of the compressor are described

in Appendix B.

Here both outputs which track two step inputs have an amplitude of r1 = 1.0, r2 = 0.5. The

tuning parameters are nc = 3, Q = CTC and the weighting factor of R = diag(0.01, 0.01).

Both inputs and states are unconstrained.

Again, we will discuss the tracking performance of three output responses with and without

the inclusion of advance knowledge and indeed anticipated predictive control law’s deploy-

ment of advance knowledge, using the corresponding model

Figure 4.2 shows the output tracking one response (left lower plot) without advance knowl-

edge, (na = 1) and two responses with advance knowledge (na = 15 (upper right plots) and

na = 25 (upper left plot)). Perturbations about the optimal are shown in the lower right

plot.
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Figure 4.2: Closed-loop step responses for the compressor model with na = 1, 15 and 25.

Again it is clear from the lower right plot that with advance knowledge, ck is non-zero during

transients. It is also shown that the anticipation of the set point change in the upper plots

and improvement in tracking are clear when the advance knowledge (na = 15 and na = 25)
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is included, whereas there is no anticipation in the lower plot without advance knowledge.

Regarding the interaction between the output variables, no down deviation is seen in the

responses of the upper plots, although a slight deviation can be seen in the lower plot. It

is clear, therefore, that using advance knowledge is beneficial. However, when the advance

knowledge is too large the response shows unnecessary anticipation which is not useful in

conjunction with a low nc = 3 as we discussed previously for model (4.20).

Again, by calculating the cost J , it is seen that the numerical values for the cost J for the

upper plot where advance knowledge is available is smaller than the values for the cost J

for the lower plot where no advance knowledge exists. This is illustrated in tabular form as

follows.

Table 4.1 shows the numerical values for the cost J for both systems (4.20) and (4.21),

using the performance index of (4.9) for different advance knowledge values. This clearly

demonstrates the superior performance of the proposed approach using advance knowledge.

J with na = 1 J with na = 5 J with na = 15

System (4.20) 3.4966 0.7391 0.7115

J with na = 1 J with na = 15 J with na = 25

System (4.21) 15.2337 9.2787 8.5190

Table 4.1: Performance indices for step changes in the target for system (4.20) and system
(4.21).

It is shown in Table 4.1 that the cost function J with advance knowledge is slightly lower

than that without advance knowledge. This provides further evidence of the advantages of

using advance knowledge within the OMPC control law.

Summary: This subsection has shown how to implement advanced information within

the new dual-mode or OMPC control law. It is clear that this information can be used

systematically and critically affects behaviour by changing the perturbation term ck.



4.4 Numerical illustration of advance knowledge within the unconstrained case 91

4.4.2 Evaluation of the trial and error method and the proposed algorithm

This subsection evaluates both the trial and error method and proposed Algorithm 4.1 to

select the best amount of advance knowledge, by means of the benchmark model which is

introduced in [73]. Moreover, this model is used to demonstrate how easily the proposed

methods can be applied to OMPC dual-mode approaches. The plant model matrices are

given by:

A =

1.1 2.0

0 0.95

 , B =

 0

0.0787

 , C =
[
−1 1

]
(4.22)

Example 1: Evaluation of the trial and error method

This example uses the model (4.22) to evaluate the trial and error method for selecting the

appropriate advance knowledge values na.

A closed-loop simulation is performed with nc = 2 and Q = CTC for various choices of the

input weight matrix R = 0.01I, 0.1I, 0.5I and I.

Figure 4.3 shows the corresponding cost function J versus the values of advance knowledge

na for different input weights R.

It is clear that an appropriate choice of na depends on the tuning parameter of the feed-

back loop, R, as miscalculating this can have serious consequences regarding performance.

Detuning (high R) tends to mean that a higher na is beneficial as the system is slow to

respond and needs more anticipation to balance errors around the target changes. With

more aggressive tuning, often a relatively small na is the optimum choice, as this prevents

the system from anticipating the target changes earlier than necessary.
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Figure 4.3: The cost J versus advance knowledge for the system (4.22) with R =
0.01I, 0.1I, 0.5I and I.

Remark 4.4 This subsection does not consider the impact of constraint handling so the

reader is reminded that in practice, if na � nc, then one is more likely to get infeasibility

as there is poor matching between the d.o.f. and the change in the asymptotic steady-state

(terminal constraints). Hence, irrespective of the outcomes of the trial and error method in

the unconstrained case, in practice one may decide to choose a smaller na if the number of

d.o.f. are limited to ease the constraint handling; this issue is discussed in more detail in the

next section.

Example 2: Evaluation of Algorithm 4.1

In this example, we will evaluate Algorithm 4.1 for selecting the appropriate advance knowl-

edge , na values, to be used in the OMPC control design.

Firstly, we need to determine the settling time of the open loop response for the correspond-

ing system. To achieve this, we then perform a simulation of the output dynamic response

of system (4.22) with nc = 1 and Q = CTC for various choices of the input weight matrix,

with a unit step response, in order to determine the settling time for the corresponding

open loop output response.
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Figure 4.4 shows the open-loop response for the model for different control weights, R =

0.01I, 0.1I, 0.5I and I.
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Figure 4.4: Open-loop step responses for system (4.22) with R = 0.01I, 0.1I, 0.5I and I.

It can be seen from Figure 4.4 that the output responses are differ due to the effect of R on

the system responses in which the system output response becomes slower as R increases;

hence, various settling time values, ns, of the system step response can be estimated as

shown in Table 4.2.

R 0.01I 0.1I 0.5I I

ns 4 5 8 9

Table 4.2: The estimated settling time for the step response of system (4.22) for various R

Secondly, building on the results obtained from this simulation, we calculate the value of the

advance knowledge, na, for a tuning parameter, nc = 2 for different R, using the formula in

Algorithm 4.1 as illustrated below in Table 4.3.

Finally, we select the computed values of na as an appropriate value for the system for

associated R.
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It is clear from Table 4.3 that the advance knowledge is high as the weight is high since

increasing the weighting leads to slower responses and hence more future information about

the target changes; in other words larger na is required. This suggests that the choice of

appropriate advance knowledge is dependent on the system dynamics as well as the tuning

parameters, nc and R.

In order to demonstrate the benefits of using advance knowledge, we will perform a closed-

loop simulation for the corresponding system (4.22). The tuning parameters are set at

nc = 2 and Q = CTC and R = 0.01I with the target of rk = 0.5. In this particular case,

the value of na can be determined by using Algorithm 4.1, which is na = 4, as shown in

Table 4.3.

Figure 4.5 shows the closed-loop response for the model without advance knowledge, na = 1

and with the selected advance knowledge value of na = 4.
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Figure 4.5: Closed-loop step responses of system (4.22) for R = 0.01 with na = 1 and
na = 4.

Clearly, the output response with the obtained advance knowledge of na = 4 is faster

than that without advance knowledge of na = 1, providing better tracking performance.

Moreover, the response with advance knowledge provides a lower inverse action compared

with that without advance knowledge.
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R ns n∗a = nc + ns/2

0.01I 4 4

0.1I 5 5

0.5I 8 6

I 9 6

Table 4.3: The appropriate advance knowledge for system (4.22) with nc = 2 for various R

Further evidence of the advantage of using advance knowledge can be shown by describing

the performance indices for the corresponding model with and without advance knowledge

in tabular form as shown in Table 4.4.

J with na = 1 J with na = 4

System (4.20) 0.7862 0.0491

Table 4.4: Performance indices for step changes in the target for system (4.22)

It is clear that the performance index with advance knowledge is lower than that without

advance knowledge. This indicates the usefulness of advance knowledge.

4.4.3 A comparison between the trial and error method and Algorithm 4.1

This subsection compares the two proposals discussed in the previous section by considering

the model (4.22) with nc = 2, Q = CTC and different weights, R = 0.01I, 0.1I, 0.5I and

I.

A comparison of the solutions obtained from trial and error method and Algorithm 4.1 is

shown in Table 4.5 for four different choices of tuning.
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System (4.22) nc = 2, R = 0.01I, ns = 4 Method 1 Alg.4.1

na 3 4 5 5 4

J 0.1427 0.0491 0.0375 0.0375 0.0491

System (4.22) nc = 2, R = 0.1I, ns = 5 Method 1 Alg.4.1

na 4 5 6 6 5

J 0.1859 0.1218 0.1067 0.1067 ‘ 0.1218

System (4.22) nc = 2, R = 0.5I, ns = 7 Method 1 Alg.4.1

na 5 6 7 7 6

J 0.2684 0.2062 0.1821 0.1821 0.2062

System (4.22) nc = 2, R = I, ns = 8 Method 1 Alg.4.1

na 6 7 8 8 7

J 0.2832 0.2384 0.2194 0.2194 0.2384

Table 4.5: Variation in the performance indices for step changes in the target over the cost
J for a range of na and comparison of the proposals obtained from Method 1 and Algorithm
4.1.

It is clear from this table that the application of Algorithm 4.1 is close enough to be useful

and simple to select. In these two cases it is striking that the trial and error method

suggests that a high na is better but, significantly, decreasing gains with relatively low na

can be clearly observed, as shown in Table 4.5. The expected observation that increasing the

weighting leads to slower responses and thus the benefits from a higher na are also apparent.

Furthermore, it provides a sensible proposal for na with a minimum of computation.

4.4.4 Interim Summary

This section reveals the following insights:

1. It is clear that advance information can be used systematically and affects behaviour.

2. Up to a limit, choosing na > 1 improves performance compared to na = 1 but limited

improvements for na � nc.
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3. It is possible to use the trial and error method to choose an optimum value of na

for a given set point profile but this would be cumbersome to implement in practice

whereas the simple guideline of n∗a ≈ nc + ns/2 suggested by Algorithm 4.1 is seen to

be fairly effective in the unconstrained case and would be easier to deploy in general.

4.5 Constraint handling with advance knowledge within OMPC approaches

Before considering the constrained case, it is important to get the unconstrained case right

as this will provide the foundation for including the constraints later. The previous section

and some earlier work [166] gave an indication of a possible start point which is to determine

the feed-forward term Pr separately from the on-line optimisation, to determine a choice of

Pr which is known to be optimal in the unconstrained case; such a choice would depend on

assumptions about the dynamics with the feedback loop and choices for both na and nc.

4.5.1 The proposed performance index

The proposal hereafter is to embed the optimised feed-forward and then add d.o.f. around

this for constraint handling, as required. The results are straightforward, but provided for

completeness as they build a foundation for the next sections.

Theorem 4.1 Minimisation of performance index (4.16) gives the same optimum c→k
as

the following optimisation.

c̃→ = arg min
c̃→

J̃ = c̃→k
Sc c̃→k

; c→k
= c̃→k

+ Pr r→k+1
(4.23)

Proof: A parametrisation of the input perturbations ck, which includes the optimum feed-

forward (4.17) and further d.o.f. for constraint handling can be defined as:

c→k
= c̃→k

+ Pr r→k+1
(4.24)

Hence the term c̃→k
is a deviation from the unconstrained optimum in the tracking case.
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The cost function is given by substituting (4.24) into (4.16). Hence

J̃ ≡ [ c̃→k
+ Pr r→k+1

]TSc[ c̃→k
+ Pr r→k+1

] + 2[ c̃→k
+ Pr r→k+1

]TScr r→k+1
(4.25)

J̃ ≡ [ c̃→k
]TSc[ c̃→k

] + 2[ c̃→k
]TScPr r→k+1

+ 2[ c̃→k
]TScr r→k+1

(4.26)

Substituting Pr of equation (4.17) into (4.26) yields

J̃ ≡ [ c̃→k
]TSc[ c̃→k

]− 2[ c̃→k
]TScr r→k+1

+ 2[ c̃→k
]TScr r→k+1

(4.27)

J̃ ≡ [ c̃→k
]TSc[ c̃→k

] (4.28)

It is known that the unconstrained optimum choice is c̃→k
= 0 and therefore the performance

index must be a quadratic with no-affine term. Therefore, for some constant F :

J̃ = [ c̃→k
]TSc[ c̃→k

] + F (4.29)

which implies minimising J and minimising J̃ in the absence of constraints must give the

same c̃→k
�

4.5.2 The MCAS for time-varying targets

The MCAS for the dual-mode MPC has been defined in Subsection 2.8.5. It has been shown

that this MCAS can be used for the scenarios of fixed targets. However, in the case of a

time-varying target, we need to develop an alternative algorithm, which can handle the

target variations. This algorithm will be illustrated next.

The predictions of (4.8) are defined as feasible if they satisfy the constraints for all future

samples. Thus, for convenience, these constraints are represented as a set of matrix inequal-

ities. Standard algorithms are available in the literature for determining these inequalities

e.g.[52] or recent variants such as [114], which were discussed in Subsection 2.5.1. At this

point, it is worth introducing the MCAS, such that the predictions of (4.8) satisfy the

constraints.
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Describing the constraints on the inputs (2.41) in terms of the autonomous model (4.8)

gives −K [I, 0, 0, ...] [KKxr +Kur, 0, ., ., ., 0]

K −[I, 0, 0, ...] −[KKxr +Kur, 0, ., ., ., 0]

Zk ≤
ū
u

 (4.30)

Similarly, the constraints on the states (2.44) can be described as:[
C 0 0

]
Zk ≤ x (4.31)

Also, the limits on the target can be expressed as:0 0 I

0 0 −I

Zk ≤
r̄
r

 (4.32)

Combining all the sets (4.30-4.32) together, provides:

−K [I, 0, 0, ...] [KKxr +Kur, 0, ..., 0]

K −[I, 0, 0, ...] −[KKxr +Kur, 0, ..., 0]

C 0 0

0 0 I

0 0 −I


︸ ︷︷ ︸

G


xk

c−→k

r→k+1


︸ ︷︷ ︸

Zk

≤



ū

u

x̄

r̄

r


︸︷︷︸
f

(4.33)

The state and input constraints can be satisfied if the target is sensible. Therefore, a critical

requirement to ensure convergence is that the steady-state must lie in the interior of the

constraints set for the inputs and states. This can be achieved using the following condition:
Kur

Kur

CKxr

 r ≤

u− ε

u+ ε

x− ε

 ;


Kur

Kur

CKxr

 r ≤

u− ε

u+ ε

x− ε

 ; ε > 0 (4.34)

In this manner, targets should be checked against these inequalities before deploying or

setting limits on r. The inequalities of (4.33) can be described for each sample in a standard

sample constraints form given that:

GZk ≤ f (4.35)
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The key point here is to divide the sample constraints of (4.35) into two parts. One part

(G1Zk ≤ f1), which includes the constraint inequalities (4.30, 4.31), must be satisfied for

every sample, k. The other part (G2Zk ≤ f2), which includes the constraint inequalities

(4.32), must be satisfied only for the first sample (k = 0). Therefore, we can re-arrange the

constraints into the form: 
G1

−−−

G2

Zk ≤


f1

−−−

f2

 , ∀k (4.36)

Because we assume that the value r is constant, the rows in G2 will not be carried forward in

any admissible iteration. Therefore, the admissible set which has been discussed previously

in Subsection 2.8.5, can be modified to deal with this by starting the iteration on the rows

in G1, and thus excludes G2 [145].

Thus, the MCAS can be defined in a standard form as:

FZk ≤ t (4.37)

where F and t are defined in equation (2.52).

It may be convenient to expand the MCAS (4.37) gives

[
M N V

]
︸ ︷︷ ︸

F


xk

c−→k

r→k+1


︸ ︷︷ ︸

Zk

≤ t (4.38)

Now, the MCAS set can be described in a compact form as:

SMCAS =
{
x : ∃ c−→k

s.t Mxk +N c→k
+ V r→k+1

≤ t
}

(4.39)

where M,N and V are suitable matrices and t is a vector of the limits.

Corollary 4.2 An equivalent MCAS for control perturbations (4.24) with future target val-

ues is straightforward to construct. This follows directly from the substitution of (4.24) into

(4.39) for suitable constants.

Mxk +N c→k
+ V r→k+1

≤ t ⇒ Mxk +N [ c̃→k
+ Pr r→k+1

] + V r→k+1
≤ t (4.40)
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The MCAS equation of (4.40) can be described in a standard form as:

Mxk +N c→k
+ V r→k+1

≤ t ⇒ Mxk +N c̃→k
+ [NPr + V ]︸ ︷︷ ︸

Q

r→k+1
≤ t (4.41)

or in a compact form:

Mxk +N c→k
+ V r→k+1

≤ t ⇒ Mxk +N c̃→k
+Qr→k+1

≤ t (4.42)

At this point, the MCAS set can be described in a standard form as:

SMCAS = {x : ∃c̃k s.t Mxk +N c̃→k
+Qr→k+1

≤ t} (4.43)

where M, N and Q are suitable matrices and t is a vector of the limits.

Summary: Now, the constrained optimisation can focus on the computation of just c̃→k
as

the bias term to deal with advance information systematically is fully embedded. Specifically,

c̃k 6= 0 will be required if the constraints are active and the magnitude of c̃k is an indicator of

how far one is from the unconstrained optimal associated to the advance knowledge scenario.

4.5.3 Key Observations

The previous subsection has utilised the procedures required for constructing the corre-

sponding MCAS with the following observations:

1. The MCAS shape and position changes as the target rk changes (e.g. [137]).

2. The MCAS is based on an augmented state which includes the target steady-state

and thus is flexible to changes in target and disturbance.

3. This target must be reachable and also feasible during transient with the given nc.

4. To ensure convergence the limits on the target should be selected with care.
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4.5.4 Constrained OMPC Dual mode algorithm

Now, we can define the proposed algorithm which handles both the constraints and advance

information about the targets.

Algorithm 4.2 The constrained OMPC algorithm with the systematic incorporation of ad-

vance knowledge can now be summarised as:

min
c̃→

J̃ = c̃→
T

k
Sc c̃→k

s.t. Mxk +N c̃→k
+Qr→k+1

≤ t (4.44)

The optimised c̃k is used in conjunction with (4.4 and 4.24) to determine uk.

4.6 Numerical examples for the proposed constrained algorithm for a reach-

able target

In order to demonstrate the efficacy of Algorithm 4.2 that uses advance knowledge of target

changes with the constraints in the optimisation problem (assuming feasible target), we will

perform a closed-loop simulation for different plant models with advance knowledge using

the following examples:

4.6.1 Example 1: Six state dimensional SISO system

In this example, we consider the coke furnace process whose linear discrete transfer function

was introduced in [174]. The corresponding discrete state space model can be obtained

giving the following system matrices:

A =



0.9048 0 0 0 0 0

1.0000 0 0 0 0 0

0 1.0000 0 0 0 0

0 0 1.0000 0 0 0

0 0 0 1.0000 0 0

0 0 0 0 1.0000 0


, B =



0.25

0

0

0

0

0


, (4.45)
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C =
[
0 0 0 0 0 0.4188

]
, (4.46)

The input is the fuel flow, u and the output is the outlet temperature, y.

A closed-loop simulation is performed for system (4.45) with tuning parameters: the control

perturbations, nc = 2, R = 0.01I, Q = CTC, subject to the following input and state

constraints:

−0.5 ≤ uk ≤ 1.35 − 4 ≤ yk ≤ 4 (4.47)

The allowable target limits for this case are −2 ≤ r ≤ 2; hence a feasible target of r = 1.0

is introduced.

For this model dynamics, the appropriate advance knowledge value is na = 7 since the

settling time, ns = 10 and the control perturbation, nc = 2. (see Algorithm 4.1).

Figure 4.6 shows the performance (upper left plot) for system (4.45) with advance knowledge

of na = 7, and the control input evolution (upper right plot). The figure also shows the

control perturbation (lower plot) for the OMPC algorithm.
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Figure 4.6: Closed-loop step responses for system (4.45) with nc = 2, na = 7.

It is shown in Figure 4.6 that Algorithm 4.2 provides effective control for the constrained
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system with advance knowledge of na = 7. Readers will note that the perturbations term

c̃→k
(lower figure) is non-zero during the transients only, as expected. This is because the

input constraints are active in the transients, as shown in the upper right plot. Moreover,

the balance of the error around the set-point change (anticipation) is clear, which indicates

the improvement in tracking system performance.

4.6.2 Example 2: Two state dimensional MIMO system

In this example, we consider the benchmark problem (double integrator), originally proposed

in [86]. The matrices which describe the model of the plant are given by:

A =

1 1

0 1

 , B =

0.5 0

0 1

 ; C =

1 0

0 1

 (4.48)

A closed-loop simulation is performed for system (4.48) with the following tuning param-

eters: nc = 2, R = diag(0.1, 1), Q = CTC, subject to the following input and state

constraints: −1

−1

 ≤
u1

u2

 ≤
1

1

 ;

0

0

 ≤
x1

x2

 ≤
1.5

0.5

 (4.49)

For these constraints, the feasible target must lie within the following limits: −1

−0.25

 ≤ r ≤
 1

0.25

 (4.50)

Here both states correspond to outputs which track the two step inputs with the targets

r1 = 1.0, r2 = 0.5.

For this model dynamics, the appropriate advance knowledge value can be chosen to be

equal to nc. This means na = 2, since the settling time of the open-loop response, ns = 2,

is small ( see Algorithm 4.1).

Figures 4.7 and 4.8 show the performance of the two outputs and control input evolutions

for system (4.48), using advance knowledge. The first output tracks a reference amplitude

of r1 = 1 while the second output tracks a reference amplitude of r1 = 0.5.
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Figure 4.7: Closed-loop step responses for system (4.48) with nc = 2, na = 2.

0 5 10 15 20 25 30 35 40 45 50

-2

-1

0

1

2

Contol inputs for OMPC
Constrained input1

Constrained input2

Upper limit of input1

Lower limit of input1

Upper limit of input2

Lower limit of input2

Figure 4.8: The evolution of the control inputs for system (4.48) with nc = 2, na = 2.

It is clear that Algorithm 4.2 provides effective control for the constrained MIMO system

with advance knowledge (na = 2), giving tracking performance with reasonable anticipation

and the outputs reach their steady-state for a short time, giving good tracking performance.

Readers will note from Figure 4.7 that the perturbation variables c̃→k
(the lower panel) for

both responses are non-zero during transients only and become zero for the long term, as
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expected. It will be noted that the perturbation term, c→k
is non-zero as expected from

equation (4.24)

It can be also seen from Figure 4.8 that the constraints on both inputs, u1 and u2,are active

in the transients; moreover, the steady-state value of the first control input, u1, lies on the

boundary of the input limits. This suggests that the control input can reach its steady-state,

as it lies within the constraint limits.

Summary: The key point here is that, the default OMPC algorithm has the nice prop-

erty that a choice of c→ = 0 implies that the unconstrained optimal is feasible and thus one

has a clear view of the impact of the constraints as there is a direct link to the magnitude

of c→. However, including advance knowledge destroyed this link (see eqn.4.24). By re-

parametrising the degrees of freedom in terms of c̃→, this nice property is recovered and, more-

over, the nominal optimal solution, incorporating advance knowledge, becomes embedded

within the predictions. Hence the required on-line optimisation, standard quadratic pro-

gramming (QP), is solely dealing with constraint handling and not trying to achieve mixed

objectives of performance optimisation and handling advance information alongside con-

straint handling.

4.7 Discussion on the use of advance knowledge with unconstrained and

constrained cases

In this section, we discuss the difference between the unconstrained case and constrained

case of the OMPC dual-mode, to assess the advance knowledge of future target information,

as shown below.

For the unconstrained case, it is possible to choose the appropriate value of advance knowl-

edge na, by using the trial and error method, but only to an extent. This is because

na >> nc may yield little benefit. Moreover, in practice, it is convenient to select na, using

the proposed Algorithm 4.1.

On the other hand, the inclusion of too large a na may not be helpful for the scenario in

which constraints are active. This is due to a mismatch between the location of the degree

of freedom and target change. Moreover, it can be argued that to ensure optimal behaviour,
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it is necessary to embed the default unconstrained feed-forward in the optimisation with a

small value of na to ease the constraint handling.

4.8 Conclusion

This chapter has investigated the impact of advance knowledge about future target in-

formation on feed-forward design within predictive control. It is known that in principle

advance information about target changes (and indeed measurable disturbances) can be

included within predictive control optimisation, but it is less well known that the default

incorporation of this information can lead to a degradation rather than an improvement in

performance.

This chapter has shown, by illustration, that, in practice, it is often better to use only a

subset of the future information available during MPC optimisation for each sample. Too

little advance information will result in a delayed response, whereas too much advance

information can lead to earlier than desired anticipation. However, a critical observation

is that it is difficult to provide a theoretical result, and indeed we suspect that a generic,

useful theoretical result will be impossible, with regard to the optimal amount of advance

information to use as this varies with the systems, horizons, weights and constraints in a

non-simple fashion.

Section 4.3 has proposed a simple algorithmic approach which allows the user to obtain

a close to optimal answer regarding the amount of advance information, na, quickly and

easily and thus in a manner useful to a field engineer who simply seeks an approximation.

The examples show that the proposed approach gives sensible answers for infinite horizon or

OMPC dual-mode MPC algorithms and has the advantage of being simple and pragmatic.

An argument is made that during constraint handling, it is better to construct predictions

which embed the default optimal unconstrained feed-forward rather than enter the future

target values directly. This ensures that the optimal behaviour is embedded and adds

transparency to the role of the degrees of freedom. The efficacy and simplicity of this

approach is demonstrated. Moreover, this work has focussed on simple step changes in
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the target as these typically capture the core insights. However, one challenge is how to

deal with the scenario of excessively large changes in the target; that is, the target may be

unreachable during the transient or steady-state. This will be discussed in the next chapter

as another of the thesis contributions.



Chapter 5

FEASIBILITY WITH ADVANCE KNOWLEDGE

WITHIN OMPC TRACKING

In practice, there is a scenario in which the constraints are active in the steady-state due

to rapid set point changes. In this scenario, the true set point may become unreachable.

Recent work has proposed the use of an artificial target which is reachable, but the challenge

here is how to compute and select this target and moreover, how to incorporate it into the

optimisation on the MPC. Therefore, it is logical to devise a novel algorithm that computes

and chooses an artificial target and incorporates it into the performance index using dual-

mode OMPC algorithms to show the impact of the terminal constraints on feasibility. This

will be discussed in this chapter in relation to the constrained case.

Section 5.1 discusses how to ensure feasibility and stability by incorporating an artificial

target into the OMPC optimisation problem. Section 5.2 proposes an input parametrisation

which is appropriate for dealing with unreachable targets. Section 5.3, studies several

performance indices and proposes a modified performance index that handles unreachable

targets. Section 5.4, derives an autonomous dynamic model for unreachable targets. Section

5.5 discusses constraint handling with the unreachable target scenario and proposes an

efficient algorithm which is suitable for this scenario. How to guarantee feasibility and

performance is introduced in Section 5.6. Several observations are listed in Section 5.7,

while Section 5.8 demonstrates the proposed algorithms via Matlab simulations. Finally,

the conclusions are presented in Section 5.9

109
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5.1 Unreachable targets and advance knowledge

The previous chapter focused on the effective use of advance knowledge when target changes

are feasible so that optimisation (4.44) always offers a solution. This chapter extends the

discussion to scenarios where infeasibility occurs; that is, where the change in the steady-

state xss|k, uss|k is too rapid, so the prediction class (4.1) is insufficiently large to meet the

constraints. Infeasibility can take two common forms:

1. Transient infeasibility; that is, the target is reachable asymptotically but a far larger

nc is required [125] to find a feasible solution. Assuming that nc cannot be increased,

an alternative algorithm is needed to maintain feasibility and convergence. A common

proposal [143, 137, 86, 156]) is to include extra degrees of freedom (d.o.f) that capture

changes in the steady-state. A contractive constraint may be deployed to ensure

convergence [23]. This is not pursued in this thesis.

2. Persistent infeasibility or so-called unreachable targets [156, 126]. In this case, the

target cannot be reached, even asymptotically, without violating some constraints

and thus an alternative parametrisation allowing changes to the target steady-state is

needed again, along with a modified objective.

A key point to note here is that the majority of the work in the literature tackling these

two issues assumes that na = 1; in this chapter, proposals are made which embed advance

knowledge (i.e. na > 1) while also taking account of transient or permanent infeasibility

and, moreover, while retaining a simple QP based optimisation.

Remark 5.1 Reference governor approaches [50, 3] have analogies to both of the above

forms, as a governor deploys a transient change in the target to maintain feasibility. How-

ever these will not be discussed further as their focus is on simplicity, but at a cost to

performance.
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5.2 Input parametrisation for unreachable targets

In the case where the asymptotic target is unreachable, then the input parametrisation of

(4.1) is invalid; that is, infeasible. The proposal here is to replace this parametrisation with: xk+1 − xss|k = A(xk − xss|k) +B(uk − uss|k); uk − uss|k = −K(xk − xss|k) + ck, k < nc

xk+1 − xss|k = A(xk − xss|k) +B(uk − uss|k); uk − uss|k = −K(xk − xss|k) + c∞, k ≥ nc
(5.1)

Lemma 5.1 The inclusion of the term c∞ within the input parametrisation of (5.1) leads

to a constant offset between the predicted steady-state output and the desired target.

Proof: Substitute the asymptotic input parametrisation of (5.1) into the model dynamics

(2.1, 2.32). It is clear that if c∞ = 0, there is no offset and hence:

lim
k→∞

xk = xss = Kxrrk+na ⇒ lim
k→∞

yk = rk+na (5.2)

Using superposition one can then determine that, with (5.1):

lim
k→∞

yk = rk+na + δy∞; δy∞ = [C(I − Φ)−1B]−1︸ ︷︷ ︸
G∞

c∞ � (5.3)

Corollary 5.1 The inclusion of c∞ is equivalent to deploying an artificial target r̂ which

is deviated from the true target by δy∞. Hence, one can also find an equivalent c∞ for a

specified artificial target r̂ as follows.

c∞ = G−1
∞ (r̂k − rk+na) (5.4)

Remark 5.2 Although notionally denoted as dual-mode due to the input selection with

ck+i = c∞, i ≥ nc, one may view predictions (5.1) as having a parallel dual-mode due to the

target dynamics whereby rk+i = rk+na , i ≥ na.
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5.3 Performance indices for unreachable targets

This section introduces several performance indices which can be implemented in scenarios

related to unreachable targets as follows.

5.3.1 Performance index with slack variables

It was shown in the previous chapter that the cost function with future target information

can be described as:

arg min
c→k

J ≡ arg min
c→k

{ c→
T

k
Sc c→k

+ 2 c→
T

k
Scr r→k+1

} (5.5)

It was also shown that the minimisation of performance index (5.5) gives the same optimum

c→k
as the following optimisation:

c̃→ = arg min
c̃→

J̃ = c̃→k
Sc c̃→k

; c→k
= c̃→k

+ Pr r→k+1
(5.6)

It is convenient to choose an arbitrary cost function, such as including a slack variable c∞,

which can be derived as follows.

Lemma 5.2 Minimising the performance index (5.5) with input parametrisation (5.1) and

na = 1 gives the same optimising values for ck as minimising the following cost:

Jc = c→
T

k
Sc c→k

+

∞∑
i=1

cT∞Sc∞ (5.7)

Proof: Minimising the true performance index J was shown earlier (Remark 4.2) to be

equivalent to minimising:

Jc =

∞∑
i=0

cTk+iScck+i (5.8)

Then, noting that in effect the parametrisation (5.1) implies ck+nc+i = c∞, i > 0 the result

drops out. The r→k+1
has been excluded from Jc because here na = 1. �
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Corollary 5.2 By combining the input parametrisation of (5.1) with the observation of

equation (5.6) and Lemma 5.2 one can form an equivalent cost function for na > 1 of the

form:

J̃c ≡ c̃→
T

k
Sc c̃→k

+
∞∑
i=1

cT∞Sc∞ (5.9)

Equivalent means that the optimum control law obtained from minimising J̃c is the same as

the optimal control law obtained from minimising Jc.

5.3.2 Performance index with steady-state offset

It is well recognised [143, 126] that the performance index of (5.9) is not useful in itself

because whenever c∞ 6= 0 this Jc is unbounded and hence minimising Jc is equivalent to

minimising the offset component of cT∞Sc∞. Indeed, one could choose simply to do this,

but such an objective would effectively ignore the impact of transient behaviour on overall

performance and thus may lead to relatively poor decisions. Consequently, a performance

index is necessary, which captures the following requirements:

1. Has an objective measure of transient performance.

2. Is always feasible and thus includes the d.o.f. c∞ to allow deviation from unreachable

asymptotic targets.

3. Includes advance information about target changes.

The key proposal here is to build on the performance index of (5.9) which already includes

transient performance and implicitly includes information about advance knowledge through

the deployment of c̃k. However, we desire a reduced emphasis on the asymptotic predicted

error so that this does not swamp the transient terms.
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5.3.3 The proposed performance index

Building on the discussion outlined in the previous section, it is convenient to propose a

performance index Jp which provides a balance between transient behaviour and expected

asymptotic offset. This can be defined as:

Jp = W1(cT∞Sc∞) + c̃→
T

k
Sc c̃→k

(5.10)

where W1 is a scalar weighting between the transient and asymptotic to be selected. Here,

the term cT∞Sc∞ penalises asymptotic offset and the term c̃→
T

k
S c̃→k

penalises transient per-

formance, including information on r→k+1
. The scalar weighting W1 allows the user to

determine the emphasis they wish to place on each term.

Summary: In summary, a key aim of this section was to show how an additional d.o.f. can

be added which allows the MPC algorithm to cater for unreachable points. Moreover, this

d.o.f. was added in such a way that gives clarity to the impact of constraints.

Nevertheless, a more significant contribution is to show how optimal trajectories which in-

clude advance knowledge of the targets can also be embedded effectively. The c̃ terms indicate

the deviation from the unconstrained optimal, with advance knowledge, during transients

and the c∞ term gives the steady-state deviation from the unreachable target.

5.4 Autonomous model for predictions with unreachable targets

Similarly, as presented in the previous chapters, one can define the predictions such that

the augmented state includes an additional term as compared to (4.8); that is the term

ck+nc+i = c∞, i ≥ 0. Hence, the autonomous model can be derived as follows.

Consider a closed-loop prediction model:

xk+1 = Φxk + [I − Φ]Kxr(rk+1) +Bck

uk = −Kxk + [KKxr +Kur](rk+1) + ck
(5.11)

A transition matrix can be used to capture the d.o.f. c→k
for each sample within the predic-
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tion and hence: 

ck+1

...

...

ck+nc

ck+nc+1


︸ ︷︷ ︸

c→k+1

=



0 I 0 · · · 0

0 0 I · · · :

: : : : :

0 0 0 · · · I

0 0 0 · · · 0


︸ ︷︷ ︸

DC



ck

ck+1

...

...

ck+nc


︸ ︷︷ ︸

c→k

+



0

0

0
...

I


︸︷︷︸
EC

c∞ (5.12)

For convenience, we can define an additional perturbation in a compact form as:

c−→k+1
= DC c−→k

+ ECc∞ (5.13)

Substituting equation (5.13) into equation (5.11), one can rewrite the closed-loop dynamics

in the autonomous model form as:

Zk+1 = ΨZk (5.14)

where

Ψ =


Φ [B, 0, · · · , 0] 0 [(I − Φ)Kxr, 0, · · · , 0]

0 Dc Ec 0

0 0 I 0

0 0 0 DR

 ; Zk = [xTk , c
T
k , c∞, r−→

T

k+1
]T

where Dc, EC and DR are suitable shift matrices.

The input can also be described in terms of the autonomous model as:

uk =
[
−K [I, 0, ..., 0] 0 [KKxr +Kur, 0, · · · , 0]

]
︸ ︷︷ ︸

KZ

Zk (5.15)

or in a compact form as:

uk = KZZk (5.16)

5.5 Constraint handling for unreachable targets

It is worth introducing an MCAS for the unreachable target such that the dynamics of

(5.15) satisfy the constraints. This can be defined as follows.
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It is convenient to express both the input and the state constraints in an inequality form

as:

u ≤ uk ≤ ū; Kxmaxxk ≤ x̄ (5.17)

The constraints on the steady-state values of the control inputs and the states can be

described as:

u ≤ Kur(rk+na + c∞) ≤ ū; Kxr(rk+na + c∞) ≤ x̄ (5.18)

The constraints of (5.17) and (5.18) can be described in terms of the autonomous model as:

−K [I, 0, ..., 0] 0 [KKxr +Kur, 0, .., 0]

K [I, 0, ..., 0] 0 −[KKxr +Kur, 0, .., 0]

Kxmax 0 0 0

0 0 Kur [0, ..0,Kur]

0 0 −Kur [0, .., 0,−Kur]

0 0 Kxr [0, .., 0,Kxr]


Zk ≤



ū

u

x̄

ū

u

x̄


(5.19)

The asymptotic target limits can be given as:0 0 0 I

0 0 0 −I

Zk ≤
r̄
r

 (5.20)

Combining (5.19) and (5.20) together, provides

−K [I, 0, 0, ...] 0 [KKxr +Kur, 0, · · · , 0]

K −[I, 0, 0, ...] 0 −[KKxr +Kur, 0, · · · , 0]

0 0 Kur [0, · · · , 0,Kur]

0 0 −Kur [0, · · · , , 0,−Kur]

Kxmax 0 0 0

0 0 Kxr [0, · · · , 0,Kxr]

0 0 0 I

0 0 0 −I


︸ ︷︷ ︸

G


xk

c−→k

c∞

r→k+1


︸ ︷︷ ︸

Zk

≤



ū

u

ū

u

x̄

x̄

r̄

r


︸︷︷︸
f

(5.21)
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It is straightforward to apply the admissible set algorithm discussed in Section 4.5.2 to find

an invariant/admissible set of the following format:

FZk ≤ t (5.22)

where F and t are defined in equation (2.52).

The inequality of (5.22) can be expanded to:

[
M N T V

]
︸ ︷︷ ︸

F


xk

c−→k

c∞

r→k+1


︸ ︷︷ ︸

Zk

≤ t (5.23)

Now, the MCAS set can be described in an expanded form as:

SMCASU = {x : ∃(ck, c∞) s.t Mxk +N c→k
+ Tc∞ + V r→k+1

≤ t} (5.24)

where M,N, T and V are suitable matrices and t is a vector of limits.

Corollary 5.3 An equivalent MCAS for control perturbations (5.6) with future target values

is straightforward to construct. This follows directly from the substitution of (5.6) into (5.24)

for suitable constants:

Mxk +N c→k
+Tc∞+V r→k+1

≤ t ⇒ Mxk +N c̃→k
+Tc∞+ [NPr + V ]︸ ︷︷ ︸

Q

r→k+1
≤ t (5.25)

or

Mxk +N c→k
+ Tc∞ + V r→k+1

≤ t ⇒ Mxk +N c̃→k
+ Tc∞ +Qr→k+1

≤ t (5.26)

At this point, the MCAS set can be described in a standard form as:

SMCASU = {x : ∃(c̃k, c∞) s.t Mxk +N c̃→k
+ Tc∞ +Qr→k+1

≤ t} (5.27)

where M, N, T and Q are suitable matrices and t is a vector of the limits. However, it

should be noted that a standard admissible set algorithm may not terminate within a finite

or reasonable time due to the implied steady-state being on a constraint boundary by virtue

of c∞ 6= 0 and thus some termination condition needs to be added.
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Now, we can define the proposed algorithm which handles both constraints and advance

information of the targets as follows.

Algorithm 5.1 An OMPC algorithm with both advance knowledge handling and the po-

tential to manage unreachable targets is summarised in the following optimisation:

min
c̃→, c∞

W1(cT∞Sc∞) + c̃→
T

k
S c̃→k

s.t. Mxk +Nc̃k + Tc∞ +Qrk+1 ≤ t (5.28)

Use the optimised c̃→, c∞ in conjunction with (4.24) to determine ck and implement the first

move uk of the control law as defined in (5.1).

5.6 Guarantees of feasibility and performance

This section establishes that Algorithm 5.1 has guarantees of recursive feasibility and asymp-

totic convergence to a point which minimises the weighted offset.

Lemma 5.3 The proposed OMPC algorithm 5.1 with advance knowledge handling main-

tains feasibility irrespective of changes in the target.

Proof: The proof follows in a straightforward fashion from the assumption of feasibility at

start up and the inclusion of c∞. If there were no change in the target, that is rk+na+1 =

rk+na , then one can use standard MPC arguments to show that the optimum (assumed

feasible) solution from sample k can be carried forward to sample k+ 1 and thus feasibility

is retained. In the case where rk+na+1 6= rk+na , one can always introduce a non-zero value of

c∞ such that the implied artificial target r̂k+na+1 = rk+na , thus again retaining feasibility.

�

Remark 5.3 It is not the purpose of this section to consider guarantees in the presence of

disturbances as that case is far more demanding. The focus here is on a simple approach

to dealing with the basic requirements. However, it is worth noting that the flexibility af-

forded in c∞ is often sufficient to deal with any transient infeasibility caused by changes in

disturbances.
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Theorem 5.1 The proposed algorithm is convergent to the point, which minimises the

weighted offset.

Proof: At steady-state, the optimised values for ck are all identical and therefore the

optimisation is capped by:

min
ck,c∞

Jp ≤ cT∞[(W1 + nI)S]c∞ (5.29)

Any optimised value of ck such that cTk Sck < cT∞Sc∞ would be a contradiction of the

system being in steady-state and thus, noting the relationship of (5.4), the optimisation has

minimised a weighted norm of the offset. �

5.7 Key observation

Now, it can be observed that Algorithm 5.1 can be applied for different scenarios as follows.

1. Unconstrained systems with no advance knowledge (fixed target). In this case, the

degrees of freedom (d.o.f) are c−→k
equal to zero, so the optimal control law is: (uk =

−Kxk). In this case, Pr r−→k+1
and c̃−→k

and c∞ must be equal to zero.

2. Unconstrained systems with advance knowledge (future target information). In this

case, c−→k
is active and the optimal control law becomes (uk = −Kxk + ck). It shown

in (4.17) that c−→k
= Pr r−→k+1

). In this case, c̃−→k
and c∞ must be equal to zero.

3. Constrained systems with advance knowledge (future target information). In this case

c̃−→k
is active due to constraints and the optimal control law is (uk = −Kxk+Pr r−→k+1

+

c̃k). In this case c∞ must be equal to zero.

4. Constrained systems with advance knowledge (future target information) but with an

unreachable target at steady-state. In this case the degrees of freedom c̃−→k
c∞ are

active due to the constraints and the unreachable target, while the optimal control

law is (uk = −Kxk + Pr r−→k+1
+ ĉk) where, ĉ−→k

includes both c̃−→k
and c∞.
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5.8 Numerical examples for reachable/unreachable targets

This section gives examples, which demonstrate the efficacy of the proposed algorithm for

handling both advance knowledge and unreachable targets for different systems such as

stable, unstable, non-minimum phase, and MIMO systems, in a single simple optimisation.

A common scenario is the infeasibility of the terminal constraints due to a change in the

asymptotic target being too fast or too great. These examples demonstrate how the pro-

posed algorithm smoothly introduces an artificial target during transients but moves to the

correct steady-state asymptotically. The section also gives examples that show how easily

the proposed algorithm can handle the permanent targets infeasibility (unreachable tar-

gets). Moreover, it is clear that the algorithm continues to embed information about how

the target moves in a systematic fashion, thus improving performance compared to a more

conventional approach with na = 1.

5.8.1 Target unreachable in transients but asymptotically reachable at steady-state

In this subsection, we will consider two examples of a target being unreachable in transients

but being asymptotically reachable at steady-state, with advance knowledge. One is a SISO

system and the other is a MIMO system. The advance knowledge na values are appropriately

selected to be as close as possible to nc to ease constraint handling, as discussed in the

previous chapter.

Example 1: Two state dimensional SISO system

In this example, we consider a non-minimum phase, open-loop unstable model of the plant

with dead time which has been adopted from [174]. The model matrices which describe the

plant are given by:

A =

1.1053 0

−0.01 0.8186

 , B =

 1

0.0858

 ; C =
[
0 1

]
D = 0 (5.30)
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A closed-loop simulation for the system (5.30) is performed, with nc = 2, R = 0.1I, Q =

CTC, subject to constraints on the input and the output as follows.

−5 ≤ u ≤ 1.8; − 1 ≤ y ≤ 2 (5.31)

The advance knowledge is selected as na = 4 and the desired target is set to rk = 1. This

target is reachable in the steady-state, but not during transients.

Figure 5.1 shows the responses of the system (5.30) when the target is reachable in the

steady-state, but not during transients, with the use of na = 4.
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Figure 5.1: Closed-loop step responses for SISO system (5.30) for unreachable target during
transients with na = 4.

It is clear from Figure 5.1 (upper left plot), that Algorithm 5.1 provides effective control

for a constrained system with advance knowledge. Readers will note that the term c∞

(lower plot) is non-zero during the transients and zero for a longer time, as expected, since

the target is infeasible during transients. It is also noted that the term c̃k (lower plot) is

non-zero during the transients and zero for a longer time, as expected, but this is because

of the input saturation (upper right plot) in the transients. This indicates that the target

asymptotically becomes feasible (reachable) at steady-state. It will be also noted that the

input perturbation ck is non-zero for longer, as expected from equation (5.6).
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Example 2 : Four state dimensional MIMO system

In this example, we will consider the following four dimensional MIMO system which was

introduced in [165].

A =


0.9146 0.0 0.0405 0.1

0.1665 0.1353 0.0058 −0.2

0.0 0.0 0.1353 0.5

−0.2 0 0 0.8

 , B =


0.0544 −0.0757

0.0053 0.1477

0.8647 0.0

0.5 0.2

 , (5.32)

C =

1.7993 13.216 0.0 0.0

0.8233 0.0 0.0 −0.3

 , D =

0 0

0 0



.

We perform a closed-loop simulation for the system (5.32), with nc = 2, R = diag(0.01, 0.01)

and Q=C
TC, subject to constraints on the inputs and outputs as follows.

−1

−2

 ≤
u1

u2

 ≤
1

2

 ;


1.7993 13.2160 0 0

0.8233 0 0 −0.3

−1.7993 −13.2160 0 0

−0.8233 0 0 0.3

xk ≤


7

1

3

1

 (5.33)

The advance knowledge is selected to be na = 3. The desired target is set to r1 = 1 and

r2 = 0.3. These targets are reachable in the steady-state, but not during transients.

Figure 5.2 shows the closed-loop step responses for the MIMO system (5.32) when the

targets are reachable in the steady-state, but not during transients with the use of na = 3.
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Figure 5.2: Closed-loop step responses for MIMO system (5.32) for unreachable target
targets during transients with na = 3.

Again, it is clear from Figure 5.2 that Algorithm 5.1 provides effective control for con-

strained MIMO systems with advance knowledge. Both output1 and output2 (upper left

plot) asymptotically follow the associated targets, r1 = 0.3 and r2 = 1. It will be noted

that the term c̃k (lower plot) is non-zero during the transients and zero for a longer time,

as expected. This is because the first control input (upper right plot) is active during the

transients only. It will be also noted that the term c∞ (lower plot) is non-zero during the

transients, as expected, but tends to be zero for a longer time since the target is reachable at

steady-state. The input perturbation, ck is non-zero for longer, as expected from equation

(5.6) and discussed in the previous example.

5.8.2 Target unreachable during both transient and steady-state

In this subsection, we will consider two example scenarios where the target unreachable in

both the transient and steady-state, with advance knowledge. One example is for a SISO

system and the other for a MIMO system. The advance knowledge na values are appropri-

ately selected to be as close as possible to nc to ease constraint handling, as discussed in

the previous chapter.
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Example 3: Two state dimensional SISO system

In this example, we will consider the following non-minimum phase model, introduced in

[84] whose system matrices are given by:

A =

0.22 0.44

0.0 0.88

 , B =

1.0

1.0

 ; C =
[
1.0 0.0

]
, D =

[
0
]

(5.34)

We perform closed-loop simulation for the system (5.34), with nc = 3, R = I, Q = CTC

and advance knowledge is selected as na = 5. The desired target is set to r = 4, which is un-

reachable during both the transients and steady-state. The system is subject to constraints

on the input and output as follows.[
−1
]
≤
[
u
]
≤
[
0.65

]
;

[
−6
]
≤
[
y
]
≤
[
6
]

(5.35)

Figure 5.3 shows the responses of the system (5.34) when the target is unreachable (r = 4)

in the steady-state with the use of na = 5.
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Figure 5.3: Closed-loop step responses for system (5.34) for unreachable target with na = 5.

For the system of (5.34), the asymptotic targets are unreachable (upper left plot) as this

would require a violation of the input constraint. Nevertheless, the proposed algorithm



5.8 Numerical examples for reachable/unreachable targets 125

has handled the unreachable target in a sensible fashion and gives good performance which

takes the output as close as possible to the desired target while maintaining good behaviour,

and effective anticipation, during transients. It will be noted that the term c∞ (lower plot)

is non-zero during both the transients and steady-state, as expected since the target is

infeasible during both transients and steady-states. It is also noted that the term c̃ (lower

plot) is non-zero for the long term since the input constraints (upper right) are active for

that time.

Example 4: Four state dimensional MIMO system

In this example, we consider the model of the longitudinal motion of aircraft, studied in

[19]. The matrices which describes the model are given by:

A =


0.9996 0.0383 0.0131 −0.0322

−0.0056 0.9647 0.7446 0.0001

0.0020 −0.0097 0.9543 0

0.0001 −0.0005 0.0978 1

 , B =


0.0001 0.1002

−0.0615 0.0183

−0.1133 0.0586

−0.0057 0.0029

 , (5.36)

C =

1 0 0 0

0 −1 0 7.74

 , D =

0 0

0 0


We perform closed-loop simulation for the system (5.36) with advance knowledge na = 5.

The tuning parameters can be set as follows. The control horizon, nc = 2, the weighting

matrix, Q = CTC and the weight in the input command, R = diag(0.01, 0.01) subject to

constraints on the inputs and outputs, as follows.−2

−2

 ≤
u1

u2

 ≤
5

5

 ;

−0.5

−0.5

 ≤
y1

y2

 ≤
1.5

0.5

 (5.37)

The desired target is set to r1 = 0.5 and r2 = 1.6. These targets are unreachable during

both the transients and steady-state since the desired target r1 = 0.5 is outside the output

limits as shown in (5.37).

Figure 5.4 shows the closed-loop step responses for the MIMO system (5.36) when the

targets are unreachable (r1 = 0.5 and r2 = 1.6) in steady-state with the use of na = 5.
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Figure 5.4: Closed-loop step responses for the system of (5.36) for unreachable targets with
na = 5.

For the system of (5.36), the asymptotic targets are unreachable, as this will require a

violation of the input constraint. Nevertheless, the proposed algorithm has handled the

unreachable target in a sensible fashion and gives good performance which takes the output

as close as possible to the desired target (upper left plot) while maintaining good behaviour,

and effective anticipation, during transients. It will be noted that the terms c∞1 and c∞2

(lower plot) remain non-zero during both the transients and steady-state, as expected. The

term c̃k is also non-zero during the transients since the input for the second output (upper

right plot) is saturated (with active constraints) at the times of the set point changes; hence,

the term ck is non-zero for longer, as expected from (5.6).

In order to demonstrate the benefits of using advance knowledge, we will perform a com-

parison between the performance indices of the corresponding systems with and without

advance knowledge for both reachable and unreachable targets, in tabular form as shown

in Table 5.1.

It is clear from Table 5.1 that the performance indices of the corresponding systems with

advance knowledge are lower than those without advance knowledge. This indicates the

advantage of including advance knowledge in the corresponding feed-forward design.
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Examples/cost functions J with na = 1 J with na = 5

Examples for system (5.30) 42.15 32.08

Examples for system (5.32) 2.5 0.80

Examples for system (5.34) 35.91 25.79

Examples for system (5.36) 188.18 168.57

Table 5.1: Performance indices for step changes in the target for systems (5.30, 5.32, 5.34,
and 5.36)

5.9 Conclusion

At times, the desired target will be unreachable and, in such scenarios, a default MPC al-

gorithm becomes ill-defined This chapter has made a contribution by showing how a simple

framework can be implemented to incorporate unreachable targets thus, giving a transpar-

ent view of how the control choices deviate from the ideal, due to both advance knowledge

and infeasible targets. The proposed framework is simple and caters for both transient and

permanent infeasibility in the target without the need to change the algorithm on-line. The

algorithm has also shown how the systematic embedding of advance information is straight-

forward and beneficial. Moreover, the proposed framework provides insights for designers

and also offers simple handling for trading off transient performance against convergence to

the asymptotic steady-state. Further illustration is presented in Chapter 8.



Chapter 6

EFFICIENT ROBUST MPC TRACKING FOR

UNCERTAIN SYSTEMS

6.1 Introduction

Much of the existing literature on robust MPC uses LMIs and/or tube based techniques.

Both of these have weaknesses due to either the high computational complexity, meaning

that extension to the higher dimensions is challenging, or simply because the set definitions

are conservative. Moreover, of specific importance here is that the extension to full tracking

scenarios utilising significant advance knowledge is not obvious [8].

One technique that seems to have greater potential for extension is based on the maximal

admissible sets (MAS) [52, 114]. It was already shown in [113] that this provides a simple

robust MPC approach for the regulation case and thus the expectation is that extension to

the tracking case with significant advance knowledge should be relatively straightforward

and critically, produce a computationally efficient algorithm. Therefore, this chapter aims

to design a simple and efficient robust tracking MPC algorithm for linear parameter varying

(LPV) system subject to state and input constraints and with significant advance knowl-

edge included systematically. The approach is an extension of [113] to tracking scenarios,

thus incorporating the parametric uncertainty in the optimisation problem and also using

some incorporating concepts from [158, 86] to deal with unreachable targets. The main

contributions are:

1. Systematic incorporation of future target information into a robust tracking MPC

128
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optimisation problem.

2. Definition and construction of an appropriate robust invariant set which includes

significant advance information on the target.

3. Incorporating flexibility to deal with unreachable targets.

The chapter is organised as follows. Section 6.2 presents a discussion on how the MCAS can

be defined for uncertain systems. Section 6.3 shows how to derive an MCAS for the regulator

problem for uncertain systems. Section 6.4 discusses robust tracking MPC where the target

is reachable, while Section 6.5 discusses it for scenarios where the target is unreachable.

Section 6.6 summarises the robustness to uncertainty while Section 6.7 presents numerical

examples. The chapter finishes by offering some conclusions in Section 6.8.

6.2 Generic MCAS for uncertain systems

In this section, we will explore the background to MCAS construction for uncertain systems

in order to study the design of a robust MPC tracking algorithm using the concept of MCAS.

6.2.1 LPV system model

In this chapter, we consider the discrete time LPV in full system

xk+1 = A(k)xk +B(k)uk. (6.1)

A(k), B(k) are the matrices defining the model.

Parameter uncertainty is quantified by [A(k)B(k)] ∈ Ω = Co {[A1 B1], ...., [Am Bm]} , where

Co refers to the convex hull of the extreme models, in which [A B] ∈ Ω; hence: 0 ≤ λi ≤

1,
∑
λi = 1 and [AB] =

∑L
i=1 λi[Ai Bi].

Let us assume that the system with input and state constraints can be expressed in inequal-

ities as:

u ≤ uk ≤ ū, Kxmaxxk ≤ x̄, k = 1, · · · ,∞ (6.2)
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6.2.2 The state feedback controller K

It is common in robust MPC control approaches [105, 6], for the state feedback controller

K to be determined on-line so that K varies for every sample. However, the aim here is

to build on the approach of [113] which utilises a fixed K and combines this with the ideas

summarised in the previous section. This has the advantage of keeping the overall algorithm

complexity similar to the nominal case and indeed the on-line computational load differs

only because the implied number of linear inequalities increases.

Nevertheless, a key point mentioned in [114] is that there must exist an invariant set for the

uncertain unconstrained closed-loop dynamics, xk+1 = Φ(k)xk with fixed K. Consequently,

it is important to check the quadratic stability of the underlying closed-loop system. This

can be achieved by satisfying the stability condition using a linear matrix inequality (LMI)

technique.

∃P = P T > 0 s.t. ΦT
i PΦi ≤ P, i = 1, ....,m. (6.3)

where Φi = Ai −BiK is a transition matrix for the LPV model.

Remark 6.1 Algorithms for identifying a K to satisfy (6.3) and simultaneously optimise

a nominal cost function are readily available in the literature on LMI techniques, e.g. [71].

However, one could argue that the corresponding K for the nominal case may also be pre-

ferred where it satisfies (6.3).

6.2.3 Derivation of robust MCAS

The MCAS for time-varying targets was introduced in Section 4.5.2. It was shown that this

MCAS can be deployed for systems in which the model predictions are well-defined if they

satisfy the constraints for all future samples. This prediction model is given by:

Zk+1 = ΨZk (6.4)

where Ψ is a transition matrix and Zk is an augmented state of the autonomous model.
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It is also shown in Section 4.5.2 that the input and state constraints can be expressed as

one inequality of sample constraints as follows.

GZk ≤ f, ∀k (6.5)

This sample constraints inequality is split into two parts. One part (say G1Zk ≤ f1) is

time-varying and is checked for each sample k while the other part (say G2Zk ≤ f2) is fixed

and so checked only for k = 0.

Thus, it is convenient to describe sample constraint (6.5) as:
G1

−−−

G2

Zk ≤


f1

−−−

f2

 , ∀k (6.6)

Because G2 is fixed, their rows will not be carried forward in any admissible iteration.

Next, we wish to modify MCAS equation (2.96), which was described in Section 4.5.2, in

order to utilise the structure in equation (6.6). Specifically, the iteration only needs to take

place on the rows in G1 and thus excludes G2.

Hence, the structure of the admissible set can be given for a specific horizon ’n’ as:

G2

−−−

G1

G1Ψ1

G1Ψ2

...

...


︸ ︷︷ ︸

F

Zk ≤



f2

−−−

f1

f1

f1

...
...


︸ ︷︷ ︸

t

(6.7)

Thus, the MCAS can be defined in a standard form as:

FZk ≤ t (6.8)

However, the MCAS discussed above is useful only for nominal cases. In this section, we
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will demonstrate how this MCAS can be extended to be implemented on uncertain (LPV)

systems.

The key point is that the closed-loop uncertain system matrices A and B are no longer fixed

(unknown). This implies that the transition matrix is not fixed and is denoted as Ψ(k).

Thus, the prediction model can be defined in terms of an autonomous model as:

Zk+1 = Ψ(k)Zk (6.9)

where Ψ(k) ∈ Co{Ψ1, ...Ψm}.

Building on the prediction model of (6.9) and the sample constraints of (6.6), one can

describe the structure of the admissible set in a standard form as:

G2

−−−

G1

−−

G1Ψ1

...

G1Ψm

−−

G1Ψ1Ψ1

...

G1Ψ1Ψm

−−−
...


︸ ︷︷ ︸

Gr

Zk ≤



f2

−−−

f1

f1

f1

...

f1,m


︸ ︷︷ ︸

fr

(6.10)

As shown, structure (6.10) is intractable in general. Therefore, we need an alternative

approach to define a simple structure in order to determine the MCAS.

An appropriate approach may be to add one inequality at a time and check the redundant

constraints. We will use this approach, but not in detail, since they are already published

in [114]. In fact, this is illustrated in Algorithm 2.1.
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Algorithm 6.1 We assume that the transition matrix Ψ(k) has stable properties. This

implies that limk→∞Ψk = 0.

Building on the structure of (6.10), the robust MCAS can be determined as follows:

1. For i=1,...,m, compute the transition matrices Ψi.

2. Generate G1, G2 and f1, f2.

3. Implement Algorithm 2.1 in Chapter 2 to determine the matrix Fr and limits vector

dr

Summary: If the input and state constraints are described as G1Zk ≤ f1 and G2Zk ≤ f2

and the dynamics of the uncertain system are described as Zk+1 = ΨiZk, (i = 0, . . . ,m),

then we can easily obtain the MCAS.

6.3 Robust MCAS for the regulation case

In the previous section we showed how to construct a generic MCAS for uncertain systems.

Now, we will show how these results can be used to construct an MCAS for the regulation

case. In this case, the model predictions (6.9) can be described as:

Zk+1 =

Φi [Bi, 0..., 0]

0 DC

 xk
c−→k

 (6.11)

where

Dc =


0 1 0 · · · 0

· · · · · · · · · · · · · · ·

0 0 0 · · · 1

0 0 0 · · · 0

 (6.12)

Now, it is convenient to describe the input and state constraints (6.2) in terms of the state

Zk as follows. −K [I, 0, 0, ...]

K −[I, 0, 0, ...]

Zk ≤
ū
u

 ;

 Kxmax 0

−Kxmax 0

Zk ≤
x̄
x

 (6.13)
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Equation(6.13) can be defined as:

G1Zk ≤ f1 (6.14)

where G1 describes the sample constraints and f1 describes the state and input limits.

Remark 6.2 For the regulation case, G2 is not needed as the origin is assumed to be

feasible.

It is noted that the components G1 and f1 are fixed, as expected. This is obvious because

the feedback controller K is fixed. The only difference between the nominal and uncertain

cases is the transition matrix Ψ, as shown in the summary of the previous section.

Building on the transition matrix in (6.11) and inequality (6.14), and using the admissible

set of Algorithm 2.1, we determine the MCAS for the regulation case with an uncertain

system.

Thus, the robust MCAS for the regulation case is defined in compact form as:

FrZk ≤ dr (6.15)

or in expanded form as:

SRMCAS =
{
x : ∃ c→k s.t Mrxk +Nr c→k

≤ dr
}

(6.16)

where Mr, Nr are suitable matrices and dr is a vector of the limits.

6.4 Robust tracking MPC for reachable targets

Tracking MPC scenarios were discussed earlier, in Chapter 4, where they account for the

changing targets and incorporation of advance knowledge, but with nominal dynamics only.

In this section, we extend this approach to be applicable to systems with a poly-topic

uncertainty model while retaining guarantees of recursive feasibility and convergence. This

section will discuss robust MPC tracking for reachable targets.
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Subsection 6.4.1 re-parameterises the input predictions and defines a robust cost function,

while Subsection 6.4.2 presents a definition of the uncertain model in a simple form. Subsec-

tion 6.4.3 defines the MCAS for uncertain systems, assuming a reachable target. Subsection

6.4.4, the final subsection, introduces a proposed algorithm for robust OMPC tracking.

6.4.1 Input parametrisation and cost function for reachable targets

As discussed in Section 4.1, equation (4.4), the state and input predictions, which are

suitable for time-varying targets with the nominal case, are given by:xk+1 − xss|k = A(xk − xss|k) +B(uk − uss|k); uk − uss|k = −K(xk − xss|k) + ck, k < nc

xk+1 − xss|k = A(xk − xss|k) +B(uk − uss|k); uk − uss|k = −K(xk − xss|k), k ≥ nc
(6.17)

Similarly, the predictions for the uncertain systems can be described simply by replacing A

and B in equation (6.17) by A(k) and B(k), respectively since they are no longer fixed in

this case. At this point, one can rewrite the state predictions as:

xk+1 − xss|k = A(k)(xk − xss|k) +B(k)(uk − uss|k) . (6.18)

and the input predictions as:uk − uss|k = −K(xk − xss|k) + ck, k < nc

uk − uss|k = −K(xk − xss|k), k ≥ nc
(6.19)

The nominal cost function which includes future target information is well defined in Chap-

ter 4, equation (4.16), as:

arg min
c→k

J ≡ arg min
c→k

{ c→
T

k
Sc c→k

+ 2 c→
T

k
Scr r→k+1

} (6.20)

It has been shown that using this nominal function will focus on the perturbation ck rather

than the ’worst case’ J . However, the worst case requires a min-max approach so that it is

non-trivial.

In order to avoid complexity for the robust case, we will use a performance index, which

is based on a control perturbation to the loop. It might not lead to the optimum robust

performance for uncertain systems, but it is at least a pragmatic and simple in nature.
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The following section shows the derivation of the cost function which can be used for un-

certain cases.

As discussed in Theorem 4.1 in Chapter 4, the minimisation of performance index (6.20)

gives the same optimum c→k
as the following optimisation.

c̃→ = arg min
c̃→

J = c̃→
T

k
Sc c̃→k

(6.21)

Remark 6.3 The reader may wonder whether optimising the performance index (6.21)

leads to closed-loop stability. However, it is easy to demonstrate that this is the case, as-

suming that we can guarantee recursive feasibility. The use of the MCAS (6.16) implies the

feasibility of the tail which in turn implies the monotonicity of J . If a feedback control loop

in Figure 6.1, is robust stable and c̃ is convergent, hence the feedback control loop must be

stable.

Figure 6.1: Closed-loop control for uncertain systems with advance knowledge

.

According to the above discussion, the cost function J (6.21) remains valid for the ro-

bust case, so we can use the robust MCAS as part of optimising J such that the control

perturbation c̃ converges.
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6.4.2 The autonomous model for uncertain system predictions

It is important to capture the variability in the closed-loop trajectories due to the uncer-

tainty within the model parameters. One can capture this uncertainty efficiently using a

set of linear inequalities [114], provided that the dynamics and constraints can be captured

in appropriate form, as shown in equations (6.4, 6.5).

The basic algorithm requires a one-step ahead state evolution equation (analogous to (5.11))

and a statement of constraint dependence on the state at each sampling instant.

Thus, the dual-mode predictions for system (6.1) with control law (6.18) can be described

as:

xk+1+i = Φ(k)xk+i + (I − Φ(k))Kxr(rk+1+i) +B(k)ck

uk+i = −Kxk+i + [KKxr +Kur](rk+1+i) + ck
(6.22)

where Φ(k) = A(k)−B(k)K. It is noted that

[A(k)B(k)] ∈ Ω ⇒ Φ(k) ∈ Co {Φ1, ....,Φm} .

Remark 6.4 The parameters Kur and Kxr are fixed since they and control law (6.19) are

defined in terms of the nominal system matrices A and B.

Now, it is convenient to substitute the perturbation of equation (4.24) into equation (6.22);

thus, one can rewrite the closed-loop dynamics in terms of c̃→k
as:

xk+1+i = Φ(k)xk+i+[Bi, · · · , 0] c̃−→k
+[[Bi, · · · , 0]Pr+[(I−Φ(k))Kxr, · · · , 0]] r−→k+1+i

(6.23)

The control input is given by:

uk+i = −Kxk+i + [I, · · · , 0] c̃−→k
+ [[I, · · · , 0]Pr + [KKxr +Kur, · · · , 0]] r−→k+1+i

(6.24)

Lemma 6.1 The uncertain dual-mode system predictions of (6.23) can be captured in a

single mode autonomous model of the following form:

Zk+1 = Ψ(k)Zk; Zk = [xTk , c̃−→
T

k
, r−→

T

k+1
]T (6.25)
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Ψ(k) =


Φ(k) [B(k), 0..., 0] [B(k), 0, ..., 0]Pr + [(I − Φ(k))Kxr, 0, .., 0]

0 Dc 0

0 0 DR

 (6.26)

where Ψ(k) ∈ Co{Ψ1, ...,Ψm} and DC , DR are shift matrices, as defined in (4.5) and (4.6).

Lemma 6.2 The quadratic invariance of the closed-loop dynamic Φ(k) is sufficient to en-

sure the quadratic invariance of the augmented dynamic Ψ(k).

Proof: The additional dynamics in Ψ(k), as compared to Φ(k), relate to the variables

c̃k, r−→k+1
. These dynamics are governed solely by shift matrices and thus must converge to

fixed, possibly non-zero, values. �

Summary: Given the model predictions of uncertain system (6.22) and adding a pertur-

bation about the nominal, then one can define the uncertain model in a simple form as:

Zk+1 = Ψ(k)Zk, (k = 0, . . . ,m) and Zk = [xTk , c̃−→
T

k
, r−→

T
k+1

]T .

6.4.3 Derivation of robust MCAS for a reachable target

In the previous section, we have discussed how to define the MCAS for uncertain systems for

the regulation case. In this section, we will demonstrate how this MCAS can be extended

to deal with tracking scenarios. We consider the transition matrix (6.26). As discussed in

the previous section, to ensure convergence, input and state constraints can be combined

and described as an inequality in terms of the augmented state variable in (6.25), as:
G1

−−−

G2

Zk ≤


f1

−−−

f2

 , ∀k (6.27)

Following the steps outlined in the previous section, one can derive the correspondingG1, G2,

f1 and f2, for each expected model as follows.

The constraints can be classified as two categories. One category describes the transient

constraints and the other describes the steady-state constraints. At this point, we will

describe those constraints in terms of the augmented state as follows.
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Transient constraints

Again, the input and state constraints of (6.2) are classified as transient constraints, since

they are active at the transients. These constraints can be expressed in terms of the aug-

mented state Zk of (6.25) as:−K [I, 0, 0, ...] [1, 0, ..., 0]Pr + [KKxr +Kur, 0, .., 0]

K −[I, 0, 0, ...] −[1, 0, ..., 0]Pr − [KKxr +Kur, 0, .., 0]

Zk ≤
ū
u

 (6.28)

[
Kxmax 0 0

]
Zk ≤

[
x̄
]

(6.29)

The steady state and input constraints at transient, xss and uss, respectively, are also

classified as transient constraints and can be defined as:

λu ≤ Kurrk+1 ≤ λū (6.30)

KxmaxKxrrk+1 ≤ λx̄ (6.31)

Similarly, the constraints of (6.30) and (6.31) can be expressed in the form:0 0 [Kur, 0, · · · , 0]

0 0 [−Kur, 0, ..., 0]

Zk ≤
λū
λu

 (6.32)

[
0 0 [Kxr, 0, · · · , 0]

]
Zk ≤

[
λx̄
]

(6.33)

Now, it is straightforward to define the elements ofG1, by combining the sets (6.28, 6.29, 6.32, 6.33)

together, giving that:

−K [I, 0, 0, ...] [1, 0, ..., 0]Pr + [KKxr +Kur, 0, .., 0]

K −[I, 0, 0, ...] −[1, 0, ..., 0]Pr + [KKxr +Kur, 0, .., 0]

0 0 [Kur, 0, · · · , 0]

0 0 [−Kur, 0, ..., 0]

0 0 [Kxr, 0, · · · , 0]

Kxmax 0 0


︸ ︷︷ ︸

G1


xk

c−→k

r→k+1


︸ ︷︷ ︸

Zk

≤



ū

u

λū

λu

λx̄

x̄


︸ ︷︷ ︸
f1

, ∀k.

(6.34)
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These elements need to be tested for every sample. It is noted that G1 is fixed since the

associated elements are fixed.

Steady state constraints

In the previous subsection, we showed how to derive G1. Now will show how to derive G2,

which captures the steady-state constraints.

For uncertain systems, the actual steady-state constraints are uncertain, so we try to capture

all possible steady-states for the uncertain model.

First, we need to define ussi and xssi

Analogous to equation (2.9) in Chapter 2, the steady-state and input, xssi, ussi, respectively

can be computed as: C 0

Ai − I Bi

r
0

 =

xssi
ussi

 , i = 1, · · · · · · ,m (6.35)

Thus, the solution of these steady-states can be given by:xssi
ussi

 =

Kxri

Kuri

 rk+na, i = 1, · · · · · · ,m (6.36)

where Kuri and Kxri are suitable parameters.

In this case, the steady-state (ussi, xssi) is affected by model uncertainty.

Hence, as discussed in Section 5.5, the steady-state constraints can be expressed in an

inequalities form as:

λu ≤ Kurirk+na ≤ λū, i = 1, · · · · · · ,m (6.37)

λx ≤ Kxrirk+na ≤ λx̄, i = 1, · · · · · · ,m (6.38)

Since the model matrices [A(k) B(k)] ∈ Ω, one can define the constraints in terms of the

corresponding matrices for each Ai, Bi. Then we can define steady-state values in terms of

Kuri and Kxri using equation (6.36).
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Thus, we can express the steady-state and input constraints (6.37) and (6.38), respectively,

in terms of the autonomous model as:
0 0 [0, · · · , 0,Kuri]

0 0 [0, ., ., ., 0,−Kuri]

0 0 [0, · · · , 0,Kxri]

Zk ≤

λū

λu

λx̄

 , i = 1, · · · · · · ,m (6.39)

To ensure a feasible solution, it is necessary to set up a sensible target. Therefore, it is

convenient to express the allowable range of the target by its upper and lower limits as:0 0 I

0 0 −I

Zk ≤
r̄
r

 (6.40)

Now, we can define the elements of G2 by combining sets (6.39) and (6.40) together, given

that 

0 0 [0, ..0,Kur1]
...

...
...

0 0 [0, ..0,Kurm]

0 0 [0, .., 0,−Kur1]
...

...
...

0 0 [0, .., 0,−Kurm]

0 0 [0, .., 0,Kxr1]
...

...
...

0 0 [0, .., 0,Kxrm]

0 0 I

0 0 −I


︸ ︷︷ ︸

G2


xk

c−→k

r→k+1


︸ ︷︷ ︸

Zk

≤



λū
...

λū

λu
...

λu

λx̄
...

λx̄

r̄

r


︸ ︷︷ ︸
f2

. (6.41)

These elements need to be tested only at the first sample (k = 0), so all constraints at each

sample instant can be summarised using the following inequality:
G1

−−−

G2

Zk ≤


f1

−−−

f2

 , ∀k (6.42)

where G1, G2, f1 and f2 are defined in (6.34) and (6.41)
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Theorem 6.1 One can deploy the algorithm of Section 4.5.2 with sample constraints (6.42)

and autonomous model (6.25) and the algorithm will converge, provided that condition (6.3)

is satisfied.

Proof: It is known from condition (6.3), combined with the convergence to fixed values

within nc, na steps of states c̃k, r−→k+1
, that the predictions of (6.25) must converge to a fixed

steady-state. The algorithm of Section 4.5.2 shows therefore that asymptotically adding

predictions for higher horizons results in redundant constraints beyond a certain horizon

and therefore the algorithm will terminate. �

Now, it is straightforward to determine the MCAS in terms of a matrix Fr and a vector of

limits dr, defining the robust MCAS (RMCAS) in the form:

FrZk ≤ dr (6.43)

or in expanded form as:

SRMCAS =
{
x : ∃ c̃→k s.t Mrxk +Nr c̃→k

+ Vr r→k+1
≤ dr

}
(6.44)

where Mr, Nr, Vr are suitable matrices and dr is a vector of the limits.

6.4.4 Robust OMPC algorithm with tracking for reachable targets

In the previous subsection, we showed how to construct a robust MCAS of (6.44), for the

tracking scenario. Now, we will use this MCAS in this subsection to summarise the proposed

robust tracking MPC algorithm with advance knowledge for reachable targets as follows.

Algorithm 6.2 Define the performance index as in (6.21). Define the robust MCAS as in

(6.44). Perform the quadratic programming optimisation:

min
c̃→k

J s.t. Mrxk +Nr c̃→k
+ Vr r→k+1

≤ dr (6.45)

Implement the first block element of c̃→k
in (6.19) to compute the control law.
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Theorem 6.2 Algorithm 6.2 gives guaranteed convergence and recursive feasibility.

Proof: By definition, the satisfaction of the RMCAS of (6.44) ensures recursive feasibility.

Consequently, one can use conventional approaches [126] to show that c̃k converges to a

weighted minimum. The convergence of c̃k implies convergence of the state xk due to

condition (6.3) and dynamics (6.25). �

6.5 Robust tracking MPC for unreachable targets

In the previous section, we discussed the MPC tracking of uncertain systems for scenarios

where the targets are reachable in the steady-state. In this section, we will show how

this robust tracking MPC can be extended in order to be implemented in the scenarios

related to unreachable targets. The differences lie in the structures of the sample constraints

components G1, G2 and transition matrices Ψi. Therefore, it is convenient to derive the

components which are appropriate for this scenario.

6.5.1 Input parametrisation and cost function for unreachable targets

Analogous to Lemma 5.1, in order to deal with an unreachable target, we need to include the

term c∞ within the input parametrisation of (6.18). Therefore, it is convenient to represent

the input predictions of the uncertain model for unreachable targets as:uk − uss|k = −K(xk − xss|k) + ck, k < nc

uk − uss|k = −K(xk − xss|k) + c∞, k ≥ nc
(6.46)

where c∞ is assumed to be a slack variable, or an additional degree of freedom, and is well

defined in Section 5.2.

It has also been shown that a suitable cost function, which trades off errors in the asymptotic

target and the transient tracking errors can be defined as:

Jp = W1(cT∞Sc∞) + c̃→
T

k
Sc c̃→k

(6.47)
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where W1 is a scalar weighting to be selected. Here, the term (cT∞Sc∞) penalises asymptotic

offset while the term ( c̃→
T

k
S c̃→k

) penalises transient performance, including information on

r→k+1
. The scalar weighting W1 allows the users to determine how much emphasis they wish

to place on each term.

As discussed in Section 6.4.1, it is possible to use the nominal cost function (6.47) for the

uncertain case.

6.5.2 The closed-loop dynamics for unreachable targets

As discussed in Section 6.4.2, the uncertain model can be described in autonomous model

formulation that captures the control perturbation c̃, c∞ and the future target information

r−→k+1
. This can be achieved by modifying c−→k

in the dual-mode prediction of (6.22) as:

c−→k
= c̃→k

+ Pr r−→k+1
+ c∞ (6.48)

Thus, the closed-loop dynamics can be described as:

xk+1+i = Φ(k)xk + [Bi, · · · 0] c̃−→k
+ [[Bi, · · · , 0]Pr + [(Φ(k)− I)Kxr, · · · , 0]] r−→k+1+i

(6.49)

Similarly, the control input can be given by:

uk+i = −Kxk+i + [[I, · · · 0] c̃−→k
+ [I, · · · , 0]Pr + [KKxr +Kur, · · · , 0]] r−→k+1+i

(6.50)

Analogous to Lemma 6.1, the uncertain dual-mode system predictions of (6.49) can be

captured in a single mode autonomous model of the following form:

Zk+1 = Ψ(k)Zk; Zk = [xTk , c̃−→
T

k
, c∞, r−→

T

k+1
]T ; (6.51)

Ψ(k) =


Φ(k) [Bi, 0, ..., 0] 0 [B(k), 0, ..., 0]Pr + [(Φ(k)− I)Kxr, 0, .., 0]

0 DC EC 0

0 0 I 0

0 0 0 DR

 (6.52)

where DC , EC are the shift matrices, defined in (5.12); Ψ(k) ∈ Co{Ψ1, ...Ψm}.
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Analogous to Lemma 6.1, the quadratic invariance of the closed-loop dynamic Φ(k) is suf-

ficient to ensure the quadratic invariance of the augmented dynamic Ψ(k).

Similarly, the input predictions of (6.50) can be described in terms of the autonomous model

as:

uk = −KZk (6.53)

Remark 6.5 Model predictions from (6.51) must converge to the specified artificial target

of r̂k. The dynamics are known to be convergent. The asymptotic control law is defined

as uk − uss = −K(xk − xss) + c∞ and, by definition, c∞ is the value that ensures that the

associated steady-state output is r̂k (if c∞ = 0, then the system converges to rk+na).

6.5.3 Derivation robust MCAS for unreachable targets

The derivation of robust MCAS was shown in Section 6.4.3, assuming that the target is

reachable at steady-state. In this subsection, we will present a derivation of the robust

MCAS for an unreachable target.

At this point, we consider the prediction model (6.51) and the transition matrix (6.52). It

was shown in the previous section that one can define a robustly invariant set to guarantee

robust stability for tracking scenarios, assuming that the target is reachable. This section

extends this set for the case where the target is unreachable by deploying a similar concept

but with the autonomous model of (6.52), which includes as states the degrees of freedom

ck, c∞ and also the future target values r−→k+1
. A major difference is the convergence to a

non-zero steady-state.

Following the same procedures as outlined in Section 6.4.3, the system constraints at each

sample instant can be summarised with the following inequalities:
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Transient constraints

The input and state constraints can be described in terms of the augmented states as:−K [I, 0.., 0] 0 [1, 0, ..., 0]Pr + [KKxr +Kur, 0, .., 0]

K −[I, 0.., 0] 0 −[1, 0, ..., 0]Pr + [KKxr +Kur, 0, .., 0]

Zk ≤
ū
u


and: [

Kxmax 0 0 0
]
Zk ≤

[
x̄
]

(6.54)

The expected steady-state constraints can also be described as:
0 0 0 [Kur, 0, ..0, ]

0 0 0 [−Kur, 0, .., 0]

0 0 0 [Kxr, 0, ..0, ]

Zk ≤

ū

u

x̄

 (6.55)

Combining the inequalities of (6.54) and (6.55), we can then define G1 as:

−K [I, 0.., 0] 0 [1, 0, ..., 0]Pr + [KKxr +Kur, 0, .., 0]

K −[I, 0.., 0] 0 −[1, 0, ..., 0]Pr + [KKxr +Kur, 0, .., 0]

0 0 0 [Kur, 0, ..0, ]

0 0 0 [−Kur, 0, .., 0]

0 0 0 [Kxr, 0, ..0, ]

Kxmax 0 0 0


︸ ︷︷ ︸

G1

Zk ≤



ū

u

ū

u

x̄

x̄


︸︷︷︸
f1

(6.56)

or, in compact form as:

G1Zk ≤ f1 (6.57)

Steady state constraints

Steady state and input constraints can be described as:
0 0 Kuri [0, ..0,Kuri]

0 0 −Kuri [0, .., 0,−Kuri]

0 0 Kxri [0, .., 0,Kxri]

Zk ≤

ū

u

x̄

 , i = 1, · · · · · · ,m (6.58)
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The asymptotic target limits can be given as:0 0 0 I

0 0 0 −I

Zk ≤
r̄
r

 (6.59)

Combining the sample constraints of (6.58) with the asymptotic target of (6.59), G2 can be

defined as: 

0 0 Kur1 [0, ..0,Kur1]
...

...
...

...

0 0 Kurm [0, ..0,Kurm]

0 0 −Kur1 [0, .., 0,−Kur1]
...

...
...

...

0 0 −Kurm [0, .., 0,−Kurm]

0 0 Kxr1 [0, .., 0,Kxr1]
...

...
...

...

0 0 Kxrm [0, ..0,Kxrm]

0 0 0 I

0 0 0 −I


︸ ︷︷ ︸

G2

Zk ≤



ū
...

ū

u
...

u

x̄
...

x̄

r̄

r


︸︷︷︸
f2

(6.60)

or, in compact form:

G2Zk ≤ f2 (6.61)

It is convenient to combine (6.57) and (6.61) together, to be defined in a single form as:
G1

−−−

G2

Zk ≤


f1

−−−

f2

 , ∀k (6.62)

Now, it is straightforward to define the robust MCAS for unreachable targets by using

Algorithm 2.1 with equations of (6.51) and (6.62 ), as follows.

FrZk ≤ dr (6.63)
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or in expanded form as:

S̃RMCAS =
{
x : ∃c̃k, c∞ s.t Mrxk +Nr c̃−→k

+Qrc∞ + Vr r−→k+1
≤ dr

}
(6.64)

where Mr, Nr, Qr and Vr are suitable matrices and dr is a vector of the limits.

6.5.4 Robust OMPC algorithm with tracking for unreachable targets

In the previous subsection, we defined the MCAS (6.64) for uncertain systems for unreach-

able targets. Now, we will use this MCAS in this subsection to summarise the proposed

robust tracking MPC algorithm with advance knowledge for unreachable targets as follows.

Algorithm 6.3 Define the performance index as in (6.47). Define the robust MCAS as in

(6.64). Perform the quadratic programming optimisation:

min
c∞,c̃k

J s.t. Mrxk +Nr c̃−→k
+Qrc∞ + Vr r−→k+1

≤ dr (6.65)

Implement the first block element of c̃k in (6.48) to compute the control law, as defined in

(6.46).

Theorem 6.3 Algorithm 6.3 gives guaranteed convergence and recursive feasibility, includ-

ing cases of unreachable set points.

Proof: By definition, the satisfaction of the RMCAS of (6.64) ensures recursive feasibility.

Consequently, one can use conventional approaches [126] to show that c̃k converges to a

weighted minimum. The convergence of c̃k implies convergence of the state xk due to

condition (6.3) and dynamics (6.52). �

6.6 Summary: Robust to parameter uncertainty

1. The model predictions take the form:
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Zk+1 = Ψ(k)Zk (6.66)

2. The input and state/output constraints take the form:

G1Zk ≤ f1; G2Zk ≤ f2 (6.67)

3. For a reachable target, the robust MCAS (denoted SRMCAS) can be defined as:

SRMCAS =
{
x : ∃ c̃→k s.t Mrxk +Nr c̃→k

+ Vr r→k+1
≤ dr

}
(6.68)

4. For a unreachable target, the robust MCAS (denoted S̃RMCAS) can be defined as:

S̃RMCAS =
{
x : ∃c̃k, c∞ s.t Mrxk +Nr c̃−→k

+Qrc∞ + Vr r−→k+1
≤ dr

}
(6.69)

6.7 Numerical illustrative examples

This section demonstrates that Algorithms 6.2 and 6.3 are both robust to parameter un-

certainty and handle advance information about target changes effectively. Conversely, an

algorithm which does not embed the parameter uncertainty gives less effective performance

and indeed could lose feasibility. We will present two examples with different dynamics to

show the efficacy and benefits of the proposed algorithms compared to those that already

exist in the literature. In particular, these examples show how effectively the proposed

algorithms handle both reachable and unreachable targets through the systematic use of

advance knowledge.

6.7.1 Example: 1

For ease of comparison, we will use in this example the uncertain system model that was

presented in [83] since it has originally non-linear properties, as captured by the LPV model.
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The matrices of the model are given by:

A = Co


 0.807 −0.0037

21.8638 1.4936

 ,
0.8326 −0.0029

16.902 1.3291

 ;B = Co


−0.0003

0.2153

 ,
−0.0002

0.2022


(6.70)

where

A1 =

 0.807 −0.0037

21.8638 1.4936

 ; A2 =

0.8326 −0.0029

16.902 1.3291

 ;B1

−0.0003

0.2153

 ; B2 =

−0.0002

0.2022



The system input/state constraints are:

−2.0 ≤ u ≤ 2.0;

−0.5 ≤ uss ≤ 0.5;

−0.5

−5

 ≤ x ≤
0.5

5

 (6.71)

A nominal model is assumed to be A = 0.6A1 + 0.4A2, and B = 0.6B1 + 0.4B2 is used to

define the feedback controller K =
[
98.4074 4.0843

]
as the LQ-Optimal for Q = CTC and

R = 0.1I.

Case 1: Robust OMPC for reachable targets with advance knowledge

This case presents Algorithm 6.3 for the LPV system (6.70) in which the advance knowledge

of na = 2 is considered for the robust tracking MPC optimisation.

Figure 6.2 shows the output response with the use of advance knowledge, na = 2 and a

target, r = 1, which is reachable at the steady-state but unreachable in the transients.
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Figure 6.2: Closed-loop response of system (6.70) for reachable target with advance knowl-
edge na = 2.

It is shown that, although the target is unreachable during transients, the robust MPC

algorithm performs well in handling the advance target information effectively and avoiding

constraint violations. The output smoothly converges to the correct steady state. It will

be noted that the perturbation terms c∞ and c̃k are non-zero in the transients only and

become zero for a longer time. The term ck is non-zero, as expected from equation (6.48).

Case 2: Robust OMPC tracking for unreachable targets with advance knowledge

This case presents the scenario in which the target is unreachable during transient and

steady-states.

Figure 6.3 shows the output response of the LPV system (6.70) with the use of an advance

knowledge, na = 2, and a target, r = 1.3, which is unreachable at steady-state.
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Figure 6.3: Closed-loop for the step response of system (6.70) for unreachable targets with
advance knowledge na = 2.

It can be seen that, although the target is unreachable during both the transients and the

steady states, the robust MPC algorithm performs well, handling both the advance target

information effectively while the output converges as close as possible to the correct steady-

state without any constraint violations. It will be noted that the perturbation term c∞

is non-zero for the long term whereas c̃k is non-zero in the transients only since the input

constraints are active in the transients. The term ck is non zero, as expected from equation

(6.48).

6.7.2 Example: 2

In order to ensure the efficacy of the proposed algorithm, we will consider a larger di-

mensional unstable LPV system, which is adopted from [88], to demonstrate also that the

proposed algorithm can effectively handle the uncertainty even for large, unstable systems.
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The matrices of the model are given by:

A = Co




1.3333 −0.6667 1.3333 −0.6667

0.1 0 0 0

1.3333 −0.6667 1.3333 −0.6667

0.1 0 0 0

 ,


1.3333 −0.6667 1.3333 −0.6667

1 0 1 0

1.3333 −0.6667 1.3333 −0.6667

1 0 1 0




(6.72)

where

A1 =


1.3333 −0.6667 1.3333 −0.6667

0.1 0 0 0

1.3333 −0.6667 1.3333 −0.6667

0.1 0 0 0

 , A2 =


1.3333 −0.6667 1.3333 −0.6667

1 0 1 0

1.3333 −0.6667 1.3333 −0.6667

1 0 1 0


and

B1 = B2 =


1

0

0

0


The system input/state constraints are:

−1 ≤ uk ≤ 1;


−1.15

−1.15

−1.15

−1.15

 ≤ xk ≤


1.15

1.15

1.15

1.15

 (6.73)

A nominal model is assumed to be A = 0.6A1 + 0.4A2, and B = B1 = B2 is used to define

the feedback controller K =
[
1.7698 −1.1060 1.8100 −1.1060

]
as the LQ-Optimal for

Q = diag([1, 1, 1, 1]) and R = 0.1I.

Case 1: Robust OMPC tracking for reachable targets with advance knowledge

In this case, we assume a target of r = 0.1 and choose advance knowledge of na = 2 with

nc = 2.
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Figure 6.4 shows the OMPC output response of LPV system (6.72) with advance knowledge

for a reachable target.
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c

Figure 6.4: Closed-loop for the step response of system (6.72) for a reachable target with
na = 2.

It is shown in Figure 6.4 that the target (r = 0.1) is reachable during both the transients and

steady-states and that the robust MPC algorithm performs well and converges to the correct

steady-state without any constraint saturation. It will be noted that the perturbation terms

c∞ and c̃k are zero for a long time since there no deviations about either the unconstrained

optimal or the true target. However, the perturbation ck of (6.48) is non-zero, as expected

due to the inclusion of advance information about the target changes.

Case 2: Robust OMPC tracking for unreachable targets with advance knowledge

In this case, we assume that the target is unreachable at steady-state; that is, (r = 0.12)

with advance knowledge, na = 2, and a control horizon, nc = 2.

Figure 6.5 shows the OMPC output response of the LPV system (6.72) with advance knowl-

edge for unreachable target.
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Figure 6.5: Closed-loop for the step response of system (6.72) for unreachable target with
na = 2.

It is shown in Figure 6.5 that, although the target (r = 0.12) is unreachable, nevertheless

the robust MPC algorithm performs well and converges to the correct steady-state without

any constraint violations. It will be noted that (c∞ 6= 0) for a long time, whereas c̃k = 0 for

a long time, since the input constraints are inactive, but there exist deviation from the true

target. However, the perturbation ck of (6.48) is non-zero, as expected, due to the inclusion

of advance information about the target changes.

The benefits of using advance knowledge are further evidenced in Table 6.1, which compares

the performance indices of the corresponding systems for reachable targets.

Table 6.1 shows the performance indices of systems (6.70) and (6.72) with and without

advance knowledge for both reachable targets.

J with na = 1 J with na = 3

System (6.70) for reachable targets 1.262 0.256

System (6.72) for reachable targets 1.55 0.527

Table 6.1: Performance indices for step changes in the target for system (8.14)

It is clear that the performance indices for the systems with advance knowledge are lower
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than those for the systems without advance knowledge. This provides evidence of the

advantages of using advance knowledge in robust OMPC algorithms.

6.8 Conclusion

This chapter made a new contribution to this field, which is the proposal of an efficient,

robust MPC algorithm which systematically incorporates advance information about the

target. Most of the robust approaches in the literature either focus on the regulation case

or ignore feed-forward information. Robust feasibility and convergence have been achieved.

Moreover, it has been demonstrated that algorithms for incorporating unreachable set points

can also be modified in a straightforward manner for the robust case.

It has been shown that the robust MCAS can be efficiently implemented in the LPV systems

for both the regulation and tracking MPC problems. The differences occur only in the

autonomous model structure and hence in the sample constraints.

The results of robust MPC tracking for both reachable and unreachable targets have been

discussed in this chapter. It is noted that those results are similar in terms of the procedures

for deriving the MCAS for uncertain systems and the description of model dynamics and

input parametrisation.

On the other hand, these results differ in terms of the definition of the augmented states, as

the latter contains two degrees of freedom c̃k, c∞ while the former includes only one degree

of freedom c̃k. Numerical examples demonstrate the benefits of using future information

as well as the ability to deal with either temporary or permanently unreachable targets.

Further illustration is presented in Chapter 8.



Chapter 7

IMPROVING PARAMETRIC APPROACHES

WITHIN MPC TRACKING

This chapter discusses two issues. One is related to what extent the future values of the

target can be treated as states in a parametric optimization. The other important, and

linked, issue is to optimise the artificial target and investigate the impact of the input

parametrisation on predictive control using the parametric approach.

7.1 Introduction

One of the most significant advances in predictive control of the past 20 years has been the

recognition that one can define the solution of quadratic programming (QP), in full, using

off-line computations [112, 15]. As long as this off-line (or so-called parametric solution)

is not too complex, then coding and implementing this on-line may be far simpler than

implementing an on-line QP optimiser. The parametric solution offers the potential for

reliability, transparency (important for validation and certification) and most importantly,

very fast sample rates for some systems.

Nevertheless, parametric solutions also have their disadvantages and the literature is full of

possible solutions to counter these [72]. For example: (i) in some cases, the parametric solu-

tion can be difficult to compute reliably due to poor conditioning; (ii) where the parametric

solution requires large numbers of regions, it may no longer be computationally efficient.

This chapter makes some contributions to one aspect of computational complexity. To

157
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define what this contribution will be, it is first useful to define a generic QP optimisation

problem and its parametric solution.

min
z
zTSz + zTPw s.t. Nz +Mw ≤ d (7.1)

where w is a system state, z are the degrees of freedom (d.o.f.) and parameters S, P,N,M, d

define the cost function and linear constraints. A parametric solution (often denoted as mp-

QP) partitions the space into a number of non-overlapping regions for the system state such

that the optimal solution for (7.1) is equivalent to:

Niw ≤ di ⇒ z = Kiw + pi, i = 1, 2, · · · , n (7.2)

for suitable Ni, di,Ki, pi.

It is recognised that there is a strong link between the dimension of the state w and the

required number of regions n to capture the entire solution. Hence, in general, parametric

solutions are favoured for systems with a low state dimension but less likely to be useful for

high state dimensions. Moreover, the higher the state dimension, the more likely one is to

encounter conditioning problems in the mp-QP solver.

It is also recognized that the parametric solutions are very complex, requiring excessive

off-line computation, excessive on-line storage and set membership tests [72]. Thus, there is

interest, in finding alternatives which provide simple solutions, perhaps at the cost of some

sub-optimality [12].

According to the above discussion, this chapter, therefore, makes two contributions. One

contribution is to ask the question: can we reduce the state dimension for some specific

predictive control problems? In particular, the focus here is on the handling of feed-forward

information such as future target information which, in principle, can be embedded sys-

tematically in predictive control algorithms. The other contribution is to investigate the

potential of different input parametrisations to reduce the complexity of parametric solu-

tions alongside a simple aim of achieving sufficiently large feasible regions [141].

Section 7.2 outlines the OMPC algorithm to be implemented with parametric approaches.

Section 7.3 will demonstrate how the state dimension can be reduced using some elemen-

tary algebra. Section 7.4 demonstrates the influence of future target information on the
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parametric complexity. Section 7.5 investigates the impact of steady state offset on the

parametric approaches. Section 7.6 discusses the impact of the steady state offset on the

feasible regions. Section 7.7 presents some numerical examples on feasibility with the para-

metric solutions. Section 7.8 demonstrates the simplification of the parametric solutions

complexity. Finally, the chapter finishes by presenting the conclusions.

7.2 Basics of the dual-mode (OMPC) approach

This section summarises briefly the optimisation implicit in optimal predictive control

(OMPC) [146], [153]. A specific and important point is to consider how set point infor-

mation is incorporated. This detail is presented in [36, 37, 166], and discussed in detail in

Chapter 4, Section 4.3.

For simplicity, this chapter assumes a state space model of the following form:

xk+1 = Axk +B∆uk; yk = Cxk (7.3)

with xk, uk, yk the states, input and output respectively, with dimensions nx,m,m and

∆uk = uk − uk−1. The system is subject to constraints, typically (others are possible):

u ≤ uk ≤ u; ∆u ≤ ∆uk ≤ ∆u; x ≤ Kxxk ≤ x (7.4)

Furthermore, define the future target r→k+1
as follows.

r→k+1
= [rTk+1, r

T
k+2, · · · , rTk+ny ]

T (7.5)

The system steady-state states and inputs are estimated by solving xk+1 = xk, yk = rk+1

and hence:  A− I B

C 0

 xss

uss

 =

 0

rk+1 − dk

 (7.6)

→

 xss

uss

 =

 Kxr

Kur

 (rk+1 − dk)

where Kxr,Kur are well known in [101].
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7.2.1 OMPC with a parametric approach

It is now well known [95] that the dual-mode (OMPC) approaches have efficient stability

properties in general. Consequently, it is worth considering how a parametric solution can be

determined for a dual-mode approach. Thus, it is convenient to restate the standard OMPC

algorithm which, is utilised in [146] and was discussed in Chapter 4, before formulating a

parametric problem for tracking scenarios.

It was shown in Section 4.3 that target future information can be used wisely in predictive

control, as this detail is neglected in the mainstream literature. In this chapter, we will show

how this future information can be augmented to the system state and how it influences

the dimension of the parametric space. To remind the reader, we will outline the core

components of the OMPC algorithm with the inclusion of future target information as

follows.

OMPC uses an infinite horizon performance index of the following form:

J =
∑∞

i=0(xk+1+i − xss|k+1+i)
TQ(xk+1+i − xss|k+1+i) + (uk+i − uss|k+i)

TR(uk+i − uss|k+i)

(7.7)

along with an input parametrisation of the form:

uk+i − uss|k+i = −K(xk+i − xss|k+1+i) + ck+i, i = 0, 1, · · · , nc − 1

uk+i − uss|k+i = −K(xk+i − xss|k+1+i), i ≥ nc
(7.8)

so the variables ck+i are the degrees of freedom and (xss, uss) are the expected steady-states

for tracking a fixed target, rk+1.

Extending the dual-mode strategies to take account of more future values of the target such

as available in r→k+1
is discussed in Chapter 4 Theorem 4.1 and [36]. On this point, it is

shown that minimising the performance index (7.7) is equivalent to minimising the following

form:

J = c̃→
T

k
Sc c̃→k

(7.9)

where the term c̃→k
is the deviation from the unconstrained optimum in the tracking case,

such that the control input is uk = −Kxk + c̃→k
+ Pr r→k+1

.
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It was also shown in Subsection 4.5.2 that constraint inequalities representing constraint

satisfaction of the predictions can be reduced to:

N c̃→k
+Mxk +Qr→k+1

≤ d (7.10)

for suitable N,M,Q and d is a vector of the limits.

It is straightforward to define an optimisation problem by combining (7.9,7.10), to take the

following form:

min
c̃→k

c̃→
T

k
S c̃→k

s.t. N c̃→k
+Mxk +Qr→k+1

≤ d. (7.11)

Now, it is possible to define the optimisation problem (7.11) as a parametric problem, as

shown in the following lemma:

Lemma 7.1 Optimisation problem (7.11) can be recast in the same form as (7.1).

Proof: By combining parameters which may vary with time (that is r→k+1
, xk), the opti-

misation problem (7.11) can be reformulated as follows.

min
c̃→k

c̃→
T

k
Sc c̃→k

s.t. N c̃→k
+ [M,Q]

 xk

r→k+1


︸ ︷︷ ︸

wk

≤ d (7.12)

for suitable N,M,Q.

Corollary 7.1 Including advance knowledge r→k+1
in the OMPC algorithm augments the

implied parametric state dimension by the dimension of r→k+1
to give a dimension of (nx +

ny ×m). This is obvious from the replacement of xk by wk in (7.12).

Now, the obvious dilemma is that incorporating advance knowledge of the target into a

predictive control problem increases the dimension of the parametric state wk. Even simply

including a fixed target and integral action [150] increases the required parameter dimension

to (nx+m), which is already undesirable, so including more advance information could make

the dimension of the parametric optimisation impractical in general.
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Hence, one objective of this chapter is to suggest ways of modifying optimisation (7.12) so

that one retains some of the benefits of including advance information while at the same

time keeping the dimension of the implied parameter space small.

7.2.2 Summary and proposals

It has been shown that a simplistic inclusion of future target information r→k+1
into a

predictive control algorithm leads to an increase in the dimension of the parametric space

for the associated multi-parametric quadratic programming. In general, for anything other

than the most trivial case [150], where it is assumed that rk+i = rk+1,∀i so that the effective

dimension of r→k+1
is reduced to just rk+1 , then this increase in dimension is likely to be

unmanageable and thus a parametric approach is unlikely to be feasible. In consequence,

this chapter considers into which scenarios this information can be incorporated without

leading to unnecessarily large dimensional increases.

7.3 Reducing the dimension of the parameter space with OMPC algorithms

This section will show how small changes to the formulation of OMPC optimisation can

reduce the dimension of the implied parameter space. Some suggestions lead to a small

degree of sub-optimality but, in fact, within parametric predictive control, the use of sub-

optimality is often a key tool for reducing the complexity [20, 12] and thus this may be

considered an acceptable compromise in order to gain some of the benefits of using the

feed-forward information rather than ignoring it.

In this manner, we will propose three alternatives which are available to the OMPC approach

in the next subsections.

7.3.1 Reducing the amount of advance knowledge

Throughout this thesis, the use of advance information ([37] and Chapter 4) within predic-

tive control has considered questions about how much advance information is useful; that



7.3 Reducing the dimension of the parameter space with OMPC algorithms 163

is, really makes a noticeable difference to closed-loop performance. It was established in

[37] that ignoring the far future (beyond na samples) values of the target usually led to a

minimal deterioration in performance , provided that nu < na < (nu+nr)/2, with nr being

the notional rise time. A larger na were usually unhelpful as the degrees of freedom were

not contemporaneous enough and therefore inappropriate control moves for the relevant

target changes. Therefore, as in the context of parametric approaches, some sub-optimality

is acceptable in the pursuit of simplicity, so this section examines what can be achieved by

summarising future target information r→k+1
into fewer values.

The most obvious and easiest way to reduce the dimension of the parameter space in vector

w is the rather obvious one of reducing the dimension of r→k+1
.

This section exploits some of the results from Chapter 4. It has been shown that it is useful

to the use the following assumption rk+na+i = rk+na ,∀i > 0 (here the SISO case is given to

simplify algebra). Then:

r→k+1
=



rk+1

:

rk+na

:

rk+na


=



rk+1

rk+2

:

:

Lrk+na


;Lny−na =


1

1

:

1

 (7.13)

where L is a dimensional vector of ones. This assumption reduces the dimension of r→k+1

from ny components to na components. Moreover, it has been shown in ([166, 36] and

Chapter 4) that, in many cases, using relatively small values of na give almost equiva-

lent, and sometimes better, closed-loop performance compared to using values close to ny.

Thus, using the approximation implicit in a choice of small na is reasonable for the OMPC

approach.

Remark 7.1 Even though one can reduce the overall parameter dimension of w = [xT , r→
T
k+1

]T

to nx + na ×m with na < ny, one might still argue that anything much beyond na = 2 is

likely to increase the parameter space beyond normally accepted limits for parametric solu-

tions. While na = 2 usually gives better closed-loop performance than na = 1, nevertheless

it may still be significantly worse performance than achievable with an even larger na and
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thus such a solution may not be sufficient in general.

7.3.2 Reducing the amount of advance knowledge further

The existing literature has largely focused on the structure of (7.13), arguing that na � ny

often leads to improved closed-loop behaviour [166, 36]. However, there is an alternative

that has not been explored in depth and that is the subject of the current investigation.

This is the extent to which transient values, such as rk+1, rk+2, are really useful as most

systems cannot respond significantly within a few samples, so having a particular target

during fast transients may not be meaningful. The proposal here, therefore, is to ignore

specific information about the targets for the next few samples and instead assume that

rk+i = rk+na1 , i ≤ na1. Thus we can use a structure such as the following:

r→k+1
=



rk+na1

...

rk+na1

rk+na1+1

...

rk+na−1

rk+na

...

rk+na



=



Lna1rk+na1

rk+na1+1

...

rk+na−1

Lny−nark+na


(7.14)

It is clear that the dimension of the corresponding vector r→k+1
has now been reduced to

having (na − na2 + 1) independent components, which is a significant reduction compared

to ny components.

7.3.3 Using insights from the reference governors and predictive function control

Reference governors [51] are primarily focused on highly efficient constraint handling whereby

one ensures that the target of the feedback loop changes sufficiently slowly to avoid causing
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the internal signals to violate the constraints. To some extent, performance takes second

place to computational efficiency and simplicity, so some sub-optimality is acceptable. In

the context of this chapter, a key observation is the use of small amounts of feed-forward

information about the target rather than the entire trajectory. Specifically, this chapter

notes one possible simplification which is implicit in the Predictive Function Control [132];

that is, we assume the future target trajectory takes the following form (a smooth transition

from the current output to the long term target):

rk+i = (rk+na − yk)(1− λi) + yk; (7.15)

Equation (7.15) can be simplified as:

rk+i = (1− λi)rk+na + λiyk (7.16)

Now, future target information r̂→k+1
for the first few samples na1 can be expressed as:



rk+1

rk+2

...

rk+na1−1

rk+na1


︸ ︷︷ ︸

r̂→k+1

=



(1− λ)

(1− λ2)
...

(1− λna1−1)

(1− λna1)


︸ ︷︷ ︸

Wa

rk+na1 +



(λ)

(λ)2

...

λna1−1

λna1


︸ ︷︷ ︸

Wb

yk (7.17)

Equation (7.17) can be described in a compact form as:

r→k+1
= Wark+na +Wbyk (7.18)

where the definitions of Wa,Wb are obvious and rk+na is the best representation of the long

term target value.

Clearly, this suggestion has close analogies to the previous two subsections, since the future

target information is approximated in some fashion to reduce the dimension of the implied

parametric space. The proposal here offers the advantage that the parametric space is

the same dimension as would be needed for the routine inclusion of integral action [150],
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although of course the use of the feed-forward information is now far less precise than it

could be due to the approximation implicit in (7.18).

The expression (7.18) is one example of a possible simple approximation. If we can allow a

higher dimension, we can derive an alternative approximation as follows.

It is convenient to split the future target information into two parts. One part describes the

first few samples of the target information, while the other describes the rest of the target

information.

At this point, we can define the future target information as:

r→k+1
=



rk+1

...

rk+na1

−−−

rk+na1+1

...

rk+na


︸ ︷︷ ︸

r→k+1

(7.19)

Combining equations (7.18, 7.19) with some algebra, one can rewrite the future target

information in the form:



rk+1

rk+2

...

rk+na1

rk+na1+1

...

rk+na


︸ ︷︷ ︸

r→k+1

=



1− λ1 0 0 · · · 0

1− λ2 0 0 · · · :

: : : : :

1− λna1 0 0 · · · :

0 I 0 · · · 0

: : : · · · 0

0 0 0 · · · I


︸ ︷︷ ︸

Wc


rk+na1

rk+na1+1

...

rk+na


︸ ︷︷ ︸

γ

+



(λ)

(λ)2

...

(λ)na1

0

0


︸ ︷︷ ︸

Wd

Cxk (7.20)
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Now, it is convenient to summarise all three suggestions in a suitable form as:

rk+1

rk+2

...

rk+na1

−−−

rk+na1+1

...

rk+na


︸ ︷︷ ︸

r→k+1

=



1− λna1 0 0 · · · 0

1− λna1 0 0 · · · :

: : : : :

1− λna1 0 0 · · · :

−− −− −− −− −−

0 I 0 · · · 0

: : : · · · 0

0 0 0 · · · I


︸ ︷︷ ︸

W1



rk+na1

−−−

rk+na1+1

...

rk+na


︸ ︷︷ ︸

γ

+



(λ)na1

(λ)na1

...

(λ)na1

−−−

0

0


︸ ︷︷ ︸

W2

Cxk (7.21)

Summary: All three suggestions in the previous subsections can be reduced to the fol-

lowing generic approximation.

r→k+1
= W1γ +W2xk (7.22)

where γ constitutes the degrees of freedom to encapsulate future values of rk+i and W1,W2

are defined appropriately in (7.21). In consequence, the parametric dimension required to

include future target information is exactly the dimension of γ.

Now, it is convenient to implement the parametric solution to a dual-mode approach, using

approximation (7.22).

7.4 Numerical examples of future target information

In the previous section, we showed how the dimension of parametric space can be reduced

using three alternatives. One option is the basic one, in which the future target informa-

tion is assumed to be full while the other two options are linked to scenarios in which the

future target information is reduced. These three alternatives are summarised in one ap-

proximation of (7.22). In this section, we present some numerical examples to demonstrate

the impact on parametric complexity of including advance knowledge, within the OMPC

approach, using the above proposed methods followed by a parametric complexity analysis
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of the proposed OMPC algorithm for the approximation of (7.22).

First, we consider the following two dimensional state space model and constraints:

A =

 0.8 0.1

−0.2 0.9

 ; B =

 0.3

0.8

 ;

C =
[
1 0

]
, D =

[
0
]

(7.23)

−0.2 ≤ u ≤ 0.5;


1 0.2

−0.1 0.4

−1 −0.2

0.1 −0.4

xk ≤


8

8

1.6

5


The advance knowledge is na, the first a few samples is na1 and the degrees of freedom to

encapsulate future values of the target is γ = na − na1 + 1 equal to na − na1 + 1. The

parameter λ is set at 0.75, thus, the constant matrices W1 and W2 can be easily computed.

The following examples, will focus on the impact of the following parameters choices:

• The advance knowledge is na

• The number of the first few samples is na1

• The degrees of freedom to encapsulate future values of the target is γ = na− na1 + 1.

• The parameter λ and the constant matrices W1 and W2.

The parametric solutions are computed with a range of values of na1 and the following

information is captured.

• Number of inequalities.

• Number of parametric regions in solution.
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7.4.1 Example: 1

For this example, we will use the OMPC Algorithm in Subsection 7.3.2 to demonstrate how

the parameters na, na1 and γ, influence the parametric complexity. This can be achieved

by computing the number of both the regions and the associated inequalities, using a multi-

parametric toolbox [78].

Table 7.1 shows the impact of the dimension of the reduced future information (γ) on the

parametric solution of the system (7.23) for different values of R, and na1 with na = 3,

using the Algorithm presented in Subsection 7.3.2.

System (7.23) with na = 3, R = 0.1I, λ = 0

Dimension of γ = na − na1 + 1 1 2 3

Number of regions 70 85 97

Number of inequalities for all regions 39 32 42

System (7.23) with na = 3, R = I, λ = 0

Dimension of γ = na − na1 + 1 1 2 3

Number of regions 91 123 130

Number of inequalities for all regions 30 32 34

Table 7.1: Comparison of parametric solution complexity for different dimensions of γ for
the algorithm in Subsection 7.3.2

It is clear from the results that the number of regions and inequalities increase as the

dimension of the degrees of freedom (γ) to encapsulate future values of rk+i increases. The

effect of R on the parametric solution complexity is clear as, where R increases, the number

of regions increases, and the number of inequalities for all of those regions decreases.
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7.4.2 Example: 2

For this example, we will use the OMPC Algorithm in Subsection 7.3.3 to demonstrate how

the parameters na, na1 and γ, influence the parametric complexity.

Table 7.2 shows the impact of the dimension of the reduced future information (γ) on the

parametric solution of the system (7.23) for different values of R, and na1 with na = 3,

using the Algorithm in Subsection 7.3.3.

System (7.23) with na = 3, λ = 0.2, R = 0.1I,

Dimension of γ = na − na1 + 1 1 2 3

Number of regions 75 106 104

Number of inequalities for all regions 41 41 35

System (7.23) with na = 3, λ = 0.2, R = I

Dimension of γ = na − na1 + 1 1 2 3

Number of regions 91 124 129

Number of inequalities for all regions 31 34 34

Table 7.2: Comparison of parametric solution complexity for different dimensions of γ for
the algorithm in Subsection 7.3.3

Similarly, it is clear from the result that the number of both the regions and the inequal-

ities increases as the dimension of the reduced future information (γ) increases. Again,

it is notable that, as R increases, the number of regions increases whereas the number of

inequalities for all of those regions decreases.

7.4.3 Example: 3: Monte Carlo complexity comparison

Now, in this example, we will demonstrate the impact of including advance knowledge on

parametric complexity, within the OMPC approach, using the approximation of (7.22). This
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can be achieved by making a comparison of the number of regions obtained by implementing

the reduced target information scenario with the regions obtained by implementing a full

target information scenario.

Our comparison is based on 300 random systems (100 over-damped systems, 100 critically

damped systems and 100 open-loop unstable systems) with two states and one input. More

detail is shown in appendix A.

All inputs were constrained to:

−1 ≤ uk ≤ 1.35 (7.24)

.

The target limits:

−1 ≤ r ≤ 1 (7.25)

The state constraint for all systems are: 1.6

5

 ≤
 1 0.2

−0.1 0.4

xk ≤
 8

8

 (7.26)

The tuning parameters are nc = 2, R = 0.1I, Q = CTC and the advance knowledge is

chosen as 3. The first few samples to be neglected na1 = 2 and the degrees of freedom γ

is equal to na − na1 + 1. λ is set at 0.75 and the parameters W1 and W2 can be easily

computed from (7.21).

Figures (7.1-7.6) present a comparison of the complexity of the approximation of (7.22) for

(na1 = 1) and (na1 = 2) for 300 random systems. The index of dynamic systems is shown

on the x-axis, while the number of regions obtained for each system is shown on the y-axis.

The black bar displays the number of regions obtained by using the proposed algorithm with

(na = 3, na1 = 1) or the d.o.f (γ = 3), while the yellow bar displays the regions obtained

from using the proposed algorithm with (na = 3, na1 = 2) or the d.o.f (γ = 2).

Figures 7.1 and 7.2 present a comparison of the complexity of the approximation of (7.22)

for (na1 = 1) and (na1 = 2) for 100 over-damped systems with R = 0.1I and R = 10I,

respectively.
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Figure 7.1: Comparison of the approximation of (7.22) complexity with (na1 = 1) versus
with (na1 = 2.) for 100 over-damped systems for R = 0.1I
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Figure 7.2: Comparison of the approximation of (7.22) complexity with (na1 = 1) versus
with (na1 = 2) for 100 over-damped systems for R = 10I

Figures 7.3 and 7.4 present a comparison of the complexity of the approximation of (7.22)

for (na1 = 1) and (na1 = 2) for 100 critically-damped systems with R = 0.1I and R = 10I,

respectively.
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Figure 7.3: Comparison of the approximation of (7.22) complexity with (na1 = 1) versus
with (na1 = 2) for 100 critically-damped systems for R = 0.1I.
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Figure 7.4: Comparison of the approximation of (7.22) complexity with (na1 = 1) versus
with (na1 = 2) for 100 critically-damped systems for R = 10I.

Figures 7.5 and 7.6 present a comparison of the complexity of the approximation of (7.22)

for (na1 = 1) and (na1 = 2) for 100 open-loop unstable systems with R = 0.1I and R = 10I,

respectively.



174 Improving Parametric approaches within MPC tracking

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

70

80
Number of regions for 100 random unstable models with R=0.1*I

no. of regions with n
a1

=1

no. of regions with n
a1

=2

Figure 7.5: Comparison of the approximation of (7.22) complexity with (na1 = 1) versus
with (na1 = 2) for 100 open-loop unstable systems for R = 0.1I.
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Figure 7.6: Comparison of the approximation of (7.22) complexity with (na1 = 1) versus
with (na1 = 2) for 100 open-loop unstable systems for R = 10I.

It can be seen from Figures (7.1-7.6) that the number of regions obtained from using the

proposed algorithm with the d.o.f (γ = 2) is lower than that with the d.o.f (γ = 3), for

most of the systems. It will be noted that the number of regions is affected by the weight,

R, where the number of regions (with R = 10I) is higher than that in the plots (with
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R = 0.1I), for both choices of γ, for all of the systems. Moreover, it is noted that the

number of regions is also affected by the system dynamics where the open-loop unstable

systems relatively offer large number of regions with respect to both the over-damped and

critically-damped systems. On the other hand small number of regions are obtained when

critically-damped systems are considered.

Summary: It is clear from the results obtained form Figures (7.1-7.6) that the number

of regions decreases as the degrees of freedom γ decrease for the majority of systems.

This is as expected since the parametric space decreases. It is also noted that, as the

weight R varies, the number of regions varies as parametric space as well. It is also noted

that, regarding this effect, there is a noticeable difference between any of the systems.

7.5 Feasibility and parametric complexity

The previous sections discussed an issue related to parametric approaches; that is the use of

advance information about target changes, as an augmented state in parametric problems.

The focus was solely on parametric complexity. In this section, we will discuss a related issue,

that is the influence of the input parametrisation on feasibility within OMPC tracking and

its parametric solution. We aim to make two contributions. First this investigation reveals

that including the core parameters, such as the target and the current input, vastly increases

the dimension of the parametric space, with possible consequences for the complexity of any

parametric solutions. Secondly, it is shown that a simple re-parametrisation of the d.o.f.

can lead to large increases in the feasible volumes, with no increases in the dimension of the

required optimisation variables.

7.5.1 Definition of parametric form and consequences

This section summarises some of the of details in the optimal predictive control (OMPC)

algorithm discussed in this thesis, paying specific attention to how the problem of equation

(7.1) is modified to include the targets and steady-state offsets. Such detail is important

for understanding the dimension of the associated parametric space, as extra states are
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required to include: (i) integral action/targets; (ii) a definition of the input rates; and

(iii) the steady-state offsets. The need for each of these states is often tacitly ignored but

this increase in dimension has significant repercussions for computational loading and data

storage.

7.5.2 Input parametrisation and modified cost function

In this section, we will consider the state space model (7.3), subject to the constraints (7.4).

The future target r→k+1
is defined as (assumed constant):

r→k+1
= [rTk+1, r

T
k+2, · · · , rTk+ny ]

T = [I, I, . . .]T rk+1 (7.27)

and is augmented with the current input to the current system state.

The input parametrisation for the case of steady-state offset was described in Section 5.2

as:

uk+i − uss = −K(xk+i − xss) + ck+i i = 0, 1, · · · , nc − 1

uk+i − uss = −K(xk+i − xss) + c∞ i ≥ nc
(7.28)

so the variables ck+i, i = 0, 1, . . . , nc − 1 are the degrees of freedom which allow deviations

in the first nc moves of the optimal input trajectory; the term c∞ is a d.o.f. which enables

steady-state offset between the asymptotic output predictions and desired target rk+1.

The steady-state states xss and input uss were clearly defined in Section 4.1.

An appropriate performance index with the inclusion of steady-state offset was defined in

Subsection 5.3.3 as:

J = W1(cT∞Sc∞) + c→
T

k
Sc c→k

(7.29)

where W1 is a scalar weighting to be selected. Here, the term cT∞Sc∞ penalises asymptotic

offset and the term c→
T
k
S c→k

penalises transient performance, including information on r→k+1
.

The scalar weighting W1 allows users to determine the emphasis they wish to place on each

term.
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7.5.3 Predictions and the autonomous model

For the implied closed-loop form of (7.28), the predictions must include information such

as the future target and current input. A convenient means of combining (7.3, 7.28) is by

using an autonomous model formulation, which was discussed in Chapter 4. In this case, the

formulation must be extended to capture the evolution of rk+1, xk, uk,∆uk as these values

appear in the constraints (7.4). Hence, the following identities are needed:

{ck+i = c∞, i ≥ nc} {rk+i = rk+1, i ≥ 1} (7.30)

{∆uk+i = uk+i − uk+i−1, i ≥ 0}

Combining (7.3,7.28,7.30) gives the following:

Zk+1 =



Φ [B, 0, . . . , 0] 0 0 (I − Φ)Kxr

0 IL 0 0 0

0 0 I 0 0

−K [I, 0, 0, . . .] 0 0 K.Kxr +Kur

0 0 0 0 I


︸ ︷︷ ︸

Ψ

Zk; Zk =



xk

c→k

c∞

uk−1

rk+1


; (7.31)

where IL is a block upper triangular matrix of identities (shift matrix).

7.5.4 The constraints

The final building block in an MPC algorithm is the set of inequalities, which ensure that

the predictions from model (7.31) satisfy constraints (7.4). Here,we will use the algorithm

discussed in Chapter 5, Section 5.5 to formulate these inequalities. The result is given by

following the steps in Section 5.5, showing that all constraints in a standard form GZk ≤ f ,

as shown in equation (7.32), are suitable for defining the MCAS. The only difference is that



178 Improving Parametric approaches within MPC tracking

the term input rate is included in the augmented state.

−K [I, 0, 0, . . .] I 0 K +Kxr +Kur

K −[I, 0, 0, . . .] −I 0 −K.Kxr −Kur

−K [I, 0, 0, . . .] I −I K.Kxr +Kur

K −[I, 0, 0, . . .] −I I −K.Kxr −Kur

KxKxr 0 0 0 0

−KxKxr 0 0 0 0

0 0 0 0 I

0 0 0 0 −I


︸ ︷︷ ︸

G

Zk ≤



ū

u

∆u

∆u

x̄

x

r̄

r


︸ ︷︷ ︸

f

(7.32)

or in a compact form:

GZk ≤ f (7.33)

Having the structure of (7.33), one can easily determine the admissible set MCAS, as illus-

trated in Section 4.5.2, given that:

FZk ≤ d (7.34)

the MCAS (7.34), can be described in an expanded form:

N c→k
+ Tc∞ +Mxk + Puk−1 +Qrk+1 ≤ d (7.35)

where N,T,M,P,Q are suitable matrices describe the constraints and d is a vector of the

limits.

Lemma 7.2 The constraint inequalities (7.35) can be expressed in parametric form as (d

is assumed to be constant):

[N,T ]︸ ︷︷ ︸
NT

 c→k

c∞

+ [M,P,Q]︸ ︷︷ ︸
Mw

wk ≤ d; wk =


xk

uk−1

rk+1

 (7.36)

where the parameter space is wk and the d.of. are in c→, c∞.

Theorem 7.1 Including both tracking and input rate constraints into OMPC increases the

effective parameter space by the dimensions of the target rk and the input uk, respectively,

compared to the scenarios where these are excluded.
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Proof: Self-evident from the definition of wk in (7.36).

Corollary 7.2 As one aspect of this section is focussed around parametric approaches,

future target information has not been included; that is, we assume rk+i = rk+1, ∀i > 0. To

do otherwise would increase the parametric dimension of wk still further (Chapter 7).

7.5.5 The OMPC algorithm with an allowance for steady-state offset

Having constructed all of the foundation components, an OMPC algorithm [153] can be

now defined.

Algorithm 7.1 OMPC is defined as follows. At each sample, perform the quadratic pro-

gramming optimisation

min
c→k

,c∞
c→
T

k
Sc c→k

+W1c
T
∞Sc∞ s.t. NT

 c→k

c∞

+Mwwk ≤ d; (7.37)

Implement the first value of ck in (7.28) to determine the current input, that is uk.

Remark 7.2 Strictly speaking the classical OMPC algorithm uses c∞ = 0, but this section

includes the extra d.o.f. because the intention is to consider the efficacy of this for simplifying

overall complexity and computational load.

7.5.6 Summary

This section has defined the core components of an OMPC algorithm which allows for

steady-state offset in the predictions, that is an appropriate performance index and also

inequalities, to capture the constraints. This offset may be used optionally as a mechanism

to avoid infeasibility in the transients [51], even where steady-state feasibility is assured.

Moreover, the OMPC framework has been cast in a format that is suitable for parametric

approaches as these results can now be used to investigate two related but separate issues.
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1. The extent to which the parameter c∞ is more or less effective than c→k
in increasing

the feasible space.

2. The extent to which the parameter c∞ may or may not simplify parametric solutions

compared to the use of c→k
in cases where the problem includes tracking.

7.6 Enlarging the feasible regions using c∞

In the previous section, we defined a parametric form, which allows for the steady-state

offset c∞ in predictions as an additional d.o.f and includes the targets rk and current inputs

uk−1 alongside the current state as a parametric state. In this section, we aim to show how

to exploit this steady-state offset in system predictions to obtain large feasible volumes.

The first objective is to assess whether adding the d.o.f. c∞ is more effective than increasing

nc by one; both of these changes increase the overall d.o.f. and thus the optimisation

dimension by the same amount. Any insights gained are useful as, in practice, operators

try to keep the overall optimisation dimension as small as reasonably possible.

The concept of n-step sets is widely understood in the MPC literature. In essence:

• A 0-step set is the region in which the control law (7.28) satisfies the constraints when

nc = 0 and c∞ = 0. This is where the unconstrained control law is feasible.

• A 1-step set gives the range of values of wk such that, with a single non-zero value of

ck, one can satisfy the constraints at the first sample, and move into the 0-step set by

the next sample.

• A 2-step set gives the range of values of wk such that, with a single non-zero value of

ck, one can satisfy constraints at the first sample, and move into the 1-step set by the

next sample.

• The definition of a n-step set follows the same pattern.
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Lemma 7.3 With c∞ = 0 and a given choice of nc, the feasible region is given by the

nc-step set. This is obvious.

Remark 7.3 Problems occur when the current states xk, uk−1 are at a considerable distance

from the target steady-state xss, uss. In this case infeasibility can arise as the nc-step set

around the target steady-state is limited in volume, so points far away are not inside it if nc

is small. To retain feasibility, it is necessary to choose an alternative nc-step set, that is,

one associated with a different wk; this means changing the only component in wk possible,

which is rk.

Theorem 7.2 Where a simple move of the implied steady-state xss, uss is sufficient to

retain feasibility, then the d.o.f. c∞ will be sufficient to retain feasibility.

Proof: This is obvious as choices for c∞ exist which can be used to imply convergence to

any asymptotically stable steady-state point.

Theorem 7.3 Assuming that one was feasible at sample k − 1, then the inclusion of c∞

guarantees feasibility at the current sample.

Proof: The main difference between sample k and k−1 in terms of the implied predictions

in (7.36) is the change in the value rk+1. It has been shown that c∞ can overwrite any

impact on predictions from a change in that state, and thus can be used to place the system

in the same effective state as was the case in the previous sample.

Corollary 7.3 It is noted that reachable steady-states are limited to the sub-space implicit

in (7.6). Where a simple move of the implied steady-state xss, uss is not sufficient to retain

feasibility, then the d.o.f. c∞ is less likely to be useful and hence one obtains more benefit

from increasing nc. This case will occur where the initial condition rather than changes in

the target cause infeasibility.
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7.7 Numerical examples of feasibility

This section will show how the shapes of the feasible regions vary for changes in nc with

the inclusion or not of c∞. We will consider two cases; one is where the current input varies

while the other case is where the target varies.

7.7.1 Feasibility with and without c∞ but varying uk−1

A little discussed issue in the literature is the impact of the initial input on the feasible

regions; this is relevant when there exist input rate constraints and it is also clear that

uk−1 is one component of the parametric space wk. This subsection shows how the feasible

region’s shape and volume change substantially as the current input changes. For ease of

illustration, the examples are restricted to a parameter space of dimension two.

Example: 1

Consider the following state space model:

A =

 0.8 0.1

−0.2 0.9

 ; B =

 0.3

0.8

 ; (7.38)

subject to the input, input rate and state constraints respectively:

− 0.2 ≤ u ≤ 0.5; ‖∆uk‖ ≤ 0.05;


1 0.2

−0.1 0.4

−1 0.2

0.1 −0.4

xk ≤


8

8

1.6

5



Figure 7.7 shows how the 2-step set for system (7.38) changes as uk−1 changes for a standard

OMPC algorithm without c∞ while Figure 7.8 shows how the 1-step set changes for system

(7.38) as uk−1 changes but also including the d.o.f. c∞.

It can be seen from Figures 7.7 and 7.8 that, when the steady state offset is included
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(c∞ 6= 0), the obtained feasible regions for various current inputs offer larger volumes than

those obtained when no steady state offset (c∞ = 0) is considered.

Figure 7.7: Variation in the feasible region of system (7.38) with nc = 2, rk+1 = 0 and
uk−1 = 0.5, 0.2, 0,−0.2.

Figure 7.8: Variation in the feasible region of system (7.38) with nc = 1, rk+1 = 0 and
c∞ 6= 0 and uk−1 = 0.5, 0.2, 0,−0.2.
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Example: 2

Consider the following state space model:

A =

 0.8 −0.53

−0.09 0.97

 ; B =

 0.09

0.005

 ; (7.39)

subject to the input, input rate and state constraints, respectively:

−5 ≤ u ≤ 4; ‖∆uk‖ ≤ 0.4;



1 0.2

−0.1 0.4

−1 −0.2

0.1 −0.4

−1 −0.45


xk ≤



4

1.6

0.8

1.6

0.6


(7.40)

Figures 7.9 shows how the 2-step set, for system (7.39), changes as uk−1 changes for a

standard OMPC algorithm without c∞ and Figures 7.10 show how the 1-step set changes

for the same example as uk−1 changes but also including the d.o.f. c∞.

Again, it can be seen from Figures 7.9 and 7.10 that the feasible regions which are obtained

for various current inputs for the case when c∞ 6= 0 offer larger volumes than those for the

case when c∞ = 0.
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Figure 7.9: Variation in the feasible region of system (7.39) with nc = 2, rk+1 = 0 and
uk−1 = 2, 1, 0,−1,−2.

Figure 7.10: Variation in the feasible region of system (7.39) with nc = 1, rk+1 = 0 and
c∞ 6= 0 and uk−1 = 2, 1, 0,−1,−2.
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Two conclusions are obvious: (i) First it is essential that uk−1 is included as a parametric

state and, moreover, this can have a significant impact on whether a given xk is feasible or

not;(ii) Secondly, in this case, by adding a d.o.f. c∞ as opposed to ck+1 as given significant

enlargements in the feasible region, Figures (7.7-7.8) and (7.9-7.10) have the same number

of d.o.f. but clearly the latter of each pair has a larger volume.

7.7.2 Feasibility with and without c∞ but varying rk

The literature has tended to focus on feasible regions where the concern is the initial con-

dition and regulation, with an almost tacit assumption that the target is the origin. In

practice, the target may change and this can have significant effects on the shape of the

feasible region. In such a case, the traditional OMPC d.o.f., that is c→k
may, or may not, be

effective.

This subsection uses example 1 and shows how the feasible region’s shape and volume

changes substantially as the target changes and moreover emphasises that the standard

d.o.f. in c→k
may have a limited impact in dealing with this.

Figure 7.11 shows how the 2-step set changes as rk+1 changes for a standard OMPC algo-

rithm without c∞ and Figure 7.12 shows how the 1-step set changes as rk+1 changes but

also including the d.o.f. c∞.

It is clear form Figure 7.12 that the algorithm which includes c∞, has a feasible region which

is completely unaffected by the choice of rk+1. It will be noted that equivalent feasible

regions are obtained for all choices of the target since these targets are within equivalent

degrees of freedom c∞. In retrospect, this is to be expected but of course it demonstrates

the huge benefit of this option as opposed to the conventional OMPC algorithm whose

feasible regions, as shown in Figure 7.11, are far smaller in comparison, with the inevitable

risk that frequent infeasible scenarios may arise. The most significant point here is that, if

c∞ is included as a d.o.f., the feasible region is unaffected by the choice of r.
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Figure 7.11: Variation in the feasible region of system (7.38) with nc = 2, uk−1 = 0 and
rk+1 = −1,−0.5, 0, 0.5, 1, 1.2.

Figure 7.12: Variation in the feasible region of system (7.38) with nc = 1, uk−1 = 0 and
c∞ 6= 0 and rk+1 = −1,−0.5, 0, 0.5, 1, 1.2.
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7.8 Simplifying parametric solutions complexity using c∞

In the previous section, we have shown potential feasibility benefits of exploiting the steady-

state offset in a closed-loop prediction paradigm, another interesting point is to wonder if

this steady-state offset (d.o.f), can be used to simplify the complexity of a parametric

solution. That is, if one can obtain a similar volume feasible region with far fewer d.o.f., is

it possible that one may also require far fewer parametric regions?

At this point, it is interesting to perform some case studies to find the complexity of the

associated parametric solution. Where c∞ is included, the implied number of d.o.f. is one

higher and of course the volumes of the feasible regions differ, but here the focus is solely

on the parametric solution complexity.

This section presents the results of simplifying the parametric solution complexity,using the

algorithm of [78], as shown in Tables 7.3 and 7.4, and also using the same examples as in the

previous section; it is accepted this is a very narrow snapshot and a far broader investigation

is possible.

Number d.o.f. 2 3 4 5 6

Without c∞,rk = 0, uk−1 = 0 32 58 79 105 142

With c∞, rk = 0, uk−1 = 0 32 58 79 105 189

Without c∞, rk = 1, uk−1 = 0.5 17 37 55 79 118

With c∞, rk = 1, uk−1 = 0.5 25 51 80 108 218

Table 7.3: Comparison of the number of regions in the mp-QP solution with a d.o.f. of just
ck and with (ck, c∞) for system (7.38).

Summary: There is no obvious pattern, but of course one could argue that including

c∞ gives much larger feasible volumes in general for the same number of d.o.f. so, for

equivalent volumes of feasible regions, it is likely that using c∞ will result in far fewer

parametric regions.
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Number d.o.f. 2 3 4 5 6

Without c∞,rk = 0, uk−1 = 0 40 86 138 193 255

With c∞, rk = 0, uk−1 = 0 40 86 138 193 355

Without c∞, rk = 1, uk−1 = 2 22 59 102 151 218

With c∞, rk = 1, uk−1 = 2 16 44 72 104 237

Table 7.4: Comparison of the number of regions in the mp-QP solution with a d.o.f. of just
ck and with (ck, c∞) for system (7.39).

7.9 Conclusions

Foremost, it is clear that including advance information about targets increases the dimen-

sion of the parameter space for a parametric approach to predictive control. It is recognised

that a parametric solution is often impractical for large parameter spaces and thus one

may infer that, usually, a parametric approach would be difficult to use in conjunction with

advance knowledge scenarios. Nevertheless, this chapter has introduced some reformula-

tions of a typical dual-mode (OMPC) algorithm which can, to a limited extent, overcome

problems with dimension growth. It might be helpful to exploit the ’added value’ in the

future target information and capture this value in fewer variables; in essence, the increase

in the parameter space is linked to the number of variables needed to capture the useful

information in the target trajectory and, if needed, one can capture this with very few

variables and thus reduce the dimension to that required for incorporating the optimisation

variables. Clearly, any simplification of the target information results in some degree of sub

optimality, but that is likely to be a price worth paying to improve in the simplicity of the

parametric solution.

In general, reducing the target information dimension should simplify the parametric so-

lution, but here it is shown that, while the result obtained was as we expected for most

systems, this is not true for all systems. Moreover, the weight R may influence the number

of regions and indeed many other factors, such as the model or constants. Therefore, we
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can argue that it is difficult to obtain analytical results and impossible to apply this concept

for a specific system. In general, this best expectation is not guaranteed.

In summary, the current parametric approaches are unsuitable for exploiting future target

information in general.

This chapter also investigates a feasibility issue in predictive control. It is known that the

volume of the feasible regions is linked to the number of d.o.f., and indeed the choice of

terminal control law, but the consequences of the target and the current input, indeed the

visibility of the importance of the current value of the input, is a core contribution. It is

shown here that the systematic inclusion of steady-state offset allows potentially substantial

increases in feasible volumes and thus caters for a number of important scenarios which

otherwise could lead to infeasibility. The benefits cannot be proven in general, beyond the

obvious scenario of set point changes, and will vary from case to case.



Chapter 8

CASE STUDIES

All proposed OMPC feed-forward algorithms were successfully implemented in the previous

chapters using different process dynamics by means of their mathematical models. These

algorithms have demonstrated the systematic use of future information about target or dis-

turbance changes for tracking both reachable and unreachable time-varying targets. The

aim is to design an efficient feed-forward for both the certain (nominal) and uncertain (ro-

bust) cases. Moreover, the algorithms demonstrated the feasibility assurance and stability

guarantee for time-varying targets. In order to examine the applicability of the proposed

algorithms to the industry, we will demonstrate the advantages of the proposed algorithms

in this chapter with regard to processes undertaken within different industries, such as aero-

nautical, petrochemical and industrial processes. This chapter starts with a description of

the basic components required for the proposed OMPC feed-forward design for both the

nominal and the robust design. Section 8.2 presents the implementation of the proposed

feed-forward design in a fighter aircraft as a nominal case. Section 8.3 presents a nominal

feed-forward design for an upstream gas process while Section 8.4 presents the robust de-

sign for a mechanical process with parametric uncertainty. The chapter ends by offering a

discussion and conclusions.

8.1 Background components

In this section, we will explore the basic components required for these case studies as

follows.

191
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8.1.1 Preview (advance knowledge) with predictive control

Advance information on the target to be tracked is commonly available in most scenarios.

One example of this is car driving. The driver needs advance information about the path

ahead, such as corners, hills, or pedestrians crossing the road. This enables the driver to

make decisions earlier to avoid any expected risks arising while driving. Another example

is a climate regulation system, which makes advance information about solar radiation

available and to enables the controller to take action regarding the desired temperature and

humidity regulation. This phenomenon can be translated into a predictive control approach

by taking into account the future information about changes in the input references when

good reference tracking performance is required.

In conjunction with our contribution in this thesis, we aim to apply the OMPC algorithms

proposed in this thesis to the processes where advance information about target changes is

available and its inclusion is very important. One example of the availability of advance

information about the target or reference changes is found in a flight control system. An

autopilot system requires advance information about the target changes, from the pilot, in

order to prepare for the control action needed to reach the desired condition during the

flight. Another example can be found in refinery plant such as oil or gas refineries, where

the controller should be prepared to take the control action prior to any reference changes

in order to achieve the desired performance. The application of the proposed algorithms to

such examples are presented in the following sections.

8.1.2 The nominal OMPC feed-forward algorithm

We will describe in this subsection, the basic components of the proposed OMPC feed-

forward control nominal design, which were presented in Section 5.5, as follows. The corre-

sponding performance index, J , is given by:

Jp = W1(cT∞Sc∞) + c̃→
T

k
Sc c̃→k

(8.1)

where W1 is a scalar weighting to be selected. Here, the term cT∞Sc∞ penalises asymptotic

offset and the term c̃→
T

k
Sc c̃→k

penalises transient performance, including information on r→k+1
.
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The scalar weighting W1 allows the user to determine the emphasis that he/she wishes to

place on each term.

The input and state or output constraints that are applied for the process to be controlled

can be described in a standard form as:

SMCASU = {x : ∃(c̃k, c∞) s.t Mxk +N c̃→k
+ Tc∞ +Qr→k+1

≤ t} (8.2)

where M, N, T and Q are suitable matrices and t is a vector of the limits.

Thus, it is straightforward to apply Algorithm 5.1 as follows.

min
c̃→, c∞

W1(cT∞Sc∞) + c̃→
T

k
Sc c̃→k

s.t. Mxk +Nc̃k + Tc∞ +Qrk+1 ≤ t (8.3)

We use the optimised c̃→, c∞ in conjunction with (5.6) and (5.13) to determine ck and

implement the first move uk of the control law, as defined in (5.1).

8.1.3 The robust OMPC feed-forward algorithm

In order to use the robust feed-forward design, we will present the basic components for

the proposed OMPC feed-forward control robust design, which was presented in Subsection

6.5.4, as follows. The corresponding performance index, J , is given by:

J = W1(cT∞Sc∞) + c→
T

k
Sc c→k

(8.4)

The proposed robust MCAS (6.64) was also defined in Chapter 6 as:

Mrxk +Nr c̃−→k
+Qrc∞ + Vr r−→k+1

≤ dr (8.5)

where Mr, Nr, Qr and Vr are suitable matrices and dr is a vector of the limits.

Thus, it is straightforward to define Algorithm 6.3, which will be used in this section.

min
c∞,c̃k

J s.t. Mrxk +Nr c̃−→k
+Qrc∞ + Vr r−→k+1

≤ dr (8.6)

We implement the first block element of c̃k in (6.48) to compute the control law as defined

in (6.46).
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8.1.4 Steady state calculation and constraints

For a given model dynamics with a desired target, one can compute the steady-state and

inputs, xss/yss, uss, with xss = kxr∗rk and uss = kur∗rk, respectively, as defined in Chapter

4, equation (4.3). Therefore, one can apply limits on both the input and states/outputs,

such that the target becomes feasible. This can be achieved if the steady-state values lie

within the applied constraints. We will use this concept in the following studies.

8.2 Fighter aircraft manoeuvre limiting using a feed-forward nominal design

One important issue in fighter flight control is the so-called flight manoeuvre limiting. This

is defined as the ability to restrict the response of the aircraft to the pilot input such that the

states remain within a flight envelope [159]. A systematic way of incorporating manoeuvre

limiting in the fighter aircraft control system is to add a restriction to both the angle of

attack and the pitch rate as well as the pilot input stick command [159]. Therefore, the

main goal of the control design in fighter aircraft is to track the angle of attack while keeping

it within a specific range in order to avoid any risky conditions.

Figure 8.1: Definition of angles for aircraft control [60]
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In this section, we will implement the feed-forward design algorithm described in Section

8.1.2 to a fighter aircraft [97] to fulfil manoeuvre limiting. Subsection 8.2.1 presents the

model description of the gas treatment model. Subsection 8.2.2 demonstrates the nom-

inal design for reachable targets while Subsection 8.2.3 examines the nominal design for

unreachable targets.

8.2.1 The aircraft model description

In this study, we will use the model of the fighter aircraft that has been used in [159]. The

aircraft angles are defined in Figure 8.1. The pilot will fly the aircraft under a specified

desired flight condition. The manipulated variable is the stick command, δk and one of the

command outputs that must be controlled is the angle of attack, αk. The critical states

that must be restricted are the angle of attack, αk and the pitch rate, qk [159]. The discrete

state space model of the aircraft is described in [159] for sampling period, Ts = 60 ms, as

follows. The state equation is given by:αk+1

qk+1

 =

 0.9719 0.0155

0.2097 0.9705


︸ ︷︷ ︸

A

αk
qk

+

 0.0071

0.3263


︸ ︷︷ ︸

B

δk (8.7)

The output equation is given by:

yk =
[

1 0
]

︸ ︷︷ ︸
C

αk
qk

 (8.8)

where αk, qk are the states, δk is the input command and yk is the output.

The goal of the design is to track a desired reference angle of attack for the aircraft while

keeping the states of the aircraft dynamics that are corresponding to the angle of attack

and the pitch rate as well as the stick input command within a specific range. In this study,

we will demonstrate the benefits of using advance knowledge on reference future changes

in the feed-forward design for the nominal case. Moreover, we will show how simply the

proposed algorithm can handle constraints in the control design for both reachable and

unreachable targets, which provides better reference tracking performance than is the case

with no advance knowledge.
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8.2.2 Assuming the target is reachable at s steady-state

For the corresponding aircraft dynamics, the steady-state values uss and xss can be com-

puted with xss = kxr ∗ rk and uss = kur ∗ rk as follows. The values of kxr and kur can be

computed by using formula (2.8) in Chapter 2 as:kxr
kur

 =

 C 0

A− I B

−1

; =⇒ kxr =

1

2

 and kur =
[
−0.4597

]
(8.9)

Let us assume that the aim is to track a reference angle of attack (target) of rk = 28; hence,

the steady-state values can be defined as:

xss = kxr ∗ rk =

28

56

 ; uss = kur ∗ rk =
[
−12.9

]
(8.10)

In order to demonstrate how proposed Algorithm 5.1 can handle the reachable targets, we

assume that the reference input to be tracked (target) of rk = 28 and apply constraints on

the angle of attack, αk, the pitch rate, qk and the stick input command, δk, such that the

target is feasible at a steady-state as:−10

−80

 ≤
αk
qk

 ≤
28

80

 ;
[
−20

]
≤ δk ≤

[
36
]

(8.11)

With these state constraints (8.11), the target can be asymptotically reached (feasible)

since the upper limit of the angle of attack is equal to its corresponding steady-state value

in equation (8.10), the upper limit of the pitch rate exceeds its corresponding steady-state

value in equation (8.10) and the lower limit on δk exceeds its corresponding absolute steady-

state value of equation (8.10), as discussed in the previous subsection. This ensures that

the output can asymptotically converge to its steady-state value.

Next, we will perform a closed-loop simulation for the system (8.7) subject to the applied

constraints (8.11), with and without advance knowledge of the reference changes. The

tuning parameters are as follows: the control horizon is nc = 3, the state weighting matrix

is Q = CTC and the weight in the input command is R = 0.1I. As discussed in Chapter
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4, when no advance knowledge is considered the value of na is set to 1 but when the

advance knowledge is considered, the value of na can be appropriately chosen by using the

formulation of Algorithm 4.1, introduced in Chapter 4. In this case, the appropriate value

of na = 10, can be useful. This will be demonstrated in the following simulation.

Figure 8.2 shows the closed-loop responses of the angle of attack tracking for the system

(8.7) with na = 1 and na = 10.
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Figure 8.2: Closed-loop for the step responses of system (8.7) for the reachable target with
na = 1 and na = 10

It is clear to see that the aircraft angle of attack response with advance knowledge of na = 10

is faster than that without advance knowledge na = 1, in which the settling time with na = 1

is about 95 sample time, while for na = 10, about 85 sample time. This implies that the

response improves when advance information on the forward speed reference is considered.

Figure 8.3 shows the evolution of the pilot input commands for the angle of attack tracking

tracking with and without advance information about the reference changes.
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Figure 8.3: the evolution of the pilot input command for the angle of attack tracking tracking
for a reachable target with na = 1 and with na = 10

It can be observed that when advance knowledge is considered (na = 10), the initial control

effort level is slightly lower than is the case when no advance knowledge (na = 1) is consid-

ered. The key observation here is that the input constraints are not active when appropriate

advance knowledge is considered, while they are active when no advance knowledge is con-

sidered.

Figure 8.4 shows the evolution of the perturbations about optimal at each sample for the

aircraft angle of attack, with and without advance information about the reference changes.
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Figure 8.4: the evolution of the perturbations about optimal for the reachable target with
na = 1 and with na = 10
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Readers will notice that the perturbations about the optimal c̃k, are non-zeros at the time

of the set point change since the constraints are active during that time. They will also

notice that, c∞ is non-zero during transients but becomes zero at the steady-state. This

is because the target is infeasible only at that time and becomes asymptotically feasible

at the steady-state. Regarding the inclusion of future information about target changes,

it is observed that, when advance knowledge is considered, the degree of perturbations is

lower than is the case when no advance knowledge is available. Moreover, the perturbations

with advance knowledge become zero earlier than is the case when no advance knowledge

is available.

8.2.3 Assuming the target is unreachable

In this subsection, we will show how our proposed algorithm can effectively handle unreach-

able targets with and without the inclusion of advance knowledge in the optimisation.

Once again, suppose the aim is to track an aircraft angle of attack of rk = 28 with applied

constraints on both the angle of attack and the pitch rate, αk and qk, respectively as follows.−10

−55

 ≤
αk
qk

 ≤
28

55

 (8.12)

In this case the target cannot be reached in either the transient or the steady-state since the

pitch rate of qk = 55 is too small to provide the steady-state value in equation (8.10). Now,

we can apply limits on the inputs such that they exceed their corresponding steady-state

values of equation (8.10).

−25 ≤ δk ≤ 25 (8.13)

A closed-loop simulation for the system (8.7) is performed subject to the applied constraints

(8.13) and (8.12), with and without advance knowledge of the reference changes. The tuning

parameters are; the control horizon is nc = 3, the weighting matrix is Q = CTC and the

input weight is R = 0.1I. The advance knowledge can be set to na = 10, as discussed in

the previous subsection.
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Figure 8.5 shows the closed-loop angle of attack responses for the system (8.7) with na = 1

and with na = 10.
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Figure 8.5: Closed-loop for angle of attack step responses of system (8.7) for an unreachable
target with na = 1 and with na = 10

It can be seen that the output response with advance knowledge is faster than without ad-

vance knowledge. Moreover, the output cannot reach the target but converges to the nearest

point to the target since the state variable (pitch rate qk) is lower than its corresponding

steady-state value.

Figure 8.6 shows the evolution of the pilot input commands for the aircraft forward speed

tracking with and without advance information about the reference changes.
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Figure 8.6: the evolution of the pilot input commands for the aircraft forward speed tracking
for an unreachable target with na = 1 and with na = 10
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It can be observed that, with effective use of advance knowledge (na = 10), less control

effort is required than is the case with no advance knowledge ( na = 1). It is also observed

that the input constraints are not active when advance knowledge is considered while they

are active when no advance knowledge is considered.

Figure 8.7 shows the evolution of the perturbations about optimal at each sample for the

aircraft forward speed tracking with and without advance information about the reference

changes.
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Figure 8.7: the evolution of the perturbations a bout optimal for unreachable target with
na = 1 and with na = 10

It can be clearly seen that the perturbations about the optimal c∞ are non-zero at the time

of the set point change as well as at the steady-state since the target is infeasible during

both the transient and steady-state. It can also be seen that the perturbations about the

optimal c̃k are non-zero only at the time of the set point change since the input constraints

are active at that time. It is observed that when advance knowledge is considered, the

degree of perturbations is lower than is the case with no advance knowledge. Moreover, the

perturbation term c∞ with advance knowledge reaches its steady-state offset earlier than is

the case with no advance knowledge. To seek further evidence of the benefits of the effective

use of advance knowledge in the feed-forward design, we will make a comparison between

the performance indices J for the system (8.7) with and without advance knowledge, as

shown in Table 8.1.
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J with na = 1 J with na = 10

System (8.7) for the reachable target 1.1463e+04 4.8975e+03

System (8.7) for the unreachable target 1.6545e+04 9.9434e+03

Table 8.1: Performance indices for step changes in the target for system (8.7).

It can be clearly seen from Table 8.1 that the value of performance indices J with advance

knowledge is lower than those without advance knowledge. This provides an insight into

the usefulness of using advance knowledge in OMPC design.

8.3 Nominal oil gas plant feed-forward control design

In this section, we will implement the feed-forward design algorithm described in Subsection

8.1.3 in a subsystem model of the gas treatments process, as has been recently studied in

[4]. This model is the second column of the process shown in Figure 8.8.

Figure 8.8: Two column gas treatment process [4]
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Subsection 8.3.1 presents the model description of the gas treatment model. Subsection

8.3.2 demonstrates the robust design for reachable targets while Subsection 8.3.3 examines

the robust design for unreachable targets.

8.3.1 Gas treatment model

The process consists of two columns; the first column is for gas treatment and the second

column for gas purification. In this study the focus will be on the second column in which

the raw gas feed, which is treated in the first column, is purified [4].

There are two outputs from the second column process which must be controlled: the first

output is the throughput gas flow and the second output is the column outlet gas quality.

There are two manipulated variables (control inputs): the column gas outlet flow through

FCV-3 and the column solvent input flow through FCV-4. The discrete transfer function

matrix of the model is given by:

Gc =

 −0.1905z−5

1−0.9683z−1
−0.1905z−6

1−0.9429z−1

−0.1905z−8

1−0.9848z−1
−0.1905z−6

1−0.926z−1

 (8.14)

The model can be described in state space form as a 29-state dimensional model with system

matrices A, B, C and D (see Appendix B.2).

The goal of the gas treatment is to maintain the gas flow as well as its quality at a specified

level. This requires a priori information on the gas feed changes. In this section, we

will deploy the proposed OMPC feed-forward algorithm, described in Section 8.1.2, in the

corresponding column two model to maintain both the gas flow and its quality as desired.

A large set point change in the gas raw feed can directly affect the outlet gas law and its

quality, particularly, when the steady-states are close to the maximum constraints. This

rapid change in the gas raw feed may cause target infeasibility as discussed in Section

5.1. Therefore, we will show how easily the proposed algorithm can handle the transient

infeasibility or unreachable target through the effective use of the advance knowledge with

regard to target changes.
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8.3.2 Assuming the target is infeasible in transients but reachable in steady-state

In this subsection, we will study the scenario in which the target is infeasible in transients

but will asymptotically become feasible.

For specified limits on the outputs, we can apply limits on the inputs using the definition

discussed in Subsection 8.1.4. To do this, we assume that both outputs, the gas flow and its

quality are tracking the targets of r1 = 1.5 and r2 = 0.5, respectively. Thus, the limits on

the steady-state inputs and outputs, uss and yss, for this model dynamic can be obtained

by xss = kxr ∗ rk and uss = kur ∗ rk as:−0.5

0

 ≤
u1ss

u2ss

 ≤
 0

0.19

 ;

0

0

 ≤
y1ss

y2ss

 ≤
1.5

0.5

 (8.15)

This implies that the targets will be feasible at steady-state when the limits on both the

outputs and the control inputs exceed their corresponding steady-state values in equation

(8.15).

Now, it is straightforward to apply limits to the inputs, such that the target is reachable or

unreachable as follows.

Let us assume that a step change in the gas raw feed r1 = 1.5 and a step change in gas

quality is r2 = 0.5 are introduced and the input and output constraints are given by:−3

−3

 ≤
u1

u2

 ≤
3

3

 ;

0

0

 ≤
y1

y2

 ≤
1.5

0.5

 (8.16)

With these constraints (8.16), both targets, r1 and r2 are reachable since all of the steady-

state values lie within the constraint limits.

A closed-loop simulation is performed for the system (8.14) with and without advance

knowledge about the reference changes with the tuning parameters; control horizon is nc =

5, the weighting matrix is Q = CTC and the weight in the input command is R = 0.1I

subject to the applied constraints (8.16) with reachable targets of r1 = 1.5 and r2 = 0.5.

The advance knowledge is set to na = 8, as discussed in the previous subsection.
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Figure 8.9 shows the closed-loop responses of both outputs; the outlet gas flow and the gas

quality for the system (8.14) with and without advance knowledge.
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Figure 8.9: Closed-loop for the output step responses of system (8.14) for a reachable target
with na = 1 and with na = 8

It is clear that the output responses with advance knowledge are faster and better than

those without advance knowledge. This can be confirmed by computing the settling time in

the sample time unit, for the corresponding responses as shown in Table 8.2. It can also be

seen that the level of the interaction between the output variables, with advance knowledge,

is slightly lower than those without advance knowledge.

Settling time with na = 1 Settling time with na = 8

Output 1 for process (8.14) 90 80

Output 2 for process (8.14) 230 225

Table 8.2: Settling time of the closed-loop response for system (8.14) with and without
advance knowledge.

It will be noted that the settling time for both output 1 and output 2 with na = 8 is lower
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than that for those with na = 1. This indicates the benefits of using advance knowledge

about target changes. Further evidence of the advantages of using advance knowledge can

be also illustrated in a tabular form, as shown in Table 8.3.

Figure 8.10 shows the evolution of the control inputs for the column two process for reachable

targets with and without advance information about the reference changes.

0 50 100 150 200 250 300 350 400 450 500

-3

-2

-1

0

1

2

3

Control inputs with and without advance  knowledge
Input1 with n

a
=1

Input2 with n
a
=8

Inputs with n
a
=1

Input2 with n
a
=8

Upper limits
Lower limits

Figure 8.10: The evolution of the input commands of system (8.14) for a reachable target
with na = 1 and with na = 8

It can be noticed that the constraints for the second input with and without advance

knowledge do not offer any saturation while those for the first input do. This is because

both their upper and lower limits exceed the corresponding steady-state values. Another

observation is that the input constraints saturation with advance knowledge are recovered

earlier than those without advance knowledge.

Figure 8.11 shows the evolution of the perturbations about the optimal at each sample with

and without advance information about the reference changes.
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Figure 8.11: The evolution of the perturbations a bout optimal for a reachable target with
na = 1 and with na = 8

It can be also seen that c̃ are non-zero only at times of set point changes due to constraint

saturations. The key observation here is that perturbation levels with advance knowledge

are lower than those without advance knowledge. It will be noted that the perturbations

c∞ are non-zero during transients but become zero for longer since both targets r1 and r2

are infeasible in transients but asymptotically become reachable.

The above discussion shows the advantages of using advance knowledge in the feed-forward

design. Further evidence of the advantages of the effective use of advance knowledge in the

feed-forward design can be shown through comparing the Performance indices, J with and

without advance knowledge is shown in Table 8.3.

8.3.3 Assuming the target is unreachable

In this subsection, will study the scenario where the target is unreachable at steady-state.

To do this, we assume that a step change in the gas raw feed of r1 = 1.6 and a step change

in the gas quality of r2 = 0.3 are introduced. In this case, the target, r1, is unreachable
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since its amplitude lies outside the output limits.

Next, we perform a closed-loop simulation for the system (8.14) with and without advance

knowledge about the reference changes subject to the applied constraints (8.16), with tuning

parameters of control horizon nc = 5, a weighting matrix Q = CTC and the weight in the

input command of R = 0.1I. The advance knowledge is set at na = 8, as discussed in the

previous subsection.

Figure 8.12 shows the closed-loop responses of both outputs: the outlet gas flow and the

gas quality for the system (8.14) with and without advance knowledge.
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Figure 8.12: Closed-loop for the output step responses of system (8.14) for reachable target
with na = 1 and with na = 8

It is clear that, the first target, r1 = 1.6, is unreachable while the second target, r2 = 0.3, is

reachable. This is because, with r1, the corresponding output steady-state value lies outside

the output limits, whereas, the steady-state output with r2 lies within them. However, the

first output can track an artificial target which is as close as possible to the true target

while the second output can smoothly track the true corresponding target. It can also be

seen that the output responses with advance knowledge are faster and better than those

without advance knowledge. This can be ensured by computing the rise time in the sample

time for the corresponding responses, as shown in Table 8.2.
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Figure 8.13 shows the evolution of the input commands for the column two process for

reachable target with and without advance information about the reference changes.
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Figure 8.13: the evolution of the input commands of system (8.14) for a reachable target
with na = 1 and with na = 8

It is clear that the control inputs with advance knowledge are lower than those with advance

knowledge. The key observation here is that, although the targets are unreachable, the

constraints for both inputs are not active.

Figure 8.14 shows the evolution of the perturbations about the optimal at each sample for

system (8.14) with and without advance information about the reference changes.
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It can be seen that the perturbations c∞ are non-zero at the time of the step changes and at

steady-state since both targets are unreachable in both transients and steady-states. The

key point here is that the level of the perturbations with advance knowledge is slightly lower

than that with no advance knowledge. It can be also noticed that the perturbations c̃ are

non-zero at the time of the target changes since the input constraints are active at that

time.

The above discussion shows the advantages of using advance knowledge in feed-forward

design. Further evidence of the advantages of the effective use of advance knowledge in the

feed-forward design can be shown through the performance indices for the gas process with

and without advance knowledge, for both reachable and unreachable targets, as shown in

Table 8.3.

J with na = 1 J with na = 8

System (8.14) for reachable targets 22.7943 9.8937

System (8.14) for unreachable targets 27.729 15.1

Table 8.3: Performance indices for step changes in the target for system (8.14)

It is obvious that the performance indices with advance knowledge (na = 8) are lower

than those without advance knowledge (na = 1). This indicates that the systematic use of

advance knowledge in feed-forward design is beneficial.

8.4 Robust feed-forward design: Parametric uncertainty

In this section, we will study the implementation of the proposed feed-forward design

of Algorithm 6.3, described in Subsection 8.1.3, regarding a benchmark problem with a

parametric uncertainty. Subsection 8.4.1 presents the model description of the uncertain

benchmark problem. Subsection 8.4.2 demonstrates the robust design for reachable targets

while Subsection 8.4.3 examines the robust design for unreachable targets. Subsection 8.4.4

demonstrates how effectively the proposed algorithm can handle model uncertainty.
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8.4.1 Process with model uncertainty

We consider a process that contains a modelling uncertainty. This process is a two-mass-

spring system, adopted from [168]. The process is described in Figure 8.15.

Figure 8.15: The uncertain mass-spring-system [168]

The system consists of two masses, the mass of body 1 and the mass of body 2, m1 and m2,

respectively, and a spring with a stiffness k. The discrete state space representation of the

process model can be described in terms of the masses and the spring constant (stiffness)

as follows.
x1(k + 1)

x2(k + 1)

v1(k + 1)

v2(k + 1)

 =


0 1 0.1 0

0 1 0 0.1

−0.1k/m1 0.1k/m1 1 0

0.1k/m2 −0.1k/m2 0 1


︸ ︷︷ ︸

Ap


x1(k)

x2(k)

v1(k)

v2(k)

+


0

0

0.1/m1

0


︸ ︷︷ ︸

Bp

u1(k) (8.17)

y1(k) =
[

0 1 0 0
]

︸ ︷︷ ︸
Cp


x1(k)

x2(k)

v1(k)

v2(k)

 (8.18)

where x1(k) and x2(k) are the positions of body 1 and body 2, respectively, and v1(k) and

v2(k) are the velocities of body 1 and body 2, respectively.
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The variables Ap, Bp and Cp are the system state space parameters. The manipulated

variable is the control force, u1 and the output that must be controlled, y1(k), is the position

measurement, x2(k).

Assuming that the only parametric uncertainty is the spring constant(stiffness), k and it

varies between 0.5 ≤ k ≤ 2 such that the system is stable and m1 = m2 = 1 [168], thus, the

poly-topic uncertainty model of the system can be described as:

A = Co




0 0 0.1 0

0 0 0 0.1

−0.050.05 1 0

0.05 −0.05 0 1


︸ ︷︷ ︸

A1

,


0 0 0.1 0

0 0 0 0.1

−0.2 0.2 1 0

0.2 −0.2 0 1


︸ ︷︷ ︸

A2


(8.19)

.

B = B1 = B2 =


0

0

0.1

0

 , (8.20)

.

A nominal model is assumed to be A = 0.6A1 + 0.4A2 and B = B1 = B2 is used to define

the feedback controller, K =
[
1.1516 −0.2322 1.6733 0.6907

]
, as the LQ-Optimal for

Q = CTC and R = I.

The goal of the design is to maintain body 2 in a predefined position in order to obtain the

desired performance, in spite of the variation in the spring stiffness (model uncertainty).

8.4.2 Robust feed-forward design assuming a reachable target

In this subsection, we will discuss the OMPC tracking for reachable target. In order to

demonstrate the robust tracking performance for the corresponding system for a reachable

target, we assume that the position of body 2 must track a reference (target) of rk = 2;

thus, for the corresponding model dynamics, the steady-state values for xss can be computed
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using xss = kxr ∗ rk, as follows.

kxr =
[
1 1 0 0

]T
=⇒ xss = kxr ∗ rk =

[
2 2 0 0

]T
∗ rk (8.21)

Thus, we can apply limits to the inputs and states for the corresponding model dynamics,

such that the target is reachable, as discussed in Subsection 8.1.4. These limits can be given

by:

−1 ≤ u ≤ 1;
[
−5 −5 −20 −5

]T
≤ x ≤

[
5 5 5 5

]T
(8.22)

Now, we will perform a closed-loop simulation for the system of (8.17) with and without

advance knowledge about target changes, assuming that the target is feasible. In this

simulation, we assume that the real process is defined through the system parameters of

k = m1 = m2 = 1. It will be noted that the real process is not the same as that for the

nominal model (Ap 6= A), so the simulation is performed for robustness against the model

uncertainty.

In order to consider the advance knowledge, we assume that the position of body 2 must

track a reference (target) of rk = 2, but with a priori information about future target

changes. Therefore, we need to choose appropriate advance knowledge, na, as follows.

Since the corresponding system of (8.17) has a slow dynamics property, as shown in Figure

8.16, the appropriate advance knowledge can be obtained by using Algorithm 4.1 to be very

large. However, we can argue that, as discussed in Chapter 4, for the constrained case,

one can choose a lower na , which is close to nc, to ease constraint handling. In this case,

na = 8 can be useful. This can be demonstrated through a closed-loop simulation for the

system of (8.17) with advance knowledge of na = 8 and the tuning parameters can be set

as follows. The control horizon is nc = 5, the weighting matrix on the states is Q = CTC

and the weight in the input command is R = I.

Figure 8.16 shows the output step responses of the uncertain system (8.17) for a reachable

target, with na = 1 and na = 8.
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Figure 8.16: Closed-loop output step responses of the uncertain system (8.17) with advance
knowledge of na = 1 and na = 8

It is clear that, despite the presence of model uncertainty, the output responses of the

position of body 2 can asymptotically track the reference input (target), rk = 2, with a

slight oscillation. The key observation here is that the response with advance knowledge is

faster than that without advance knowledge.

The control input evolutions (upper plot) and the input perturbations about th optimal

(lower plot) for the uncertain system are also shown in Figure 8.17.
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Figure 8.17: The evolution of the inputs and perturbations of the uncertain system (8.17)
with advance knowledge na = 1 and na = 8.
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It can also be seen that the applied forces (control inputs) are active at the time of the

step change and then move to their corresponding steady-state. It will be noted that the

input perturbations, c̃k are non-zero at the transients and become zero for a longer period

of time. This indicates that there exist deviations from the unconstrained optimal only in

the transients. It is also noticeable that the saturation recovery for the input with advance

knowledge occurs earlier than is the case without advance knowledge. This discussion

provides insights into how smoothly the proposed algorithm can handle the constraints

for reachable targets and effectively use information about future target changes for the

uncertain case.

8.4.3 Robust feed-forward design assuming unreachable targets

In this subsection, we will demonstrate the tracking OMPC for unreachable targets. To

achieve this, we will consider the input and state constraints as:

−1 ≤ u ≤ 1;
[
−5 −5 −8 −5

]T
≤ x ≤

[
1.5 1.5 5 5

]T
(8.23)

and assume that the position of body 2 must track a reference (target) of rk = 1.6. Using

this target, the corresponding steady-state and input can be computed with xss = kxr ∗ rk
and uss = kur ∗ rk as:

xss = kxr ∗ rk =
[
1.5 1.5 0 0

]T
(8.24)

Since the applied target lies outside the applied steady-state output (8.24), therefore, it

cannot be reached (unreachable).

A closed-loop simulation is performed for the system of (8.17) for unreachable targets with

and without advance knowledge about the reference changes. In this simulation, we assume

again that the real process is defined by the system parameters of k = m1 = m2 = 1. It

will be noted that the real process is not the same as in the nominal model (Ap 6= A), so

the simulation is performed for robustness against the model uncertainty.

The tuning parameters can be set as follows. The control horizon is nc = 5, the weighting

matrix Q = CTC and the weight in the input command R = I. The advance knowledge
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is taken to be na = 10 which can also be useful for this system as discussed in reference to

the previous simulation.

Figure 8.18 shows the output step responses for the uncertain system (8.17) for an unreach-

able target with na = 1 and na = 10.
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Figure 8.18: Closed-loop for output step responses of the uncertain system (8.17) with
na = 1 and na = 10

Once again, although the system is uncertain, it is clear that the target rk = 1.6, cannot

be reached as expected but that the position of body 2 tracks an artificial target r̂k, in this

case r̂k = 1.5, which is close as soon as possible to the true target (rk = 1.6). The key

observation here is that the response with advance knowledge is better than that without

advance information about the future target.

The evolution of the inputs (upper plot) and the perturbations about the optimal (lower

plot) for the uncertain system are also shown in Figure 8.19.
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Figure 8.19: The inputs and perturbations of the uncertain system (8.17) with na = 1 and
na = 10

It can also be seen that the control inputs (upper plot) that are used for the system with

and without advance knowledge, are inactive at the time of the step change and then moves

to its corresponding steady-state. It will be noted that the term c∞ for both cases (lower

plot) is non-zero for the long term. This indicates that there exist deviations from the actual

unreachable target. This provides an insight in that the proposed algorithm can smoothly

handle unreachable targets in the presence of model parameter uncertainty.

Evidence for the benefits of using advance knowledge for robust tracking is shown in Table

8.4 by performing a comparison between the performance indices, J of the uncertain system

with, na = 1 and those with na = 8 for reachable and unreachable targets.

J with na = 1 J with na = 8

System (8.17) for reachable target 103.9 80.07

System (8.17) for unreachable target 427.5 373.44

Table 8.4: Performance indices for step changes in the target of the uncertain system (8.17)
for reachable and unreachable targets.

It can be seen from Table 8.4 that the performance indices values of the corresponding
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system with advance knowledge are lower than those for that with no advance knowledge.

This indicates that the appropriate use of advance knowledge on the feed-forward design is

beneficial.

8.4.4 Robust feed-forward design for different uncertain parameters

In this subsection, we will show how effectively can the proposed robust OMPC algorithm

handle model uncertainty with the presence of input and output constraints and the in-

clusion of advance knowledge about future target changes. We will perform a closed-loop

simulation of the step response of the corresponding process (8.19) for three different se-

lected uncertain (spring constant, k) parameters. This advance knowledge is taken to be

na = 8 and the target is rk = 2.

The state space parameters of the real process are assumed to be as follows: Ap = A1

(k = 0.5), Ap = 0.5A1 + 0.5A2 (k = 1.25) and Ap = A2 (k = 2). The tuning parameters are

set as: nc = 5, R = I and Q = CTC. The input and state constraints are.

−1 ≤ u ≤ 1;
[
−5 −5 −10 −5

]T
≤ x ≤

[
5 5 5 5

]T
(8.25)

Figure 8.20 shows the output responses of the uncertain system (8.17), y1, y2 and y3 for

three selected uncertain parameters of k = 0.5, 1.25 and 2, respectively, with advance

knowledge about future target changes of na = 8, assuming that the target is reachable in

both the transient and steady-states.

It is clear that the position of body 2, x2, follows the applied target of rk = 2 for the three

selected spring constant parameters asymptotically with good performance. This indicates

that the proposed algorithm can effectively handle the model uncertainty as well as the

advance knowledge for the tracking scenario.
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Figure 8.20: Closed-loop for output step responses of the uncertain system (8.17) with
na = 8

Figure 8.21 shows the OMPC control inputs (forces) applied to the mass of body 1, m1 of

the corresponding system, u1, u2 and u3 for three uncertain spring constant parameters of

k = 0.5, 1.25 and 2, respectively,
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Figure 8.21: The evolution inputs and perturbations of the uncertain system (8.17) with
na = 8
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It can be observed that the input constraints for all of the spring constant uncertain pa-

rameters are active at the transients. This makes the input perturbations, ck non-zero at

that time. It is also observed that the input perturbation are zero for a longer period of

time since the control input constraints are inactive at that time, as shown in the plot.

8.5 Discussion and conclusions

This chapter studied the applicability to industrial processes of the proposed OMPC algo-

rithms, for feed-forward design with the use of future information about target changes.

The proposed algorithms were examined in reference to three different industrial processes.

It has been shown that the proposed OMPC algorithm can be easily implemented in various

industrial processes, from small SISO to large scale MIMO processes.

Regarding feasibility and stability, the obtained results show the effectiveness of the pro-

posed Algorithm 5.1. The results also show the ability of the proposed control structure

to handle process constraints as well as advance knowledge for both the reachable and un-

reachable targets. The key point here is that the controller tackles the transient target

infeasibility by artificially adding an additional d.o.f, c∞ rather than increasing the control

horizon, nc

Regarding the robust case, the results show the efficacy of the proposed Algorithm 6.3

in dealing with constrained uncertain systems with an effective use of advance knowledge

about the target changes for both reachable and unreachable targets.

Regarding the use of advance knowledge in the proposed feed-forward design, both Algo-

rithms 5.1 and 6.3 are simple and easy to implement in various industrial processes, thereby

providing better tracking performance compared to that without using future information

about target changes. The benefits of using advance knowledge were demonstrated through

comparing the output responses with advance knowledge and those without advance knowl-

edge.

It has been shown that, through the use of advance knowledge, the output responses are
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faster than those without advance knowledge. The advantage of using advance knowledge

is also demonstrated by means of the input control evolution plot, in which less input

effort is used when the advance knowledge is included. Further evidence of the benefits

of using advance knowledge within tracking OMPC algorithms was shown in tabular form,

where the performance indices of the corresponding systems with advance knowledge were

demonstrated to be lower than those without advance knowledge.



Chapter 9

CONCLUSIONS AND FUTURE WORK

The thesis discusses how to improve tracking with predictive control, using dual-mode or

OMPC approaches. In this chapter, we will present the conclusions of the thesis followed

by future work recommendations. Section 9.1 presents a summary of the contribution of

this thesis. Section 9.2 presents an overall summary of the conclusions, while Section 9.3

identifies, the weaknesses found in the approaches proposed in this thesis and proposes

future work.

9.1 Thesis contribution

Following a brief review of the literature on the approaches to tracking within MPC, it is

clear that very few researchers have utilised advance information on target changes, and the

common assumption is that no advance information is available. The thesis makes several

important contributions, which relate to MPC tracking improvement, particularly, the use

of advance information about target changes in a feed-forward design, using both QP and

mp-QP solutions. These contributions are listed as follows:

• It has been shown that the default feed-forward arising from a conventional MPC

algorithm may be deficient because the assumptions implicit in the optimisation are

relatively limited and only valid for a fixed target. If the future target is changed,

then the optimisation and degrees of freedom within it require essential modification.

• The thesis defined an algorithm that can make effective use of advance knowledge of

target changes, by embedding this into the on-line optimisation and evaluating the

222
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approach using Matlab simulation. Another consideration is that the future values of

the target can be treated as states in a parametric optimisation with an associated

reduction in computational complexity.

• In practice, there is a scenario in which the constraints are active in the steady-state,

which can prevent the achievement of the desired target. Recent work has proposed an

artificial target which is reachable, but the challenge here is how to compute and choose

this target, as well as how to incorporate it into the MPC optimisation. Therefore,

the thesis introduces a novel algorithm that computes and chooses an artificial target

and incorporates it into the performance index using dual-mode or OMPC algorithms

to demonstrate the impact on both terminal constraint and feasibility.

• It has been shown that uncertainty can cause a loss of feasibility, which would result in

the MPC becoming undefined. Therefore, the thesis analysed the existing approaches

that are robust to uncertainty and proposed several modifications to guarantee this

robustness. Recent work has been carried out in this area, such as a robust invariant

set approach, but this is limited to specific scenarios. The thesis defined an alternative

set (Robust MCAS), which can effectively handle both reachable and unreachable

targets. The proposed MCAS approach, is flexible and makes it easy to deploy the

OMPC algorithms.

• It is clear that including advance information about targets increases the dimension

of the parameter space for an mP-QP approach to predictive control. It is recognised

that mP-QP is often impractical for use with large parameter spaces and thus one

may infer that mP-QP will tend to be ineffective for use in conjunction with advance

knowledge scenarios. Nevertheless, this thesis introduced several reformulations of

a typical dual-mode (OMPC) algorithm which can, to a limited extent, overcome

problems related to dimension growth.

• Finally, the thesis outlined the consequences of including core parameters, such as

the target and the current input, within the complexity of any parametric solutions.

Moreover, other important issues that have been demonstrated include the influence of
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the allowance of the steady-state offset on the feasibility and computational complexity

of parametric solutions.

9.2 Overall conclusions

The thesis investigated the impact of advance knowledge on system performance using

OMPC algorithms. It has shown that this response, where there exists too much advance

knowledge, may result in earlier anticipation than desired, whereas too little may lead to

a delayed response. A critical insight is that it is impossible to provide generic, useful

and theoretical results regarding the optimal amount of advance knowledge to use, due

to the dependence on this amount of tuning, system dynamics, and constraints. At this

point, the thesis introduces an algorithm which makes it possible to choose sensible value

for the advance knowledge for any given system. The algorithm provides simple guidance

to evaluate this amount, that appears to be effective in the unconstrained case and would

be easy to deploy in general.

In order to counteract the constraints, it is better to use an amount of advance knowledge

close to the number of d.o.f. At this point, the thesis introduces an OMPC algorithm, which

handles constraints alongside advance knowledge. This algorithm has embedded the default

unconstrained feed-forward in the optimization with a small value of advance knowledge.

The algorithm provides good results with optimal behavior and easy constraint handling,

thus in a manner that is useful to a field engineer who simply wishes to ensure they are

approximately correct. The efficacy and simplicity of this approach are demonstrated using

MATLAB 2017a simulation.

One important component required to deal with the constraints is the admissible set al-

gorithm, so the thesis has developed an alternative to this algorithm, denoted as (MCAS)

algorithm. It is shown that this algorithm can handle time variation in both reachable and

unreachable targets. It is also shown, that it can be extended to be implemented effec-

tively in uncertain systems to counteract both regulation and tracking problems. Moreover,

the proposed algorithm may easily be used to solve parametric optimisation problems. The

differences lie solely in the autonomous model structure and hence in the sample constraints.
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At times, the desired target will be unreachable, in which scenarios a default MPC algorithm

becomes ill-defined. This thesis proposes a simple alternative, which caters for both transient

and permanent infeasibility in the target without requiring changes to the algorithm on-line.

Moreover, it shows how, even in this case, the systematic embedding of advance information

is straightforward and beneficial.

The thesis shows how the previous contributions can be extended in a straightforward

manner to cater for parameter uncertainty by proposing algorithms for uncertain (LPV)

systems, for both reachable and unreachable target scenarios. The algorithms provide robust

guarantees of feasibility and convergence while utilising a simple QP optimisation on-line.

The thesis introduces an algorithm, which demonstrates how to reduce the dimension of

parametric space for parametric approaches. In general, the study of reducing target infor-

mation can simplify the parametric solution, but here it is shown that, for most systems,

the result is as expected, but is not true for all systems. Moreover, the weight R may in-

fluence the number of regions and indeed many other factors, such as the model dynamics.

Therefore, we can argue that analytic results are impossible and that we cannot apply this

concept to a specific system. In general, this best expectation is not guaranteed.

The thesis investigates the impact of including the target and the steady-state offset (ar-

tificial perturbation) into the parametric solution to the feasibility issue in MPC. It has

shown that no obvious pattern exists, but of course one could argue that including c∞ gives

the much larger feasible volume in general for the same number of d.o.f, so, for equiva-

lent volumes of feasible region, it is likely that using c∞ will result in far fewer parametric

regions.

In summary, the thesis shows that tracking within the predictive control is improved through

the design of an efficient feed-forward compensator using OMPC algorithms with advance

knowledge information of the target changes effectively. For parametric approaches, how-

ever, there may not exist an effective way to utilise advance information about target

changes.
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9.3 Future work and weaknesses

9.3.1 Weaknesses

The main weaknesses identified in this research are listed as follows.

• The admissible set (MCAS) constructed in this thesis, may be a challenge because

of the dependence on the processors. Moreover, in the case of constraints on the

boundary, the MCAS may not converge in a finite limit.

• For large dimensional systems, the parametric solutions discussed in Chapter 7 may

be too complicated to compute.

9.3.2 Future work recommendations

Future work might consider the following proposals:

• The use of the steady-state offset for improving feasibility is discussed in Chapter 7.5.

This discussion focuses on proposals which improve performance and feasibility but,

in further study, it is recommended to choose a more systematic performance index

and allow alternatives to the steady-state offset in the optimisation problems.

• The proposed algorithms proposed in Chapters 4-6, are difficult to deploy with the

decentralised predictive control system since the interaction between the controllers

must be precise. Accordingly, we must consider how to modify these and apply them

to the decentralised predictive control system.

• The work done in this thesis could be applied on hardware tools such as PLC to prove

the efficacy of the proposed algorithms.

• Finally, the repercussions of the parametric solutions outlined in Chapter 7 might be

expanded by undertaking a more comprehensive and wide-ranging set of case studies.
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Appendix A

CREATING RANDOM SYSTEMS

This appendix presents the procedures required to create three different random systems

(over damped, critical damped and unstable systems) as follows.

A.1 Defining random eigenvalues

For nth order systems, there must be n eigenvalues (λ1, λ2, · · · , λn), these values can be

determined as required, using the following formulas.

λi = (bi − ai)X + ai, i = 1, 2, 3, · · · , n. (A.1)

where X is a random variable drawn independently from a standard uniform distribution

with values in the interval (0,1) and n, bi, ai are the number and upper/lower limits of the

eigenvalues respectively.

A.2 Creating random system matrices

In order to create a random nth order system, we need to create random system matrices

A, B, and C as follows.

A.2.1 The matrix A

The system matrix A is given by:

A = MΛM−1 (A.2)

243
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where M and Λ are random matrices with elements drawn independently from distribution

A.1.

The eigenvalues are chosen such that:

• For over damped systems, all the eigenvalues are different, and must satisfy this con-

straint; 0 ≤ λi ≤ 1.

• For critical damped systems, all the eigenvalues are equal real values, and must satisfy

this constraint; 0 ≤ λi ≤ 1.

• For unstable systems, at least one eigenvalue must be greater than 1.

A.2.2 The matrix B

The system matrix B is given by:

B = V

where V is a random matrix with elements drawn independently from distribution X. The

controllability of the system can be tested through computing the controllability matrix.

C =
[
B AB A2B · · · An−1B

]
(A.3)

The system is controllable, if the controllability matrix C must has a full rank [7].

A.2.3 The matrix C

The system matrix C is given by:

C = W
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where W is a random matrix with elements drawn independently from distribution X. The

observability of the system is tested through the observability matrix.

Q =



C

AC

A2C
...

An−1C


(A.4)

The system is observable, if the observability matrix Q has a full rank [7].



Appendix B

MODEL STATE SPACE PARAMETERS

This appendix presents model matrices, A,B,C and D, which describe the process model of

both the column two gas treatments of (8.14) and the compressor of (4.21). These matrices

are determined by converting the transfer matrix to state space formulation using a (tf2ss)

function in MATLAB 2017a. The obtained matrices are described in the following sections:

B.1 Compressor model (4.21)

A =

A11 A12

A21 A22

 (B.1)

where

246
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A11 =



1.881 −0.882 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.8534 −0.8589 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


(B.2)
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A12 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


(B.3)
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A21 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


(B.4)
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A22 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.9761 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1.2919 −0.3060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


(B.5)

B =

B1

B2

 (B.6)

where
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B1 =

0.0156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0625 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T
(B.7)

B2 =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.125 0 0.0625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T
(B.8)

C =
[
C1 C2

]
(B.9)

where

C1 =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0049 0.0047 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0178 0.0169 0 0


(B.10)

C2 =

0 0 0.1760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.0431 −0.0291 0 0 0 0


(B.11)

D =

0 0

0 0

 (B.12)
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B.2 Column two gas-plant model (8.14)

A =



0.9683 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0.8948 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9429 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9260 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


(B.13)

B =

0.5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 1 0 0 0 0 0 0

T
(B.14)
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C =

0 0 0 0 −0.3810 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.9140 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0.5258 0 0 0 0 0 0 0 0 0 0 0 0 0 1.1850 0


(B.15)

D =

0 0

0 0

 (B.16)




