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Abstract 

Ice material models often limit the accuracy of ice related simulations. The reasons for this are 

manifold, e.g. complex ice properties. One issue is linking experimental data to ice material modeling, 

where the aim is to identify patterns in the data that can be used by the models. However, numerous 

parameters that influence ice behavior lead to large, high dimensional data sets which are often 

fragmented. Handling the data manually becomes impractical. Machine learning and statistical tools 

are applied to identify how parameters, such as temperature, influence peak stress and ice behavior. 

To enable the analysis, a common and small scale experimental database is established.  
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1. Introduction 

1.1. Motivation 

Material modeling of ice still remains a challenge due to its inherent complexity as well as gaps in 

experimental data. This research focuses on linking experimental data to ice models and underlying 

ice mechanics. A large database of existing ice experiments is established and analyzed with machine 
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learning and statistical tools to identify patterns. The aim is to support material modeling regarding 

decisions on which and how to include parameters, such as temperature or strain rate, in models for 

ice related simulations. Moreover, the addressed question is whether these patterns agree with the 

state-of-the-art understanding of ice mechanics.  

Generally, ice mechanics are investigated on a broad range of scales and applications, from single 

crystals and small laboratory experiments with specimens of the size of centimeters to glaciers and ice 

sheets, see e.g. (Montagnat et al., 2014; Schulson, 2015). In this research, the focus is on experimental 

data and the identification of dominant features regarding ice behavior. This is seen as a first step 

towards material models for ice related simulations of different applications.  

The complexity of ice is illustrated in ice-structure interaction (ISI) processes. The forces acting 

between the structure and the ice fluctuate considerably both in space and time (Ralph and Jordaan, 

2017; Yue et al., 2009). Most of the global load is transmitted though small regions of the total 

interaction area, called high pressure zones. Within these zones, ice is highly confined and can transmit 

high local loads. Lower confinement, on the other hand, limits the ability of ice to transmit loads. 

Hence, further away from the central area, less confined ice tends to fail under compression. This leads 

to fracture, spalling and extrusion of material, see (Jordaan, 2001) for a review of ISI. 

This behavior is a result of the material properties of ice. The characteristics of ice change depending 

on numerous parameters such as strain rate (Petrovic, 2003), grain size (Batto and Schulson, 1993), or 

confinement, e.g. (Renshaw et al., 2014). The occurring phenomena cover viscous ductile or brittle 

behavior, hardening and softening, dynamic recrystallization as well as size dependent fracture 

(Schulson and Duval, 2009; Timco and Weeks, 2010). Consequently, ice material models that reflect 

this complexity are needed for accurate ice interaction simulations. However, in contrast to well 

established steel material models for the ship or offshore structure, there is no standardized material 

model available for ice that can capture all effects during the interaction process.  

A first step towards complete material models for e.g. ice interaction simulations is the development 

of material models suitable for the simulations of small scale experiments. This comes with the benefit 

of a controlled environment and known material properties. Nevertheless, the difficulties developing 

material models for small scale simulations are already manifold.  

To begin with, there are gaps in experimental data. For example, little data exists on shear and tensile 

strength of ice (Timco and Weeks, 2010). Also, a lot of data exists for ice under uniaxial compression, 

but much less for bi- and triaxial tests under high confinement. Yet, in reality, ice is often under a multi-

axial state of stress (Schulson and Duval, 2009). Regarding ice mechanics, many topics are under 

investigation, for instance how damage and recrystallization alter ice properties (Snyder, 2015), how 

ice fails under high triaxial stress states (Renshaw and Schulson, 2017), the scaling nature of tensile 

fracture (Dempsey et al., 2018) or the physics of ice-ice friction (Schulson, 2018). Additionally, some 

areas remain subject of ongoing discussion, for example the scaling of small scale and model ice tests 

(Palmer and Dempsey, 2009; Palmer and Croasdale, 2013; von Bock und Polach and Molyneux, 2017), 

or ice-induced vibrations (Määttänen, 2015).  

Also, much data exists, see e.g. (Timco and Weeks, 2010). Yet, to the authors’ knowledge there is no 

general purpose and publicly available experimental database, though desirable and for instance 

recommended by (Ehlers et al., 2018). Benefits are for instance that the analysis of large data sets can 

make the results less susceptible to variability, or the possibility to investigate distributions of results. 



When data is collected and combined, it is often limited to specific measurements, e.g. to investigating 

the relation between flexural strength and brine volume (Timco and O'Brien, 1994). On the other hand, 

general purpose data sets need to be high dimensional to capture the complex ice properties and all 

potentially influencing parameters. As a result, such data sets can become too large to handle 

manually. Lastly, it is not straightforward to handle missing measurements. 

The ability of machine learning and statistical methods to identify patterns in data is particularly useful 

under such circumstances, see e.g. (Chicco, 2017; Larrañaga et al., 2006). Yet these methods are 

applied rarely or not at all in ice mechanics.  

Here, machine learning and complementary statistical methods are used to derive relationships from 

the data and draw conclusions that can be used in ice material modeling. More specifically, the 

objective is to identify how parameters, such as temperature or grain size, influence peak stress and 

ice behavior. It is investigated whether the results from the analysis, based on a large data set, agree 

with commonly observed experimental relationships. To enable the analysis, a common and general 

purpose small scale experimental database is established, to be used and extended by everyone.  

1.2. Overview and methodology 
A graphical abstract is given in Figure 1. In the first part of this paper, Section 2, the focus is on 

establishing the database. A literature review is done to identify all parameters (i.e. features in data 

analysis) that influence the outcome of ice experiments. In this regard, the collection of data is 

considered general purpose. However, for the current database some limitations apply. The data 

consists of small scale compression and tensile test data, because a lot of data is available and the 

process of systematically gathering it is straightforward. Other types of tests, e.g. creep or prestrain, 

are not included, because the systematic collection is more elaborate due to an increased number of 

influencing features, e.g. prestrain level and prestrain strain rate.  

The data analysis is described in the second part, Sections 3 and 4. It consists of two steps; filtering the 

data to obtain method specific sub data sets and applying the machine learning and statistical methods 

to those sub data sets.  

With respect to peak stress, correlation and model reduction techniques are applied to the data. A 

common method to quantify univariate correlation is the Pearson correlation coefficient (PCC). For 

instance, it is used to investigate relationships between symptoms for post-traumatic stress disorder 

and post-traumatic growth (Liu et al., 2017). Here it is applied to correlating features to peak stress 

and thereby identifying the most important features.  



Since there exist many potential influencing features in experiments, e.g. temperature or grain size, 

model reduction is applied to identify irrelevant or redundant features. A typical tool for model 

reduction is the principal component analysis (PCA). It aims to reduce data dimensionality by 

transforming a set of multivariately correlated variables to a smaller set of uncorrelated variables 

(‘principal components’). The smaller set still explains most of the information of the original set while 

better capturing its variability. It is commonly used to examine the contribution of variables to variance 

in data and pattern recognition, e.g. (Keeley and McDonald, 2015; Mantovani et al., 2012).  

Because ice changes its behavior under different conditions, one aim is also to investigate the 

predictive value of features with regard to the type of ice behavior, e.g. ductile, splitting etc. This is a 

supervised classification task, and various machine learning models can be applied. Preliminary runs 

with different models point at using decision trees (DT) for this. They are a widely used classification 

tool and work for both categorical and numerical data. In addition to that, results are easy to interpret 

and it is straightforward to handle missing data via surrogate splits. In principle, they recursively 

partition the data set into subsets to form conditional statements about the data. These decision rules 

help find the most decisive features leading to a class of observations.  

There is a wide range of applications for DTs, for example the prediction of protein types (Sankari and 

Manimegalai, 2017) or the identification of risk factors associated with metabolic syndrome (Tayefi et 

al., 2018). The DTs are applied in order to rank the most important features for ice behavior prediction. 

Based on this ranking, the input data for training final DTs is chosen. Lastly, two models are given to 

predict global brittle or ductile behavior in saltwater and freshwater ice experiments.  

Generally, the choice of the described methods is guided by interpretability and straightforward 

application to models, which doesn’t favor other options such as dimensional analysis or different 

machine learning methods e.g. artificial neural networks or support vector machines (Chicco, 2017; 

Palmer, 2008).  

Lastly, in Sections 4 and 5 the results are discussed and compared to the commonly agreed ice 

mechanics relationships described in Section 2.1.  

Figure 1 - Graphical abstract 



2. Database 
Below, the database is presented. To begin with, factors that are thought to influence the peak stress 

and behavior of ice are reviewed. Then, the methodology of data collection is outlined.  

2.1. What to include 
To enable decisions about what to include in the database, the response of ice to stress or load under 

different influencing factors (features) is investigated. Here, the response comprises two aspects. First, 

the peak stress the specimen could sustain, i.e. its strength. Second, the qualitative type of behavior 

such as ductile or brittle and, where possible, more specific sub-types, e.g. Coulombic faulting.  

Influencing features can be either intrinsic properties, e.g. grain size, or external factors such as 

confinement or stress state. The assessment is done for small scale experimental data without going 

into detail. The causes for specific behavior are not described here. For an in-depth description of ice 

as a material and its behavior the reader is referred to e.g. (Fletcher, 1970; Hobbs, 2010; Palmer and 

Croasdale, 2013; Sanderson, 1988; Schulson and Duval, 2009).  

A systematic overview of influential features should start with the history of the material. Ice usually 

contains flaws. Inclusions, e.g. gas, and damage can exist depending on formation, age and precursory 

stress (Stone et al., 1997; Timco and Weeks, 2010). Its history also influences other intrinsic properties 

such as ice type, grain size, porosity (gas and brine), temperature and salinity. These, in turn, affect the 

response to applied stress.  

One way to see this is by looking at strength, or peak stress, respectively. For example, uniaxial tensile 

strength appears to be sensitive to specimen size, grain size and brine volume and less sensitive to 

temperature (Hawkes and Mellor, 1972; Schulson et al., 1984; Schulson, 1999). Compressive strength 

appears to be insensitive to size (Schulson and Duval, 2009), but depends on grain size (Schulson, 

1990), porosity and temperature (Moslet, 2007), and ice type (Kuehn and Schulson, 1994). Prestrain 

or damage also affects the compressive strength and behavior type (Snyder et al., 2016).  

Besides intrinsic properties, external factors must be considered. They are typically connected to test 

conditions. However, from the material’s perspective it comes down to stress state, strain rate and 

strain. First, ice under uniaxial tension is considered. Under this condition, ice tends to fail suddenly 

under small strains (~ 0.01 −  0.1 %), mostly in a brittle manner and independent of strain rate 

(Hawkes and Mellor, 1972; Schulson et al., 1984; Schulson, 1999). To the authors’ knowledge, there is 

no data on tests under bi- or multiaxial tensile stress states.  

In contrast to tension, the behavior of ice under compressive stress states depends on strain rate (Ince 

et al., 2016; Timco and Weeks, 2010). Different combinations of stress state and strain rate result in 

changes of behavior. Under uniaxial compression, both brittle, e.g. axial split, and ductile failure can 

be observed. With increasing confinement, that is bi- or triaxial stress states, other behavior types 

occur, for instance Coulombic- and plastic faulting (Renshaw et al., 2014). In practice, ice is generally 

under a triaxial state of stress.  

Next, the maximum or failure strain is discussed. Brittle failure under compression is linked to small 

failure strains ~ 𝜖 ≤ 0.5 % and higher strain rates ~ 𝜖̇  ≥ 10−3. For ductile behavior, strains can be 

larger. Under very low strain rates, i.e. ~ ϵ̇ ≤ 10−5, ice can even sustain strains of more than one 



(Schulson and Duval, 2009). However, such low strain rates are more related to flow in glaciers and ice 

sheets and less important for ice interaction scenarios.  

One aim of this research is to evaluate if the above described experimental correlations can be 

validated through statistical and machine learning analysis of the large database. Despite this being 

done regarding peak stress and ice behavior, the same approach could be applied to other correlations 

in ice mechanics. 

2.2. Features and observations 

The database comprises about 3000 observations. Each observation represents one test run2 with 

several measurements or features, respectively, e.g. peak stress, porosity, temperature etc. This 

includes uni-, bi- and triaxial compression tests and uniaxial tensile tests under different conditions. 

The composition and the sources are given in Table 1. The decision about which features to include is 

based on the above review. The database is in table format, rows correspond to observations and 

columns correspond to the features described below and their units. Generally, the aim was not to 

collect all available data, but rather to initiate the database and obtain enough observations to 

demonstrate the analysis methods.  

 

Table 1 - Overview of database 

Total number of entries 2939 

Of which: 

Type of experiment Behavior classification 

uniaxial compression 2303 brittle 979 

biaxial compression 228 c-fault 33 

triaxial compression 354 p-fault 33 

uniaxial tension 53 ductile 1329 

shear3 1 transitional 82 

 other or undefined 549 

Type of water used to make the ice  

freshwater  729 

saltwater  2211 

undefined 3 

Sources: 

 

(Arakawa and Maeno, 1997; Currier and Schulson, 1982; Golding et al., 2010, 

2012; Golding et al., 2014; Gratz and Schulson, 1997; Häusler, 1981; Hawkes and 

Mellor, 1972; Haynes, 1978; Haynes and Mellor, 1977; Iliescu and Schulson, 

2004; Jones, 1982, 1997; Mellor and Cole, 1982; Mizuno, 1998; Nadreau et al., 

1991; Richter-Menge and Jones, 1993; Rist and Murrell, 1994; Schulson, 1990, 

                                                           
2 Sometimes only average values from several tests are published. In that case those values are taken as a 
single observation, although they reflect more than one test.  
3 Using only one value for shear experiments follows Timco and Weeks, who write “many […] results were 
generated using test techniques which impose unrealistic (and unknown) normal stresses on the failure plane.” 
and give limit values from “the more reliable tests” which we simply averaged and took in as one ‘example’ 
shear value (Timco and Weeks, 2010). 



1999; Schulson et al., 2006; Schulson and Buck, 1995; Schulson and Gratz, 1999; 

Smith and Schulson, 1993; Strub-Klein, 2017; Strub-Klein and Sudom, 2012; 

Timco and Frederking, 1984; Timco and Weeks, 2010; Weiss and Schulson, 1995; 

Zhang et al., 2011; ZhiJun et al., 2011) 

 

Additionally, data from the UNIS project from 2004 to 2011 is included: (Høyland, 

2007; Moslet, 2007; Strub-Klein and Sudom, 2012) 

 

In the following, the features included in the database are listed and discussed if required. Some 

general remarks are given afterwards.  

1. Type of test: shear, tensile, uniaxial/biaxial/triaxial compression 

Uniaxial and biaxial compression indicate no stresses in two or one directions, respectfully. 

2. Global principal stresses 𝜎1, 𝜎2, 𝜎3 in MPa 

Includes the global principal stresses as given by the experimental setup at the time of peak stress. The 

stress distribution in the specimen is expected to be heterogeneous due to the crystal structure. As a 

result, local stress states can vary both in direction and magnitude (Grennerat et al., 2012).  

3. Global peak stress 𝜎p in MPa 

Here, peak stress is defined as the global maximum stress the specimen could sustain during the 

experiment, usually in the direction of the biggest principal stress, e.g. for uniaxial tensile tests it is the 

tensile strength, for uniaxial compressive tests it is compressive strength. For brittle failure, peak stress 

is also failure stress. For ductile failure, this is given as the maximum of the stress-strain or stress-

displacement curve during the experiment. Like principal stresses, local stress may be higher and not 

oriented in the same direction as the global peak stress.  

4. Terminology for peak stress as originally described by the author 

Different synonyms for peak stress are used by researchers. Peak stress is also termed critical stress, 

maximum stress or strength etc. In some cases it is also called yield stress or yield strength which 

implies material plasticity, although it is defined as peak stress. If one of these synonyms is used, it is 

indicated in this column.  

5. Homogenized qualitative behavior.  

Here, the original behavior description by the author is homogenized as far as possible. The aim is to 

enable better analysis of the data based on an agreed set of behavior categories. So far, this set 

includes the following:  

 Brittle 

o C-Fault 

o P-Fault 

o Brittle shear 

o Brittle tensile 

 Ductile 



 Transition 

A corresponding type from the list is chosen according to the original description or if applicable, from 

the characteristics of the given stress - strain or load - time curves. A smooth trajectory indicates ductile 

behavior whereas for brittle behavior the curves show a sharp peak followed by a sudden drop 

(Schulson, 1999; Snyder et al., 2016). C- and P-faulting are two distinct modes of brittle-like shear 

faulting under compression, for instance described in (Golding et al., 2010; Renshaw et al., 2014). 

Brittle shear and brittle tensile indicates failure in pure shear, e.g. asymmetric four-point bending, and 

pure tensile experiments. The term transition indicates intermediate behavior between ductile and 

brittle. It is only used when explicitly mentioned by the original authors. Some exemplary behavior 

categories are shown in Figure 2.  

 

6. Limit strain, 𝜖 

This indicates global limit strain. It is usually calculated with the displacement and the initial specimen 

length(s). If published, limit strain is included in all directions. Local strain fields are usually 

heterogeneous and should not be confused with the global strain.  

7. Type of limit strain 

This indicates whether the global limit strain is given at peak or failure stress. Additionally, in the future, 

this should include information as to how the strain was obtained. Several factors influence limit strain 

(and also strain rate) for instance interface effects or the stiffness of the test setup.  

8. Global strain rate, 𝜖̇ in 
1

s
 

This indicates global strain rate as given by the original author. Typically, the global strain rate is 

calculated based on global strain at peak stress. Like principal stresses and local strains, local strain 

rates can vary significantly (Grennerat et al., 2012).  

9. Ice temperature in °C 

Figure 2 - Exemplary behavior categories in dependence of triaxiality and strain rate (left) and exemplary stress time 
curves (right). 



For small specimens, this is usually given as the room temperature during storage and experiment. The 

temperature can also vary within the specimen, but this is expected to be less pronounced for small 

scale tests.  

10. Grain size in mm 

This is defined as the average grain size, which implies isotropic material and is usually only given for 

granular ice. However, it should be noted that the isotropy assumption is not always valid, depending 

on the ratio of specimen size to grain size (Dempsey et al., 1999). The grain size may also be given for 

columnar ice. In this case, since column diameters tend to vary, it must be clear where and how the 

grain size was measured. To the authors’ knowledge, there is no standardized way to measure and 

calculate average grain size yet. Differences between measuring procedures are known, see e.g. (Lehto 

et al., 2014; Roebuck et al., 2004), and possibly influence the data.  

11. Total porosity (brine and air) in %  

12. Bulk salinity of the ice in ‰ 

13. Type of ice, e.g. columnar or granular/polycrystalline 

14. Type of water used to make the ice 

The following types comprise most of the water types used in experiments: 

 Fresh water [f] 

 Salt water [s] 

 Tap water [t] 

 Distilled/degassed/deionized water [d] 

They are also sometimes combined, e.g. distilled tap water without degassing. This point is important 

for comparison. More information on water type is given in the comment column.  

15. Columnar loading 

For columnar ice it is documented whether it was loaded across, along or at a 45° angle to the columns. 

This influences its response to loading, see e.g. (Timco and Weeks, 2010).  

16. Hydrostatic pressure, 𝜎h, in MPa 

To compute triaxiality (see feature 18), the hydrostatic pressure, or mean stress, is calculated with the 

principal stresses as  

 
𝜎h =

𝜎1 + 𝜎2 + 𝜎3

3
 

(1) 

 

17. Equivalent, von Mises Stress, 𝜎e, in MPa 

This is also used for computing the triaxiality with the principal stresses as input values and calculated 

as  

 
𝜎e =

1

√2
√(𝜎1 − 𝜎2)2 + (𝜎1 − 𝜎3)2 + (𝜎2 − 𝜎3)2  

(2) 

 



18. Triaxiality, 𝜂  

Triaxiality is a measure which relates hydrostatic, 𝜎h, to shear stress, which can be represented by the 

ratio of 𝜎hand the von Mises stress, 𝜎e 

 𝜂 =
𝜎h

𝜎e
 

(3) 

Triaxiality is for instance used for plastic limit strain failure criteria in crashworthiness computations of 

metal sheets (Effelsberg et al., 2012). In Figure 3, some examples of two-dimensional stress states are 

given. A positive triaxiality value indicates a state of hydrostatic tension. Biaxial stress states are limited 

to values of  −
2

3
≤ 𝜂 ≤

2

3
, whereas 𝜂 is unlimited for three-dimensional stress states, e.g. for a three-

dimensional equal principal stresses 𝜂 = ∞. Pure shear stress states result in 𝜂 = 0. Triaxiality values 

can be ambiguous, that is, different stress states can yield the same triaxiality value. Despite this 

ambiguity, triaxiality can be useful as it condenses information on the stress state into one value.  

 

19. Specimen size 

The dimensions of the specimen are documented as well as the volume. The reason for documenting 

this is the size dependence of failure under tension, see e.g. (Schulson, 1999).  

2.3. Remarks 
 This list is thought to comprise major influencing factors regarding peak stress and behavior types. 

It remains open to discussion and revision. Other researchers are invited to collaborate in using 

and extending the database.  

 The data does not include any information on testing conditions yet, e.g. stiffness of test setup. 

The smaller the amount of available data for specific testing conditions, the greater the influence 

of the conditions. If a lot of different data sets exist for specific testing conditions, the influence of 

a single data set decreases. Nonetheless, testing conditions should be included in the future, 

particularly as long as no standardized test procedures exist.  

 Currently, the database is not complete. For most features some data is missing, i.e. there are 

around 10-20% of missing entries. Large gaps are for example found for limit strain (90% missing) 

or porosity (43% missing), see also Table 7. 

 The database is not balanced. Most of the data is concentrated around certain feature values. For 

example: 80% of observations are within a strain rate range 10−3 ≤ 𝜖̇ ≤ 10−2, 28% are within a 

Figure 3 – Exemplary triaxiality values for biaxial stress states. For three dimensional 
stress states, triaxiality values are unlimited. 



temperature range −11° C ≤ 𝑇 ≤ −9° C  and 95% of observations have triaxiality values of −1 ≤

𝜂 ≤ 0. Moreover, currently more salt- than freshwater ice data is included, see Table 1.  

 The majority of data is from uniaxial tests. Uniaxial strength should be seen as an index strength 

rather than a material property (Strub-Klein, 2017).  

 Most variables in the list only reflect global behavior of the specimen. Local stress, strain rate, 

temperature etc. can vary throughout the specimen. It should also be noted that, for now, only 

scalar data is included. No force-time or stress-strain curves are part of the data since they are 

rarely published to the full extent. Especially for the comparison to simulations such curves are 

useful and should be included in the future whenever possible. Lastly, qualitative data can leave 

room for interpretation, e.g. whether a force time curve indicates ductile or brittle behavior.  

3. Using the data to understand and predict ice behavior 
After establishing the database, the next step is the data analysis. In other words, the collected data is 

used for a specific purpose: to identify the most influential factors with respect to peak stress and the 

behavior type of ice and to build a model that predicts behavior type based on user input. The 

correlation analysis and the PCA focus on peak stress, whereas the goal of the decision trees the 

prediction of behavior type. Note that in the following, the factors or parameters are called features, 

which is in line with machine learning terminology.  

3.1. Correlation analysis 

Correlations of different features with the target quantity can be computed in numerous ways. A 

common approach is the visual inspection of a matrix of scatter plots correlating each input feature 

with the target variable. If both quantities are univariately related, distinct structures will form in the 

scatter plot. In case of a linearly positive relation, most data points will arrange along a diagonal. If no 

structure is observed there is no univariate relationship between both variables. The visual inspection 

allows to identify outliers and observe the distribution of individual variables. 

To quantify the univariate and linear relationship between input features and the target variable 

Pearson (empirical) correlation coefficient 𝜌 can be employed, see e.g. (Gibbons, 1986) . It is defined 

as 

 
𝜌 =

∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)2 ∙ ∑(𝑦𝑖 − �̅�)2
 

(4) 

 

with (∙)̅̅ ̅ being the mean of the respective set of observations. Correlation coefficients range from −1 

to 1 where 1 indicates a perfect positive and −1 a perfect negative correlation of observations 𝑥 and 

𝑦. Values close to 0 indicate no linear univariate correlation. However, other, non-linear relationships 

between two variables might still exist.  

Here, input features are separately correlated to the peak stress value for ductile and brittle material 

behavior, as well as for freshwater and saltwater ice. The aim is to identify which features are 

important to consider in any model that aims to predict peak stress. Moreover, it is investigated 

whether the most influential features change with respect to ice and behavior type.  



3.2. Principal component analysis for the investigation of  

        variability of data  

The data matrix 𝑋 ∈ ℝ𝑛×𝑚 contains 𝑚 measurements, so called features, for 𝑛 observations. Principal 

component analysis (PCA) allows reducing this high-dimensional data set to a low-dimensional 

representation that can reflect the data in fewer dimensions. The main assumption is that observations 

that do not have much variability cannot reflect much of the correlations in the database. In other 

words, the idea is that some measurements (resp. features) in 𝑋 are to a large degree irrelevant or 

redundant.  

The principal components (PCs) are new base vectors that represent a different way of looking at the 

data, which gives more weight to high variability features. In contrast, the old base vectors correspond 

to standard axes, where every axis points in the direction of one feature, e.g. if moving along the 

temperature axis only temperature changes. The PCs are a combination of features and point in the 

direction of highest variance in the data point cloud. Thus, the data does not change, only the 

perspective. For instance, consider that temperature, peak stress, and grain size are recorded, but all 

experiments are done at the same temperature. Then, peak stress and grain size would account for all 

variance in the data, whereas temperature would not vary at all. Consequently, the first PC would be 

a combination of peak stress and grain size, but not temperature. The first PC would also account for 

100% of variance in the data.  

To be more specific, PCA is defined as the eigendecomposition of the co-variance matrix (𝑋𝑇𝑋) ∈

ℝ𝑚×𝑚. The set of eigenvalues 𝜆 and eigenvectors (‘loadings’) 𝑊 [𝑚 × 𝑚] can be used to describe the 

data. The columns of 𝑊 are the principal components, which are ordered by the size of the 

corresponding eigenvalues. The size of the eigenvalues directly reflects the variance explained by the 

corresponding eigenvector / principal component. The full variance of the data set is given by the sum 

of the covariance matrix’s eigenvalues 𝜆 

 
Γ = ∑ 𝜆𝑗

𝑛

𝑗

 
(5) 

so that the variance explained by each eigenvalue (i.e. principal component) is 

 
𝑟𝑗 =

𝜆𝑗
Γ

⁄  (6) 

The scores 𝑇 [𝑛 × 𝑚] = 𝑋𝑊 represent the data in a new basis spanned by the principal components, 

i.e. after the transformation by 𝑊. Since the columns of W are ordered by the value of the 

corresponding eigenvalues (i.e. the variance explained), dimensionality reduction can be achieved by 

truncating 𝑊. If we want to represent our data by the first r principal components, 𝑊𝑟  will be the first 

r columns of 𝑊. The reduced representation of the data is computed from the truncated basis 𝑇𝑟 =

𝑋 𝑊𝑟 .  

However, the contribution of original features to the principal components does not explain the 

relevance of individual features for the prediction of some behavior type or peak stress value: A large 

variance does not necessarily relate to high importance for a prediction task. Also, multivariate, and 

possibly nonlinear relations of features might dominate ice behavior. 

In short, in using the PCA we create features in a new, possibly dimension-reduced, space by linear 

transformation of the original feature space. If the physical interpretation is not key, the PCA results 

can be used to create a small number of new features as input quantities to some further analytics 



such as classification or regression learning models. Here, physical interpretability is to be maintained 

and the new features are not used further, e.g. as input for the decision trees. However, the PCA is 

applied to indicate important features with respect to the variance in the data. For further reading, 

see e.g. (Härdle and Simar, 2015). 

3.3. Decision Trees for feature selection and behavior 

prediction 

In the following, the focus shifts from peak stress to the behavior type of ice. The objective is to 

investigate the predictive value of all features, categorical and numerical, with regard to behavior type 

and identify the most important ones. Also, a model should be built to predict ice behavior based on 

experimental conditions as input by the user. Decision trees (DTs) are used to achieve this.  

Decision trees (DT) are a machine learning approach for considering the multivariate nature of the data 

and nonlinear correlations of features. Hence, DTs can be used to classify or predict an observation 

with unknown label when trained sufficiently on labeled data. DTs are a class of supervised machine 

learning methods.  

Again, some features will be more important for the modeling task than others – other input features 

can be irrelevant or redundant. Robustness and generalization of decision trees decrease with rising 

numbers of features. Therefore, a small number of input features is favored. Possibly, one could use 

the features derived from PCA as in Section 3.2. To maintain physical interpretability of the DT, we 

keep the original features. However, when applying feature selection before the classification one 

must make sure to cross-validate the complete process (Hastie et al., 2017). A detailed description of 

the DT application in this work can be found in the appendix, Section 8.2. 

Here we use the decision tree itself as feature selection procedure by applying a specific warping 

method: the greedy backward elimination scheme; for a greedy selection theme see e.g. (Fulcher and 

Jones, 2014). Starting with the complete set of 𝑁 original features, all possible combinations of 𝑛 =

(𝑁 − 1) feature subsets are created by leaving out one feature. For each subset a classifier is trained, 

and the classification performance is evaluated. The subset forming the maximum classification quality 

is kept (i.e. the respective missing feature is eliminated). This process of eliminating features is iterated 

until a minimum performance is reached. All features that have been eliminated up to this point do 

not represent discriminative features and thus may be discarded. All remaining features form the 

highly discriminative feature subset which is physically interpretable (in contrast to the subset derived 

by PCA). 

4. Results  

4.1. Preliminaries 
Prior to the analysis, the data is cleaned up. Measurements with unclear or undefined feature values 

are deleted or ignored. Some sub-categories are replaced with the higher-level category to keep it on 

a more general level. For instance, brittle-tensile is replaced with brittle, or distilled water is replaced 

with fresh water. Moreover, specimen geometry data is reduced to the largest dimension and volume. 

For cubes, the largest dimension is the longest side, for cylinders it is usually the length. 



Three observations are excluded, because their triaxiality values are considered outliers4, with 𝜂 =

{−507, −233, −142}, whereas for all other observations 𝜂 ≥  −10. Generally, temperatures, 

triaxialities and strain rates are set to NaN if outside the limits: −100° C < 𝑇 < 0° C ,  −10 < 𝜂 <  1 

and 10−10 <  𝜖̇ < 1010. Shear data is excluded, because there is too little data available for a 

meaningful analysis.  

Strain rates are logarithmized to base 10. Afterwards, 2939 observations remain. Further, method 

specific preprocessing is described in the respective sections. A general list of features and their 

completeness is given in the appendix, Table 7.  

4.2. Correlation analysis  

The correlation analysis is done in two steps. First, the visual inspection of a matrix of scatter plots 

correlating each input feature with the target variable, and second, the calculation of the Pearson 

correlation coefficients. The input data set comprises only continuous numerical, i.e. non-categorical, 

features. In Table 2, input features are given, along with the total number of observations and the 

completeness of observations, i.e. available data for that feature. 

The plots correlating each feature with peak stress, grouped in ductile and brittle, are shown in Figure 

4. The same plot grouped in freshwater and saltwater ice can be found in the appendix, Figure 15. 

Most of the data is scattered, but for some features the plots indicate a dependency. Linear 

relationships can be seen e.g. for the equivalent and hydrostatic stress, 𝜎𝑒 and 𝜎ℎ. A non-linear 

relationship would be indicated e.g. by exponential or sinusoidal relationships. This seems to be the 

case for the relation between porosity and peak stress, which would agree with literature, e.g. (Timco 

and Weeks, 2010). Nevertheless, the linear trend also approximates that increased porosity results in 

lower peak stresses. Other non-linear relationships are not obvious. Keeping this in mind, the linear 

Pearson correlation coefficient (PCC) can be used for further analysis.  

                                                           
4 The data are taken from Häusler (1981). It is questionable that ice critically fails under such high confinement, 
since those triaxiality values indicate almost identical principal stresses; the differences between the principal 
stresses are < 0.4%. This could also be close or below measurement accuracy.  



 

The significance of PCCs increases with the completeness of data. For instance, grain size is only 

documented for ~18% of the ductile observations. Therefore, the PCC for peak stress and grain size 

for this group is less significant.  

Table 2 - Input data for correlation analysis and completeness of observations. Low numbers of  

observations (< 75%) are highlighted in grey. 

Input: 𝑋 ∈ ℝ𝑛×𝑚 Completeness of observations [%]  

Dimensions  

(m=12) 

brittle 

(n=979) 

ductile 

(n=1329) 

Freshwater 

ice (n=729) 

Saltwater ice 

(n=2207) 

peak stress 100.0 99.5 99.0 100.0 

equivalent stress 

(sig_e) 

100.0 99.5 99.0 100.0 

hydrostatic stress 

(sig_h) 

100.0 99.5 99.0 100.0 

strain rate 100.0 100 95.7 100.0 

limit strain (eps_1) 7.9 5.6 13.6 8.2 

temperature 92.7 98.1 100.0 91.6 

grain size 18.6 6.8 54.7 0.0 

porosity 52.2 74.9 25.1 67.3 

salinity 49.3 83.6 - 88.2 

volume 99.5 100.0 96.6 100.0 

eta / triaxiality 100.0 99.5 99.0 100.0 

largest dimension 99.5 100.0 99.0 100.0 

Figure 4 - Matrix of scatter plots correlating each input feature with peak stress, grouped in ductile and brittle. The 
abbreviations are: sig_e = equivalent stress; sig_h = hydrostatic stress; eps_1 = limit strain; eta = triaxiality, η; largestD = 
largest dimension. 



 

The PCC between the different features and peak stress is shown in Figure 6, grouped in ductile, brittle 

as well as fresh- and saltwater ice observations. Note that peak stresses are negative in compression. 

For example, since strain rates are negatively correlated with peak stress (brittle group), higher strain 

rate values lead to lower peak stress, but higher absolute stress values, see Figure 5. The stress 

features, 𝜎e and 𝜎h, correlate almost linearly with the peak stress. This is expected and indicates a 

correct calculation of the PCC.  

In the brittle group most features only mildly correlate with 

peak stress. The majority of PCCs is as expected and in line 

with relationships given in the literature. Higher 

temperature leads to lower absolute peak stress (Ince et 

al., 2016; Schulson, 1990), so do bigger grain size 

(Schulson, 1990, 1999) and porosity (ZhiJun et al., 2011). 

Higher strain rates lead to higher absolute peak stresses 

(Ince et al., 2016; Timco and Weeks, 2010), so do higher 

absolute triaxiality values (Schulson, 1999). In contrast, 

limit strain is strongly correlated. In displacement-

controlled experiments, higher limit strain could indicate 

increasing time to failure and hence higher peak stress (Mellor and Cole, 1982). However, there is little 

data on limit strain, which renders conclusions uncertain. Salinity does not seem to be correlated. At 

least for brine volume this is in line with (Schulson, 1999). The correlations to geometry properties are 

inconclusive; the volume is not correlated whereas the largest dimension of the specimen is little 

correlated.  

For the ductile group, strain rate is not correlated with peak stress, which is in contrast to other 

research (Kuehn and Schulson, 1994; Schulson and Buck, 1995; Snyder, 2015). However, these 

researchers also used data sets that were smaller and more balanced with respect to strain rate. Here, 

the input data is biased since the majority of strain rate observations (~75%) is within 10−3 < 𝜖̇ ≤

10−2. Limit strain does not appear to be correlated, but the significance of the PCC is low due to 

insufficient data. Grain size does not correlate, which is expected for common grain sizes (Goldsby and 

Kohlstedt, 1997; Schulson, 1999), but there is also only little data. Temperature correlates with peak 

stress, which is for example in accordance with (Kuehn and Schulson, 1994; Schulson, 1999). Porosity 

strongly correlates in comparison to other features, which is expected, see e.g. (Schulson and Gratz, 

1999; Wang et al., 2018). Salinity is little correlated with peak stress. Although it is closely related to 

brine volume and porosity, which in turn affect the strength of ice, it does not seem significant. 

Triaxiality is more correlated, which is expected since higher confinement typically leads to higher 

stresses. Similar to the brittle group, correlations to geometry properties are inconclusive. The volume 

is not correlated whereas the largest dimension of the specimen is correlated as well as the largest 

dimension of the specimen.  

The freshwater ice PCCs are similar to the brittle PCCs. This is probably due to the fact that the majority 

of freshwater ice observations are brittle (395 brittle; 142 ductile; 192 other/not defined). Most of the 

values are as expected and mildly correlated. Notably, limit strain and grain size are not correlated. For 

limit strain the incomplete data could distort the picture, but this does not apply to grain size where 

some correlation is expected.  

Figure 5 - PCC signs and peak stress 



The composition of saltwater ice behavior is: 1187 ductile, 584 brittle and 436 other/not defined. The 

PCCs give weight to strain rate, temperature and porosity, most other features are mildly correlated. 

As with the other groups, salinity is not correlated, and porosity seems to be a better indicator of peak 

stress. The saltwater ice group is the only group where both volume and largest dimension are mildly 

correlated, but with opposite signs.  

 

Overall, most PCCs are as expected and in line with relationships found in the literature. However, 

some PCCs are low or based on incomplete or imbalanced data. A few PCCs are inconclusive. For 

example, the features of volume and largest dimension may not be sufficient to capture the influence 

of geometry on peak stress. Additionally, the correlations change depending on the observed group. 

This emphasizes focusing on specific data sets rather than taking the full database as an input. Models 

that aim to calculate peak stress may need to consider different features, depending on the expected 

behavior.  

4.3. Principal component analysis to identify irrelevant or 

redundant data 

The principal component analysis (PCA) is applied to the following data sets: the whole set, ductile and 

brittle. The input features are similar to those used for the Pearson correlation coefficient (PCC), i.e. 

only numerical, non-categorical data. However, limit strain, grain size, porosity and salinity are 

excluded since the data for these features is incomplete. In contrast to the PCC analysis, missing values 

are crucial for the PCA since the data is processed as a whole matrix instead of pairs of features. 

Figure 6 - PCC, between different features and peak stress, grouped 
in ductile, brittle, fresh- and saltwater ice. 1 is total positive linear 
correlation, 0 is no linear correlation, and −1 is total negative linear 
correlation. Values rounded to two decimals. The abbreviations are: 
sig_e = equivalent stress; sig_h = hydrostatic stress; eps_1 = failure 
strain; eta = triaxiality, η; largestD = largest dimension.  



Therefore, if a feature is missing for an observation, the whole observation (i.e. the whole row of the 

data matrix) is removed. There exist many methods to deal with missing values (Ilin and Raiko, 2010), 

but this is not the focus of the current work. The applied basic PCA is suitable for complete observations 

only. After discarding the incomplete features, the remaining input features are; peak stress, strain 

rate, temperature, hydrostatic stress, equivalent stress, triaxiality, volume and largest dimension. 

Accordingly, the input is 𝑋 ∈ ℝ𝑛×𝑚, with 𝑚 = 8 features and 𝑛(all;  ductile;  brittle) =

1861; 1193; 668.  

The data set is also normalized before applying the PCA. Original dimensions that intrinsically have a 

much larger variance will have more impact on the PCA. Hence, z-scoring (zero mean, unit standard 

deviation) is applied to normalize the feature columns. Below, only results for the whole set are 

presented. Grouped results are similar and can be found in the appendix.  

The results comprise two points. First, the principal components (PC); these are the new base vectors 

which point in the direction of maximum variance in the data set. They can be represented as 

combinations of the original base vectors or features, respectively. This representation indicates which 

features introduce most variance to the data. Second, the variance in the data covered by the principal 

components. This indicates how many of the new base vectors would be needed to explain the 

variance in the data, which is shown in in Figure 7. The y-axis indicates the normalized cumulative 

variance and the x-axis the principal components. If all features except one were constant, one PC 

would explain all variance in the data. Thus in this case at least four principal components are needed 

to explain 90 % of variance in the data. 

  

The composition of the principal components in terms of the contribution of the original features is 

shown in Figure 8. There is no dominant feature in any of the first principal components. This indicates 

that the original features are of similar variance.  

Figure 7 – Cumulative percentage of variance in the data explained by principal 
components for the complete data set. 



 

To summarize, neither dominant nor redundant or irrelevant features are found by the PCA, at least 

not for the current data set. It seems that the underlying relationship between the predictors (the 

influencing features) and response (peak stress) is not connected to the predictors’ variability. Focusing 

on variance does not identify irrelevant or redundant features. This is not surprising considering the 

results of the correlation analysis via the Pearson’s correlation coefficient.  

4.4. How to predict behavior class with decision trees 
Decision trees (DT) are a machine learning tool employed to predict the behavior type based on the 

input features described before. The input also comprises categorical features such as water type, 

which is in contrast to the Pearson correlation coefficient and the principal components analysis. 

Preliminary runs show that the DTs yield almost completely different results for fresh and saltwater 

ice. Hence the input data is split into saltwater and freshwater ice. The categorical feature type of 

columnar loading is excluded since this would require excluding granular ice. Peak stress and limit 

strain are excluded since in reality these figures are not known in advance. Lastly, water type is not 

considered since the differentiation in fresh and saltwater ice makes this feature redundant. The final 

input features are given in Table 3, for the completeness of these features see Table 7 in the appendix. 

Table 3 - Input features for greedy backward elimination and decision trees 

Saltwater ice DT  

𝑋 ∈ {ℝ, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙}1773×10 

Freshwater ice DT  

𝑋 ∈ {ℝ, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙}535×9 

 type of test 

 global strain rate 

 ice temperature 

 grain size 

 type of test 

 global strain rate 

 ice temperature 

 grain size 

Figure 8 - Normalized contribution of original features to the principal components for the 
complete data set. Large contributions indicate principle components aligned parallel to the 
original feature dimension and thus large variance. The abbreviations are: sig_p = peak stress, 
temp = temperature, sig_h = hydrostatic stress; sig_e = equivalent stress; eta = triaxiality; vol = 
volume; largestD = largest dimension. 



 porosity 

 salinity 

 type of ice  

 triaxiality 

 volume 

 largest dimension 

 porosity 

 type of ice  

 triaxiality 

 volume 

 largest dimension 

 

The quality of classification of a DT is evaluated based on the confusion matrix 𝐶 as shown in Table 4. 

It relates predicted to observed classes, e.g. the number of true positives (TP) indicates correctly 

predicted brittle observations. The most straightforward quality measure is accuracy, i.e. the 

percentage of correct predictions on the test data set, which is  

 
𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

(7) 

 

In the greedy backward elimination scheme (GBE), Matthews correlation coefficient (MCC) is used,  

(Chicco, 2017; Matthews, 1975), because we want to penalize wrong classifications and cannot assure 

balanced data sets. The MCC score is high only if the classifier is doing well on both possible outcome 

classes, i.e. negative and positive. It takes the following values: 

 
𝑀𝐶𝐶 { 

+1;
0;

−1;
    

complete agreement
prediction no better than random
complete disagreement

 (8) 

And is calculated as: 

 
𝑀𝐶𝐶 =

𝑇𝑃 ∙ 𝑇𝑁 − 𝐹𝑃 ∙ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (9) 

For the final training of the DTs, different quality measures are given. Cross validation is always applied. 

For more details on the different quality measures and the general application of DTs, the reader is 

referred to the appendix, Section 8.1.  

Table 4 - Confusion matrix for binary classification 

  observed / target class 

  positive / brittle negative / ductile 
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s positive / brittle 

true positive -  

TP 

false positive -  

FP 

negative / ductile 
false negative -  

FN 

true negative -  

TN 

 



4.4.1. Feature selection with greedy backward elimination 
Five greedy backward elimination (GBE) runs are done for both ice types. The input data is as given in 

Table 3. Due to inherent randomness in the cross-validation process, the results can vary from run to 

run.  

A typical result of the GBE for saltwater ice is shown in Figure 9. The x-axis shows the order in which 

features were eliminated from left to right. The y-axis indicates the quality of the decision tree (DT) in 

predicting behavior type and how this changes by eliminating features. The further right a feature is, 

the more helpful it is considered by the algorithm in predicting behavior type. For saltwater ice, 

different runs almost always yield strain rate and temperature as the two most important features. 

Salinity, type of test and triaxiality tend to be eliminated early. The order of the remaining features 

varies greatly from run to run due to the method-inherent random seeding. However, there is no 

feature that does not appear in the top five features at least once. Moreover, the elimination order 

barely affects the overall quality of the intermediate DTs. The MCC stays around 0.5 which is a 

mediocre value. It appears that after considering temperature and strain rate, the use of other features 

is interchangeable. Using less information (fewer features) does not lead to better or worse 

predictions. 

 

For freshwater ice, a typical result of the GBE is shown in Figure 10. In this case, different runs always 

yield strain rate as the most important feature and all other features appear interchangeable. Type of 

test, temperature and porosity tend to be eliminated early. Again, there is no feature that is not among 

the top five features during the five runs and the change in quality of intermediate trees is small. 

Compared to the MCC achieved for saltwater ice, the DT classification quality is significantly higher for 

freshwater ice. All in all, regarding the input data for DT training, strain rate should be used for 

freshwater ice whereas temperature and strain rate should be used for saltwater ice. Beyond that, the 

results of the feature selection are inconclusive. It appears that besides temperature and strain rate, 

most other features have some predictive value, but no feature dominates. It should be noted that this 

is only the case for the present choice of sub data sets and the prediction of behavior type.  

Figure 9 - Example of greedy backwards elimination for salt water ice. 
Quality evaluated with Matthews correlation coefficient (MCC), -1 worst, 
+1 best. 



 

4.4.2. Training of the final decision trees and results 
The input data for training the final decision tree (DT) is again split into saltwater and freshwater ice. 

Based on the previous results, all features are used for training and the input data is the same as for 

the greedy backward elimination (Table 3). In addition to cross validation, the quality of the final DTs 

is also evaluated by resubstitution. That is, training and testing data set are the same.  

An example for a saltwater ice DT is shown in Figure 11. Triangles represent decisions on the feature 

shown above the triangle. The criterion for going to the left branch is on the left side of the triangle 

and vice versa. As suggested by the feature selection process, strain rate and temperature are 

considered the best behavior predictors in the training of the final DT. The right branch seems 

redundant. This is true regarding classification since it ends up in the same class. However, the two 

leaves predict ductile behavior with different probabilities. The results are considered reasonable with 

respect to ice mechanics since ice tends to ductile behavior for lower strain rates and higher 

temperatures.  

Figure 10 - Example of greedy backwards elimination for fresh water ice. 
Quality evaluated with Matthews correlation coefficient (MCC), -1 worst, 
+1 best. 



 

The confusion matrix 𝐶 is shown in Figure 12. The lowest cell on the right, 𝐶(3,3), is the overall 

accuracy, 78.2 %, which does not seem bad at first glance. The last row and column indicate row- and 

column wise quality measures, e.g. 𝐶(1,3) = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃). The prediction of brittle behavior is 

good, with 8.8 % of all brittle observations misclassified. The prediction of ductile behavior is 

inaccurate with almost every fourth ductile observation (23.9 %) misclassified. The majority of 

misclassified observations is due to ductile misclassification (
𝐹𝑁

𝐹𝑁+𝐹𝑃
=

366

366+21
= 94.6 %). This is also 

reflected by the quality measures given in  

Table 5. F1 score and MCC are more balanced measures than accuracy and consider the distribution 

of classes. As a result, their values are low compared to accuracy. It appears that ductile behavior for 

saltwater ice is less predictable than brittle behavior.  

 Accuracy  

(0 worst, 1 best) 

F1 score 

(0, 1) 

MCC 

(-1, 1) 

k-fold cross validation     0.780 ± 0.011 (k=10)         0.506 ± 0.026 (k=10)             0.488 ± 0.045 (k=10)         

resubstitution 0.780     0.522     0.484 

Figure 11 - Example of a final saltwater decision tree. All values rounded to two decimals. Strain rate values are 
logarithmized to base 10. 



 

Table 5 - Quality measures for the final saltwater decision tree. Averaged from cross validation with standard deviation, 

for hold out and for resubstitution. 

 

An example of a freshwater ice DT is shown in Figure 13. 

Although all features are used as training data, the 

training proposes a decision tree which only considers 

strain rate as a predictor with a threshold strain rate of 

~10−3. Both the confusion matrix, Figure 14, and the 

quality measures given in Table 6, indicate a high quality 

of prediction. This confirms the results of the feature 

selection. It should be kept in mind that the data set for 

training this DT is smaller than for the saltwater ice DT 

(1773 to 535).  

Both DTs are robust to changes of input data in terms of 

included features and hyper parameters, such as the maximum number of node splits. However, only 

the freshwater ice DT is also robust regarding the amount of data used for training. With just 30% of 

observations as input, the training of the freshwater ice DT already converges to the structure shown 

in Figure 13. The saltwater ice DT identifies temperature and strain rate as decisive features with little 

input data, but only converges to the structure shown in Figure 11 after using about 80% of the 

observations as input. This indicates that the behavior of saltwater ice is elusive, particularly in 

comparison to that of freshwater ice.  

 Accuracy  

(0 worst, 1 best) 

F1 score 

(0, 1) 

MCC 

(-1, 1) 

k-fold cross validation     0.780 ± 0.011 (k=10)         0.506 ± 0.026 (k=10)             0.488 ± 0.045 (k=10)         

resubstitution 0.780     0.522     0.484 

Figure 12 - Confusion matrix for the final salt water ice decision tree. 

Figure 13 - Example of a final fresh water ice 
decision tree. Values rounded to two decimals and 
logarithmized to base 10.  



 

Table 6 - Quality measures for the final freshwater decision tree. 1st row: averaged from cross validation with standard 

deviation. 2nd row: for resubstitution. 

 Accuracy  

(0 worst, 1 best) 

F1 score 

(0, 1) 

MCC 

(-1, 1) 

k-fold cross validation     0.912 ± 0.037 (k=10)            0.941 ± 0.025 (k=10)             0.773 ± 0.100 (k=10)         

resubstitution 0.914        0.942     0.778 

 

The results can be compared to the literature by looking at the ductile to brittle transition, which has 

been shown to depend on different features, such as strain rate, temperature, confinement, grain size 

and prestrain (Batto and Schulson, 1993; Renshaw et al., 2014; Schulson and Buck, 1995; Snyder et al., 

2016). A commonly given transition strain rate for freshwater and saltwater ice is  𝜖̇ ≅ 10−4 and 𝜖̇ ≅

10−3, respectively, at −10° C, e.g. (Snyder et al., 2016). A surprising result is that the transition strain 

rate for freshwater ice given by the DT is one magnitude higher than the literature values (𝜖̇ ≅

10−3.05). A possible reason for this deviation is that the DT strain rate is based on a data set which 

lumps together the results of different experimental setups and conditions. Another unexpected result 

is that the DT transition strain rates for saltwater and freshwater ice are almost identical. However, for 

the saltwater ice DT, the transition strain rate only applies to temperatures lower than −9.95° C. 

Hence it cannot be seen as a general transition strain rate in a strict sense. As such, a direct comparison 

to literature values or the freshwater transition strain rate is less meaningful. It should also be kept in 

mind that the saltwater ice DT misclassified about 22% of observations.  

In all, among the mentioned features, the DTs identify temperature and strain rate as the most 

important ones. Prestrain is not included in the data yet. In general, the results are in line with the 

literature. The freshwater transition strain rate is a notable exception.  

Figure 14 - Confusion matrix for the final fresh water decision tree. 



5. Discussion 
To begin with, the focus is on the first part, the database and its composition (Section 2.2). It has to be 

kept in mind that the available data is partially incomplete. Nevertheless, it is straightforward to apply 

analysis methods to the database and the database is easily extendable in its current form. Also, the 

suggested list of features to be included (Section 2.1) is supported by the results. Neither the principal 

component analysis (PCA) nor the Pearson correlation coefficient (PCC) analysis unambiguously 

identify redundant or irrelevant features, but they point out trends. The greedy backwards elimination 

(GBE) scheme consistently gives weight to strain rate and temperature but is also inconclusive in ruling 

out other features. Hence, although the suggested list of features may not be complete, it does not 

include any unnecessary non-influential features. As such, the list is in line with the literature review 

in Section 2.1. Consequently, data collected in the future should include measurements of all these 

features wherever possible.  

For the second part, the data analysis, it is emphasized that results can be biased by the input data and 

the way tools are applied. All results of the analysis are only valid for small scale experimental data. 

Furthermore all features are given from a global perspective, e.g. global strain rate or globally ductile 

behavior. Consequently, any results of the data analysis should only be used within this frame.  

With respect to the most influential features on peak stress, few simple, one-dimensional relationships 

are found. Moreover, these relationships change depending on the input data, e.g. groups, number of 

observations, gaps etc. If sufficient data exists, and for a careful choice of input data, most PCCs 

indicate similar relationships as in the literature. In addition to that, the PCCs can put such relationships 

on a broad base of data and facilitate decisions on the inclusion of features in models. On the other 

hand, looking at the variance in the data does not result in the identification of irrelevant and 

redundant features. However, this can only be concluded from the current database and PCA 

approach. Different techniques of normalization or treatment of missing values, as well as larger and 

less imbalanced input data may lead to more conclusive results. Imbalance is apparent in many 

features, for instance strain rate, where 80% of observations are within a range 10−3 ≤ 𝜖̇ ≤ 10−2.  

In terms of the question of behavior prediction in dependence of features, the GBE scheme and the 

DTs prove useful. Though, after several GBE runs, finally all features are used as input data for the DT 

training, the final DTs give clear recommendations on the most important features, i.e. temperature 

and strain rate. The predictive value of these two features is sufficient to predict ductile or brittle 

behavior with good accuracy. Particularly for freshwater ice the prediction model is simple yet 

accurate. Only the prediction of ductile behavior for saltwater ice seems more difficult to determine. 

The presented final DTs can be used in determining or verifying the global, qualitative behavior of ice 

models with only those two features. However, they are not readily applicable to making decisions on 

local behavior, e.g. on the element level of a material model.  

Finally, though the methods applied to peak stress and behavior under load are different, it is 

noteworthy that they don’t fully agree on the most important features. For freshwater ice, the final DT 

only uses strain rate as a predictor, whereas the PCCs suggest additionally using temperature, porosity 

and triaxiality. Of those four, the strain rate has the lowest correlation coefficient. For saltwater ice, 

the final DT is more in line with the PCCs but ignores porosity as the most correlated feature. However, 

this could be due to insufficient data. To sum up, the picture is not complete yet, but different features 

might be important, depending on the goal of peak stress or behavior prediction.  



6. Conclusions and outlook 
In essence, the results stress multi-dimensional dependencies between peak stress and behavior on 

one side and influential features and ice properties on the other. The one-dimensional relation 

between strain rate and ductile/brittle behavior for freshwater ice is a notable exception to this. This 

supports the use of large data sets to understand and capture ice behavior. A complete publication of 

experimental data in digital form is necessary to establish such large data sets, but seldom done, a 

notable exception is for instance (Strub-Klein and Sudom, 2012). The current database is available 

through the Institute of Ship Structural Design and Analysis at the Hamburg University of Technology. 

Other researchers are invited to use and extend the database. Furthermore, it is desirable to increase 

standardization in publishing data. In this regard, the list in Section 2.1 is a suggestion and open to 

discussion and revision. 

Regarding the data analysis, it can be concluded that the chosen methods are suitable. The findings 

provide orientation on decisions which parameters to include in models and how to include them. The 

results also encourage expanding the toolbox of data analysis for material modeling with machine 

learning and statistical tools. The proposed workflow is generic and can be adapted to build DTs for 

other purposes. This is done by changing training data, target variables and hyper parameters. DTs can 

also be improved by executing automated optimization of hyper parameters. As mentioned, the use 

of the DTs in this work is briefly discussed along with detailed application parameters in the appendix, 

see Section 8.1. The current code is open source. 

A conceivable option would be to apply the methodology to related areas, such as full-scale data for 

ice-structure interaction. As especially ice-induced vibrations are not fully understood, it is desirable 

to collect data for all possibly influential features, e.g. ice properties or metocean (Nord et al., 2016). 

In this case, instead of focusing on the material model input, the goal could be to identify general 

features that dominate the interaction process. It would also be valuable to know how much data is 

actually necessary to conclude trends.  
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8. Appendix 

8.1. Structure of the database 
The current database is an excel table, where rows correspond to observations and columns to 

features and their units. The features correspond to those described in Section 2.2. The first two 

columns are reserved for comments on the calculation of principal stresses, experiment numbers etc. 

For example, sometimes one principal stress is given along with the relation of this stress to the other 



principal stresses, i.e. 𝑅 – values, for a definition e.g. (Renshaw and Schulson, 2001). In that case it can 

make sense to include the 𝑅 – values. The first two columns after the observations are reserved for 

additional comments and the source of the data. Simple excel filtering can be used to extract specific 

data sets and their sources.  

The observations are sorted top to bottom in the following order; uni-/bi-/triaxial compression, shear, 

uniaxial tension. Within those classes, they are sorted in ascending order by year of the publication of 

the source, i.e. oldest publications first and most actual last. Most comment and source cells within 

the table are combined cells which span all observations taken from that source.  

8.2. Application of decision trees 
From a machine learning perspective, the problem at hand is a supervised, binary classification task. 

As a classifier we use a decision tree (DT) with Gini-index based splitting up to ten times. The curvature 

test is used as a split predictor since the DT deals with continuous and categorical data (Loh and Shih, 

1997). The minimum leaf size is set to 50 observations. This is done to avoid that leaves only represent 

one data set in the whole database. In that case, the split that leads to the leaf could be biased by the 

way that specific data was obtained, e.g. measurement errors, specific test setups, etc. Nevertheless, 

the DTs are robust against changes of leaf size in the range 10 to 100. The leaf size affects the number 

of decisions (nodes), but the decisions for the first nodes as shown in the results, Section 4, remain the 

same. Moreover, surrogate decision splits are used when the value of the optimal split predictor is 

missing. As a result, the DT is less reliant on complete data. Lastly, the hyper parameters (leaf size, 

maximum number of splits) were not optimized.  

To compute the quality of the model, stratified k-fold cross validation is employed. This means that 

the data is partitioned into k nearly equally sized folds. Then, k iterations of training and validation are 

carried out. Within each iteration, k-1 folds are used for training and the remaining fold is used for 

validation (Refaeilzadeh et al., 2009). A 10-fold cross validation is used because it appears to be a good 

“rule of thumb” value (Chicco, 2017). Furthermore, the folds are stratified, i.e. balanced with regards 

to classes. After ensuring the model quality in the building phase of the model with cross validation, 

the final DT is trained on the whole data. The underlying assumption is that the surrogate models, 

which are trained on the partitioned data, are equivalent to the whole data model. In other words, if 

the cross validation was sucessful, it is allowable to train the final DT on the complete data.  

In order to access the classification quality, a quality measure has to be chosen. Typically, the results 

computed by a supervised learner are collected in the confusion matrix. For a binary classification 

problem, the confusion matrix contains the number of i) true positives (TP), ii) true negatives (TN), iii) 

false positives (FP) and iv) false negatives (FN), see Section 4.4. Classic quality measures are accuracy  

, true positive rate (‘recall’) 𝑇𝑃𝑅 and F1 score: 

 
𝐴𝐶𝐶 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(10) 

 

 
𝑇𝑃𝑅 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(11) 

 



 
𝐹1 =

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(12) 

 

However, these measures are not sensitive to false negatives and only valid for balanced data sets. A 

data set is considered balanced if the labels are distributed equally for all observations (here: 50% 

brittle, 50% ductile). As we want to penalize wrong classifications and cannot assure balanced datasets, 

Matthews correlation coefficient MCC is used as classification quality measure (Chicco, 2017; Jurman 

et al., 2012; Matthews, 1975).  

 
𝑀𝐶𝐶 =

𝑇𝑃 ∙ 𝑇𝑁 − 𝐹𝑃 ∙ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

(9) 

 

The MCC score is high only if the classifier is doing well on both possible outcome classes, i.e. negative 

and positive. If any of the parentheses in the denominator are zero, MCC is set to zero. It can be shown 

that MCC is always zero if the denominator is zero.  

8.3. Additional diagrams and tables 
In Table 7, a general list of features is given including the completeness of data. This list comprises all 

features which are used as input at the beginning of the data processing. In comparison to the original 

database, the following features are excluded; Peak stress as originally described by author and type 

of limit strain (4. and 8. in the list of Section 2.2). Furthermore, for the data analysis, the 2nd and 3rd 

principal limit strains are not used, since almost no data is included.  

Table 7 - General features and completeness, grouped. Low numbers of observations (< 75%) are highlighted in grey.  

 Completeness of observations [%].  

Features all 

(n=2939) 

saltwater ice 

(n=2207) 

freshwater ice 

(n=729) 

brittle 

(n=979) 

ductile 

(n=1329) 

typeTest 100.0 100.0 100.0 100.0 100.0 

sig_1 99.8 100.0 99.0 100.0 99.5 

sig_2 99.8 100.0 99.0 100.0 99.5 

sig_3 99.8 100.0 99.0 100.0 99.5 

peakStress 99.8 100.0 99.0 100.0 99.5 

typeBehavior 83.7 83.5 84.6 - - 

strainrate 98.9 100.0 95.7 100.0 100.0 

eps_1 9.5 8.2 13.6 7.9 5.6 

eps_2 1.9 1.9 0.0 5.8 0.0 

eps_3 2.1 2.8 0.0 6.2 0.0 

temperature 93.7 91.6 100.0 92.7 98.1 

grainsize 13.6 0.0 54.7 18.6 6.8 

porosity 56.8 67.3 25.1 52.2 74.9 

salinity 66.2 88.2 - 49.3 83.6 

typeIce 99.7 99.7 100.0 100.0 99.5 

typeWater 99.9 - - 100.0 100.0 



typeColumnarLoading5 95.2 99.3 74.2 92.3 99.1 

sig_h 99.8 100.0 99.0 100.0 99.5 

sig_e 99.8 100.0 99.0 100.0 99.5 

eta 99.8 100.0 99.0 100.0 99.5 

width6 100.0 100.0 100.0 100.0 100.0 

depth 100.0 100.0 100.0 100.0 100.0 

length 100.0 100.0 100.0 100.0 100.0 

diameter7 100.0 100.0 100.0 100.0 100.0 

volume 99.0 100.0 96.6 99.5 100.0 

largestDim8 100.0 100.0 100.0 100.0 100.0 

 
 

                                                           
5 Calculated in percentage of columnar ice observations.  
6 Calculated in percentage of cuboid specimens. Same for depth and length. 
7 Calculated in percentage of cylindrical specimens. 
8 Not in the original database. Always calculated if geometry data is available.  



 

Figure 15 - Matrix of scatter plots correlating each input feature with peak stress, grouped in freshwater and saltwater ice. 

Figure 16 - Cumulative percentage of variance in the data explained by principal 
components for brittle observations. 



 
 

 

Figure 17 - Normalized contribution of original features to principal components for the brittle 
observations. Large contributions indicate principle components aligned parallel to the original 
feature dimension and thus large variance. The abbreviations are: sig_p = peak stress, temp = 
temperature, sig_h = hydrostatic stress; sig_e = equivalent stress; eta = triaxiality; vol = volume; 
largestD = largest dimension. 

Figure 18 - Cumulative percentage of variance in the data explained by principal 
components for ductile observations. 



 

8.4. Database and matlab codes 
If you would like to obtain the database or contribute with experimental data, please contact Sören 

Ehlers, ehlers@tuhh.de. Institute for Ship Structural Design and Analysis. Am Schwarzenberg Campus 

4 C. 21073 Hamburg. Germany. 

The matlab codes are licensed under the GNU General Public License (gnu.org/licenses/gpl-2.0.html), 

if you would like to obtain them, please contact Leon Kellner, leon.kellner@tuhh.de.  
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