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Abstract

The two-fluid model is an efficient method for simulating multiphase flows, based on an averaged

description of the phases as interpenetrating and interacting continua. It is particularly attractive

for the simulation of dispersed gas-solid flows in which the large number of particles in practical

devices can impose an insurmountable computational burden for particle tracking methods,

given currently available computing resources. Whilst the two-fluid model is more efficient than

particle tracking methods, it results in large, strongly coupled and highly non-linear systems of

equations, placing a premium on efficient solution algorithms. Additionally, the constitutive

models used to describe the solid phase introduce stiff source terms, requiring a robust solution

algorithm to handle them.

In this thesis a fully-coupled algorithm is developed for the two-fluid model, based on a

Newton linearisation of the underlying equation system, resulting in an algorithm treating all

inter-equation couplings implicitly. For comparison, a semi-coupled algorithm, based on a Picard

linearisation of the two-fluid model is also implemented, yielding a smaller implicitly coupled

pressure-velocity system and a segregated system for the transport of phase concentrations.

Motivating this work is the highly non-linear nature of the two-fluid model and the stiff source

terms arising in the models of the dispersed phase, these are treated explicitly in the semi-coupled

algorithm and may impose stability limits on the algorithm. By treating these terms implicitly,

it is expected that the fully-coupled solution algorithm will be more robust.

The algorithms are compared by application to test cases ranging from academic problems

to problems representative of industrial applications of the two-fluid model. These comparisons

show that with increasing problem complexity, the robustness of the fully-coupled algorithm

leads to an overall more efficient solution than the semi-coupled algorithm.
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Chapter 1

Introduction

Multiphase flows consisting of immiscible materials or “phases” can be found in a range of

scientific and industrial applications from spray processes in combustion systems to interfacial

flows through pipelines and large scale gas-solid flows in fluidised beds used for power generation

for example. These flows may be classified according to their constituents e.g. gas-liquid,

gas-solid, liquid-liquid, or the geometry of the phase interface; for instance, interfacial flows

are characterised by bulk flows of pure1 phases separated by large interfaces whilst dispersed

multiphase flows consist of a continuous “carrier” fluid phase transporting a potentially large

number of bubbles, droplets or particles. In principal, each of these problems can be approached

using the same method: applying continuum mechanics within each phase and treating the

phase interfaces as (moving) internal boundary conditions. This requires solving the equations

of continuum mechanics within each phase in addition to tracking the position of the phase

interfaces in order to apply the internal boundary conditions describing the interactions between

the phases. When the number of interfaces is low, and information of the interface and its effect

on the flow is important; for instance, studying the behaviour of individual bubbles, droplets

or particles, such interface tracking methods may be applied. This necessarily implies a high

resolution of simulation to resolve flow features around the interface and the interface itself. As

the size of the domain grows, for example in the design of industrial plant, the ensuing range

of scales between the interfaces and the domain of interest may be prohibitive in terms of the

computational resources required to resolve the interfaces. Furthermore such level of detail may

1Here pure does not mean thermodynamically pure but that the bulk material consists of only a single phase
i.e. a gas or a liquid phase.
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be of limited use to the designer, for example, in the design of fluidised beds [58], information

relating to individual particles is generally not required as the variables of design interest are the

statistics of the particles, such as concentration, bulk velocity, rates of heat or mass transfer, etc.

The two-fluid model developed by Anderson and Jackson [2] and Ishii and Hibiki [48] is

based on an averaged description of multiphase flows. The effect of this averaging procedure is

that each phase is represented by a continuum occupying the entire domain, interpenetrating the

other phase(s), whose presence is shown by their concentration. This introduces additional terms

into the averaged transport equations for each phase as a result of jump conditions [48] at the

phase interface representing the interactions between the phases, such as drag forces between a

carrier fluid and dispersed particles. This is of particular interest for the simulation of dispersed

multiphase flows in which the diameter of the particles may be of the order of 100 µm whilst the

scale of the domain is of the order of 1 m. By using an averaging approach the need to resolve

the flow around individual particles is removed, instead the interaction between the carrier fluid

and the particles is modelled by means of a drag function. This leads to two related approaches:

Eulerian-Lagrangian methods track particles as discrete point masses obeying Newton’s laws of

motion moving through a fluid phase; whilst Eulerian-Eulerian methods treat both the carrier

and the dispersed phase as continuous fluids. In the context of developing numerical methods

for the solution of dispersed multiphase flows, the representation of the dispersed phase as a

fluid in the Eulerian-Eulerian two-fluid model enables the use of efficient methods developed

over the past six decades to be applied to the solution of the governing equations of both phases.

Furthermore, the amount of computational work is essentially independent of the number of

particles2, leading to further benefits when considering parallel implementations. In a Lagrangian

particle tracking scheme an uneven distribution of particles throughout the domain may lead to

load-balancing issues; whereas in an Eulerian-Eulerian simulation the distribution of work is

determined by the partitioning of the mesh, for which effective algorithms have been developed

to balance computational work and communication overhead.

2The models used to describe, for example, particle-particle interactions result in stiffer equations as the
particle concentration increases, which may require additional effort to solve the nonlinearities in the equations.
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1.1 Aims and Objectives

The focus of the work described in this thesis is to develop solution algorithms for the Eulerian-

Eulerian two-fluid model for the simulation of dispersed gas-solid flows. It should be noted,

however, that whilst this work focuses on dispersed gas-solid flows, the algorithms developed

herein are generally applicable to the simulation of multiphase flows using the two-fluid model.

Two algorithms are developed: one based on an implicit treatment of the pressure-velocity

coupling with a segregated transport of the phases, referred to as the semi-coupled algorithm;

and a novel fully-coupled algorithm treating the governing equations of the two-fluid model in a

fully implicit manner.

Motivating the development of the fully-coupled algorithm is the highly non-linear nature of

the two-fluid model governing equations. By treating the problem fully implicitly a superior

convergence is expected compared to segregated approaches. Furthermore, the constitutive

models used to describe a dispersed solid phase in the two-fluid model introduce stiff source

terms. It is therefore desirable from the perspective of algorithm robustness to treat the problem

fully implicitly. The developed algorithms are compared by application to a range of test

cases including a fluidised bed as a representative practical application and turbulent dispersed

gas-solid flow problems.

Following the development and implementation of the semi- and fully-coupled algorithms,

the aim is to use them to investigate turbulent gas-solid flows. Two flows with experimental

data are selected for this purpose: the backwards facing step flow of Fessler and Eaton [40] and

the bluff body stabilised flow of Boree et al. [10].

In addition to the development of the aforementioned solution algorithms, a general problem

in Computational Fluid Dynamics (CFD) is the prevention of pressure-velocity decoupling. This

is a direct consequence of the discretisation of the governing equations yielding a set of algebraic

equations in which changes in pressure at a point are not directly related to the velocity at that

point and vice-versa, they are decoupled from each other. A well known remedy is the staggered

variable arrangement proposed by Harlow and Welch [44] however this introduces significant

implementation overhead, requiring a mesh per velocity component plus a mesh for the pressure

field. Furthermore, it is difficult to extend staggered variable arrangements to non-Cartesian

meshes as arise in the study of flows in complex domains. The problem of pressure-velocity
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decoupling is exacerbated in the two-fluid model by the sharing of the pressure field between the

multiple phases. A popular technique for preventing pressure-velocity decoupling on unstructured

grids is the Momentum-Weighted Interpolation (MWI) technique proposed by Rhie and Chow

[76]. A detailed study of MWI is undertaken to develop a form suitable for the two-fluid model

which must be capable of handling the large and rapidly changing source terms and the strong

interphase couplings typical of the two-fluid model. This analysis, starting from single phase

flows shows that to maintain physical velocity fields in the presence of the above described

source term fields the source terms must be discretised as a pressure field, consistent with the

discretisation employed when discretising the fluid pressure field. It also shows that when there

are large, discontinuous changes in density, as found in the mixture density in fluidised beds, it

becomes necessary to apply a density weighting within MWI to prevent the lighter fluid being

accelerated, resulting in instability or divergence of the solution.

1.2 Structure of Thesis

The thesis is structured as follows:

• In chapter 2 the discretisation of the governing equations of fluid flow using a collocated

variable arrangement and the development of MWI for multiphase flows is presented. This

includes the development of approaches for handling large and/or discontinuous source

terms and discontinuous density fields, both of which feature in the two-fluid model3, in

the framework of MWI.

• In chapter 3 the semi- and fully-coupled solution algorithms are developed. An algorithm

is required to solve the non-linearity inherent in the two-fluid model. The semi-coupled

algorithm, based on the Picard linearisation, splits the two-fluid model equations into a

pressure-velocity sub problem and a separate phase transport equation. This however

results in a lag between the pressure-velocity and volume fraction solutions which may

adversely affect convergence. To maintain the coupling between pressure, velocity and

volume fraction, the fully-coupled algorithm uses a Newton linearisation of the two-fluid

model, retaining the implicit coupling between the equations. The resulting system of

3In this work the density of each phase is assumed to be constant, however the local mixture density changes
as a function of the local concentrations of each phase.
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algebraic equations is larger, requiring greater computational effort to solve relative to the

semi-coupled system of equations, although the implicit coupling is expected to enhance

the robustness of the algorithm. Both algorithms are compared, using the semi-coupled

algorithm as a baseline, by application to: an advected volume fraction pulse; horizontal

and vertical flows; and a fluidised bed, representative of a real world application of a

two-fluid model solver. The results show that in the simple cases of horizontal and vertical

flow, there is little to choose between the algorithms. In simulating the fluidised bed, the

fully-coupled algorithm proved more computationally efficient, however it did not exhibit

the greater stability relative to the semi-coupled algorithm that was expected.

• In chapter 4 the fully-coupled algorithm is further tested by its application to turbulent

gas-solid flows. Two test cases are examined: the backwards facing step investigated

experimentally by Fessler and Eaton [40] and the case of particles injected into the jet of a

bluff body stabilised flow investigated by Boree et al. [10].

• Conclusions are drawn and suggestions for further work are presented in chapter 5. In

developing the MWI for multiphase flows it is shown that particular care must be taken

around features of the flow field which cause discontinuities in the pressure gradient, for

example discontinuities in the source term or density fields. It is shown that by treating

source terms as inducing a pressure gradient they can be discretised consistently with

the fluid pressure gradient, ensuring a balance of forces on the discrete level which if not

satisfied results in unphysical velocity fields. It is also shown that the density weighting

proposed by Denner and van Wachem [31] to handle flows with discontinuous density

fields stabilises the solution by reducing the pressure gradient at the interface to the

value satisfying momentum in the lighter fluid, preventing large accelerations that lead to

divergence. These modifications are required due to the inability of a linear approximation

of the pressure field to represent the discontinuous changes in pressure gradient, future

work could involve studying alternative pressure gradient discretisations to better handle

these situations. The development of the semi- and fully-coupled algorithms shows that

there is generally little to choose between the two, however the fully-coupled algorithm did

out perform the semi-coupled algorithm in terms of time-to-solution for the fluidised bed

test case. Both algorithms are implemented using off-the-shelf black box linear equation
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solvers and preconditioners as provided by the PETSc library [4, 5, 43], it is proposed that

the fully-coupled algorithm in particular would benefit from the development of a custom

preconditioner, for example a SIMPLE-type preconditioner [55].
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Chapter 2

Discretisation of the Governing

Equations on Collocated Meshes

In this chapter, the discretisation of the governing equations of fluid flow is presented. The

discretisation is performed in the context of the Finite Volume Method (FVM) using a collocated

variable arrangement, suitable for simulating flows in complex domains. A well known issue

arising in the use of collocated variable arrangements is the occurrence of so-called ‘chequerboard ’

pressure fields due to the application of simple discretisation approaches that do not respond to

changes in pressure and velocity at a point leading to a spatial decoupling of the pressure and

velocity fields. This is complicated in the two-fluid model by the sharing of a single pressure

field by two velocity fields. In this work, Momentum-Weighted Interpolation (MWI) attributed

to the work of Rhie and Chow [76] is used to prevent the above described pressure-velocity

decoupling, this is developed by considering its application to flows described by a single fluid,

sharing features common to the two-fluid model such as large or discontinuous source terms.

The material in this chapter has been submitted for publication:

P. Bartholomew, F. Denner, H.M. Abdol-Azis, A.J. Marquis, B.G.M. van Wachem, Unified

formulation of the momentum-weighted interpolation for collocated variable arrangements, (2017),

submitted to Journal of Computational Physics.

22



2.1 Introduction

The coupling of pressure and velocity is a key difficulty of simulating incompressible flows and has

been a central topic of Computational Fluid Dynamics (CFD) for the past decades [39, 71, 97].

The difficulties associate with the pressure-velocity coupling can be illustrated by assuming an

isothermal, incompressible flow, which is governed by the momentum equations

ρ

(
∂uj
∂t

+
∂ujui
∂xi

)
= − ∂p

∂xj
+
∂τij
∂xi

+ Sj (2.1)

and the continuity equation

∂ui
∂xi

= 0 , (2.2)

where ρ is the density, u the velocity, p is the pressure, τ is the viscous stress tensor, S are the

source terms, t is time and x is the coordinate axis. Aside from the question of how to solve the

strongly coupled pressure and velocity fields, the governing equations of a three-dimensional

incompressible flow only provide three independent equations for four unknowns (three velocity

components plus pressure), which makes the formulation of an equation for pressure based on

the governing flow equations non-trivial and has lead to a variety of segregated [39, 71, 94]

and coupled [79, 80, 92] algorithms. Furthermore, discretising the pressure gradient on the

one-dimensional equidistant mesh shown in fig. 2.1 using central differencing yields

∂p

∂x

⏐⏐⏐⏐P ≈ pE − pW

2∆x
, (2.3)

where ∆x is the mesh spacing. The pressure gradient at node P is, crucially, not dependent

on the pressure value at node P , irrespective of the algorithm applied to solve the governing

equations. Consequently, the governing equations permit two independent pressure fields in a

chequerboard pattern [39, 94] as a valid solution to the discrete equations, a result that naturally

extends to higher dimensions.

Pressure-velocity decoupling is a discretisation issue typically associated with incompressible

flows. When compressible flows are considered, most numerical frameworks use density as a

primary variable, while pressure is determined indirectly via an appropriate equation of state.

Although such density-based algorithms are the method of choice when the compressibility of
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Figure 2.1: One-dimensional example of an equidistant mesh, where ∆x is the mesh spacing.

the flow is appreciable, they are ill-suited for flows with low Mach numbers [17, 97], in particular

in the incompressible limit. Motivated by the desire to compute flows at all speeds with the

same numerical framework, a number of pressure-based algorithms for flows at all speeds have

been developed, e.g. [12, 21, 29, 98]. However, the insignificant compressibility of flows with low

Mach number admits pressure-velocity decoupling in the compressible flow solution on meshes

with collocated variable arrangement.

Historically, pressure and velocity were coupled by staggering the points at which pressure

and velocity are evaluated, the staggered variable arrangement, as proposed by Harlow and Welch

[44], with velocity typically evaluated at the centres of the cell-faces, while all other variables are

evaluated and stored at the cell centres. A staggered variable arrangement enforces a natural

coupling between pressure and velocity, and yields a very compact stencil for the pressure

gradient that drives the velocity at the adjacent cell centres through the momentum equations.

There is no doubt that for Cartesian meshes, a staggered variable arrangement is efficient and

effective. However, as CFD has matured as a tool, it has found ever more frequent application

to analyse flows in complex geometries, represented by unstructured meshes, for which the

application of a staggered variable arrangement is difficult and may include complex corrections

to account for meshes of relatively poor quality [73, 96]. This difficulty, in conjunction with

the bookkeeping overhead associated with staggered variable arrangements [70], has motivated

the development of discretisation methods for collocated variable arrangements, in which all

variables are stored at cell centres, that prevent the pressure-velocity decoupling ensuing as a

result of the scenario presented in Eq. (2.3). Notable methods that allow robust computations

on meshes with collocated variable arrangement are the MWI, based on the work of several

researchers in the early 1980s [72] and widely attributed to Rhie and Chow [76], the artificial

compressibility method [15] and one-sided differencing [37], of which MWI is by far the most

widely used at present [67].

24



The principle of the MWI is to evaluate the velocity at the faces based on weighting coefficients

that are derived from the discretised momentum equations, including pressure gradients. By

construction, the MWI emulates a staggered variable arrangement, introducing a cell-to-cell

pressure coupling and implementing a low-pass filter acting on the third and higher derivatives

of pressure [28, 39, 59, 97] to suppress pressure-velocity decoupling, while preserving the second-

order accuracy of traditional finite volume methods [30, 39, 97, 101]. However, as originally

proposed by Rhie and Chow [76], the MWI only considers the coupling between pressure

gradients with the advection and shear stress terms of the momentum equations, neglecting

contributions of the transient term, source terms and originating from under-relaxation. A range

of modifications to the original formulation of the MWI have been proposed that account for

under-relaxation [62, 65] and transient terms [14, 20, 59, 70, 81, 90, 99, 100]. Recently, Xiao

et al. [98] showed that neglecting transient terms in the MWI for the simulation of unsteady

problems results in a dispersion error for the propagation of pressure waves in compressible flows.

Including source terms in the MWI was discussed by Rahman et al. [75] with the motivation

to maintain a strong pressure-velocity coupling, which may otherwise be masked when the

source terms are large, due to the direct coupling between source terms and the pressure

gradient. Subsequently, van Wachem and Gopala [86] and Mencinger and Zun [64] demonstrated

that the inclusion of source terms follows directly from the governing equations, by presenting

coherent derivations of the MWI from the momentum equations, and demonstrated the efficacy

of the proposed formulation using multiphase flows, especially two-phase flows with surface

tension that yield sharp discontinuous source terms. Building upon this work, Denner and

van Wachem [31] presented an MWI formulation for flows with source terms, and including

transient contributions, on arbitrary meshes. When computing flows with source terms, the MWI

necessitates a force-balanced discretisation [30] to avoid the production of spurious velocities as a

result of a mismatch of the discretisations applied to the pressure gradients and the source terms.

In a force-balanced discretisation the pressure gradients and the source terms are discretised with

equivalent methods, so that the forces applied to the flow by the source terms can be precisely

balanced by the corresponding pressure gradients. More recent work [68, 85, 101] has focused on

source terms arising in porous media, which follows a similar procedure as the inclusion of source

terms in multiphase flows. Curiously, much of the published work on MWI remains focused

on Cartesian meshes, although modifications required for arbitrary meshes have already been
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proposed [13, 14, 23, 30, 31, 64, 102]. This spread of separate developments, typically focusing

on a single aspect of MWI, has led to a large number of subtly differing approaches; to this date,

a unified and consistent formulation of the MWI is not available.

The objective of this work is the derivation of a unified and consistent formulation of the

MWI, which is applicable to arbitrary meshes (structured and unstructured meshes), with

discontinuous source terms and varying fluid densities, suitable for the simulation of single

phase and multiphase flows. The MWI is derived from the discretised momentum equations,

which leads to a consistent formulation of the MWI and provides a firm theoretical basis. The

presented analysis and numerical results show that the key property of the MWI is a low-pass

filter enforced on the third and higher derivatives of pressure, including a cell-to-cell pressure

coupling, which suppresses oscillatory solutions, while maintaining second-order accuracy with

respect to the mesh spacing. In order for this filter to be retained in flows with source terms,

the discretisation has to ensure that the low-pass filter is only applied to the driving pressure

gradient that is associated with the fluid motion, by carefully accounting for the source terms

in the MWI. To this end, a force-balanced discretisation of the source terms is proposed, that

precisely matches the discretisation of the pressure gradients for smooth as well as discontinuous

source terms, and preserves the force applied to the flow. A range of representative test cases

are used to scrutinise the efficacy of the proposed formulation of the MWI, and to compare it to

previously published formulations of the MWI. The proposed formulation of the MWI is shown

to provide a robust pressure-velocity coupling, even for flows on meshes of poor quality, and

for flows with discontinuous source terms, as well as discontinuous density changes of up to six

orders of magnitude, with similar or reduced errors compared to existing MWI formulations.

The applied numerical frameworks for incompressible and compressible flows are briefly

introduced in §2.2. In §2.3, the MWI is derived from the discretised momentum equations for

arbitrary meshes and validated on structured and unstructured meshes. An extension of the

MWI for the inclusion of source terms is proposed in §2.4 and the density weighting of the MWI

for flows with discontinuous changes in density is discussed in §2.5. Based on the presented

step-by-step analysis of the MWI, a unified formulation of the MWI is proposed in §2.6. The

chapter is concluded in §2.7.
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2.2 Numerical Framework

The governing equations for incompressible flow, Eq. (2.1) and Eq. (2.2), are discretised using

the finite volume method, with the semi-discretised equations for cell P , shown schematically in

fig. 2.2, given as

ρP

⎛⎝ ∂uj
∂t

⏐⏐⏐⏐P V P +
∑
f

ufj ϑ
fAf

⎞⎠ = − ∂p

∂xj

⏐⏐⏐⏐P +
∑
f

τ fijn̂
f
i A

f + S⋆,P
j V P , (2.4)

∑
f

ϑfAf = 0 , (2.5)

where superscript f denotes the faces of cell P , Af is the area of face f , n̂f is the unit normal

vector of face f (outward pointing with respect to cell P ), ϑf = uf · n̂f is the advecting velocity,

S⋆,P are the discretised source terms, and V P is the volume of cell P . In this study, the transient

term in the momentum equations, Eq. (2.4), is discretised using the first-order or second-order

backward Euler schemes, while the face velocity ufj is evaluated using the central differencing

scheme with an implicit correction for mesh skewness [34]. Deriving a consistent discretisation

for the advecting velocity

ϑf = ufi n̂
f
i = ufi n̂

f
i + f(∇p,S⋆, ρ) (2.6)

based on the MWI, where ufi is interpolated from the adjacent cell centres, and constructing a

force-balanced discretisation of the source term S⋆,P are the main objectives of this study. The

MWI presented in §2.3 and its extensions to flows with source terms and density discontinuities

in §2.4 and §2.5, respectively, are tested using the fully-coupled finite volume framework for

single phase and multiphase flows on arbitrary meshes of Denner and van Wachem [31].

The low Mach number flows presented in §2.3.5 are simulated using the pressure-based finite

volume framework for single phase flows at all speeds of Xiao et al. [98]. For compressible flows

the momentum equations are

∂ρuj
∂t

+
∂ρujui
∂xi

= − ∂p

∂xj
+
∂τij
∂xi

+ Sj (2.7)

and the continuity equation is

∂ρ

∂t
+
∂ρui
∂xi

= 0 . (2.8)
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Figure 2.2: Schematic illustration of cell P with its neighbour cell F and the shared face f ,
where n̂f is the unit normal vector of face f and ŝf is the unit vector connecting cells P and F
(both outward pointing with respect to cell P ), with f ′ the interpolation point associated with
face f and rf the vector from interpolation point f ′ to face centre f .

In addition to the momentum and continuity equations, compressible flow is governed by the

energy equation

∂ρh

∂t
+
∂ρuih

∂xi
=
∂p

∂t
+

∂

∂xi
(τijuj) + Siui , (2.9)

where h = cpT + u2/2 is the total enthalpy, cp is the specific heat capacity at constant pressure,

and T is the temperature. Without loss of generality, heat conduction is neglected in this work.

The considered fluid is assumed to be an ideal gas with the density given by the equation of state

ρ =
p

(γ − 1)cvT
, (2.10)

with γ = cp/cv the heat capacity ratio and cv the specific heat capacity at constant volume. In

particular, the continuity equation, Eq. (2.8), is discretised as [98]

∂ρ

∂t
+
∑
f

ρf,nϑf,n+1Af +
∑
f

ρf,n+1ϑf,nAf −
∑
f

ρf,nϑf,nAf = 0 , (2.11)

following a Newton-linearisation of the advection term, where superscript n+ 1 denotes values

that are implicitly solved for and superscript n denotes deferred values from the previous iteration.

This Newton-linearisation of the advection term of the discretised continuity equation, Eq. (2.11),

allows simulations without MWI, contrary to the employed incompressible framework. The

interested reader is referred to the work of Xiao et al. [98] for a detailed description of this
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numerical framework and discretisation.

2.3 Momentum-Weighted Interpolation

The MWI is derived from the momentum equations with the aim of providing a consistent

formulation of the advecting velocity ϑf , Eq. (2.6), for arbitrary meshes and to analyse the

general properties of the MWI. Using an appropriate approximation for the values at face centre

f , such as a linear interpolation of values at adjacent cell centres, a first-order Euler scheme to

discretise the transient term and neglecting source terms, Eq. (2.4) is given at cell centre P as

(
aP +

ρP

∆t
V P

)
uPj +

∑
f

aFuFj = − ∂p

∂xj

⏐⏐⏐⏐P V P +
ρP,OuP,Oj

∆t
V P , (2.12)

where ∆t is the applied time-step, superscript O denotes values from the previous time-level,

superscript F represents the neighbour cell of cell P that is adjacent to face f , as schematically

illustrated in fig. 2.2, and a is the sum of the coefficients of the advection term and the shear

stress term arising from the discretisation applied to the momentum equations. By defining

ũPj =− 1

aP

∑
f

aFuFj , (2.13)

dP =
V P

aP
, (2.14)

cP =
ρP

∆t
, (2.15)

Eq. (2.12) can be rewritten as

(
1 + cPdP

)
uPj = ũPj − dP

∂p

∂xj

⏐⏐⏐⏐P + cPdPuP,Oj . (2.16)

Note that in the analysis presented here, a backwards Euler scheme with first-order accuracy is

used for time integration; the extension to higher-order accurate transient schemes is straight-

forward [20, 54]. Assuming Eq. (2.16) can be similarly formulated for any control volume, an

equivalent equation is written for cell F

(
1 + cFdF

)
uFj = ũFj − dF

∂p

∂xj

⏐⏐⏐⏐F + cFdFuF,Oj (2.17)
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and, in analogy to a staggered control volume, at face f

(
1 + cfdf

)
ufj = ũfj − df

∂p

∂xj

⏐⏐⏐⏐f + cfdfuf,Oj , (2.18)

thus mimicking a staggered variable arrangement. However, in the absence of a staggered

variable arrangement, the information required to close Eq. (2.18) is not directly available and,

consequently, approximations for ũfj , c
f , df and (∂p/∂xj)

f are required.

With the aim of obtaining an expression for the velocity ufj , ũ
f
j is approximated by linear

interpolation as

ũfj ≈ ũ
f
j = lf ũPj +

(
1− lf

)
ũFj , (2.19)

where lf is the linear interpolation coefficient. Note that this definition for ũfj is chosen so that

the expression for ufj is time-step independent, i.e. the steady-state solution should not contain

any terms that are dependent on the time-step and the MWI should recover the steady-state

solution if a transient flow reaches a steady state [66]. Substituting Eq. (2.16) and Eq. (2.17)

into Eq. (2.19), the face velocity ufj , given by Eq. (2.18), becomes

(
1 + cfdf

)
ufj = (1 + cd)uj

⏐⏐⏐f −
(
df

∂p

∂xj

⏐⏐⏐⏐f − d
∂p

∂xj

⏐⏐⏐⏐f
)

+

(
cfdfuf,Oj − cduOj

⏐⏐⏐f) , (2.20)

where (·)f denotes a value at face f obtained by linear interpolation from the adjacent cell

centres. With ∆t→ ∞ for a steady-state solution, c→ 0 and Eq. (2.20) reduces to

ufj = ufj −
(
df

∂p

∂xj

⏐⏐⏐⏐f − d
∂p

∂xj

⏐⏐⏐⏐f
)
, (2.21)

which is independent of the time-step ∆t.

2.3.1 Velocity Interpolation

The face velocity ufi is interpolated with a linear interpolation

ufi = lf,(idw)uPi +
(
1− lf,(idw)

)
uFi , (2.22)
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where

lf,(idw) =
∆qFf

∆qPf +∆qFf
(2.23)

is the interpolation coefficient obtained by inverse distance weighting, indicated by the superscript

“(idw)”, and ∆qPf and ∆qFf are the distances between cell centre P and face f and between

cell centre F of the adjacent cell and face f , respectively. The accuracy of the interpolated face

velocity ufi reduces when the interpolation point f ′ along the vector connecting the cell centres

P and F does not coincide with the centre of face f , see fig. 2.2, commonly referred to as mesh

skewness. In order to retain the accuracy of the linear interpolation, a gradient-based correction

is added to the interpolation of the face velocity [28, 53], with the face velocity following as

ufi = lf,(idw)uPi +
(
1− lf,(idw)

)
uFi +

∂ui
∂xj

⏐⏐⏐⏐f rfj , (2.24)

where rf is the vector from interpolation point f ′ to face centre f , see fig. 2.2. Note that the

precise type of interpolation is not critical and the correction of mesh skewness is optional, as it

does not have a direct influence on the efficacy of the MWI in providing a robust pressure-velocity

coupling, although the interpolation given in Eq. (2.24) is desirable with respect to the accuracy

of the interpolation on non-Cartesian meshes [53, 67].

2.3.2 The Pressure Gradients

The discretisation and interpolation of the pressure gradients in the MWI has a direct influence

on the low-pass filter properties with regards to the pressure field, which is widely considered

to be the key characteristic of the MWI [30, 31, 39, 75, 99], and the efficacy of the associated

pressure-velocity coupling. First, the interpolation on an equidistant mesh is discussed, and the

low-pass filter on the pressure field is derived, to illustrate the key concepts of the MWI. This

is followed by a generalisation of the interpolation and the low-pass filter to non-equidistant

meshes.

2.3.2.1 Equidistant Mesh

The applied numerical framework is based on a finite volume method, so that the straightforward

discretisation of the pressure gradients on the one-dimensional equidistant mesh shown in fig. 2.1
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follows as

∂p

∂x

⏐⏐⏐⏐f ≈ pE − pP

∆x
, (2.25)

∂p

∂x

⏐⏐⏐⏐P ≈ pE − pW

2∆x
, (2.26)

∂p

∂x

⏐⏐⏐⏐E ≈ pEE − pP

2∆x
. (2.27)

As the mesh is equidistant, a linear interpolation of the pressure gradients at cells P and E with

a 1/2-weighting is given as

∂p

∂x

⏐⏐⏐⏐f ≈ 1

2

(
∂p

∂x

⏐⏐⏐⏐P +
∂p

∂x

⏐⏐⏐⏐E
)
. (2.28)

Inserting the discretised pressure gradients given in Eq. (2.25) - Eq. (2.27), including the

interpolation given in Eq. (2.28) and neglecting the weighting term df for simplicity, the pressure

term of Eq. (2.21) at face f is given as

∂p

∂x

⏐⏐⏐⏐f − 1

2

(
∂p

∂x

⏐⏐⏐⏐P +
∂p

∂x

⏐⏐⏐⏐E
)

≈ 1

4∆x

(
pW − 3pP + 3pE − pEE

)
. (2.29)

For comparison, the third-order derivative of pressure at face f is given as

∂3p

∂x3

⏐⏐⏐⏐f ≈ 1

∆x

(
∂2p

∂x2

⏐⏐⏐⏐E − ∂2p

∂x2

⏐⏐⏐⏐P
)

≈ − 1

∆x3
(
pW − 3pP + 3pE − pEE

)
+O

(
∆x4

)
, (2.30)

which shows that the pressure term in Eq. (2.29) is proportional to the third-order derivative of

pressure,

∂p

∂x

⏐⏐⏐⏐f − 1

2

(
∂p

∂x

⏐⏐⏐⏐P +
∂p

∂x

⏐⏐⏐⏐E
)

≈ − ∂3p

∂x3

⏐⏐⏐⏐f ∆x2

4
. (2.31)

It is this relationship that dampens out non-physical pressure oscillations on meshes with

collocated variable arrangement [30, 39, 75, 94, 99]. Approximating the pressure gradient at face

f with standard finite differences as in Eq. (2.25), provides a spatial cell-to-cell coupling of the

pressure field and matches the discretised pressure gradient that would be employed if f would

correspond to a control volume in a staggered variable arrangement. Moreover, the pressure

term is proportional to ∆x2, see Eq. (2.31), and, hence, the second-order accuracy of the finite-

volume framework is preserved [97]. The extension to multiple dimensions is straightforward by
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Figure 2.3: One-dimensional example of a mesh with a change in mesh spacing.

computing the cell-centred gradients using the divergence theorem, given for cell P as

∂p

∂xi

⏐⏐⏐⏐P ≈ 1

V P

∑
f

pf n̂fi A
f , (2.32)

where f are all faces adjacent to cell P , and analogously for cell E.

2.3.2.2 Non-Equidistant Meshes

The choice of interpolation coefficient for the pressure gradients on non-equidistant meshes

is a controversial issue in the literature and has not been conclusively settled. The use of

a linear interpolation with weighting coefficients based on the mesh geometry is frequently

advocated [12, 13, 14, 20, 21, 23, 25, 64, 70], e.g. inverse distance weighting [13, 14, 20, 64] or

volume weighting [25], for the interpolation of the pressure gradients. However, previous studies

[30, 31, 39, 99] suggested the use of the 1/2-weighting given in Eq. (2.28) also for non-equidistant

meshes, in order to retain the filter properties of the MWI. Pascau [70] also suggested the use

of a harmonic average for all interpolations in the MWI, but did not further elaborate on the

suitability of harmonic averaging.

Consider the example illustrated in fig. 2.3, where the mesh spacing suddenly changes by a

factor of ∆xE/∆xP = 5 in the cells adjacent to face f . Applying inverse distance weighting to

interpolate the cell-centred pressure values to faces e, f and g, the derivatives required for the

pressure term of the MWI follow as

∂p

∂x

⏐⏐⏐⏐f ≈ pE − pP

3∆x
, (2.33)

∂p

∂x

⏐⏐⏐⏐P ≈ pf − pe

∆x
=

1

∆x

(
1

6
pE +

2

6
pP − 3

6
pW
)
, (2.34)

∂p

∂x

⏐⏐⏐⏐E ≈ pg − pf

5∆x
=

1

5∆x

(
1

2
pEE +

1

3
pE − 5

6
pP
)
, (2.35)
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and the pressure term of the MWI, which is also interpolated with inverse distance weighting,

becomes

∂p

∂x

⏐⏐⏐⏐f −
(
5

6

∂p

∂x

⏐⏐⏐⏐P +
1

6

∂p

∂x

⏐⏐⏐⏐E
)

≈ − 1

180∆x

(
3pEE − 33pE + 105pP − 75pW

)
. (2.36)

The third derivative of pressure in this case is

∂3p

∂x3

⏐⏐⏐⏐f ≈ 1

3∆x

(
∂2p

∂x2

⏐⏐⏐⏐E − ∂2p

∂x2

⏐⏐⏐⏐P
)

≈ 1

225∆x3
(
3pEE − 33pE + 105pP − 75pW

)
+O

(
∆x4

)
,

(2.37)

so that the pressure term of the MWI is

∂p

∂x

⏐⏐⏐⏐f −
(
5

6

∂p

∂x

⏐⏐⏐⏐P +
1

6

∂p

∂x

⏐⏐⏐⏐E
)

≈ − ∂3p

∂x3

⏐⏐⏐⏐f 5

4
∆x2. (2.38)

Similar relationships can be found in the same manner for any ratio ∆xE/∆xP and it can,

therefore, be concluded, that the pressure term of the MWI is formally equivalent to the

corresponding third derivative of pressure,

∂p

∂x

⏐⏐⏐⏐f − ∂p

∂x

⏐⏐⏐⏐f ≈ ∂p

∂x

⏐⏐⏐⏐f −
[
lf,(idw) ∂p

∂x

⏐⏐⏐⏐P +
(
1− lf,(idw)

) ∂p

∂x

⏐⏐⏐⏐P
]
∝ − ∂3p

∂x3

⏐⏐⏐⏐f , (2.39)

if inverse distance weighting is applied consistently for all interpolations of pressure and its

gradients.

If the cell-centred pressure gradients are, however, evaluated with face values obtained with

inverse distance weighting, see Eq. (2.34) and Eq. (2.35), but interpolated in the MWI with

1/2-weighting, the resulting pressure term, for instance given for a cell-size ratio of ∆xE/∆xP = 5

as

∂p

∂x

⏐⏐⏐⏐f − 1

2

(
∂p

∂x

⏐⏐⏐⏐P +
∂p

∂x

⏐⏐⏐⏐E
)

≈ − 1

12∆x

(
3pEE − pE + pP − 3pW

)
, (2.40)

is not proportional to the corresponding third derivative of pressure, Eq. (2.37), and does not

formally provide the low-pass filter on the pressure field. Yet, if the 1/2-weighting is applied

throughout, i.e. for the interpolation of pe, pf and pg as well as in the interpolation of the cell-

centred pressure gradients in the MWI, the filter on the pressure field, then given by Eq. (2.31),

would be retained, albeit at the cost of reducing the accuracy of the pressure gradient evaluation.
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This reduced accuracy of the pressure gradient introduces an error in the momentum equation

that, based on the Taylor expansion

pf,(1/2) = pf,(idw) +
(
xf,(1/2) − xf,(idw)

) ∂p

∂x

⏐⏐⏐⏐f +O
((

xf,(1/2) − xf,(idw)
)2)

, (2.41)

where superscript “(1/2)” denotes interpolation with 1/2-weighting, is proportional to the

distance xf,(1/2) − xf,(idw) and, thus, increases linearly with increasing cell-size ratio of adjacent

cells. The influence of these different interpolation techniques is further analysed from a practical

viewpoint using numerical results in §2.3.5.1.

2.3.3 Weighting Coefficients c and d

In Eq. (2.20) the weighting coefficients c and d appear in various forms, at face f as well as

interpolated to face f from the values at adjacent cells P and F . This can be further simplified by

observing that the pressure term of the MWI has to vanish and uf = uf , if the pressure gradient

is constant or varies linearly (assuming a steady state), for which ∂3p/∂x3 = 0. Furthermore,

uf,O = uf,O if an initially transient flow assumes a steady-state solution.

To assure uf = uf if the gradient of pressure is constant or varies linearly, the coefficient of

the interpolated face velocity uf has to be unity. Hence,

1 + cd
⏐⏐f = 1 + cfdf , (2.42)

and similarly for the coefficients of the previous time-step

cd
⏐⏐f = cfdf (2.43)

to obtain uf,O = uf,O at steady state. Taking Taylor expansions of the pressure gradients about

the face centre f on an equidistant mesh,

∂p

∂xi

⏐⏐⏐⏐P =
∂p

∂xi

⏐⏐⏐⏐f − ∆x

2

∂2p

∂xi2

⏐⏐⏐⏐f +
∆x2

8

∂3p

∂xi3

⏐⏐⏐⏐f −O(∆x3) , (2.44)

∂p

∂xi

⏐⏐⏐⏐F =
∂p

∂xi

⏐⏐⏐⏐f +
∆x

2

∂2p

∂xi2

⏐⏐⏐⏐f +
∆x2

8

∂3p

∂xi3

⏐⏐⏐⏐f +O(∆x3) , (2.45)
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the pressure term of the MWI is given as

df
∂p

∂xi

⏐⏐⏐⏐f−d ∂p∂xi
⏐⏐⏐⏐f =

(
df − dP + dF

2

)
∂p

∂xi

⏐⏐⏐⏐f+∆x

2

(
dP − dF

2

)
∂2p

∂xi2

⏐⏐⏐⏐f−∆x2

8

(
dP + dF

2

)
∂3p

∂xi3

⏐⏐⏐⏐f .
(2.46)

Therefore, for the pressure term of the MWI to vanish for a constant or linearly varying pressure

gradient, df becomes

df =
dP + dF

2
(2.47)

with

dP − dF = 0 (2.48)

which is satisfied by the approximation

dP ≈ dF . (2.49)

While the approximation given in Eq. (2.49) has been applied in a somewhat ad-hoc manner

by other researchers [20, 21, 23, 31, 59, 99, 101], generally without justification beyond the

difference dP − dF is assumed to be small [75, 99], the above analysis shows that it is necessary

to obtain a physical solution.

Inserting the approximations defined in Eq. (2.42), Eq. (2.43), Eq. (2.47) and Eq. (2.49)

into Eq. (2.20), and dividing by 1 + cfdf , the face velocity becomes

ufi = ufi − d̂f

(
∂p

∂xi

⏐⏐⏐⏐f − ∂p

∂xi

⏐⏐⏐⏐f
)

+ cf d̂f
(
uf,Oi − uOi

⏐⏐⏐f) , (2.50)

where

d̂f =
df

1 + cfdf
. (2.51)

The corrections to the interpolated velocity provided by the pressure term and the transient

term in Eq. (2.50) vanish if the pressure gradient is constant or varies linearly and if the flow

assumes a steady state, respectively. The coefficients cf and df do, therefore, not affect the

low-pass filter or the cell-to-cell pressure coupling of the pressure term.
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2.3.4 Advecting Velocity

Noting that the velocity uf , given by Eq. (2.50), appears in the discretised governing equa-

tions, Eq. (2.4) and Eq. (2.5), as the dot product with the face normal vector n̂f , an advecting

velocity ϑf = uf · n̂f can be defined using the MWI (cf. [23, 31, 39]). Applying the closures as

described in the previous sections, §2.3.1-§2.3.3, this advecting velocity is given as

ϑf = ufi n̂
f
i − d̂f

(
pF − pP

∆x
− ∂p

∂xi

⏐⏐⏐⏐f n̂fi
)

+ cf d̂f
(
ϑf,O − uf,Oi n̂fi

)
. (2.52)

When the vectors ŝf and n̂f are not parallel, as for instance in the example given in fig. 2.2,

the pressure gradients at cell centres are misaligned to the pressure gradient at the face, because

pF − pP

∆sf
≈ ∂p

∂xi

⏐⏐⏐⏐f ŝfi ̸≈ ∂p

∂xi

⏐⏐⏐⏐f n̂fi , (2.53)

where ∆sf is the distance between cell centres P and F (∆sf = ∆x on an orthogonal mesh where

ŝf = n̂f ). Consequently, the pressure term of the MWI is no longer guaranteed to constitute a

low-pass filter with respect to the third and higher derivatives of pressure. The pressure filter

can be restored by applying a deferred-correction approach [27, 28], as previously applied to the

MWI by Zwart [102] and Denner and van Wachem [31], and similarly proposed by Ferziger and

Perić [39], decomposing the product ∇pf · n̂f into an orthogonal and a non-orthogonal part.

The pressure gradient at face f is then defined as

∂p

∂xi

⏐⏐⏐⏐f n̂fi ≈ ζf
∂p

∂xi

⏐⏐⏐⏐f ŝfi +
∂p

∂xi

⏐⏐⏐⏐f (n̂fi − ζf ŝfi ) ≈ ζf
pF − pP

∆sf
+

∂p

∂xi

⏐⏐⏐⏐f (n̂fi − ζf ŝfi ) , (2.54)

where ζf is the scaling factor of the decomposition. Inserting Eq. (2.54) into the pressure term

of Eq. (2.52), the pressure term for non-orthogonal meshes follows as

(
∂p

∂xi

⏐⏐⏐⏐f − ∂p

∂xi

⏐⏐⏐⏐f
)
n̂fi ⇒ ζf

(
∂p

∂xi

⏐⏐⏐⏐f − ∂p

∂xi

⏐⏐⏐⏐f
)
ŝfi . (2.55)

Hence, the correction assures that the entire pressure term of the MWI is projected onto the

vector ŝf connecting the adjacent cell centres, a prerequisite to retain the filter properties of the

MWI on arbitrary meshes. The scaling factor ζf of the decomposition can be chosen arbitrarily

in the range 0 ≤ ζf ≤ 1; the filter properties of the MWI are mesh-independent for ζf = 1.
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Denner and van Wachem [31] applied ζf = (n̂fi ŝ
f
i )

−1, which increases the weight of the pressure

filter with increasing non-orthogonality of the mesh, while Zwart [102] suggested the use of

ζf = n̂fi ŝ
f
i , which reduces the weight of the pressure filter with increasing non-orthogonality of

the mesh.

In summary, applying the approximations presented above, the advecting velocity for steady-

state and transient flows on arbitrary meshes is given as

ϑf = ufi n̂
f
i − ζf d̂f

(
pF − pP

∆sf
− ∂p

∂xi

⏐⏐⏐⏐f ŝfi
)

+ cf d̂f
(
ϑf,O − uf,Oi n̂fi

)
, (2.56)

where inverse distance weighting should be applied for the interpolations. Applying this advecting

velocity in the discretisation of the governing equations, Eq. (2.4) and Eq. (2.5), assuming source

terms (separately discussed in §2.4) are negligible, enforces the spatial coupling of the pressure

field that is otherwise missing. A careful choice of the approximations results in a low-pass filter

that targets third-order and higher oscillations of pressure, that appear in a decoupled pressure

field.

2.3.4.1 Momentum-Weighted Interpolation as a Low-Pass Pressure Filter

As shown in Eq. (2.31), the pressure term in the MWI is proportional to the third-order derivative

of pressure, the MWI may thus be written as

ϑf ≈ ufi n̂
f
i − d̂f

∆x2

4

∂3p

∂x3i

⏐⏐⏐⏐f n̂fi . (2.57)

Using this representation, it will be shown that MWI operates as a low-pass filter acting on

third-order and higher derivatives of pressure. To illustrate this, consider the case of fully

developed flow and suppose that the discrete velocity field and pressure gradient are correct and

satisfy the momentum and continuity equations, i.e.

uPj = const. (2.58)

∂p

∂xj

⏐⏐⏐⏐P = const. (2.59)
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at each cell centre. As the analysis surrounding Eq. (2.3) in §2.1 shows, the discretisation does not

prevent odd-even decoupling of the pressure field. Considering also the discrete continuity equa-

tion for incompressible flow results in a constant advecting velocity, and substituting Eq. (2.58)

into Eq. (2.57) yields

d̂f
∆x2

4

∂3p

∂x3i

⏐⏐⏐⏐f n̂fi = const. (2.60)

The only value of the third-order derivative satisfying both the constraints imposed by Eq. (2.59)

and Eq. (2.60) is zero, an alternating value as that which would arise in odd-even decoupling of

the pressure field would violate the discrete continuity equation, whilst a constant non-zero value

is incompatible with Eq. (2.59). Pressure fields with only lower order derivatives, in particular

constant or linearly varying gradients, are however unaffected by Eq. (2.60), therefore MWI

can be considered as a filter acting on third-order and higher derivatives of pressure to prevent

pressure-velocity decoupling.

2.3.5 Numerical Experiments

Two representative test cases are considered, the propagation of acoustic waves in §2.3.5.1

and the flow in a lid-driven cavity in §2.3.5.2, to assess the different formulations of the MWI

discussed in this section. The propagation of acoustic waves allows a detailed analysis of the

effect of the pressure interpolation and the filter properties of the MWI, while the lid-driven

cavity demonstrates the versatility and robustness of the proposed formulation.

2.3.5.1 Propagation of Acoustic Waves

The propagation of acoustic waves is simulated on one- and two-dimensional non-equidistant

meshes. Three different formulations of the pressure gradients in the MWI and in the momentum

equations, based on the analysis presented in §2.3.2, are considered:

1. The pressure at faces and the discretised pressure gradients in the MWI are interpolated

with inverse distance weighting, abbreviated “p-idw, MWI-idw”;

2. The pressure at faces is interpolated with inverse distance weighting, while the discretised

pressure gradients in the MWI are interpolated with 1/2-weighting, abbreviated “p-idw,

MWI-1/2”;
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3. The pressure at faces and the discretised pressure gradients in the MWI are interpolated

with 1/2-weighting, abbreviated “p-1/2, MWI-1/2”.

It is important to remember at this point, as previously discussed in §2.3.2, that the same

discretised cell-centred pressure gradients are applied in the momentum equations and the

MWI, and that the interpolated pressure at faces is used to determine these discretised cell-

centred pressure gradients via the divergence theorem, see Eq. (2.32). The acoustic waves are

excited by the velocity at the domain-inlet, uin = u0 +∆u0 sin(2πft), where u0 = 0.30886m s−1

is the initial velocity, ∆u0 = 0.01u0 is the excitation amplitude and f = 1000 s−1 is the

excitation frequency. Initially, the pressure is p0 = 105 Pa and the temperature is T0 = 24.80K.

The heat capacity ratio and the specific heat capacity at constant volume are γ = 1.4 and

cv = 720 J kg−1K−1, respectively, from which a density of ρ0 = 14 kgm−3 and a speed of

sound of us,0 =
√
γp0/ρ0 = 100m s−1 follow. Hence, the wavelength of the acoustic waves is

λ0 = us,0/f = 0.1m. The flow is assumed to be inviscid, meaning the amplitude of the acoustic

waves is not attenuated by viscous stresses. Since the density and velocity amplitudes are small,

with ∆ρ0 ≪ ρ0 and ∆u0 ≪ us,0, the theoretical pressure amplitude of the acoustic waves follows

from linear acoustic theory [1] as ∆p0 = us,0ρ0∆u0 = 4.32Pa.

The one-dimensional domain is represented by a mesh with a sharp change in mesh spacing

at x = 0, similar to the mesh shown in fig. 2.3, changing from a small mesh spacing ∆xS to a

large mesh spacing ∆xL = λ0/20. Figure 2.4 shows the pressure profiles on the meshes with

∆xL/∆xS ∈ {5, 20} for the three considered formulations of the pressure gradients. In all cases,

the pressure profile is not visually affected by the choice of the pressure gradient formulation

or the cell-size ratio of the mesh, with the predicted amplitude of the pressure wave in the

range 4.30Pa ≤ ∆p ≤ 4.35Pa, which is in excellent agreement with the theoretical value of

∆p0 = 4.32Pa. Interestingly, the pressure amplitude of the acoustic waves does not diminish

as they propagate through the domain, indicating that the proposed formulation of the MWI

does not introduce spurious pressure contributions or damping that alters the pressure field,

provided that the pressure waves are appropriately resolved in space and time. However, the

profiles of the velocity gradient, shown in fig. 2.5, reveal distinct differences between the pressure

gradient formulation that uses exclusively inverse distance weighting (’p-idw, MWI-idw’), which

does not exhibit any dependency on the cell-size ratio ∆xL/∆xS, and the other two considered
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Figure 2.4: Pressure profiles of acoustic waves in a one-dimensional domain with velocity
amplitude ∆u0 = 0.01u0 and frequency f = 1000 s−1, on meshes with different cell-size ratios
∆xL/∆xS of the change in mesh spacing at x = 0, for different interpolation procedures of the
pressure at faces and of the cell-centred pressure gradients.

formulations of the pressure gradient (’p-idw, MWI-1/2’ and ’p-1/2, MWI-1/2’), which exhibit a

considerable error at the position of the change in mesh spacing (x = 0). In fact, fig. 2.6 shows

that this error grows linearly with ∆xL/∆xS, as expected from Eq. (2.41).

Simulating the propagation of these acoustic waves on the hybrid quatrilateral/triangular

two-dimensional mesh shown in fig. 2.7 (with periodic boundary conditions in the y-direction)

using the formulations ’p-idw, MWI-idw’ and ’p-idw, MWI-1/2’ yields similar conclusions. The

pressure profiles obtained with both formulations, shown in fig. 2.8a, are in excellent agreement

with each other and show no visible dependency on the mesh. Moreover, the pressure amplitude

(∆p = 4.33Pa with both formulations) and wavelength (λ = 0.1m with both formulations)

compare very well with the corresponding theoretical values (∆p0 = 4.32Pa, λ0 = 0.1m).

However, a visible error in the profile of the velocity gradient can be identified in fig. 2.8b for

the ’p-idw, MWI-1/2’ formulation at the positions (x = 0.25m and x = 0.30m) where the mesh

size (and cell type) changes. Although, contrary to the corresponding one-dimensional case, this

error is not entirely eliminated with the ’p-idw, MWI-idw’ formulation, which is attributed to

mesh skewness, the error is significantly reduced.

In the formulation using ’p-idw, MWI-1/2’, the error originates in the MWI, because the
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Figure 2.5: Profiles of the velocity gradient of acoustic waves in a one-dimensional domain
with velocity amplitude ∆u0 = 0.01u0 and frequency f = 1000 s−1, on meshes with different
cell-size ratios ∆xL/∆xS of the change in mesh spacing at x = 0, for different interpolation
procedures of the pressure at faces and of the cell-centred pressure gradients.
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Figure 2.6: Error in velocity gradient ∇u for acoustic waves in a one-dimensional domain as a
function as cell-size ratio ∆xL/∆xS, observed in cells adjacent to the change in mesh spacing,
for different interpolation procedures of the pressure at faces and of the cell-centred pressure
gradients.
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Figure 2.7: Hybrid quatrilateral/triangular two-dimensional mesh with dimensions 0.55m×
0.005m, used to simulate the propagation of acoustic waves. The coordinates in the x- and
y-direction are shown as a reference. The triangular mesh section extends from x = 0.25m to
x = 0.30m. Note that not the entire extent of the mesh in the x-direction is shown, in order for
the change in mesh type and mesh spacing to be clearly visible.
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Figure 2.8: Profiles of (a) the pressure and (b) the velocity gradient of acoustic waves, with ve-
locity amplitude ∆u0 = 0.01u0 and frequency f = 1000 s−1, on the hybrid quatrilateral/triangular
two-dimensional mesh shown in fig. 2.7, using different interpolation procedures of the pressure
at faces and of the cell-centred pressure gradients. The transition from quatrilateral to triangular
mesh and vice versa is at x = 0.25m and x = 0.30m, respectively.
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pressure term of the MWI is not equivalent to the corresponding third derivative of pressure and,

hence, violates the filter of the MWI, cf. Eq. (2.37) and Eq. (2.40). For the formulation with

’p-1/2, MWI-1/2’, the pressure term of the MWI formally is equivalent to the corresponding

third derivative of pressure and satisfies the low-pass filter on the pressure field. However, due

to the interpolation of the face values of pressure with 1/2-weighting, the cell-centred pressure

gradients adjacent to the change in mesh spacing are inaccurate and, therefore, introduce an

error in the momentum equations. Interestingly, the error introduced in the MWI by the ’p-idw,

MWI-1/2’ formulation and the error introduced in the momentum equations by the ’p-1/2,

MWI-1/2’ formulation have identical magnitudes, see fig. 2.6. This implies that the formulation

of the MWI presented in this section is consistently derived from the momentum equations.

Despite the seemingly significant theoretical differences between the considered pressure term

formulations, see §2.3.2, the impact on the accuracy of the results is very modest. Although the

propagation of acoustic waves is a very sensitive test case with respect to the applied numerical

methods [66, 98], as even small inconsistencies or a lack of convergence lead to a visible change

in the amplitude and speed of the waves, the propagation of the acoustic waves is predicted with

high accuracy with all considered formulations. This suggests that the interpolation coefficients

of the linear interpolation of the cell-centred pressure gradients in the MWI is not a primary

factor for a robust pressure-velocity coupling on meshes with reasonably smooth changes of mesh

resolution.

2.3.5.2 Lid-Driven Cavity

A lid-driven cavity, schematically shown in fig. 2.9, is simulated to demonstrate the impact

of the different MWI formulations. The two-dimensional domain has dimensions 1m × 1m,

with the top wall moving at a constant velocity of uw = 1ms−1. As indicated in fig. 2.9, a

no-slip condition is applied at the top wall, while all other walls are assumed to be free-slip to

accentuate the differences introduced by MWI. Three different meshes are considered, shown in

fig. 2.10; an equidistant Cartesian mesh with 50× 50 cells, a triangular mesh with 3916 cells, and

a non-orthogonal quatrilateral mesh with 50× 50 cells. The scaling factor of the non-orthogonal

correction is ζf = 1 for the presented simulations.

Figures 2.11a - 2.11c show the pressure contours computed on the three meshes for a

Reynolds number of Re = ρLuw/µ = 1000, where L = 1m is the size of the domain and µ is the
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Figure 2.9: Schematic illustration of the two-dimensional lid-driven cavity and its boundary
conditions, with the dimensions 1m × 1m and the top wall moving at a constant velocity of
uw = 1ms−1.

(a) Equidistant Cartesian mesh (b) Triangular mesh (c) Non-orthogonal quatrilateral
mesh

Figure 2.10: The (a) equidistant Cartesian mesh with 50× 50 cells, (b) triangular mesh with
3916 cells and (c) non-orthogonal quatrilateral mesh with 50 × 50 cells, used to simulate a
lid-driven cavity with Re = 1000.
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dynamic viscosity, when the flow has reached a steady state. On all three meshes a stable and

oscillation-free result is obtained. Furthermore, the profiles of both velocity components u and v,

shown in fig. 2.12, are in very good agreement on all meshes, demonstrating the efficacy of the

proposed formulation of the MWI on arbitrary meshes. The pressure along the y-centreline of the

domain is shown in fig. 2.13a on Cartesian meshes with different resolution, indicating that the

pressure profile converges with increasing mesh resolution. In fact, as observed in fig. 2.13b, the

discretisation of the advecting velocity with MWI does not affect the second-order accuracy of the

applied finite volume method, confirming the theoretical analysis in §2.3.2. When the simulation

on the non-orthogonal mesh is restarted applying the advecting velocity ϑf as given by Eq. (2.52),

i.e. without the projection of the pressure term in the MWI presented in Eq. (2.55) to correct

for mesh non-orthogonality, yields significant pressure oscillations after only one time-step

∆t = 5× 10−3s, as observed in fig. 2.11d, and the solution algorithm diverges a few time-steps

later. This shows clearly the substantial improvement of accuracy and stability provided by the

non-orthogonal correction presented in Eq. (2.55), and demonstrates the consequences when the

low-pass filter of the MWI is severely compromised.

The utility of the MWI to eliminate pressure-velocity decoupling becomes strikingly apparent

when the lid-driven cavity is considered with a compressible fluid; with and without MWI.

The previous simulations are modified such that the fluid has a heat capacity ratio of γ = 1.4

and a specific heat capacity at constant volume of cv = 720 J kg−1K−1, which approximately

corresponds to the properties of air at room temperature. The flow has an initial pressure of

p0 = 105 Pa and an initial temperature of T0 = 347.22K, so that the density is ρ0 = 1kgm−3.

Hence, the speed of sound is us,0 =
√
γp0/ρ0 = 374.17m s−1, which corresponds to a Mach

number of M = uw/us,0 = 2.67× 10−3. Figure 2.14a shows the pressure contours at steady state

using the advecting velocity ϑf given in Eq. (2.56), on the equidistant Cartesian mesh with 50×50

cells. As expected, unphysical pressure oscillations as a result of pressure-velocity decoupling

are absent and the pressure distribution is in excellent agreement with the incompressible

result shown in fig. 2.11a. Restarting the compressible simulation with this result but omitting

the MWI in the formulation of the advecting velocity, so that ϑf = ufi n̂
f
i , clearly discernible

pressure oscillations develop, as seen in fig. 2.14b. Note that the result shown in fig. 2.14b is

an instantaneous snapshot and that the observed pressure oscillations grow over time until the

solution algorithm diverges. These pressure oscillations are diminished when p0 and T0 are
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(a) Equidistant Cartesian mesh (b) Triangular mesh

(c) Non-orthogonal quatrilateral mesh (with non-
orthogonal correction)

(d) Non-orthogonal quatrilateral mesh (without non-
orthogonal correction)

Figure 2.11: Contours of pressure p of the lid-driven cavity (Re = 1000), on (a) the equidistant
Cartesian mesh, (b) the triangular mesh, (c) the non-orthogonal quatrilateral mesh with the
MWI pressure term projected along ŝf (i.e. with non-orthogonal correction), and (d) the non-
orthogonal quatrilateral mesh without non-orthogonal correction. The advecting velocity with
non-orthogonal correction given in Eq. (2.56) is applied in (a)-(c), and the advecting velocity
without non-orthogonal correction given in Eq. (2.52) is applied in (d).
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Figure 2.12: Profiles of (a) the u-velocity component and (b) the v-velocity component along
the centreline of the lid-driven cavity domain for all three meshes at steady state. The advecting
velocity given in Eq. (2.56) is applied.
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Figure 2.13: Pressure along the centreline of the lid-driven cavity domain at steady state, on
Cartesian meshes with mesh spacing ∆x = {4× 10−2, 2× 10−2, 10−2, 5× 10−3, 3.3̄× 10−3, 2.5×
10−3}m.

modified to obtain a Mach number of M = 0.1 (but keeping ρ0 = 1kgm−3), as observed in

fig. 2.15, because the pressure-density coupling described by the equation of state, Eq. (2.10),

provides an indirect constraint on the pressure. These results demonstrate the necessity to

account for pressure-velocity decoupling in low Mach number flows if a collocated variable

arrangement is used with a pressure-based algorithm. In the fully compressible flow regime,

for M ≥ 0.1, the pressure-density coupling is sufficiently strong to suppress pressure-velocity

decoupling and diminish unphysical pressure oscillations.

2.4 Source Terms

The advecting velocity defined by Eq. (2.56) is applicable to steady-state and transient flows

on arbitrary meshes and, as long as sources terms vary smoothly, this is sufficient for many

applications. However, in the presence of source terms that are discontinuous or, more generally,

have large gradients, previous studies [31, 64, 86] have shown that the effect of these source

terms on the pressure field have to be accounted for in the MWI.

The reason for including these source terms in the MWI can be illustrated by assuming a

quiescent flow, with an external force applied by means of a source term S. The momentum
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(a) With MWI (b) Without MWI

Figure 2.14: Contours of the pressure p of the lid-driven cavity (Re = 1000) on the equidistant
Cartesian mesh. The flow is compressible with Mach number M = 2.67 × 10−3. In (a) the
pressure is shown at steady state obtained with the advecting velocity ϑf discretised with MWI
given in Eq. (2.56), while in (b) the pressure is shown after restarting the simulation with the

advecting velocity defined as ϑf = ufi n̂
f
i (i.e. without MWI).

Figure 2.15: Contours of the pressure p of the lid-driven cavity (Re = 1000) at steady state,
on the equidistant Cartesian mesh. The flow is compressible with Mach number M = 0.1. The
advecting velocity is discretised without MWI as ϑf = ufi n̂

f
i .
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equations, Eq. (2.1), in semi-discretised form reduce for this case to

0 = − ∂p

∂xi

⏐⏐⏐⏐P + SP
i . (2.61)

The corresponding advecting velocity, Eq. (2.56), which is ϑf = 0 since the flow is quiescent,

becomes

ϑf =
∆pf

∆sf
− ∂p

∂xi

⏐⏐⏐⏐f ŝfi = 0 , (2.62)

with ∆pf = pF − pP . Inserting Eq. (2.61) into Eq. (2.62) follows as

∆pf

∆sf
= S

f
i ŝ

f
i , (2.63)

a relationship previously used by Rahman et al. [75] for the inclusion of source terms in the

MWI. However, Eq. (2.63) can only be satisfied if the source term results in a uniform or

linearly varying pressure field. Hence, in order for the discretisation to be truly force-balanced,

meaning that the discretisation of the pressure gradients and the source terms are equivalent, a

source term S⋆ has to be constructed that can match the discretised pressure gradient in all

circumstances.

Equation (2.61) suggests that source terms cause a pressure gradient, an observation also

exploited in previous studies [31, 64, 86, 101], in addition to the pressure gradient associated

with the underlying flow ∇̃p, henceforth called the driving pressure gradient, with the pressure

gradient being

∂p

∂xi

⏐⏐⏐⏐P =
∂̃p

∂xi

⏐⏐⏐⏐⏐
P

+ SP,⋆
i . (2.64)

It is the pressure gradient associated with the velocity field, i.e. the driving pressure gradient,

that is relevant for the pressure-velocity coupling, while all other contributions to the pressure

gradient, i.e. source terms, should be excluded. The advecting velocity including source terms

should, hence, be

ϑf = ufi n̂
f
i − ζf d̂f

⎛⎝ ∂̃p

∂xi

⏐⏐⏐⏐⏐
f

− ∂̃p

∂xi

⏐⏐⏐⏐⏐
f
⎞⎠ ŝfi + cf d̂f

(
ϑf,O − uf,Oi n̂fi

)
. (2.65)

Therefore, the discretisation of the source terms has to precisely match the discretisation of the
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pressure gradients to avoid spurious corrections of the MWI that manifest as unphysical fluid

accelerations.

2.4.1 Discretisation of Source Terms

The analysis of the pressure term in §2.3.2 shows that, to preserve the low-pass filter on the

pressure field, the cell-centred pressure gradient has to be evaluated using the divergence theorem,

given by Eq. (2.32). This can be reformulated in terms of ∆pf as

∂p

∂xi

⏐⏐⏐⏐f ≈ 1

V P

∑
f

wf
i ∆p

f =
1

V P

∑
f

[
lfpP + (1− lf )pF

]
n̂fi A

f − pP

V P

∑
f

n̂fi A
f

  
=0

, (2.66)

with wf = (1 − lf )n̂fAf . Using a finite volume method, the last term on the right-hand

side of Eq. (2.66) is by definition zero and, thus, Eq. (2.66) is equivalent to Eq. (2.32). If

the interpolation of the pressure at face f is amended by additional correction terms, such as

the gradient-based skewness correction in Eq. (2.24), the general formulation for the pressure

gradient reads

∂p

∂xi

⏐⏐⏐⏐f ≈ 1

V P

∑
f

(
wf
i ∆p

f + kfi

)
, (2.67)

where kf is the correction coefficient of the interpolation, e.g. kfi = rf · ∇p
f
n̂fi A

f for mesh

skewness. The discretisation of the source terms should follow the same template as the

discretisation of the pressure gradients, with the cell-centred source terms discretised as

SP,⋆
i =

1

V P

∑
f

(
wf
i ∆S

f + kfi

)
=

1

V P

∑
f

(
wf
i S

f
j ŝ

f
j∆s

f + kfi

)
, (2.68)

with

∆Sf

∆sf
= S

f
j ŝ

f
j , (2.69)

similar to the definition of the pressure gradient at face centres given in Eq. (2.53).

The discretisation of the source term given in Eq. (2.68) is consistent with the discretisation

of the pressure gradients and, therefore, ensures a force-balanced discretisation. However, this

discretisation may modify the actual force applied to the fluid by the discretised source term.

The interpolation of the source term at face f from the cell-centred values at P and F has to
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assure that the discretised source terms apply the correct force to the flow. Returning to the

simplified one-dimensional, quiescent flow and assuming, for now, that Eq. (2.61) is satisfied by

the discretised source terms and pressure gradients, the pressure difference ∆pf = pF − pP is

given by

∆pf = ∆qPfSP +∆qFfSF , (2.70)

with ∆qPf and ∆qFf the distance between cell centre P and face f and between cell centre F

and face f , respectively. Since the force applied to the flow by the source term is integrated over

the distance (or area/volume in two/three dimensions), the contribution of the source term to the

pressure gradient increases with the distance between cell centre and face centre. Consequently,

the force applied by the discretised source terms is preserved with distance weighting, given as

S
f
= lf,(dw)SP +

(
1− lf,(dw)

)
SF , (2.71)

where

lf,(dw) =
∆qPf

∆qPf +∆qFf
, (2.72)

contrary to the inverse distance weighting in Eq. (2.23).

Adding the discretised source terms as defined above to Eq. (2.56), the advecting velocity is

defined as

ϑf = ufi n̂
f
i − ζf d̂f

[
∆pf

∆sf
− S

f
i ŝ

f
i −

(
∂p

∂xi

⏐⏐⏐⏐f − S
f,⋆
i

)
ŝfi

]
+ cf d̂f

(
ϑf,O − uf,Oi n̂fi

)
, (2.73)

with S
f
obtained by Eq. (2.71), while the interpolation of ∇p

f
and S

f,⋆
has to be conducted

in the same way, following the explanation given in §2.3.2 for pressure. In to order preserve

the low-pass pressure filter of the MWI, the source terms are projected along vector ŝf in the

same way as the pressure term described in §2.3.4. For Eq. (2.73) to be equivalent to Eq. (2.65),

and for the discretisation to be force-balanced, the discretised source term SP,⋆ also has to be

applied in the discretised momentum equations, see Eq. (2.4), so that the momentum equations

for the quiescent flow discussed above, 2.61, become

0 = − ∂p

∂xi

⏐⏐⏐⏐P + SP,⋆
i . (2.74)
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2.4.2 Numerical Experiments

The proposed discretisation of the source terms and the robust pressure-velocity coupling

provided by the MWI in flows with source terms is tested for discontinuous source terms in

one-dimensional flows on equidistant and non-equidistant meshes, as well as in a two-dimensional

flow on a hybrid quatrilateral/triangular mesh.

A one-dimensional, incompressible flow is simulated, for which the continuity equation

enforces a constant velocity in the entire domain. The domain has a length of L = 1m and is

represented by an equidistant mesh. Two cases are considered: one with a stepped source term,

given by

S(x) =

⎧⎪⎪⎨⎪⎪⎩
1, for 0.25m ≤ x ≤ 0.75m

0, otherwise,

(2.75)

and one with a ramped source term, given by

S(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, for x < 0.25m

x− 0.25

0.5
, for 0.25m ≤ x ≤ 0.75m

1, otherwise.

(2.76)

In both cases, the exact solution satisfies

∂p

∂x
(x) = S(x),

∂u

∂x
= 0, (2.77)

and the error of the computed solution is

εu(x) =
u(x)− uin

uin
, (2.78)

where uin is the velocity at the domain-inlet. The velocity errors εu(x) for both cases after

one time-step are shown in fig. 2.16 using different source term treatments; MWI without

source terms (abbreviated “MWI”), MWI with source terms S included as-is (similar to [75],

abbreviated “MWI-S”), and MWI with source terms S⋆ that are discretised as proposed in §2.4.1

(abbreviated “MWI-S⋆”). Both cases demonstrate that a discrepancy between the discretisation

of the pressure gradient and the discretisation of the source term causes an artificial acceleration
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Figure 2.16: Velocity errors obtained after one time-step for (a) the stepped source term and (b)
the ramped source term in a one-dimensional flow with different source term treatments: MWI
without source terms (abbreviated “MWI”), MWI with source terms included as-is (abbreviated
“MWI-S”), and MWI with source terms that are discretised as proposed in §2.4.1 (abbreviated
“MWI-S⋆”).

that leads to an incorrect velocity. Using the source term discretisation proposed in Eq. (2.68),

the fluid does not accelerate, matching the exact solution. Away from the discontinuities, all

three approaches agree with the exact solution. The ramped case demonstrates that a linear

change in pressure gradient, here generated by a linear variation in source term, does not affect

the pressure-velocity coupling and low-pass filter of the MWI, as discussed in §2.3.3, while

velocity errors ensue at the points where the source term varies non-linearly (x = 0.25m and

x = 0.75m), if the source term is not discretised consistently.

To test the effect of a non-equidistant mesh and demonstrate the efficacy of the proposed

interpolation of the source terms using distance weighting, proposed in Eq. (2.71), a source

term is applied at the central cell P of a one-dimensional domain. The applied non-equidistant

mesh has an increasing mesh spacing towards the centre of the domain, schematically shown in

fig. 2.17. As in the previous case, continuity dictates a constant velocity in the domain, while

the source term leads to a change in pressure, with the pressure difference being

∆p = pE − pW = SP∆xP . (2.79)

As the source term is only applied in cell P , the discretised pressure of the exact solution varies
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Figure 2.17: Schematic illustration of the one-dimensional domain with a non-equidistant
mesh that has an increasing mesh spacing towards the centre of the domain. Cell P with mesh
spacing ∆xP is at the centre of the domain, with its neighbour cells W and E that both have
mesh spacing ∆xF .

linearly in cell P , but is constant in its neighbour cells, with ∇pW = ∇pE = 0. Figure 2.18a

shows the pressure field computed with distance weighted interpolation and inverse distance

weighted interpolation applied to the source term, alongside the exact solution. In both cases the

source terms are discretised consistently with the pressure gradients, as proposed in Eq. (2.68).

Consequently, errors in the velocity field are negligible in both cases. However, the applied

interpolation has a significant effect on the computed pressure field, as observed in fig. 2.18a. The

pressure difference is predicted accurately when the source terms are interpolated using distance

weighting, as proposed in Eq. (2.71), while the pressure difference is underpredicted when inverse

distance weighting is applied. Varying the cell-size ratio between cell P and its neighbours W

and E, the pressure difference remains in excellent agreement with the exact result when the

proposed distance weighted interpolation is applied, as observed in fig. 2.18b. Applying inverse

distance weighting for the interpolation, however, the error in pressure difference compared to

the exact result, shown in fig. 2.18b, increases linearly with the ratio ∆xP /∆xF .

The most attractive aspect of the collocated variable arrangement, and hence MWI, is the

ease with which arbitrary meshes can be handled. This means the discretisation of source terms

proposed in §2.4.1 must also be applicable on arbitrary meshes. A two-dimensional mesh with

dimensions 1m× 0.2m consisting of (Cartesian) quatrilateral cells and an embedded region of

triangular cells, extending in the range 0.25m ≤ x ≤ 0.75m and 0.05m ≤ y ≤ 0.15m, shown in

fig. 2.19, is used to test the source term discretisation on arbitrary meshes. The triangular cells

combine the effects of changes in cell size, skewness and non-orthogonality. Using the stepped

source term described by Eq. (2.75), the source term covers the same x-range as the triangular

section of the mesh and extends over the complete height of the domain. The flow is introduced

with a uniform velocity at the domain-inlet, with free-slip boundary conditions applied to the

top and bottom walls. As the source term is constant over the height of the domain, the velocity
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Figure 2.18: Pressure distribution and pressure at the domain-inlet of the one-dimensional
flow with point source at the centre of the domain on a mesh with increasing mesh spacing
towards the centre of the domain.

is expected to remain one-dimensional and uniform. The velocity error εu along the centreline is

shown in fig. 2.20. As for the previously discussed test cases, the proposed discretisation and

distance weighted interpolation does not yield any noticeable errors. Not including the source

terms or including the source terms without taking special care of the discretisation, leads to

significant errors in the velocity field.

2.5 Density Discontinuities

In addition to varying or discontinuous source terms, a feature of many multiphase flows are

discontinuous density fields, which results in discontinuous pressure gradients and leads, in

turn, to oscillatory solutions or failure to reach a solution [31]. Rearranging the momentum

equations, Eq. (2.1), as an expression for the pressure gradient,

∂p

∂xj
= −ρ

(
∂uj
∂t

+ ui
∂uj
∂xi

)
+
∂τij
∂xi

+ Sj , (2.80)

shows that the pressure gradient is proportional to the density. Due to the use of linear

interpolation in the discretisation of the pressure field, this discontinuity cannot be represented

by the discrete representation of the pressure gradient, leading to discrepancies between the

discretised momentum equations and the equation for the advecting velocity at the face.
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Figure 2.19: Hybrid quatrilateral/triangular two-dimensional mesh with dimensions 1m×0.2m,
used to test the discretisation of source terms. The triangular region extends in the range
0.25m ≤ x ≤ 0.75m and 0.05m ≤ y ≤ 0.15m.
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Figure 2.20: Velocity errors obtained after one time-step for the stepped source term in a
two-dimensional flow, plotted along the centreline of the domain with different source term
treatments: MWI without source terms (abbreviated “MWI”), MWI with source terms included
as-is (abbreviated “MWI-S”), and MWI with source terms that are discretised as proposed in
§2.4.1 (abbreviated “MWI-S⋆”).
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To illustrate the problem that arises, a one-dimensional, inviscid, incompressible two-phase

flow, with the two bulk phases separated by a sharp interface, subject to a constant acceleration

in the absence of source terms is considered. Because both fluids are incompressible, the velocity

field should be spatially uniform. Hence, the discretised momentum equations reduce in this

case to

∂p

∂xi

⏐⏐⏐⏐P = −ρP ∂ui
∂t

⏐⏐⏐⏐P = −ρPai , (2.81)

where a is the spatially uniform acceleration of the flow. Similar to Eq. (2.80), the discretised

momentum equations, Eq. (2.81), shows that the pressure gradient is proportional to the cell-

averaged density and is, therefore, discontinuous where the density is discontinuous. In the limit

of large density ratios, the pressure gradient in the heavier fluid is significantly larger than in

the lighter fluid, i.e.

max

{
∂p

∂xj

}
≫ min

{
∂p

∂xj

}
, (2.82)

and the pressure term in the MWI of the advecting velocity, Eq. (2.56), is

lim
ρmax/ρmin→∞

∂p

∂xi

⏐⏐⏐⏐f = max

{
lf

∂p

∂xi

⏐⏐⏐⏐P , (1− lf )
∂p

∂xi

⏐⏐⏐⏐F
}

, (2.83)

where lf is the interpolation coefficient. As a result, the discrete pressure gradient is underpre-

dicted in the heavier phase and overpredicted in the lighter phase, which leads to an artificial

acceleration of the flow in the vicinity of the interface. In the case of extremely large density

ratios, the large and unphysical force applied to the lighter phase may lead to divergence of the

solution algorithm [31].

2.5.1 Density Weighting in the MWI

Denner and van Wachem [31] proposed to weight the pressure gradients in the MWI by the

corresponding density, with the pressure term in the MWI of the advecting velocity, Eq. (2.56),

becoming

1

ρf
∂p

∂xi

⏐⏐⏐⏐f − 1

2

(
1

ρP
∂p

∂xi

⏐⏐⏐⏐P +
1

ρF
∂p

∂xi

⏐⏐⏐⏐F
)

=
∂p

∂xi

⏐⏐⏐⏐f − ρf

2

(
1

ρP
∂p

∂xi

⏐⏐⏐⏐P +
1

ρF
∂p

∂xi

⏐⏐⏐⏐F
)

≈ 0 , (2.84)

where the cell-centred pressure gradients are interpolated with 1/2-weighting and with the face
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density evaluated by harmonic averaging ρf = 2/(ρP
−1

+ ρF
−1

). The generalisation of this

density weighting is straightforward, with the pressure term of the MWI given as

∂p

∂xi

⏐⏐⏐⏐f − ρf

(
lf

ρP
∂p

∂xi

⏐⏐⏐⏐P +
1− lf

ρF
∂p

∂xi

⏐⏐⏐⏐F
)
, (2.85)

where lf is the interpolation coefficient, and the face density defined by

1

ρf
=

lf

ρP
+

1− lf

ρF
. (2.86)

Note that the interpolation coefficients of the cell-centred pressure gradients add up to unity,

ρf
(
lf

ρP
+

1− lf

ρF

)
= 1 , (2.87)

which is crucial for a consistent and bounded interpolation. In the limit of large density ratios,

for instance with ρF /ρP → ∞, the face density becomes

lim
ρF /ρP→∞

ρf =
ρP

lf
(2.88)

and the pressure term in Eq. (2.85) follows as

∂p

∂xi

⏐⏐⏐⏐f − ρP

lf

(
lf

ρP
∂p

∂xi

⏐⏐⏐⏐P +
1− lf

ρF
∂p

∂xi

⏐⏐⏐⏐F
)

=
∂p

∂xi

⏐⏐⏐⏐f − ∂p

∂xi

⏐⏐⏐⏐P . (2.89)

Thus, the cell-to-cell change in pressure tends to the value corresponding to the minimum

pressure gradient on either side of the density discontinuity. This has a stabilising effect in the

discretisation, because instead of applying a force that is too large in the lighter fluid, leading

to large accelerations, a force that is too small is applied to the heavier fluid. Consequently,

the errors associated with a discontinuous change in density are substantially reduced and the

numerical solution remains stable.

2.5.2 Application to Two-Phase Flows

An accelerating incompressible two-phase flow in a one-dimensional domain is simulated, in which

the bulk phases with different densities are separated by a sharp interface. The flow is initially
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quiescent and the lighter fluid occupies the entire domain. The heavier fluid is introduced at the

inlet with velocity

uin(t) = a t , (2.90)

where a is a constant acceleration and t is time, and the discretised momentum equation is

given by Eq. (2.81). In theory, the solution is a spatially uniform, time-varying velocity given

by Eq. (2.90), with a discontinuity in the pressure gradient field at the interface due to the

discontinuity in density. The two-phase flow is simulated using the Volume-of-Fluid (VOF)

method [45], where the local volume fraction of each bulk phase is represented by the colour

function γ, with γ = 0 for the light phase and γ = 1 for the heavy phase. The interface is present

in cells with 0 < γ < 1. A compressive VOF method [32] is used to advect the interface with

the underlying flow. The local density is defined based on the local colour function value as

ρ(x) = γ(x)ρH + [1− γ(x)]ρL, where ρH and ρL are the density of the heavy fluid and the light

fluid, respectively. The numerically computed pressure gradients are compared with the exact

solution

∂p

∂x
(x)

⏐⏐⏐⏐
exact

= −aρ(x) , (2.91)

where the value of ρ(x) is determined by the interface location xΣ(t) = at2/2 as

ρ(x) =

⎧⎪⎪⎨⎪⎪⎩
ρH if x < xΣ

ρL if x > xΣ

. (2.92)

Figure 2.21a shows the pressure gradients of the numerical solution obtained with and without

density weighting for a two-phase flow with a density ratio of ρH/ρL = 50. Both cases exhibit

errors in the computed pressure gradient. The exact solution is two constant gradients with

a discontinuity at the interface, whereas over- and undershoots are evident in the numerical

results. However, with the density weighting in the MWI the maximum magnitude of the error

is < 10% compared to the exact value, whereas the maximum magnitude of the error increases

to more than 50% without the density weighting in the MWI. The ensuing errors in the velocity

field, shown in fig. 2.21b, confirm that the errors are diminished when the density weighting

is applied in the MWI. Figure 2.22 shows the same case, but for two fluids with density ratios

ρH/ρL = 103 and ρH/ρL = 106. Only results obtained with the density-weighted MWI are shown
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Figure 2.21: Pressure gradient and normalised velocity of the one-dimensional two-phase flow
with density ratio ρH/ρL = 50, without density weighting in the MWI (abbreviated “MWI”)
and with density weighting in the MWI (abbreviated “MWI-DW”). The location of the interface
is indicated by a dotted line.

in fig. 2.22, because a converged numerical solution without density weighting is not available

for these cases. Despite the large density ratios, the pressure gradients are predicted accurately

when the density weighting is applied in the MWI, with only small errors.

The presented results, notably a comparison of Figs. 2.22a and 2.22b, suggest that the

magnitude of the error associated with the pressure gradient increases with increasing density

ratio. In fact, as seen in fig. 2.23, the error magnitude of the computed pressure gradient

increases linearly with density ratio. Hence, the relative error in pressure introduced by the

density-weighted MWI is independent of the density ratio. Furthermore, the presented results

suggest that the error of the computed pressure gradient is largely contained in the heavier phase,

which is desirable as it reduces spurious accelerations of the flow, and, hence, in conjunction

with the linear relationship between density ratio and associated errors, indicates that the

density-weighted MWI assures a stable result for a wide range of density ratios. To this end,

Denner and van Wachem [33] reported stable results for a two-phase flow with a density ratio of

ρH/ρL = 1024, without any noticeable errors, far exceeding density ratios of typical multiphase

flows.
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Figure 2.22: Pressure gradient of the one-dimensional two-phase flow with density ratios
ρH/ρL = 103 and ρH/ρL = 106, with density weighting in the MWI. The location of the interface
is indicated by a dotted line.
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Figure 2.23: Maximum magnitude of the pressure gradient errors for the one-dimensional
two-phase flow as a function of the density ratio ρH/ρL, obtained with density weighting in the
MWI.
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2.6 Unified Formulation of the Momentum-Weighted Interpo-

lation

The detailed derivation and analysis of the MWI in §2.3, as well as its extensions to include source

terms in §2.4 and account for large density ratios in §2.5, shows that a consistent formulation of

the MWI has many subtleties. Even small inconsistencies in the formulation or discretisation of

the MWI, such as the interpolation of the cell-centred pressure gradients discussed in §2.3.2, can

have a noticeable effect on the quality of the numerical results. The discretisation of the driving

pressure term is shown to be at the heart of the MWI, as it provides the crucial cell-to-cell

coupling of the pressure and constitutes a low-pass filter with respect to the third and higher

derivatives of the driving pressure. The results presented in §2.3.5 and §2.4.2 demonstrate that

preserving this low-pass filter on the driving pressure field is critical for a robust pressure-velocity

coupling and accurate numerical results; the cell-to-cell pressure coupling provided by the MWI is

not by itself sufficient to prevent pressure-velocity decoupling, as observed in §2.3.5.2. Following

the presented step-by-step analysis, a unified formulation of the advecting velocity defined

in Eq. (2.73) using MWI is proposed to be constructed as follows:

• The type of interpolation applied for ufi and uf,Oi is not important for the efficacy of

the MWI, as discussed in §2.3.1, but of course influences the accuracy of the computed

advecting velocity. Thus, ufi and uf,Oi are computed by Eq. (2.24). This is consistent with

previous studies [13, 14, 31, 98, 101].

• The interpolation of the cell-centred pressure gradients ∇p
f
and of the cell-centred source

terms S
f,⋆

is conducted with inverse distance weighting, which is required to accurately

satisfy the filter properties of the MWI, as shown by the theoretical analysis in §2.3.2 and

the numerical results presented in §2.3.5.1.

• The source terms at faces S
f
are interpolated with distance weighting, proposed in Eq. (2.71),

to preserve the applied force on the flow, as discussed in §2.4.1.

• The source terms at cell centres S⋆ are computed as proposed in Eq. (2.68), a discreti-

sation that matches the discretisation of the pressure gradients on the discrete level, as

demonstrated in §2.4.2, and, hence, together with the distance-weighted interpolation of

S
f
proposed in Eq. (2.71), provides a force-balanced discretisation.
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• The coefficients cf and df , with d̂f = df/(1+cfdf ), are evaluated at faces only, to retain the

filter properties of the MWI. It is important to understand that these coefficients are merely

weighting factors for terms that should be small in the converged solution; they ought to

have a meaningful order of magnitude, but their precise value is secondary. The appropri-

ateness of the definitions for cf and df given in §2.3.3, in particular Eq. (2.42), Eq. (2.43)

and Eq. (2.49), is demonstrated by the results in §2.3.5.1 and §2.4.2.

• In order to account for mesh non-orthogonality, an issue discussed in §2.3.4, the pressure

term and the source terms are projected along the unit vector ŝf , which connects the

adjacent cell centres, by an orthogonal/non-orthogonal decomposition. Results presented

in §2.3.5.2 demonstrate that this is essential for the integrity of the filter properties of the

MWI and to avoid pressure-velocity decoupling on meshes with large non-orthogonality.

The scaling factor of the decomposition is proposed to be ζf = 1, which corresponds to an

orthogonal decomposition [27], so that the decomposition does not affect the weighting of

the pressure and source terms (i.e. the filter on the third derivative of the driving pressure

p̃).

• The pressure term and the source terms are density weighted as proposed in Eq. (2.85)

and Eq. (2.86), to minimise the errors associated with large discontinuous changes in

density and stabilise the solution, discussed in §2.5.1.

To summarise, applying these discretisation rules and recommendations to Eq. (2.73), the

advecting velocity follows as

ϑf =

[
lf,(idw)uPi +

(
1− lf,(idw)

)
uFi +

∂ui
∂xj

⏐⏐⏐⏐f rfj
]
n̂fi

− d̂f

⎧⎨⎩pF − pP

∆sf
− ρf

⎡⎣ lf,(idw)

ρP
∂p

∂xi

⏐⏐⏐⏐⏐
P

+
1− lf,(idw)

ρF
∂p

∂xi

⏐⏐⏐⏐⏐
F
⎤⎦ ŝfi

⎫⎬⎭
+ d̂f

{[
lf,(dw)SP

i +
(
1− lf,(dw)

)
SF
i

]
ŝfi − ρf

[
lf,(idw)

ρP
SP,⋆
i +

1− lf,(idw)

ρF
SF,⋆
i

]
ŝfi

}

+ cf d̂f

{
ϑf,O −

[
lf,(idw)uP,Oi +

(
1− lf,(idw)

)
uF,Oi +

∂ui
∂xj

⏐⏐⏐⏐f,O rfj
]
n̂fi

}
.

(2.93)

This formulation provides a robust pressure-velocity coupling and a low-pass filter on third and

higher derivatives of the driving pressure on arbitrary meshes, it is time-step independent and
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satisfies the steady-state solutions of steady-state (∆t→ ∞) as well as initially transient (∆t

is finite) problems. Furthermore, this formulation provides stable results for any density ratio

and it reduces to the normal velocity at cell faces, ϑf = uf · n̂f , for steady-state solutions with

constant or linearly changing driving pressure.

2.7 Conclusions

When simulating flows in and around complex geometries, the discretisation of the governing

equations is greatly simplified by using a collocated variable arrangement. In simulations of

incompressible and low Mach number flows this gives rise to pressure-velocity decoupling, with

the characteristic chequerboard pressure field, if a straightforward discretisation is employed [71].

The MWI, typically attributed to have been introduced by Rhie and Chow [76], is a widely used

method to couple pressure and velocity in collocated variable arrangements and as a remedy

for pressure-velocity decoupling. However, in the current literature there are many varieties of

MWI, and it is so far unclear what the optimal formulation is.

In this chapter, a unified formulation of the MWI for arbitrary meshes has been derived

based on physically consistent arguments, including extensions for discontinuous source terms

and discontinuous changes in density. The presented step-by-step derivation and analysis of

the MWI has been used to develop theoretical justifications for the discretisation of velocity,

pressure and source terms, including the applied interpolation and weighting coefficients, under

the main assumption that MWI enforces a low-pass filter acting on the discrete pressure field,

thereby imposing a direct relationship between neighbouring pressure values that suppresses

oscillatory solutions. This theoretical analysis has been further supported with numerical results

of representative test cases on arbitrary (structured and unstructured) meshes, demonstrating

the impact of the MWI in general as well as the impact of the low-pass filter enforced by the

MWI. With regards to discontinuous or strongly varying source terms, only the driving pressure

gradient, i.e. the pressure gradient associated with the flow, should be coupled to the velocity

field. Failing to account for source terms in the MWI can lead to decoupled solutions and

artificial accelerations of the fluid in cases which include sharp gradients and discontinuities

of source terms, as demonstrated in the presented results. The proposed reconstruction of

the discrete source term provides an exact balance with the discretised pressure gradient, a
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so-called force-balanced discretisation, and conserves the force applied to the flow, on arbitrary

meshes. Furthermore, the application of a density weighting in the MWI has been analysed

from a theoretical perspective and shown to have a stabilising effect on flows with large density

ratios. Without such a treatment, the fluid would be accelerated without limit, resulting in

divergence of the solution algorithm. MWI can also play a vital role in simulating low Mach

number flows using pressure-based algorithms to overcome the weak pressure-density coupling

when the compressibility of the flow is negligible, as demonstrated by the presented results.

In summary, MWI is very effective in maintaining pressure-velocity coupling in simulations

of incompressible and low Mach number flows on meshes with collocated variable arrangement,

but the effect of external forces, and of the discrete approximations itself, on the discretised

pressure gradient have to be carefully accounted for to obtain physically realistic results and

robust solutions. In all considered cases, the proposed MWI has been shown to offer superior

accuracy and stability compared to the considered alternatives, in particular with regards to

meshes with large non-orthogonality and in flows that are subject to discontinuous source terms

or large density differences.
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Chapter 3

Solution of the Two-Fluid Model

In this chapter the semi- and fully-coupled algorithms for solving the two-fluid model are

developed. The two-fluid model with closures used for gas-solid flows is presented and dis-

cretised following chapter 2. The semi- and fully-coupled algorithms are developed by ap-

plying Picard and Newton linearisation, respectively to the resulting system of non-linear

equations and proposals made to enhance the numerical properties of the fully-coupled al-

gorithm. The chapter is concluded by comparing the semi- and fully-coupled algorithms

by application to a range of test cases, culminating in the simulation of a fluidised bed.

3.1 Introduction

Dispersed two-phase flows, consisting of droplets or particles carried by a continuous fluid, are

commonly found in nature and in a variety of engineering, industrial and scientific applications.

The ability to be able to predict these flows with computational models is therefore very

important. However, the computational prediction of these flows is still very complicated, both

from a numerical as well from a physical point of view. The challenge lies in the fact that

such flows typically contain many millions or billions of particles, resulting in a significant, or

insurmountable, computational cost when aiming to resolve the behaviour of every individual

particle and/or droplet [3, 47]. Here the dispersed phase will be referred to as particles, but this

is interchangeable with droplets.

Rather than tracking individual particles, the two-fluid model [2, 47] employs a statistical
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averaging of the behaviour of the dispersed phase as well as the continuous fluid surrounding the

particles. The resulting continuum description of the particles allows the use of efficient solver

algorithms developed for fluid flows, hence the computational effort required is no longer directly

related to the number of particles. However, the drawback of averaging is that the information

relating to individual particles is lost, and only their statistics are known as a function of time

and space. This necessitates the application of closure models.

The resulting system of statistical equations describing the fluid and dispersed continua are

similar to the Navier Stokes equations for each of the phases. However, additional variables and

terms are introduced, such as the volume fractions and inter-phase exchange terms. Moreover,

the equation system also contains a transport equation for volume fraction, which can be

interpreted as a continuity equation for the corresponding phase. To obtain a solution to this

system of equations is still computationally expensive, compounded by the need to satisfy various

non-linearities, placing a premium on an efficient algorithm. Further complicating the solution

of the two-fluid system is the large and rapid variation of fluid properties and source terms in

combination with strong inter-phase coupling terms arising from the interactions of the phases,

such as drag.

Most current solution frameworks for the two-fluid model treat each of the equations in a

segregated fashion. They are typically based on the solution of the single phase Navier-Stokes

equations, such as the widely used Inter-Phase Slip Algorithm (IPSA), developed by Spalding

[84] as an evolution of the Semi-Implicit Method for Pressure Linked Equations (SIMPLE)

family of algorithms [71] to two-phase flows. This typically involves a procedure in which the

set of momentum equations are solved, subsequently a pressure correction equation is solved,

and finally the transport equations for the volume fractions are solved. This constitutes one

so-called “outer” iteration. Due to this segregated approach, strong inter-phase couplings are

not taken into account implicitly, and the algorithm may result in so-called “frozen” solutions

when the coupling terms dominate the equations, requiring a large number of outer iterations

of the discretised equation system to reduce the effect of inter-equation couplings [60, 84]. A

further difficulty, in common with the SIMPLE family of algorithms, is the requirement to

specify under-relaxation factors to reach convergence of the algorithm [71, 97], in addition to

poor scaling to large domains [97]. The need to apply under-relaxation factors stems from the

decoupling of the pressure and velocity in the solution algorithm: a large forcing term results
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in a large velocity update, and correspondingly a large pressure correction. This is inherently

unstable, hence under-relaxation is used to prevent overly-large solution steps being taken,

increasing stability. However, for computational efficiency, it is desirable to use as large a value

of under-relaxation factor as possible; unfortunately there is no systematic way to choose this

value a-priori.

As available computational resources have increased, coupled algorithms have emerged as

an attractive alternative for the robust treatment of pressure-velocity coupling [92]. This has

been facilitated by the development of discretisation algorithms, permitting the use of collocated

variables on complex meshes, such as MWI, first proposed by Rhie and Chow [76], easing the

burden of implementing a coupled solver [80, 90]. By solving a coupled system of equations for

the velocity and pressure unknowns, a more robust pressure-velocity coupling may result [90], in

addition to which, the poor scaling of segregated algorithms can be avoided [21, 24]. It is this

potential for robustness which makes coupled algorithms particularly attractive for multiphase

flow solvers, which must be capable of dealing with large (both magnitudes, and gradients of)

source terms [31].

In the context of the two-fluid model, a coupled algorithm has the additional advantage of

being able to implicitly account for inter-phase couplings, such as the inter-phase momentum

exchanges, overcoming the issue of “frozen” solutions which are encountered when using a

segregated algorithm [24, 25]. To date, coupled algorithms for the two-fluid model have focused

solely on the pressure-velocity coupling [24, 25], solving the transport equations of the volume

fractions separately. Therefore, these algorithms are referred to as “semi-coupled”. In the

semi-coupled approach, there is a lag between the pressure-velocity and volume fraction solutions,

and as a result, continuity is only enforced for one phase during the solution procedure until

final convergence is reached [22]. Therefore, outer iterations to ensure continuity is satisfied for

both phases are still required.

In this work, a semi-coupled algorithm is implemented in the context of the unstructured,

coupled pressure-velocity solver developed by Denner and van Wachem [31]. This semi-coupled

algorithm is used as a reference algorithm. Additionally, a fully-coupled algorithm, treating

the pressure, velocity and volume fractions as a single system of coupled equations is derived,

validated, and compared to the semi-coupled algorithm. The fully-coupled algorithm has several

theoretical advantages: given a good initial estimate, an (inexact) Newton method converges
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rapidly [26, 56], continuity is enforced for all phases at each iteration due to the implicit treatment

of phase transport, and new approaches to treat the various non-linear terms, such as linearising

source terms against volume fraction become possible, leading to an increase in robustness.

Both the semi-coupled and fully-coupled algorithms are tested against a range of test cases,

starting from the academic problem of two identical fluids flowing as a single fluid, progressing

to horizontal and vertical two-phase flows and culminating in a fluidised bed case, representative

of an industrial application of the algorithms. As identical models are used to close the equation

system, the focus is on comparing the relative performance of the semi- and fully-coupled

algorithms, with the semi-coupled algorithm serving as a baseline to measure the fully-coupled

algorithm against. Where possible the solutions are also compared against analytical data to

validate the implementations. Whilst the focus of this work is on dispersed gas-solid flows, the

presented algorithms are, in principle, applicable to the simulation of two-phase flows generally

using the Eulerian-Eulerian or two-fluid model.

This chapter is organised as follows. Section 3.2 introduces the two-fluid model governing

equations and closure models. The discretisation of these equations including the MWI for

two phases is described in §3.3 along with linearisation approaches, leading to the semi- and

fully-coupled algorithms. The performance of both algorithms is then verified and compared by

application to a number of test cases in §3.4, and the findings concluded in §3.5.

3.2 The Two-Fluid Model

Whilst truly direct numerical simulation of multiphase flows is possible in some simple cases,

the number of internal boundaries and the range of scales quickly becomes unmanageable when

considering most multiphase flows. Therefore, rather than explicitly tracking the material motion

of each phase, a statistical approach to predict such flows can be adopted. A statistical approach

aims at determining the probability of finding each phase with specific properties at a given point

and time. Such an approach describes each phase in terms of a Probability Density Function

(PDF) which may then be ensemble averaged to obtain a description of the flow in terms of

continuum quantities. If the equations from this framework are appropriately derived [2, 47],

averaged equations are obtained, describing each phase as separate interpenetrating continua.

The averaged equations are for the individual volume fractions, the velocity fields, and a
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combined pressure field. Throughout this chapter, the presentation will be given for two phases

only, however, the extension to more than two phases is straightforward and follows the same

procedure.

The derivation of the framework is omitted for brevity, but can be found in, for example [82].

Following the averaging over the PDF for each phase, the two-fluid transport equation for a

property ϕ of phase number k, denoted by the variable ϕk is given as [2, 47]:

∂αkρkϕk

∂t
+
∂αkρkϕkuki

∂xi
=
∂αkJϕk

i

∂xi
+ αkSϕk

+ Iϕ
kl

(3.1)

where αk is the volume fraction, ρk the density, Jϕk
the diffusive flux, Sϕk

the source term, t is

time, uk the velocity field of phase k, x the Cartesian coordinate and Iϕ
kl

is the exchange term

accounting for the transfer of property ϕ between the phases k and l. Throughout this chapter,

unless otherwise stated, subscript Latin characters are used as tensor indices, where Einstein

summation is implied, and superscript Latin characters as phase counters.

The symbol ϕk can be set to be any of the fluid phase properties, and setting ϕk and making

appropriate choices for the terms Jϕk
, Sϕk

and Iϕ
kl
, the two-fluid governing equations are

obtained.

When ϕk is set to be unity, the phase continuity equation of phase k is obtained. Assuming

that there is no exchange of mass between the phases, it is given by

∂αkρk

∂t
+
∂αkρkuki
∂xi

= 0 (3.2)

which for a constant density for each phase further simplifies to

∂αk

∂t
+
∂αkuki
∂xi

= 0 (3.3)

which is a transport equation for volume fraction. The volume fraction, defined as the mass

average of the PDF, describes the probability of encountering a phase at a specific location and
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time. The volume fraction is, by definition, subject to the following constraints

0 ≤ αk ≤ 1 (3.4)∑
k

αk = 1 (3.5)

When the transport equations for the volume fractions, Eq. (3.3), of all the phases are summed

together, a statement of conservation of the total local volume is obtained. This is referred to as

the global continuity equation. Because of the constraints on volume fractions expressed above,

the sum of all the transient derivatives in the summed transport equations for volume fractions

is zero. The global continuity equation, therefore, is

∑
k

∂αkuki
∂xi

= 0 (3.6)

This is the two-fluid model equivalent of the continuity equation for a single phase flow, assuming

a constant density.

The momentum equations of the two-fluid model are obtained by setting the unknown

property of each of the phases to the velocity field, ϕk = ukj . Assuming no mass transfer between

the phases and a constant density for each of the phases the momentum equations are:

ρk
∂αkukj
∂t

+ ρk
∂αkukju

k
i

∂xi
= −αk ∂p

∂xj
+
∂αkτkij
∂xi

+ αkSk
j − ∂pk

∂xj
+ βu

(
ul ̸=k
j − ukj .

)
(3.7)

where τ k the shear stress tensor, Sk the momentum source term, and the last term is a generalised

drag term [47], which comprises of a momentum exchange coefficient, βu, multiplied by the

relative velocity between the phases. The superscript l ̸= k denotes a phase l which is not phase

k. The common pressure is denoted by p and pk is the additional phase-specific pressure. Both

pressures are taken out of the general stress term. Unlike the transport equations for the volume

fractions, the momentum equations contain numerous un-closed terms: the phase pressures,

shear stress tensors and the momentum exchange term.

To exemplify the applications of the two-fluid model, the current work will take gas-solid

flow as a working example. The superscript g will denote the continuous, or gas phase. The

superscript s will denote the solids, or dispersed phase. However, the algorithms developed
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are also applicable to any other application of the two-fluid model. As gas-solid flow is taken

as an example, some common closure relations are used for the un-closed terms mentioned

above. Examples of the closure models for the un-closed terms for gas-solid flow applications are

summarised in table 3.1 and are briefly explained below. It is noted that other closure relations

can also be adopted in the derived framework.

Table 3.1: Closure models for the two-fluid momentum equations for gas-solid flow, used in
this work.

Quantity Expression Model Description Reference

pg 0 gas-phase pressure -
ps ps,KT + ps,Fr solids pressure [89]

τkij µk

(
∂ukj
∂xi

+
∂uki
∂xj

)
+

(
λk − 2

3
µk

)
∂ukk
∂xk

δij Newtonian stress tensor -

βu αs (1− αs)
3

4

ρg |ug − us|
dp

CD(1− αs)
−2.65

inter-phase momentum transfer [95]

3.2.1 Inter-phase Momentum Transfer

The inter-phase momentum transfer arises from the drag force between the continuous fluid

and each of the dispersed particles. For the examples presented in this work, the model of Wen

and Yu [95] is applied, as this model is applicable to predict the drag force over a wide range of

solid volume fractions and particle Reynolds numbers [89]. The drag coefficient, CD, required

to close the expression for βu is given by a modified form of that proposed by Schiller and

Nauman [16] up to particle Reynolds numbers of 1000, and approximated by a constant value at

higher particle Reynolds numbers

CD =

⎧⎪⎪⎨⎪⎪⎩
24

(1−αs)Rep

(
1 + 0.15((1− αs)Rep)0.687

)
if (1− αs)Rep < 1000

0.44 otherwise

(3.8)

where Rep is the particle Reynolds number, given as

Rep =
ρg |ug − us| dp

µg
(3.9)

and in the above equations dp is the particle diameter and µg the dynamic viscosity of the

continuous phase, which will be taken as a gas.
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3.2.2 Stress Tensor Closure

In the two-fluid model there are two pressure contributions: a shared, or hydrodynamic pressure,

p, and a possible, phase-specific additional pressure, pk. The phase specific pressure for the

continuous phase is zero, as only the hydrodynamic pressure p acts on this phase. However, the

solids phase has an additional phase specific pressure contribution, the so-called solids pressure,

arising from inter-particle interactions.

The shear stresses of each phase follow a Newton stress model as given in table 3.1, where

µk is the dynamic viscosity of the phase and λk the bulk viscosity.

To close the solid phase stress tensor (pressure and shear stress contributions), constitutive

relationships are required for the solid phase pressure, dynamic, and bulk, viscosities. At low

to moderate volume fractions, the Kinetic Theory of Granular Flows (KTGF) [61] predicts the

behaviour of the dispersed phase by analogy with the kinetic theory of dense gases. When

the concentration of particles becomes high, the assumption of instantaneous particle-particle

interactions made by KTGF is no longer valid, and frictional interactions begin to dominate,

requiring a frictional rheological model to predict the behaviour of the solids phase.

3.2.2.1 Kinetic Theory of Granular Flows

As a result of the averaging procedure in deriving the two-fluid model, information about

the behaviour of the individual particles is lost, analogous to the loss of the behaviour of the

individual molecules in the continuum description of a fluid. However, a transport equation for

any averaged property can be constructed. For example, the behaviour of the so-called “granular

temperature”, Θs, can be predicted by the transport equation [61]

3

2
ρs
(
∂αsΘs

∂t
+
∂αsΘsusi
∂xi

)
=

∂

∂xi

(
αsκs

∂Θs

∂xi

)
−
(
psδij − αsτ sij

) ∂usi
∂xj

+ J s − γs (3.10)

where the granular temperature is given by

Θs =
1

3

⟨
cp′

2
⟩

(3.11)

where cp′ represents the fluctuating velocity of the particles [61].

The terms on the right hand side of the transport equation for granular temperature, Eq. (3.10),
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are interpreted as follows: (i) the diffusion of granular temperature due to conduction through the

solid phase continuum, (ii) production due to velocity gradients, (iii) production or dissipation

due to fluctuating drag forces, and (iv) dissipation of granular temperature due to the inelastic

nature of particle-particle collisions.

Based on kinetic theory, the constitutive models for the solids phase stress tensor are expressed

in terms of the granular temperature. The expressions are shown in table 3.2, together with

the closures for the transport equation for granular temperature. The symbol es represents the

particle coefficient of restitution, g0 the radial distribution function and ls is the mean free path

associated with the particles. The symbol αs,MAX is the maximum solids volume fraction, the

maximum packing limit, and is approximately 0.65.

Table 3.2: Expressions for the solids phase closure terms arising from kinetic theory.

Symbol Model [42, 61] Description

ps,KT αsρsΘs
(
1 + 2αs (1 + es) g0

)
granular pressure

µs,KT ρsls
√
Θs granular shear viscosity

λs ρs 4
3
√
π
dp (1 + es) g0

√
Θs granular bulk viscosity

κs 2αsρsdpg0 (1 + es)
√

Θs

π + 75
192

ρsdp
√
Θsπ

(1+es)αsg0

(
1 + 6

5 (1 + es)αsg0
)2

granular energy diffusivity

γs 3
(
1− es2

)
αs2ρsg0Θ

s

(
4
dp

√
Θs

π − ∂us
i

∂xi

)
dissipation of granular energy

J s βu
(
βudp(ug−us)2

4αsρsg0
√
πΘs

− 3Θs
)

granular energy production

g0
1

1−
(

αs

αs,MAX

)1/3
radial distribution function

ls 4
5α

sdp (1 + es) g0√
π
+ 10

96
dp

√
π

(1+es)αsg0

(
1 + 4

5 (1 + es)αsg0
)2

particle mean free path

3.2.2.2 Frictional Stress Model

The models based on kinetic theory of granular flow (KTGF) are only valid when particle

collisions are binary and instantaneous. Although this assumption may be reasonable at dilute

particle concentrations, at higher concentrations these assumptions are violated and particle

interactions are governed by many, non-instantaneous interactions, which involve friction. To

describe the stresses arising at high particle volume fraction, a semi-empirical frictional stress
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model is adopted [51, 52]. The expression for the solids frictional pressure and viscosity are

ps,Fr =

⎧⎪⎪⎨⎪⎪⎩
Fr

(αs−αs,MIN)
n

(αs,MAX−αs)p
αs > αs,MIN

0 otherwise

(3.12)

µs,Fr = ps,Fr sin θs (3.13)

where αs,MIN = 0.5 is the “kick-in” solids volume fraction, at which the frictional stress model

starts to contribute to the solids stress, θs is the internal angle of friction, and Fr, p and n are

empirical constants [51]. Generally, the frictional and kinetic contributions to the stress tensor

are added together to give the total solid phase pressure and dynamic viscosity [8]

ps = ps,KT + ps,Fr (3.14)

µs = µs,KT + µs,Fr (3.15)

The above closure relations are taken as an example to close the two-fluid model for gas-solid flow.

Other closures can be used for different multiphase flow types, such as bubbly flows. However,

the algorithms for solving the two-fluid model as presented in this work are generally applicable.

3.3 Numerical Method

In this section the newly proposed framework to solve the two-fluid model is derived. The

framework builds upon the coupled pressure-velocity framework to solve single phase flows on

collocated, unstructured meshes as presented by Denner and van Wachem [31]. The single phase

framework treats the momentum and continuity equations as a single, implicitly coupled system

of linearised algebraic equations, which is solved to obtain the velocity and pressure fields. In

the case of single phase flow, the momentum equations and the continuity equation are solved

together in the form of ⎡⎢⎣A B

H 0

⎤⎥⎦ ·

⎛⎜⎝u

p

⎞⎟⎠ =

⎛⎜⎝S

0

⎞⎟⎠ (3.16)

where A represents the operator combining the transient and convection terms from the mo-

mentum equation, B represents the operator for the pressure gradient arising in the momentum
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equations, and H is the divergence operator arising from the continuity equation. The zero on

the diagonal indicates that the pressure does not appear in the continuity equation for the fluid.

However, in practice a dependency on the pressure is introduced, to facilitate solving the above

system of equations. This will be discussed in detail in the next section.

An equivalent system of equations for the two-fluid model in a similar form can be constructed,

by using the 9 governing equations of the two-fluid model. These governing equations are: 3

momentum equations for the first phase, 3 momentum equations for the second phase, 2 transport

equations for the volume fractions, and one global continuity equation, enforcing the summation

of volume fractions to unity. The coupled system to solve the governing equations of the two-fluid

model can then be expressed as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ag +D −D αgB 0 0

−D As +D αsB 0 0

Hg Hs 0 0 0

0 0 0 Eg 0

0 0 0 0 Es

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ugj

usj

p

αg

αs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αgSg
j +

∂

∂xi

(
αg

(
λg − 2

3
µg
)
∂ugk
∂xk

δij

)
αsSs

j −
∂ps

∂xj
+

∂

∂xi

(
αs

(
λs − 2

3
µs
)
∂usk
∂xk

δij

)
0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.17)

where the top line is constructed from the momentum equations of the continuous fluid, the

second line is constructed from the momentum equations of the dispersed phase, the third

line is constructed from the global continuity equation, and the last two lines are given by the

individual transport equations for volume fractions of the continuous phase and the dispersed
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phase. The operators in the above system of equations can be expressed algebraically as

Ak =ρk
∂αk (·)
∂t

+ ρk
∂αk (·)uki

∂xi

− ∂

∂xi

[
αkµk

(
∂ (·)
∂xi

+

(
∂ (·)
∂xi

)T
)] (3.18)

D =β (·) (3.19)

B =
∂ (·)
∂xj

(3.20)

Hk =
∂αk (·)
∂xj

(3.21)

Ek =
∂ (·)
∂t

+
∂ (·)ukj
∂xj

(3.22)

where the superscript k can either indicate the continuous phase (g) or the dispersed phase (s).

The global continuity equation and the continuity equation for each of the phases (the

final three lines in the coupled system, Eq. (3.17)) are not linearly independent, therefore one

equation must be eliminated from the equation system. For instance, the continuity equation

for the continuous phase is replaced by the constraint that the volume fractions sum to one.

This constraint is implicitly satisfied by the substitution αg = 1− αs, the continuity equation

of one phase can then be eliminated from Eq. (3.17). The coupled set is then reduced from 9

to 8 equations. Although this choice is somewhat arbitrary, and other choices can be made,

from a numerical perspective this choice has the advantage that a positive solution for both the

volume fractions can be enforced by the appropriate discretisation, see for instance Patankar [71].

This will be further discussed in §3.3.2.3. Following this strategy, the set of coupled equations

approximating the two-fluid model becomes

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ag +D −D αgB 0

−D As +D αsB 0

Hgg +Hsg Hss +Hgs Gg +Gs 0

0 0 0 Es

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ugj

usj

p

αs

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

bu
g

j

bu
s

j

bp

bα
s

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.23)

where the sub-matrices represent the discretisation of the operators expressed in Eq. (3.17),

except for introducing an operator on the diagonal of the global continuity equation. Hence,

the global continuity equation will be, at least in discretised form, a function of pressure. The
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derivation and exact form of these operators will follow from the appropriate discretisation of

the two-fluid model and will be presented in §3.3.1. As the framework presented in this work

aims at applying the two-fluid model in complex geometries, a collocated variable arrangement

for the discretisation is chosen. To prevent pressure-velocity decoupling with a collocated

variable arrangement, the so-called MWI is introduced in determining the fluxes at the cell

faces [31, 76]. MWI introduces non-zero diagonals into the sub-matrices Gg and Gs. This

means that the discretised form of the global continuity equation and the transport equations for

volume fraction will contain a dependency on the pressure. Although the derivation of the MWI

for the two-fluid model has many similarities to its derivation for single phase flows, there are a

number of differences. The most important difference is that each of the phases contributes to

the discretisation of the fluxes of both phases at the cell face, leading to the sub-matrices Hgg

and Hsg, representing the contribution of the continuous phase to the MWI for continuous and

dispersed phases, respectively. This also holds for the contribution of the dispersed phase on

both of the phases, leading to the sub-matrices Hss and Hgs.

Although the discretised equation system, Eq. (3.23), appears as a linear system of equations,

the system is non-linear because the coefficients in the matrix are not constants, but depend on

the unknowns. Therefore, a strategy to linearise the system is required to develop an efficient

approach to solve Eq. (3.23). This strategy is presented and discussed in §3.3.2. Two different

strategies for the linearisation will be explored, leading to the semi-coupled and the fully-coupled

approaches, which will be derived in the following sections.

3.3.1 Discretisation of the Two-Fluid Model

Using FVM, the discrete form of the multiphase transport equation for a variable of phase k,

ϕk, Eq. (3.1), for cell P , as shown in fig. 3.1, is given as

(
aϕ,k,P + αk,P ρ

k

∆t
V P + βϕ,PV P

)
ϕk,P+

∑
f(P )

aϕ,k,Fϕk,F − βϕ,PV Pϕl ̸=k,P

= αO,k,P ρ
k

∆t
ϕO,k,PV P + αk,PSϕk,PV P

(3.24)

where aϕ,k are the coefficients arising from discretisation of the convection operator, ∆t is the

time-step and V P is the cell volume. The superscripts P and F represent variables evaluated at
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the central cell and the neighbour cell adjacent to face f , respectively, as depicted in fig. 3.1.

The superscript O represents the value of a variable at the previous time-step and
∑

f(P ) implies

the sum over all of the faces of cell P . The framework is described with a first-order backward

discretisation in time, as is done in the above equation. This is done for clarity only, and the

extension to higher order accurate discretisations in time is straightforward.

fP F

n̂f

Figure 3.1: Control volume layout around a cell centred at point P and neighbouring cell F ,
showing the unit face normal vector n̂f and the face centre f .

The coefficients following the discretisation of the convection term for phase k, aϕ,k are

derived using a standard discretisation scheme [71] and are summarised as

aϕ,k,P = ρk
∑
f(P )

αk,fψϕ,k,fϑk,fAf +
∑
f(P )

Γ∗,ϕk,f

|sf | Af (3.25)

and

aϕ,k,F = ρkαk,f
(
1− ψϕ,k,f

)
ϑk,fAf − Γ∗,ϕk,f

|sf | Af . (3.26)

In the above equations Af represents the area of the cell face between cells P and F , n̂f and sf

are the face normal vector and the vector on the line P − F , respectively, ψϕ,k,f is a weighting

coefficient determined by the chosen discretisation scheme applied to the advection terms, and

Γ∗,ϕk
= αkΓϕk

is the effective diffusion coefficient. Although with Cartesian cells, as shown

in fig. 3.1, the vectors n̂f and ŝf coincide, this will usually not be the case for non-Cartesian

cells. The advecting velocity of phase k is defined as the product of the fluid velocity at the cell

face with the cell face normal vector,

ϑk,f = uk,fi n̂fi (3.27)

For most of the variables which need to be evaluated at the face between two cells, f , an
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appropriate linear combination of the cell centred variables is used

ϕk,f = ψϕ,k,fϕk,P +
(
1− ψϕ,k,f

)
ϕk,F (3.28)

One exception to this is the advecting velocity, required for the convective part of the transport

equation. The advecting velocity requires a different type of interpolation. If a linear interpolation

would be used, the solution would become unstable due to pressure-velocity decoupling [76].

As previously mentioned in §3.3, the MWI is employed to prevent pressure-velocity decoupling

which may occur on collocated grids. In general terms, the interpolation is then expressed as

ϑk,f = uk,fi n̂fi + f
(
p, αk, . . .

)
(3.29)

where the overbar on the velocity terms indicates a linear interpolation from cell centres to the

intervening face, as expressed by Eq. (3.28). The last term on the right hand side is a function

of at least pressure and the volume fraction. The derivation leading to the exact form of this

function will be presented in §3.3.1.4.

3.3.1.1 Momentum Equations

Following the procedure for the transport of a general transported variable ϕk, as outlined above,

the momentum equations of the two-fluid model, Eq. (3.7) are discretised for the Cartesian

direction j as follows

(
auj ,k,P + αk,P ρ

k

∆t
V P + βPV P

)
uk,Pj +

∑
f(P )

auj ,k,Fuk,Fj − βPul ̸=k,P
j V P + αk,P bk,Pj pP

+αk,P
∑
f(P )

bk,Fj pF = αk,PSk,P
j V P − ∂pk

∂xj

⏐⏐⏐⏐P V P + αO,k,P ρ
k,P

∆t
uO,k,P
j V P

+
∑
f(P )

µ∗,k,f
∂uki
∂xj

⏐⏐⏐⏐f n̂fi Af +
∑
f(P )

(
λ∗,k,f − 2

3
µ∗,k,f

)
∂uki
∂xi

⏐⏐⏐⏐f n̂fjAf

(3.30)

where the coefficients auj ,k are as given analogously as Eq. (3.25) and Eq. (3.26). The superscript

F denotes the cell center variable adjacent to cell face f . The pressure coefficients, bk, are

obtained by applying Gauss’ theorem to the pressure gradient and approximating the surface

81



integrals using the midpoint rule. The pressure gradients are approximated as

∫
VP

∂p

∂xj
dV ≈

∑
f(P )

pf n̂fi A
f (3.31)

yielding

bPj =
∑
f(P )

ψp,f n̂fjA
f (3.32)

and

bFj =
(
1− ψp,f

)
n̂fjA

f . (3.33)

where ψp,f is the factor to interpolate the pressure to the cell face, determined by inverse distance

weighting. The implicit treatment of the pressure gradient obviates the need to under-relax the

momentum equations as in segregated algorithms [71, 92], as the solution responds directly to

large or rapidly changing pressure gradients. The implicit treatment of the inter-phase coupling

terms is similarly robust, simplifying the implementation relative to segregated algorithms, which

must employ techniques such as PEA [84] to obtain converged solutions when the coupling is

strong [93].

The sub-matrices Ak, B and D as shown in Eq. (3.23) are formed by collecting the convective

and transient coefficients, the pressure coefficients and coefficients associated with the inter-phase

coupling terms, whilst the terms on the right hand side of Eq. (3.30) are collected in the right

hand side term bu
k
j .

3.3.1.2 Transport Equations for Volume Fractions

The discretisation of the transport equations for the volume fractions for each of the phases

follows a similar procedure as given by Eq. (3.24). The resulting discretised version of the

transport equations for volume fraction is

(
ek,P +

V P

∆t

)
αk,P +

∑
f(P )

ek,Fαk,F = αO,k,P V
P

∆t
(3.34)
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Because the volume fraction is the transported variable, the coefficients ek differ somewhat from

the general convection coefficients aϕ,k and are given as

ek,P =
∑
f(P )

ψα,k,fϑk,fAf (3.35)

and

ek,F =
(
1− ψα,k,f

)
ϑk,fAf (3.36)

and used with the transient coefficient to construct the matrix Ek. As a bounded scalar,

see Eq. (3.4), maintaining the bounds of volume fraction during the solution process is paramount,

a bounded and conservative discretisation scheme, such as upwind differences, must be used to

determine the interpolation coefficients, ψα,k,f , when computing ek,P and ek,F .

3.3.1.3 Global Continuity Equation

The global continuity equation, Eq. (3.6), provides a constraint on the combined motion of

the two-fluid system. It is the two-fluid analogue of the continuity equation for single phase

incompressible flows and, following a similar approach, is used to develop an equation for

pressure [60]. Applying the FVM, the global continuity equation can be approximated in terms

of unknowns at the faces of cell P ,

∑
k

∑
f(P )

αk,fϑk,fAf = 0 (3.37)

where ϑf,k is the advecting velocity of phase k at cell face f , as introduced by Eq. (3.29). A

suitable procedure for computing the advecting velocity is given in the next section.

3.3.1.4 Advecting Velocity

The expression for the advecting velocity is obtained by MWI, which has been introduced

for single phase flows in, for instance, Denner and van Wachem [31]. Its derivation builds on

averaging the discretised momentum equations to the cell face. Assuming the existence of a

fictitious control volume located around the face centre, the momentum equations for that
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control volume can be expressed in an analogous form of Eq. (3.30):

(
1 + αk,fckdk,f + βfdk,f

)
uk,fi = ũk,fi − αk,fdk,f

∂p

∂xi

⏐⏐⏐⏐f + αO,k,fckdk,fuO,k,f
i

+ αk,fdk,fSk,f
i + βfdk,fuil ̸=k,f

(3.38)

where the variables ck, dk and ũk are introduced to simplify the notation and are defined as

ck =
ρk

∆t
(3.39)

dk,f =
V f

ak,f
(3.40)

ũk,fi = − 1

ak,f

∑
q(f)

(
ak,Quk,Qi − µ∗,k,q

∂ukj
∂xi

⏐⏐⏐⏐⏐
q

n̂qjA
q

−
(
λ∗,k,q − 2

3
µ∗,k,q

)
∂ukj
∂xj

⏐⏐⏐⏐⏐
q

n̂qiA
q

)
.

(3.41)

with a volume of V f , the summation over q implies a summation over the faces of the fictitious

control volume and Q is the adjacent cell centre to face q. The coefficients of Eq. (3.38) are

approximated by linear interpolation, given by

ũk,fi = ũki
f
=

1

2

(
ũk,Pi + ũk,Fi

)
(3.42)

with the corresponding cell-centred coefficients obtained from the cell-centred momentum

equations. Substituting the expression for ũk,fi given by Eq. (3.42) into Eq. (3.38) and dividing

by the bracketed term on the left hand side, the following equation for the velocity at the cell

face is obtained

uk,fi = uk,fi − αk,f d̂k,f

(
∂p

∂xi

⏐⏐⏐⏐f − ∂p

∂xi

f
)

+ αO,k,fckd̂k,f
(
uO,k,f
i − uO,k,f

i

)
+ αk,f d̂k,f

(
Sk,f
i − S

k,f
i

)
+ βf d̂k,f

(
ul ̸=k,f
i − ul ̸=k,f

i

)
+ d̂k,f

(
β
(
uki − ul ̸=k

i

)f
− βf

(
uk,fi − ul ̸=k,f

i

)) (3.43)

where

d̂k,f =
dk,f

1 + αk,fckdk,f + βfdk,f
. (3.44)
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In deriving Eq. (3.43), the approximation

dk,P ≈ dk,F ≈ dk,f (3.45)

is made so that the resulting pressure term acts as a low-pass filter operating on third-order and

higher derivatives of pressure, suppressing unphysical pressure fields [31, 59, 86].

Due to the inter-phase coupling of the momentum equations, Eq. (3.43), is directly dependent

on the face velocity of the other phase, ul ̸=k,f
i . This term can be evaluated by writing out the

equivalent equation for the face velocity of the other phase, and substituting this expression

back into Eq. (3.43). The resulting expression for the velocity at the face for phase k, uk,fi , then

becomes

uk,fi = uk,fi +
d̂k,f

1− βf
2
d̂k,f d̂l ̸=k,f

∑
m=phases

Υm,f

(
−αm,f

(
∂p

∂xi

⏐⏐⏐⏐f − ∂p

∂xi

f
)

+ αO,m,fcm
(
uO,m,f
i − uO,m,f

i

)
+ αm,f

(
Sm,f
i − S

m,f
i

)
+

(
β
(
umi − ul ̸=m

i

)f
− βf

(
um,f
i − ul ̸=m,f

i

)))
(3.46)

where with
∑

m=phases a summation over all phases is indicated, and the definition for Υm,f is

Υm,f =

⎧⎪⎪⎨⎪⎪⎩
1 if m = k

βf d̂m,f otherwise,

(3.47)

accounting for the inter-phase coupling. This equation can be used to determine an expression for

the advecting velocity, Eq. (3.27). The gradient of pressure at the face can then be approximated

as

∂p

∂xi

⏐⏐⏐⏐f n̂fi =
pF − pP

|sf | (3.48)
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and the expression for the advecting velocity for phase k is then expressed as

ϑk,f = uk,fi n̂fi = uk,fi n̂fi +
d̂k,f

1− βf
2
d̂k,f d̂l ̸=k,f

∑
m=phases

Υm,f

(
−αm,f

(
pF − pP

|sf | − ∂p

∂xi

f

n̂fi

)

+ αO,m,fcm
(
uO,m,f
i − uO,m,f

i

)
n̂fi + αm,f

(
Sm,f
i − S

m,f
i

)
n̂fi

+

(
β
(
uim − uil ̸=m

)f
− βf

(
um,f
i − ul ̸=m,f

i

))
n̂fi

) .

(3.49)

Eq. (3.49) is the interpolation of the advecting velocity for phase k at the cell face f , previously

expressed in general terms in Eq. (3.29). This expression for the advecting velocity of phase

k consists of a linear interpolation of the velocity of phase k to the cell face, plus a number of

higher order terms. These higher order terms aim to couple the pressure and the velocity and

filter out higher order pressure oscillations, preventing so-called chequerboarding, similarly as

MWI does for single phase flows [31].

The advecting velocity of phase k at the cell face is used to compute the coefficients describing

the advection terms of the transport equations, such as in Eq. (3.25) and Eq. (3.26).

Substituting Eq. (3.49) into Eq. (3.37), and collecting terms, the discretisation of the global

continuity equation is given as

∑
k=ph.

∑
m=ph.

hkm,P
i um,P

i +
∑
k=ph.

∑
m=ph.

∑
f(P )

hkm,F
i um,F

i +
∑
k=ph.

gk,P pP+
∑
k=ph.

∑
f(P )

gk,F pF =
∑
k=ph.

Kk,P

(3.50)

where the coefficients hkmi and gk form the sub-matrices Hkm and Gk of Eq. (3.23) and Kk,P

collects all remaining terms of Eq. (3.49), forming the right hand side of the discretised equation

of the global continuity. As shown in the derivation, the velocity of each phase contributes to

the advecting velocity of the other phase due to the momentum coupling between the phases.

The first contribution in the expression of the advecting velocity of phase k, Eq. (3.49) is the

linear interpolation of velocities of that phase. Therefore, the coefficients

hkk,Pi =
∑
f(P )

1

2
αk,f n̂fi A

f (3.51)
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and

hkk,Fi =
1

2
αk,f n̂fi A

f . (3.52)

for each of the neighbouring cells, F . The additional velocity contributions to the advecting

velocity for phase k, arise from the inter-phase momentum exchange terms and are expressed for

each of the phases as

hkm,P
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

f(P )

1

2
αk,f d̂k,f

1− βf
2
d̂k,f d̂l ̸=k,f

Υm,f
(
βP − βf

)
n̂fi A

f m = k

−∑f(P )

1

2
αk,f d̂k,f

1− βf
2
d̂k,f d̂l ̸=k,f

Υm,f
(
βP − βf

)
n̂fi A

f m ̸= k

(3.53)

and for the dependency on the neighbouring cell F

hkm,F
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2
αk,f d̂k,f

1− βf
2
d̂k,f d̂l ̸=k,f

Υm,f
(
βF − βf

)
n̂fi A

f m = k

−1

2
αk,f d̂k,f

1− βf
2
d̂k,f d̂l ̸=k,f

Υm,f
(
βF − βf

)
n̂fi A

f m ̸= k

. (3.54)

The coefficients which determine the dependency on the pressure for phase k are given as

gk,P =
∑
f(P )

αk,f d̂k,f

1− βf
2
d̂kf d̂l ̸=k,f

∑
m

Υm,f 1

|sf | n̂
f
i A

f (3.55)

and the dependency on the neighbouring cell F is given as

gk,F = −αk,f d̂k,f

1− βf
2
d̂k,f d̂l ̸=k,f

∑
m

Υm,f 1

|sf | n̂
f
i A

f (3.56)

and the terms which remain on the right hand side are given as

Kk,P =
∑
f(P )

αk,f d̂k,f

1− βf
2
d̂k,f d̂l ̸=k,f

∑
m

Υm,f

(
∂p

∂xi

f

n̂fi + αO,m,fcm
(
ϑO,m,f − uO,m,f

i n̂fi

)

+ αm,f
(
Sm,f
i − S

m
i

)
n̂fi

)
Af .

(3.57)

In the above equations, the cell-centred pressure gradients are treated explicitly for clarity of

presentation, however an implicit treatment, replacing the explicitly computed pressure gradients
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in Kk,P with the coefficients used to evaluate the pressure gradient in the momentum equations,

may yield better convergence at the cost of a larger stencil.

The coefficients required in the discretised forms of Eq. (3.30), Eq. (3.34) and Eq. (3.50)

are not constant in time, as they depend on the unknowns. Therefore, a strategy to treat the

non-linearity of the coupled set of equations must be developed. This is presented in the next

section.

3.3.2 Linearisation of the Coupled System

To solve the non-linear discrete system presented by Eq. (3.23), two approaches are immediately

apparent: Picard linearisation and Newton linearisation [97]. Both of these approaches are

pursued below. To clarify the discussion, Eq. (3.23) can be expressed in simplified form as

M · ϕ = b (3.58)

where M is the coefficient matrix, ϕ the vector of unknowns and b the right hand side vector.

Because the coefficient matrix and the right hand side vector are functions of the unknowns,

they must be linearised prior to the application of a linear solver to determine the unknowns.

The simplest approach, widely used in CFD, is Picard linearisation [97]. In Picard lineari-

sation, the coefficients and source terms are evaluated based on currently known values. This

is also commonly referred to as “lagged values” being used to determine the coefficients. The

application of Picard linearisation leads to the following linearised system:

Mn · ϕn+1 = bn (3.59)

where the superscript n indicates the iteration counter. Solution of Eq. (3.59) gives an updated

unknown vector, which can be used to re-evaluate the coefficient matrix and source terms for

the next iteration. Repeating this process, the vector of unknowns iteratively approaches the

solution to Eq. (3.58), although convergence is not necessarily achieved.

An alternative to the application of Picard linearisation is Newton linearisation [97]. Newton

linearisation is based on Newton’s method for root finding, and may be applied to the solution

of Eq. (3.58). For example, the non-linear term αkuki is approximated with Newton linearisation
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as

αk,n+1uk,n+1
i ≈ αk,nuk,ni +

(
αk,n+1 − αk,n

) ∂αkuki
∂αk

⏐⏐⏐⏐n +
(
uk,n+1
i − uk,ni

) ∂αkuki
∂uki

⏐⏐⏐⏐n
= αn,kuk,n+1

i + αk,n+1uk,ni − αk,nuk,ni

(3.60)

and is equivalent to solving the linearised system

Jn ·
(
ϕn+1 − ϕn

)
= −Fn (3.61)

where the Jacobian is given by

Jn =
∂Fn

∂ϕ
(3.62)

and Fn = Mn ·ϕn−bn = 0 is the non-linear function for which a solution is sought, evaluated at

the current time-step. As with Picard linearisation, this results in an iterative solution procedure

in which the updated solution is used to reevaluate the non-linear function and Jacobian until

a converged solution is obtained. However, the convergence behaviour of a system linearised

with Newton is usually superior compared to applying Picard linearisation. The application of

Picard and Newton linearisation to the two-fluid model equation system yields the semi- and

fully-coupled algorithms respectively, discussed in the subsequent subsections.

3.3.2.1 Semi-Coupled Algorithm

Applying a Picard linearisation to the coupled set of equations, Eq. (3.23), results in the

segregation of the upper-left and lower-right blocks, permitting the splitting into two smaller

equation systems: a coupled pressure-velocity system, and a separate equation for solving the

transport equation for the volume fraction. This semi-coupled algorithm derived in this work, is

very similar to that proposed by Darwish et al. [25]. In the coupled pressure-velocity system,

the volume fractions are kept lagged, and the pressure-velocity system is expressed as

⎡⎢⎢⎢⎢⎣
Ag +D −D αg,nB

−D As +D αs,nB

Hgg +Hsg Hss +Hgs Gg +Gs

⎤⎥⎥⎥⎥⎦ ·

⎛⎜⎜⎜⎜⎝
ugj

usj

p

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
bu

g

j

bu
s

j

bp

⎞⎟⎟⎟⎟⎠ (3.63)
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and a separate equation to solve the volume fraction reads

Es · αs = bαs
. (3.64)

The solution of Eq. (3.63) provides updated values for the pressure field and the velocity fields of

both phases. Using these fields, the coefficients of Eq. (3.64) can be computed, which provides

updated values for the volume fraction field. This semi-coupled algorithm is summarised in

algorithm 1.

while t < tend do
Initialise time-step;
while Not converged do

Solve coupled pressure-velocity system Eq. (3.63);
Update advecting velocities;
Solve volume fraction transport equation Eq. (3.64);
Obtain fluid volume fraction as αg = 1− αs;
Check convergence;
n+ = 1;

end
t+ = ∆t.

end
Algorithm 1: Pseudo code describing the semi-coupled algorithm.

As Picard linearisation is used to approximate the non-linear advection term in the momentum

equations, it may be required to solve Eq. (3.63) accurately, implying multiple inner iterations,

before proceeding to solve Eq. (3.64). However, in practice, it is found that a single iteration

of Eq. (3.63), followed by a single iteration of Eq. (3.64) within each outer iteration is sufficient

to maintain stability whilst being significantly more computationally efficient.

Convergence is determined by a simple test, examining the change in volume fraction

max
P

(⏐⏐⏐αk,P,n+1 − αk,P,n
⏐⏐⏐) ≤ εα (3.65)

where εα is a chosen tolerance in volume fraction. When this tolerance is achieved, the coupled

pressure-velocity system must also have reached a converged solution.

By treating the inter-phase momentum exchange terms implicitly, the semi-coupled algorithm

avoids lagging these source terms. This accelerates convergence and prevents the need for the

application of under-relaxation factors. The convergence rate may, however, still be poor as the
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volume fraction is segregated from the pressure-velocity equations.

3.3.2.2 The Fully-Coupled Algorithm

Applying Newton linearisation to Eq. (3.23), the Jacobian required for the algorithm is expressed

as

J (ϕn) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ag +D −D αg,nB −Rg −Bpn −Tg

−D As +D αs,nB Rs +Bpn +Ts

Hgg +Hsg Hss +Hgs Gg +Gs −Eg +Es

Hsg Hss Gs Es

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.66)

The coefficients acting on the unknown αg are negatives due to the substitution αg = 1− αs.

Compared to the previously discussed semi-coupled algorithm, there are a number of additional

terms. These additional terms are underlined in the above equation, and arise due to the

linearised coupling between the velocity-pressure system and the transport equations for the

volume fractions. In contrast to the semi-coupled algorithm, this system can not be solved in a

segregated fashion, and all equations are solved coupled, hence the current approach is referred

to as the fully-coupled algorithm.

In developing the Newton linearisation of the two-fluid equation system, two simplifying

assumptions are introduced by applying Picard linearisations to the advection and momentum

exchange terms in the momentum equations, that is

(
αk,fuk,fj uk,fi

)n+1
≈
(
αk,fuk,fj

)n+1
uk,f,ni (3.67)

and

[
βP
(
uk,Pj − ul,Pj

)]n+1
≈ βP,n

(
uk,Pj − ul,Pj

)n+1
(3.68)

as a result of which, the Jacobian retains similar coefficients compared to the Jacobian applied

in the semi-coupled algorithm. This facilitates the simultaneous development of the semi- and

fully-coupled algorithms, and does not affect the converged solution.

The coefficients in the sub-matrix Rk originate from discretising the transient and advection
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terms in the momentum equations and the resulting coefficients are

rk,Pj = uk,P,nj

ρk

∆t
V P +

∑
f(P )

ψα,k,fuk,f,nj ϑk,fAf (3.69)

and

rk,Fj =
(
1− ψα,k,f

)
uk,f,nj ϑk,fAf (3.70)

The sub-matrix Tk contains the coefficients from the linearisation of source terms in the

momentum equations, with coefficients given as

tk,Pj =

(
Sk,P
j + αk,P,n

∂Sk,P
j

∂αk

)
−
∑
f(P )

ψα,f ∂pk

∂αk

⏐⏐⏐⏐P n̂fjAf (3.71)

and

tk,Fj = −
(
1− ψα,f

) ∂pk

∂αk

⏐⏐⏐⏐F n̂fjAf . (3.72)

In many closure models for multiphase flows the source terms are large and/or rapidly varying

in time and space. In that case, the implicit treatment of these source terms increases the

robustness of the algorithm [31]. In the above case, the source term containing the gradient

of the solids pressure is treated implicitly with respect to the volume fractions. The exact

form of the sub-matrix Tk depends on the source terms which are applied in the two-phase

model. The coefficients as written down above, Eq. (3.71) and Eq. (3.72), are typical for the

prediction of gas-solid flow. In particular, with reference to the solid phase k = s, Eq. (3.71)

and Eq. (3.72) show how the fully-coupled discretisation enables the implicit treatment of the

solids pressure gradient. Following the same discretisation practice as for the shared pressure p

(Eq. (3.31), Eq. (3.32) and Eq. (3.33)), the discrete approximation of the solids pressure gradient

is given as

∫
CVP

∂ps

∂xj
dV =

∑
f(P )

psf n̂
f
jA

f =
∑
f(P )

(
ψα,fpsP +

(
1− ψα,f

)
psF

)
n̂fjA

f (3.73)
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however, unlike the shared pressure p, the solids pressure ps is not a solution variable and

must be expressed in terms of the solution variables if it is to be treated implicitly. Taking the

definition of solids pressure given by Eq. (3.14) as an example, the solids pressure is linearised

with respect to the solids phase volume fraction yielding

ps,n+1 ≈ ps,n +
(
αs,n+1 − αs,n

) ∂ps,n
∂αs

= ps,n +
(
αs,n+1 − αs,n

)(
αs,nρsΘs,n2 (1 + es)

(
2gn0 + αs,n ∂g0

∂αs

)) (3.74)

the terms linear in αs,n+1 are then used to compute the contributions to the coefficients ts,Pj

and ts,Fj in Eq. (3.71) and Eq. (3.72) respectively.

Newton linearisation is also applied to the transport equations for the volume fractions. The

linearised solid phase continuity equation is given as

∂αs,n+1

∂t

⏐⏐⏐⏐P V P +
∑
f(P )

(
αs,f,n+1ϑs,f,n + αs,f,nϑs,f,n+1 − αs,f,nϑs,f,n

)
Af = 0 . (3.75)

which when discretised yields the following algebraic equation

(
es,P +

V P

∆t

)
αs,P,n+1 +

∑
f(P )

es,Fαs,F,n+1 +
∑

m=phs.

hsm,P
i um,P,n+1

i +
∑

m=phs.

∑
f(P )

hsm,F
i um,F,n+1

i

+gs,P pP,n+1 +
∑
f(P )

gs,F pF,n+1 = αO,s,P V
P

∆t
+Ks,P +

∑
f(P )

αn,s,fϑs,f,nAf

(3.76)

where the coefficients are as defined previously. In the above equation, the coefficients hkl and

gk appear to implicitly reconstruct the advective velocity at the cell faces at the new time-level,

as it appears in Eq. (3.75).

The Newton linearisation of the transport equation for the volume fraction of the continuous

(gas) phase yields a similar result as the above equation. The discretised and linearised transport

equations for the two phases are added to form the discretised equation for global continuity.

This forms the third line in Eq. (3.66), where, as in the momentum equations, the terms acting

on the continuous phase volume fraction are negative due to the substitution αg = 1− αs.

In almost all implicit computational fluid dynamic algorithms, the solution to the linear

system is approximated using iterative linear solvers. The use of an iterative linear solver
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implies that the linearised system, Eq. (3.61), is not satisfied exactly, instead an inexact Newton

method [26] satisfies the equation

⏐⏐⏐⏐Fn + Jn∆ϕn+1
⏐⏐⏐⏐ ≤ ηn

⏐⏐⏐⏐Fn
⏐⏐⏐⏐ (3.77)

where 0 ≤ ηn < 1 is known as the forcing term [26] and ηn = 0 corresponds to the exact Newton

method. The value of the forcing term may be varied as the solution proceeds to enhance

stability and convergence rates [35], however, for time dependent problems, a constant value of

forcing term is more appropriate [38], and is used in this work. Convergence of the linearised

system is satisfied when ⏐⏐⏐⏐Fn
⏐⏐⏐⏐⏐⏐⏐⏐F0
⏐⏐⏐⏐ ≤ εFC (3.78)

where F0 is the residual evaluated at the first iteration of the current time-step. The fully-coupled

algorithm is then summarised in pseudo code in algorithm 2.

while t < tend do

Initialise time-step;

while Not converged do

Set 0 ≤ ηn < 1;

Solve fully-coupled system;

Update solution using variables; Obtain second volume fraction from α2 = 1− α1;

Update advecting velocities;

Check convergence using Eq. (3.78);

n+ = 1;

end

t+ = ∆t.

end

Algorithm 2: Pseudo code describing the fully-coupled algorithm.

The fully-coupled algorithm as laid out above does not require under-relaxation due to the

implicit coupling of pressure and velocity and by treating the inter-phase momentum exchange

implicitly. Furthermore, by solving both the global and phase continuity equations in a single

system, discrete continuity for both phases is always satisfied. Additionally, as shown, the source

term linear in volume fraction allows a further coupling of the two-fluid model equations, making
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the solution procedure much more robust than a segregated one. This is especially important in

cases where the inter-phase coupling is strong, such as in predictions of dense gas-solid flows or

bubbly flows.

3.3.2.3 Boundedness of the Volume Fractions

In common with many transported scalar variables, e.g. temperature, physical considerations

require that the volume fractions should remain bounded, and cannot become negative (αk ≥ 0)

or greater than one. This property can be enforced in the discretisation by using, for example, an

upwind advection scheme [11, 71] as can be demonstrated by considering the application of the

upwind scheme to Eq. (3.34). However, this result relies on the right hand side of the discretised

equation being exclusively positive and is guaranteed in Eq. (3.34), assuming αk,O ≥ 0.

However, this cannot be guaranteed when Newton linearisation is applied to the transport

equations for the volume fractions. By rearranging Eq. (3.75), an equation can be obtained

which resembles the same form as when the equation is linearised with Picard linearisation, plus

an additional correction term on the right hand side:

(
ek,P +

V P

∆t

)
αk,P,n+1 +

∑
f(P )

ek,Fαk,F,n+1 = αO,k,P V
P

∆t
+
∑
f(P )

αk,f,n
(
ϑk,f,n − ϑk,f,n+1

)
Af

(3.79)

where the additional correction terms arising from the application of Newton linearisation is the

last term on the right hand side. As the solution converges, this term approaches zero, hence

the converged solution has the same guarantees for positive volume fractions as does the Picard

linearised phase continuity equation. However, during the iterative solution process, the term(
ϑk,f,n − ϑk,f,n+1

)
can both be positive as well as negative.

Whilst the sign of ths term is unknown a-priori, the component consisting only of current

values, that is αk,f,nϑk,f,n, is known and can be treated as a source term. These terms can be

split, as outlined by Patankar [71], so the linearised contribution always remains positive. For

illustration, consider the source term Sϕ, which can be split as

Sϕ = Su
ϕ + Sp

ϕϕ
n+1 (3.80)
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where

Su
ϕ = max (Sϕ, 0) (3.81)

Sp
ϕ = min

(
Sϕ
ϕn
, 0

)
. (3.82)

In this way, the linearised source terms are guaranteed to be positive. An additional benefit is

that the diagonal dominance of the system is possibly increased.

By applying this idea to the term
∑

f(P ) α
k,f,nϑk,f,nAf , Eq. (3.79) is rewritten into

⎛⎝ek,P +
ρk,PV P

∆t
− 1

αk,P,n

−∑
f(P )

αk,f,nϑk,f,nAf

⎞⎠αk,P,n+1 =αk,P,O ρ
k,PV P

∆t
−
∑
f(P )

ek,Fαk,F,n+1

+
+∑

f(P )

αk,f,nϑk,f,nAf−
∑
f(P )

αk,f,nϑk,f,n+1Af ,

(3.83)

where

−∑
f(P )

αk,f,nϑk,f,nAf =min

⎛⎝∑
f(P )

αk,f,nϑk,f,nAf , 0

⎞⎠ (3.84)

and

+∑
f(P )

αk,f,nϑk,f,nAf =max

⎛⎝∑
f(P )

αk,f,nϑk,f,nAf , 0

⎞⎠ (3.85)

Whilst this approach does not strictly guarantee a positive solution, due to this treatment it has

been found to be very effective, which will be discussed during the presentation of the results.

Respecting the boundedness of the volume fractions by the design of the discretisation scheme is

vital for the fully-coupled algorithm. As soon as one of the volume fractions becomes negative,

and therefore the other one exceeds unity, divergence will occur.

3.3.2.4 Diagonal Dominance

When numerically solving a linear system of equations using an iterative solver, diagonal

dominance of the coefficient matrix is a desirable property as it is both a sufficient condition for
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convergence of the linear solver, and contributes to maintaining bounded solutions [97]. Diagonal

dominance may not always be achieved when Newton linearisation is applied in the fully-coupled

framework. This can be examined by considering the coefficients resulting from the discretisation

of the momentum equations. The coefficient on the diagonal arising from the transient term of

the momentum equations of one of the phases is proportional to

αk,P,n ρ
k

∆t
V P (3.86)

However, when Newton linearisation is applied, there is also an implicit term with respect to the

volume fraction which is on the same line in the coefficient matrix. This coefficient is off-diagonal

as it multiplies with the volume fraction. This off-diagonal coefficient is proportional to

uk,P,nj

ρk

∆t
V P (3.87)

When the volume fraction is small, as may be expected for the solid phase in dilute conditions,

it is likely that
⏐⏐⏐uk,P,nj

⏐⏐⏐≫ αk,P,n and the off-diagonal coefficient acting on the volume fraction

is therefore larger than the coefficient acting on the velocity. This contravenes the diagonal

dominance of the matrix which is to be solved. This issue does not appear for the transport

equations for volume fraction or the global continuity equation, even when these are discretised

with Newton linearisaton.

To ensure that the matrix containing the coefficients resulting from discretising the momentum

equations remains diagonally dominant, a different discretisation strategy is proposed. So far,

the conservative form of the two-fluid equations has been used to develop the discretisation

strategy. The non-conservative and conservative form of the transport equation for an unknown

ϕk are related by

αk

(
∂ϕk

∂t
+ uki

∂ϕk

∂xi

)
=

(
∂αkϕk

∂t
+
∂αkϕkuki
∂xi

)
− ϕk

(
∂αk

∂t
+
∂αkuki
∂xi

)
=
∂αkϕk

∂t
+
∂αkϕku

k
i

∂xi

(3.88)

where the second bracketed term on the right hand side of the first line is identified as the

continuity equation and is thus zero from an algebraic perspective. However, from a numerical

point of view it is beneficial to keep the this second bracketed term in the discretisation, as it
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ensures the conservative solution is reached when convergence is obtained [71]. The discretisation

of this equation becomes

αk,P,Oϕ
k,P − ϕk,P,O

∆t
+
∑
f(P )

αk,fϑk,fϕk,fAf − ϕk,P
∑
f(P )

αk,fϑk,fAf =

αk,P,Oϕ
k,P − ϕk,P,O

∆t
+
∑
f(P )

αk,fϑk,f
(
ϕk,f − ϕk,P

)
Af = RHS (3.89)

where RHS contains all source, diffusion and inter-phase exchange terms. In the context of

discretising the momentum equations in the fully-coupled algorithm, the transient term no

longer depends on the volume fraction of the current time-step. Therefore, the potential large

off-diagonal contribution, as shown by Eq. (3.87) has been averted.

The coefficients in the sub-matrix Rk, which arise from discretising the transient and

advection terms in the momentum equations, previously introduced in Eq. (3.69), now become

rk,Pj =
∑
f(P )

ψα,k,f
(
uk,f,bj − uk,P,nj

)
ϑk,fAf (3.90)

and

rk,Fj =
(
1− ψα,k,f

)(
uk,f,nj − uk,P,nj

)
ϑk,fAf (3.91)

This way, the matrix with the coefficients of the discretised equations remains diagonally

dominant, and the system is solvable with an iterative solver.

3.4 Simulations

Four test cases are used to evaluate and compare the semi- and fully-coupled algorithms. The

first case simulates the flow of two identical fluids at the same velocity with an initially prescribed,

non-constant volume fraction profile. Although this seems a trivial test case, it is used to validate

the framework. The second test case concerns horizontal gas-solid flow, and the third test case

concerns vertical gas-solid flow. Finally, the fourth test case will present a case of a gas-solid

fluidised bed.

For comparison purposes, the same convergence criteria are applied for both the semi- and
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fully-coupled algorithms. The criterion used is the norm of the global continuity error, i.e.

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐
∑
k

∑
f(P )

αk,f,n+1ϑk,f,nAf

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐ ≤ ε (3.92)

This ensures that, regardless of the algorithm, global continuity is satisfied to a given tolerance.

3.4.1 Two Identical Fluids

To validate the implementations, a two-fluid flow of two identical, inviscid fluids with equal

velocities is simulated with an initially prescribed, varying volume fraction profile. Under these

conditions, the two-fluid flow behaves as a single phase, and the volume fraction profile should

be transported like a passive scalar. Both fluids are initialised with the same velocity, equal to

the inlet velocity u0 (x) = uin = 1 m s−1. The volume fraction of the first phase is initialised as

a step profile

α1(t = 0) =

⎧⎪⎪⎨⎪⎪⎩
0.9 0.25 ≤ x ≤ 0.5

0.1 otherwise

(3.93)

and the volume fraction of the second phase is given by the constraint that both volume fractions

add up to unity. Theoretically, the volume fraction is advected as a passive scalar, as

∂α1

∂t
+ u

∂α1

∂x
= 0 (3.94)

This flow configuration is simulated using the semi- and fully-coupled algorithms, and compared

against an analogous single phase simulation of passive scalar transport. The volume fraction

and passive scalar profiles resulting from the simulations are compared with the theoretical

results and are shown in fig. 3.2.

As can be seen, all numerical solutions show excellent agreement with each other. A Total

Variation Diminishing (TVD) advection scheme is used to approximate the advection of the

volume fractions and the passive scalar. Hence, the numerical diffusion in the simulated cases

compared to the exact solution is to be expected.

In this case the simulation is reduced to a simple scalar advection problem, and the momentum

and global continuity equations are satisfied by the initial conditions. Therefore, the semi-coupled

algorithm is more computationally efficient than the fully-coupled algorithm.
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Figure 3.2: Comparison of volume fraction profiles obtained with the semi-coupled (circles)
and fully-coupled (squares) algorithms with the analogous passive scalar solution (dashed line)
for two identical fluids with equal velocity. The exact solution is shown by solid line.

It is found that for the semi-coupled algorithm to succeed, the solution of the volume fraction

equations should precede the solution of the system of the pressure-velocity equations. When

the solutions of the volume fractions are determined first, the momentum equation reduces to

ρkαk,n+1

(
∂uk,n+1

∂t
+ uk,n

∂uk,n+1

∂x

)
= 0 (3.95)

Because αn+1
k already satisfies continuity, the solution for the velocity becomes trivial: uk,n+1 =

uk,n = uO. If the order of solving the two sets of equations in the semi-coupled algorithm is

reversed, the algorithm becomes significantly more expensive.

3.4.2 Horizontal Two-Phase Flow

This test case considers a two-phase, horizontal, one-dimensional flow with a finite slip velocity

between the two phases at the inlet. It is seen from the global continuity equation, Eq. (3.6),
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that for a one-dimensional flow

um =
∑
k

αkuk = const =
∑
k

αk,inuk,in (3.96)

where the mixture velocity, um, is determined by the conditions specified at the inlet. In the

absence of external forces, the inter-phase momentum exchange between the two phases acts to

reduce the relative velocity of the phases. As a result, both velocities eventually reach the same

equilibrium velocity, ueq = um as given by Eq. (3.96).

Various cases of horizontal two-phase flows are simulated, for each case using both the semi-

and fully-coupled algorithms. In the cases, the particle Reynolds number is varied in the range

of 1 ≤ Rep ≤ 1000, using the relative velocity at the inlet as the reference slip velocity, and

varying the gas phase viscosity to obtain the desired value of Rep. The constant properties of

both phases used in the simulations are given in table 3.3.

Table 3.3: Conditions of the horizontal flow case.

Property Continuous Phase Dispersed Phase

ρ [kg m−3] 1.0 100.0
µ [Pa s] 5× 10−5 ≤ µg ≤ 5× 10−8 −
d [m] − 10−4

uin [m s−1] 1.0 0.5
αin [-] 0.9 0.1

Using the values of uin and αin given in Table 3.3, the predicted equilibrium velocity is

ueq = 0.95 m s−1. Prior to comparing the computational cost between the semi- and fully-coupled

algorithms, the flow is simulated at each particle Reynolds number to determine the required

domain size and required physical time to achieve a steady-state solution. These values are

presented in table 3.4.

Table 3.4: Domain lengths and simulated times for horizontal flow case.

Rep L [m] tsim [s]

1 6.0× 10−2 1.5× 10−2

10 6.0× 10−1 1.5× 10−1

100 6.0 1.5
1000 60.0 15.0

The simulated velocity profiles for the two phases using the semi- and fully-coupled algorithms
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for a particle Reynolds number of 100 are shown in fig. 3.3. As can be seen from the figure,

both the semi- and fully-coupled algorithms show excellent agreement with each other and reach

the correct equilibrium velocity. All simulations carried out for the various particle Reynolds

numbers show an equally good comparison between the two algorithms and correctly predict the

correct equilibrium velocity.
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Figure 3.3: The velocity profiles for the gas and solid phases obtained with semi- and fully-
coupled algorithms for Rep = 100. SC shows the results obtained from the semi-coupled
algorithm, and FC from the fully-coupled algorithm.

Both algorithms also show to be stable up to very high time-steps, for CFL numbers well

over 1,000, demonstrating the robustness of the implicit treatment of the pressure gradient and

inter-phase momentum exchange. To quantify the relative computational performance of the

semi- and fully-coupled algorithms, time-accurate solutions are sought for the horizontal flow

problem using a time-step determined by CFL = 0.5 based on the inlet velocity of the gas phase.

The test case presented in the previous section, §3.4.1, shows that the order of solving the set of

pressure-velocity equations and the transport of volume fractions can have a significant impact

on the efficiency of the semi-coupled algorithm.

To investigate the impact of the sequence for the semi-coupled algorithm, the results of

two computations using the semi-coupled algorithm are presented: one with the solution of
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the transport equation of the volume fraction preceding the solution of the pressure-velocity

equation system, and one with the reversed order, as originally proposed in this chapter, see

algorithm 1.

Similarly, two computations using the fully-coupled algorithm are presented. The first one

applies the conservative formulation of the momentum equations. The second computation

applies the modified discretisation to increase the diagonal dominance of the linearisation matrix,

as discussed in §3.3.2.4. The normalised computational time reported to simulate the horizontal

two-phase flow, using a grid consisting of 5000 cells and 4 CPUs are plotted in fig. 3.4 for

the various particle Reynolds numbers. The normalisation is done by the initial semi-coupled

algorithm.
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Figure 3.4: Normalised computational time to simulate the horizontal two-phase flow as a
function of particle Reynolds numbers,Rep, using the two variations of the semi-coupled and
two variations of the fully-coupled algorithms, normalised by the wall time for the semi-coupled
algorithm. semi-coupled timings are indicated by lines without markers and the fully-coupled
algorithm timings by the lines with circular markers. SC denotes the semi-coupled algorithm,
SCP denotes the semi-coupled algorithm with the volume fraction solution preceding the
pressure-velocity solution, FC denotes the fully-coupled algorithms and FCM denotes the
fully-coupled algorithm with the modification to improve diagonal dominance of the matrix
(§3.3.2.4).

It can be clearly seen that both variations of the fully-coupled algorithm are more efficient

103



than the semi-coupled algorithm. The two variants of the fully-coupled algorithm presented do

not show significant performance benefits over each other, due to the simplicity of the case, as

no area of very low or high volume fraction occurs.

Figure 3.4 shows that the variation of the semi-coupled algorithm solving the phase continuity

equation prior to the pressure-velocity problem incurs a significant time penalty due to the need

to solve the volume fraction equation at least twice. In more complex flows, where multiple non-

linear iterations are required to reach convergence, this expense should become less significant.

Therefore it is recommended that the suggested modification to the semi-coupled algorithm be

retained.

3.4.3 Vertical Two-Phase Flow

Many gas-solid flows of interest involve the flow of gas acting against the weight of particles.

A vertical, two-phase gas-solid flow case is considered in which the gravity acts opposite to

the direction of flow. In a one-dimensional case, when steady-state is reached, a constant slip

velocity is observed between the two phases, given by the simplified momentum equation

0 = −αk ∂p

∂xj
+ αkρkgj + β

(
ul ̸=k
j − ukj

)
(3.97)

From this equation, the slip velocity can be determined. The above equation is multiplied by

αl ̸=k and subtracted from the equivalent equation for the other phase, phase l ̸= k. The slip

velocity is then given by

ul ̸=k
j − ukj =

αkαl ̸=k

β

(
ρl ̸=k − ρk

)
gj (3.98)

To simplify this expression, the inter-phase momentum exchange coefficient is rewritten as

β = αkαl ̸=kBkl (3.99)

so that the slip velocity can be expressed as

ul ̸=k
j − ukj =

1

Bkl

(
ρl ̸=k − ρk

)
gj (3.100)

In order to make an algebraic prediction of the terminal velocity, a simplification for the
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inter-phase momentum exchange coefficient is made, and it is simplified to

β = αs(1− αs)ρf
3

4

|us − ug|CD

dp
(3.101)

and the drag coefficient is fixed to CD = 0.44. These assumptions make it possible to express

the terminal slip velocity between the two phases as

ut = ul ̸=k − uk = −
√

4

3

dp

0.44ρg
(ρk − ρl ̸=k) g (3.102)

where ρl ̸=k ≥ ρk, and gravity acts in the opposite direction to the flow. Applying the fluid

properties given in Table 3.3, predicts a terminal slip velocity of ut = 0.542 m s−1, corresponding

to a particle Reynolds number of Rep = 5.42. The domain size and simulated time required to

reach a steady-state are determined by an initial simulation to be 0.15 m and 0.5 s, respectively.

fig. 3.5 shows the results of the slip velocity predicted by the semi- and fully-coupled algorithms.

Also, the terminal velocity predicted by Eq. (3.102) is shown in the figure.
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Figure 3.5: The slip velocity profiles for the vertical two-phase flow case. The semi- and
fully-coupled solutions are indicated by the solid line and circular markers, respectively, and the
dotted line indicates the theoretical terminal velocity.

As fig. 3.5 shows, both algorithms correctly predict the terminal slip velocity for this case,
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and correctly reach the theoretical value. Moreover, both the semi- and fully-coupled algorithms

are in very good agreement. The total computational time to reach steady state for the semi- and

fully-coupled algorithms for a computational grid of 5000 cells on 4 CPUs are 7494.2 s and 8166.1

s, respectively. The time presented for the semi-coupled algorithm is based on the more efficient

variant of solving the transport equation for the volume fraction after the pressure-velocity

equation set, as discussed previously.

3.4.4 Fluidised Bed

A fluidised bed is a reactor which is used when a reaction between two different phases is

desirable. Due to the optimal mixing and large contact area between the two phases, high rates

of heat and mass transfer [58] can be achieved. Under bubbling conditions [58], the flow in such

a device can be split into two regions: the bed region where most of the particles are located

with high volume fractions, leading to long duration frictional contacts; and above the bed, the

free-board is nominally free of particles. Simulations of a fluidised bed provide a very good

opportunity for the algorithms developed in this work, as it concerns a two-phase flow with

both dilute as well as dense regions, strong inter-phase momentum exchange, and has large

source terms and gradients of source terms due to presence of a solids pressure term in the dense

regions [88].

The fluidised bed considered in this work is 0.4 m in width and 0.6 m high. The properties

of the phases used in the simulations are provided in table 3.5. These are the same properties

and fluidised bed geometry as previously simulated by van Wachem et al. [87].

Table 3.5: Properties of the phases used in the fluidised bed test case.

Variable Value

Solid phase maximum packing fraction αs,MAX [-] 0.61
Frictional stress “kick-in” fraction αs,MIN [-] 0.5
Frictional stress model empirical constant, Fr [Pa] 0.05
Frictional stress model empirical constant, n [-] 2
Frictional stress model empirical constant, p [-] 5
Inlet superficial gas velocity ug,in [m s−1] 1.0
Gas density ρg [kg m−3] 1.28
Solids density ρs [kg m−3] 2600.0
Gas viscosity µg [Pa s] 1.7× 10−5

Particle diameter dp [m] 500.0× 10−6

Particle coefficient of restitution es [-] 0.6
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The initial bed height is set to 0.4 m, with a solids phase volume fraction of 0.21. A potential

issue in simulating fluidised beds is that the solids phase volume fraction becomes zero in the

free-board. To prevent this, the solids volume fraction is set to 1.0 × 10−6 initially in the

free-board as well as at the outlet of the fluidised bed during the simulation [87, 89]. The usual

outlet boundary conditions are set at the outlet of the fluidised bed, assuming fully-developed

flow and ambient pressure. The boundary conditions for the side-walls of the fluidised bed are

no-slip for the fluid phase, free-slip for the particle phase, and a zero-gradient for the granular

temperature. At the inlet of the fluidised bed, a superficial gas velocity of 1.0 m s−1 is given,

a zero normal velocity for the particles is given, and a zero gradient for granular temperature

is set. The superficial velocity is around four times the minimum fluidisation velocity for the

particles, which is the same as one of the cases discussed in van Wachem et al. [87].

The fluidised bed is simulated for a physical time of 2 s and instantaneous snapshots of

solid phase volume fraction are shown in fig. 3.6 for the simulation results from the semi- and

fully-coupled algorithms.

The snapshots of the volume fraction fields shows that the comparison between the semi- and

fully-coupled algorithms produces very similar results up to about 1 s of real time. After this,

the actual time-dependent volume fraction fields start to diverge from each other, due to the

highly non-linear nature of the two-fluid model in combination with the KTGF closures. Since

small round-off errors are introduced in the results at every time-step, the actual time-dependent

results between two simulations start to diverge. However, the statistics predicted by the two

algorithms, in terms of bubble size, bed expansion and pressure drop are very similar. These

results are in terms of bed expansion and pressure drop, and are compared to the earlier findings

with a fully segregated algorithm as published by van Wachem et al. [87].

For a given setup of fluidised bed, the pressure drop is very approximately the weight of the

particles in the bed as [58]

∆pbedAbed = αsρg (ρs − ρg) gV bed (3.103)

where ∆pbed is the pressure drop, Abed the area of the bed, g the gravity vector and Vbed is the

total volume of the bed at minimum fluidisation conditions.

The pressure drop in the simulations is determined by time-averaging the results between
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Figure 3.6: Comparison of snapshots of volume fraction fields in a fluidised bed simulation
obtained using the semi- and fully-coupled algorithms, shown on the top and bottom rows,
respectively. The meaning of the colours is indicated in the legend on the right. Times of
snapshot are, from left to right: t = 0.5 s, t = 1.0 s, t = 1.5 s and t = 2.0 s.

1.0 and 2.0 s. The comparison of the pressure drop is presented in table 3.6.

Table 3.6: Fluidised bed pressure drop

Pressure drop [Pa]

∆pan. ≈ 2600
∆pSC 2291
∆pFC 2215

The prediction of the pressure drop between the two algorithms is very good. The small

discrepancy between the analytical pressure drop and the simulated one is attributed to the

approximate nature of the analytic expression, as also discussed in [58, 87]. The general dynamics

and prediction of both algorithms agree very well with the results of van Wachem et al. [87].

To simulate this case, the semi- and fully-coupled algorithms required 37, 487 s and 27, 837 s

of wall time, respectively, to simulate 2 s of flow on a 16 core compute node. The relative

errors in mass, summing the absolute error for every time-step, for the semi- and fully-coupled
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algorithms are 0.186% and 0.152%, respectively.

As expected, the fully-coupled algorithm is computationally a lot more effective for two-

phase flow simulations in which the inter-phase coupling is significant and the source terms are

appreciable.

3.5 Conclusions

A new framework for discretising and solving the two-fluid model for predicting the behaviour

of two-phase flows has been derived and validated in this chapter. In the discretisation of the

two-fluid model, both a Picard linearisation and a Newton linearisation have been pursued,

leading to the semi-coupled and the fully-coupled algorithms.

In the semi-coupled algorithm, the discretisaton and Picard linearisation lead to a separate

pressure-velocity equation system and a separate equation system for the transport of the volume

fractions. It is shown that it is beneficial for most cases to solve the pressure-velocity system

prior to solving the transport of the volume fractions.

In the fully-coupled algorithm, the discretisation and Newton linearisation lead to a single

linearised system of equations for the complete two-fluid model. All the inter-phase coupling

terms and linearised source terms are included in this system. Although this system is more

expensive to solve per iteration, the increased coupling between the equations and robustness

are expected to lead to significantly less required number of iterations per time-step. In this

work also strategies are introduced to enforce a diagonally dominant discretisation matrix and

boundedness of the volume fractions. This makes the solving of the system possible by any

Krylov sub-space method.

The two approaches of the newly proposed framework are validated and verified by application

to a range of test cases. These test cases involve horizontal two-phase flow, vertical two-phase

flow and a more realistic test case of a bubbling fluidised bed. The horizontal and vertical

two-phase flow cases are relatively simple, and both approaches of the framework perform very

well and show good results compared to theory. There is very little difference in computational

effort to reach steady-state for these two cases.

The two-phase flow simulations of the fluidised bed also show good results in comparison

with the expected pressure drop and earlier predictions of van Wachem et al. [87]. Because this
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case involves a strong inter-phase coupling, as well as a strongly varying source term, i.e. the

solids pressure, the fully-coupled algorithm is computationally significantly more efficient than

the semi-coupled algorithm. The simulation results of the semi- and fully-coupled approaches

show a very good agreement with each other.
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Chapter 4

Modelling Turbulent Two-Fluid

Flows

In this chapter the fully-coupled algorithm developed in chapter 3 is further tested by application

to turbulent gas-solid flows. The ensemble averaged two-fluid model, suitable for turbulent

gas-solid flows is derived and used to simulate turbulent gas-solid flows in a backward facing

step and in a bluff body flow.

4.1 Introduction

Gas-solid flows, a subset of the wider class of dispersed multiphase flows, consists of particles

transported by a carrier fluid. Examples of such flows can be found in a range of environmental,

industrial and scientific applications: from pollutant dispersal to power generation and funda-

mental studies of the interaction between the discrete particles and the carrier fluid. Flows of

practical interest are frequently turbulent, and this is equally true of gas-solid flows in which the

presence of particles plays a significant role in the overall behaviour of the flow. The particles in

such flows may either enhance or attenuate the fluid turbulence, in a process known as turbulence

modulation [3, 18]. Additionally, particles themselves are generally in fluctuating motion relative

to a mean particle velocity field. This resembles the behaviour of molecules, which can be

exploited in developing models to describe the behaviour of solid particles [61, 82]. As the

fluctuating velocity fields of the fluid and particles interact, the work done by the fluctuating

drag forces between the phases results in the transfer of fluctuating kinetic energy, giving rise to
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the turbulence modulation observed in gas-solid flows. Capturing this effect is therefore vital to

accurate modelling of turbulent gas-solid flows.

The wide range of length scales involved in turbulence and dispersed gas-solid flows makes

exact Direct Numerical Simulation (DNS) computationally extremely demanding, as the be-

haviour of the smallest scales impacts the largest. Frequently, it is the large scale properties of

the flow that are of practical interest, for example the pressure drop across a device, mixing rates

or the rate of erosion due to particle collisions with the walls that guide the design process. This

has lead to the development of methods based on averaging procedures, resolving behaviours

occurring on scales that are large, and applying a model to account for the smaller scales. The

smaller scales thus no longer need to be resolved, but are modelled. In so doing, the resolution

required to simulate a given problem is significantly reduced, making the problem tractable

given finite or limited computing resources at the expense of greater up front modelling cost.

In this work, the two-fluid framework [2, 48] is used to approximate the behaviour of turbulent

gas-solid flows. The two-fluid model is based on an averaged description of a multiphase

flow, resulting in each phase appearing as a continuous fluid occupying the entire domain,

interpenetrating and interacting with the other phase by the application of coupling terms. The

resulting system of non-linear equations bears similarity to that of single phase flows, consisting

of transport equations describing the conservation of momentum, mass etc. however, is at least

twice as large (at least 8 coupled equations for two phases), necessitating the use of efficient

solution algorithms. This is used to test the fully-coupled algorithm developed in chapter 3

for solving the two-fluid model equations in application to flows representative of real world

applications.

This chapter is organised as follows: in §4.2, the two-fluid model is presented and the averaged

form derived. The fully-coupled algorithm used to solve the two-fluid model equation system is

presented in §4.3 and evaluated by application to two test cases in §4.4: the backwards-facing

step experiment of Fessler and Eaton [40], used as a validation study by Benavides and van

Wachem [8]; and the bluff-body experiment performed by Boree et al. [10]. The chapter is

concluded in §4.5.
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4.2 The Two-Fluid Model

The two-fluid model [2, 47] is a computationally efficient framework for simulating multiphase

flows. By describing the flow in terms of volume averages, each phase appears as a continuous

fluid occupying the entire domain, interpenetrating and interacting with the other. As a result,

the conservation of mass, momentum, etc. in each phase may be represented by a general

transport equation of the form

∂αkρkϕk

∂t
+
∂αkρkϕkuki

∂xi
= −∂α

kJϕk

i

∂xi
+ αkSϕk

+
∑
l ̸=k

Iϕ
kl
, (4.1)

where ϕ is the transported variable, ρ is density, Iϕ
kl

is the exchange term describing interphase

transfers, Jϕk
is the diffusion flux, Sϕk

is the source term, t is time, u the velocity vector and

x the Cartesian coordinate axis. Subscript i is a vector index, where Einstein summation is

implied, and superscripts k and l are phase counters, indicating a variable is associated with a

given phase e.g. ug is the gas phase velocity whilst ρs is the solid phase density. Throughout

this work, unless stated otherwise, subscript Latin characters represent vector indices and

superscript Latin characters are used as phase counters. The additional variable, αk, appearing

in Equation Eq. (4.1) is the volume fraction of phase k, arising as part of the two-fluid model

averaging procedure, and as the name suggests is the proportion of the averaging domain

occupied by phase k.

Restricting the analysis to flows of phases with constant densities and neglecting mass transfer

between phases, the continuity equation for each phase in the two-fluid model, also referred to

as the transport equation for volume fraction, is given as

∂αk

∂t
+
∂αkuki
∂xi

= 0 . (4.2)

The volume fractions, by definition, are individually bounded between zero and one, and when

summed over all the phases must sum to unity,

∑
k

αk = 1 , (4.3)

which ensures that the total volume of the flow is conserved. A continuity equation for the
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mixture, referred to as the global continuity equation, is obtained by summing the individual

transport equations for volume fractions, Eq. (4.2), over all phases and applying the constraint

that volume fractions sum to one, leading to

∑
k

∂αkuki
∂xi

= 0 , (4.4)

which is a statement of the conservation of volume and is the two-fluid model analogue of the

incompressibility condition for single phase flows.

Under the same conditions of constant density phases and neglecting mass transfer between

phases, the two-fluid model momentum equations are given as [47]:

ρk
∂αkukj
∂t

+ ρk
∂αkukju

k
i

∂xi
= −αk ∂p

∂xj
+
∂αkτkij
∂xi

− ∂pk

∂xj
+ αkρkgkj + Iu

kl

j , (4.5)

where τ is the shear stress tensor, g the external force vector, p is pressure and Iu
kl

the

momentum exchange term. In modelling gas-solid flows using the two-fluid model, the shared

pressure p is taken equal to the gas phase pressure, consequently the phase specific pressure pk

is zero in the gas phase i.e. pg = 0 whilst in the solid phase it is non-zero and describes the

effect of particle-particle interactions [61].

Equations Eq. (4.2), Eq. (4.4) and Eq. (4.5) represent a single realisation of a multiphase

flow. When the flow is turbulent, small variations in boundary or inlet conditions will result

in a different observed flow, however statistically each flow is, on average, the same. Generally

it is these mean flow statistics which are of interest, not the individual flow realisations. By

averaging over an ensemble of flow realisations, each variable can be decomposed as

ϕ = ϕ+ ϕ′ , (4.6)

where ϕ is the mean value and ϕ′ the fluctuation about the mean. The ensemble averaging
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operator satisfies the following properties

ϕ = ϕ , (4.7a)

ϕ′ = 0 , (4.7b)

ϕψ′ = 0 , (4.7c)

ϕ′ψ′ ̸= 0 , (4.7d)

consequently, taking an ensemble average of the governing equations, the governing equations

become transport equations for the ensemble mean values with additional turbulent transport

terms due to the covariances of fluctuating values Eq. (4.7d). The computational requirements

are thus reduced by resolving only the mean flow and accounting for the effects of turbulent

fluctuations through the use of turbulence models [9].

It should be noted that standard ensemble averaging of the continuity equations introduces

a covariance term, as [78]

αkuki = αkuki + α′kui′k , (4.8)

which requires modelling. Although this is possible [36], it is still unclear how to develop

a unified approach to closing this term. However, this additional term can be avoided. To

avoid introducing this additional term to the continuity equations, the Favré averaged velocity,

weighted by volume fraction, is introduced [9]:

Uk
j =

αkukj

αk
. (4.9)

Following the definition of the Favré averaged velocity, the ensemble averaged phase continuity

and global continuity equations of the two-fluid model are given as

∂αk

∂t
+
∂αkUk

i

∂xi
= 0 , (4.10)

and

∑
k

∂αkUk
i

∂xi
= 0 , (4.11)
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respectively.

When averaging the momentum equations, the ensemble average of the advection term,

ρk∇ ·αkukuk, gives rise to an analogy of the Reynolds stresses, due to the covariance of velocity

fluctuations and an additional term due to velocity-volume fraction fluctuations:

αkukju
k
i = αkUk

j U
k
i + αkuj ′kui′k + α′kuj ′kui′k

= αkUk
j U

k
i − αk

ρk
Rk

ij + α′kuj ′kui′k
. (4.12)

The first term of Eq. (4.12) is identified as the mean advective transport of momentum, Rk =

−ρku′ku′k is the analogy of the Reynolds stress tensor and α′ku′ku′k is the triple covariance of

velocity and volume fraction fluctuations. The ensemble averaged momentum equations then

follow as

ρk
∂αkUk

j

∂t
+ ρk

∂αkUk
j U

k
i

∂xi
= −αk ∂p

∂xj
+

∂

∂xi

(
αk
(
T k
ij +Rk

ij

))
− ∂pk

∂xj

+ αkρkgj
k + Ij

ukl

, (4.13)

where the triple covariance of velocity and volume fraction fluctuations has been discarded [9].

To close Eq. (4.13), models are required for the fluctuating stress tensors of each phase, the

solid phase stress tensor and the ensemble averaged momentum exchange term. These closures

are presented in the following subsections.

4.2.1 The Fluid Phase

The ensemble averaged fluid phase momentum equations contains an analogy of the Reynolds

stress tensor, which is given as

Rg
ij = −ρguj ′gui′g , (4.14)

representing momentum transport due to turbulent fluctuations. Using a Boussinesq approxima-

tion, the Reynolds stress tensor is modelled as

Rg
ij = µg,t

(
∂Ug

j

∂xi
+
∂Ug

i

∂xj

)
− 2

3

(
µg,t

∂Ug
k

∂xk
+ ρgkg

)
δij , (4.15)
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where µg,t is the turbulent viscosity, δij the Kronecker delta and kg the kinetic energy of turbulent

fluctuations, defined as

kg =
1

2
u′g2 . (4.16)

The turbulent viscosity of each phase is given, based on a mixing length model, as

µg,t ∝ ρglg,tvg , (4.17)

where lg,t is a turbulent length scale and vg =
√
kg a velocity scale.

A transport equation describing the evolution of the kinetic energy of turbulent fluctuations

is obtained by subtracting the mean momentum equations, Eq. (4.13), from Eq. (4.5), forming

the dot product with ug and averaging, yielding an equation of the form [9]

ρg
∂αgkg

∂t
+ ρg

∂αgkgUg
i

∂xi
=

∂

∂xi

(
Γg ∂k

g

∂xi

)
  

Diffusion

+ Pg
Production

− αgεg
Dissipation

+ui′gIi
′ugs  

Exchange

. (4.18)

In the above equation, Γg is the diffusion coefficient modelling transport of turbulent kinetic

energy by turbulent fluctuations [9], Pg is the production of turbulent fluctuations due to mean

shear and εg is the dissipation of fluctuating kinetic energy, representing viscous dissipation

as heat in the fluid phase and dissipation due to inelastic collisions in the solid phase. The

final term, distinguishing Eq. (4.18) from the equivalent single phase equation, is the exchange

of fluctuating kinetic energy between the fluid and solid phases as a result of work done by

fluctuating drag forces. It is this term which gives rise to turbulence modulation observed in

turbulent fluid-solid flows whereby the presence of particles may either enhance or attenuate

the turbulence of the gas phase [3]. To complete the closure of the stress tensors, closures are

required for the fluctuating kinetic energy equations and the turbulent viscosities of each phase.

4.2.1.1 Turbulent Viscosity

As shown above, the turbulent viscosity is a function of a length scale and a velocity scale. The

velocity scale is given by vg =
√
kg and is thus known by solving Eq. (4.18) for the fluid phase.

In single phase turbulent flows, the length scale is given as lt =

√
kg

εg
[94], however this does

not account for the presence of particles. Benavides et al. [9] argued that taking this model as
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representative of the length scale of turbulence in the gas phase, a cube of dimension lt
3
can be

defined. In a gas-solid flow this cube contains N particles where, for particles of diameter dp, N

is given as

N = αs
lg3

V p
= αs

6

πdp3
lg3 . (4.19)

Assuming the particles are evenly distributed within the volume, an effective length scale,

constrained by the particles, follows as [9]

lg,t
′
= lg,t −N1/3dp =

(
1−

(
6αs

παs,max

)1/3
)
lg,t ∝

√
kg3

εg
(4.20)

were the maximum packing limit, αs,max is introduced to normalise the volume occupied by

particles, suppressing the gas phase turbulence as this limit is approached [9]. The gas phase

turbulent viscosity then follows as

µg,t = cµρg

(
1−

(
6αs

παs,max

)1/3
)−1

kg2

εg
, (4.21)

and is used to model the turbulent diffusion coefficient as Γg = µg +
µg,t

σg,k
. The model constants

cµ and σg,k are given in table 4.1.

Table 4.1: Model constants for the two-fluid model RANS equations [8, 9]

cµ cg,ε1 cg,ε2 cg,ε3 σg,ε σg,k cL σs,Θ

0.09 1.44 1.92 1.2 1.3 1.0
√

3
2c

µ 0.72

A potential issue with Eq. (4.21), occurs when αs ≥ π

6
αs,max leading to a zero or negative

denominator, and consequently values asymptotically approaching plus or minus infinity respec-

tively. Similar numerical issues are posed by the radial distribution function, given in table 3.2,

when αs ≥ αs,max and a similar treatment is applied for each. A point is chosen near the

asymptote, for example αs
0 = 0.99

π

6
αs,max in the case of the viscosity model given in Eq. (4.21),

and for volume fractions exceeding this value, the viscosity/radial distribution function computed
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by extrapolation, e.g.

µg,t =

⎧⎪⎪⎨⎪⎪⎩
cµρg

(
1−

(
6αs

παs,max

)1/3)−1
kg2

εg , αs ≤ αs
0

µg,t0 +
(
αs − αs

0

) ∂µg,t
0

∂αs , otherwise

(4.22)

where

µg,t0 = cµρg

(
1−

(
6αs

0

παs,max

)1/3
)−1

kg2

εg
(4.23)

is the viscosity evaluated near the asymptote.

The above extrapolation allows the computation to proceed when the solids phase volume

fraction exceeds the safe ranges, in particular the use of extrapolation to compute g0 for

αs ≥ αs,max ensures that its value, and hence the solids pressure continues to increase rapidly

with increasing volume fraction. The model therefore does not prevent the solids phase volume

fraction from exceeding αs,max but where this does occur, the solids pressure computed is allowed

in a physically realistic manner to exceed the surrounding values with the resulting solids pressure

gradient forcing the solids into the neighbouring cells.

Finally, the dissipation of fluctuating kinetic energy in the gas phase is required. By analogy

with Eq. (4.18), a model equation is given as

ρg
∂αgεg

∂t
+ ρg

∂αgεgUg
i

∂xi
=

∂

∂xi

(
αg

(
µg +

µt,g

σg,ε

)
∂εg

∂xi

)
+
(
cg,ε1Pg − cg,ε2αgεg

) εg
kg

+ cg,ε3ui′gIi
′usg εg

kg

, (4.24)

where the additional model coefficients can be found in table 4.1.

4.2.2 The Solid Phase

The ensemble averaged equations of the solid phase are obtained from a probability density

framework. In a fluid-solid flow, the probability of finding a particle at x with velocity cp is

given by the particle Probability Density Function (PDF), f (x, cp), obtained from an ensemble

average [61, 82]. By analogy with the kinetic theory of gases, the Kinetic Theory of Granular

Flows (KTGF) [61] develops the equations required to describe the solid phase as an Eulerian
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fluid by assuming the particle PDF obeys the Boltzmann transport equation

∂f

∂t
+ cpi

∂f

∂xi
= −api

∂f

∂cpi
+
∂f

∂t

⏐⏐⏐⏐
coll.

, (4.25)

where ap is the particle acceleration and
∂f

∂t

⏐⏐⏐⏐
coll.

the particle PDF rate of change as a result of

particle collisions. Using the particle PDF, a solid phase averaged variable is given by integrating

over the particle phase space [82]

⟨ϕp⟩ = 1

np

∫
ϕpfdcp , (4.26)

where np is the particle number density. Multiplying Eq. (4.25) by ϕp and integrating, a phase

averaged transport equation is obtained as

∂n ⟨ϕp⟩
∂t

+
∂np ⟨ϕpcpi ⟩

∂xi
= np

⟨
api
ϕp

cpi

⟩
+ npCϕ , (4.27)

where the final term is the collision operator npCϕ =
∫
ϕp

∂f

∂t

⏐⏐⏐⏐
coll.

dcp.

Setting ϕp = mp, mpcp, and using the identities

npmp = αsρs , (4.28)

and

⟨cpi ⟩ = U s
i , (4.29)

the solid phase continuity equation is obtained as

∂αsρs

∂t
+
∂αsρsU s

i

∂xi
= 0 , (4.30)

and the solid phase momentum equations are given by

∂αsρsU s
j

∂t
+
∂αsρsU s

jU
s
i

∂xi
= αsρs

⟨
apj

⟩
+
∂αsRs

ij

∂xi
+ αsρsCcpj , (4.31)
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where the first term on the right hand side is due to the body forces working on the particles, the

second term represents the kinetic stresses of the particulate phase, and the last term originates

from particle-particle collisions. It is assumed that the particles do not breakup or agglomerate

during collisions.

The kinetic stress [82] arises through the correlation term
⟨
cpjc

p
i

⟩
≈ U s

jU
s
i − 1

ρs
Rs

ij . The

collisional contribution to momentum gives rise to a collisional stress term which is approximated

as

αsρsCcpj =
∂αsT s

ij

∂xi
− ∂ps

∂xj
, (4.32)

and the external force term is given by taking the phase average of the particle equation of

motion

αsρs
⟨
apj

⟩
= −αs ∂p

∂xj
+ αsρsgsj + Iu

sg

j . (4.33)

Equations Eq. (4.30) and Eq. (4.31) can be further simplified by considering particles which all

have the same, constant, density.

The solid phase kinetic stress tensor can be modelled using a Boussinesq approximation, as

previously expressed in Eq. (4.15). The granular temperature, Θs =
1

3

⟨
u′p2

⟩
, is used as the

measure of the particle fluctuations and is related to the fluctuating kinetic energy as 3Θs = 2ks.

The evolution of granular temperature is given by the transport equation

3

2

(
ρs
∂αsΘs

∂t
+ ρs

∂ρsΘsU s
i

∂xi

)
=

∂

∂xi

(
κs
∂Θs

∂xi

)
+ Ps − γs + ui′sIi

′usg
, (4.34)

where κs is the granular conductivity, Ps is the production of granular temperature due to mean

shear, γs the dissipation of granular temperature through inelastic collisions and the final term

represents the interphase exchange of fluctuating kinetic energy due to work done by fluctuating

drag forces.

The viscous stress tensor of the solid phase has two separate components, a kinetic component,

Rs
ij , and a collisional component T s

ij . This leads to an effective shear viscosity µs = ρsls
√
Θs

and a bulk viscosity λs =
4

3
ρsdpαsg0

√
Θs. Closure models for the length scale are developed by

arguments to kinetic theory [46, 61] but these do not account for the effect of the interstitial gas.

Instead, in this work the model proposed by Benavides and van Wachem [8] is used. It is based

on modelling the interaction of particles with turbulent eddies in the gas phase. Based on the
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work of Csanady [19], Simonin [82], Simonin et al. [83], the turbulent scales as seen by a particle

as it crosses a turbulent eddy scale are approximated as

ψs,t ∝ ψg,t√
1 + cβξr

, (4.35)

where ξr accounts for the crossing-trajectory effect [8, 9] and is given as ξr =

√
3

2

|Ur|√
kg

. Ur

is the averaged relative velocity between particles and the fluid [82]. The solid phase viscous

length scale based on particle-eddy interactions then follows as [8]

lB =
cL√

1 + cβξr

√
kg3

εg
. (4.36)

The length scale should also be limited by the particle mean free path lmfp =
dp/αs

6
√
2

so that the

solid phase length scale is given as [8]

ls = min
(
lB, lmfp

)
. (4.37)

The granular conductivity follows as κs = αs
µs

σs,Θ
[8].

The model constants appearing in the solid phase equations can also be found in table 4.1.

The outstanding closures required to describe the interphase interactions are presented below.

4.2.3 Momentum Exchange Closure

Before the Reynolds average of the momentum exchange can be taken, a model for the instanta-

neous exchange of momentum between the phases is required. When there is relative motion

between an object and the surrounding fluid, a drag force is exerted upon the object, given by

the expression

fdragj =
1

2
ρg |∆u|∆ujACD , (4.38)

where A is the cross-sectional area perpendicular to the flow, CD the drag coefficient and ∆u

the velocity of the object relative to the freestream velocity of the fluid. In addition to drag due

to relative motion, lift forces caused by rotation and so-called added mass and history forces are

also exerted upon particles carried by a fluid [63], however, considering the typically large solid
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to gas density ratios, e.g.
ρs

ρg
> 1000, the drag force dominates momentum exchange between

the phases [74]. Based on the hindered settling velocity approach developed by Richardson and

Zaki [77] the drag force exerted upon a single particle is related to the drag force applied to a

particle suspension as

Iu
sg

j = ϵ (αs) fdragj = β
(
ugj − usj

)
, (4.39)

where ϵ (αs) is a function of the solid phase volume fraction and β is the momentum exchange

coefficient, used to express the momentum exchange in terms of the relative velocity, emphasising

that this term acts to couple the momentum equations together. In this work, the momentum

exchange term is modelled using the model developed by Wen and Yu [95], valid for a range of

flow conditions [89]. The velocity difference ∆u appearing in Eq. (4.38) is given by the velocity

of the object relative to the free-stream fluid velocity, the drag force exerted upon the carrier

gas should therefore be given in terms of the undisturbed gas velocity, ûg, so that

Iu
gs

j = β
(
usj − ûgj

)
, (4.40)

and is equal and opposite to the drag force exerted upon the solids. The undisturbed and

instantaneous gas velocities are related as

ûgj = ugj + Ud
j , (4.41)

and Ud is the so-called “drift velocity” [9]. The drift velocity results in a dispersive force acting

upon the particles as they interact with the fluid turbulence and is modelled as

Ud
j = −Dsg

(
1

αs

∂αs

∂xj
− 1

αg

∂αg

∂xj

)
, (4.42)

where Dsg is a dispersion coefficient. The instantaneous drag force model is completed by

specifying closures for the dispersion coefficient Dsg and the momentum exchange coefficient β,

given in table 4.2.

As the model for β shows, the drag force model is a non-linear function of the velocities

and volume fractions of the gas and solid phases, therefore Reynolds averaging the momentum

exchange term directly would result in the introduction of multiple unclosed terms. A simplified
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Table 4.2: Momentum exchange closure models

Model Notes

Dsg =
1

3
ksgτ t,sg , τ t,sg =

τ t,g√
1 + cβξr

, τ t,g = cµ
3kg

2εg

τ t,sg and τ t,g are the eddy-particle
interaction and gas turbulent
timescale respectively [6]

cβ = 1.8− 1.35

(
U r
i U

s
i

|Ur| |Us|

)2

, ξr =
3Ur2

2kg
, U r

i = (U s
i − Ug

i )− Ud
i

β = αs (1− αs)
3

4

ρg |∆usg|
(1− αs)2.65dp

CD Wen and Yu [95] model

CD =

{
24

(1−αs)Rep

(
1 + 0.15((1− αs)Rep)0.687

)
if (1− αs)Rep < 1000

0.44 otherwise

Rep =
ρgdp |∆ugs|

µg
Particle Reynolds number

expression for the momentum exchange coefficient is therefore sought to avoid introducing

additional unclosed terms before proceeding. Based on the approach of Hrenya and Sinclair [46]

the momentum exchange coefficient is first rewritten as

β = αsF , (4.43)

so that the instantaneous momentum exchange follows as

Iu
gs

j = αsF
(
usj − ûgj

)
. (4.44)

Taking an ensemble average of Eq. (4.44) gives rise to additional unclosed terms. However, by

taking the volume fraction outside the momentum exchange coefficient it can be shown that

it gives rise to Favré averaged velocities. The remaining issue is therefore the decomposition

and subsequent ensemble averaging of F which is itself a non-linear function of the solid phase

volume fraction and the gas and solid phase velocities. Following the work of Hrenya and Sinclair

[46], the decomposition of F is obtained by expanding F about the mean value in terms of

velocity and volume fraction fluctuations, giving

F = F + F ′ = F + α′s ∂F

∂αs
+ ui

′s ∂F

∂usi
+ ui

′g ∂F

∂ugi
, (4.45)

where F is F evaluated using only mean values and F ′ is the fluctuation about this mean value.
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For small particles, these fluctuations may be ignored [9, 46] so that F ≈ F and as a result of

this simplification the ensemble averaged momentum exchange term follows as

Iu
gs

j = Fαs
(
usj − ûgj

)
= F

(
αsU s

j − αs
(
ugj + Ud

j

))
= β

((
U s
j − Ug

j − Ud
j

)
+
α′guj ′g

αg − α′suj ′g

αs

)
,

(4.46)

where the final two terms may be discarded [9]. The ensemble averaged momentum exchange

term is then finally given as

Iu
gs

j = βU r
j , (4.47)

where β = αsF is the mean momentum exchange coefficient.

The two-fluid model, with the closures presented above, is implemented in the research code

MultiFlow [91] and solved using a fully-coupled algorithm, presented briefly in the next section.

4.3 Numerical Method

The equations describing the flow are discretised using FVM on a collocated mesh using

momentum-weighted interpolation [76] and solved using the fully-coupled algorithm developed

in chapter 3. The fully-coupled algorithm is based on an inexact Newton algorithm [26], treating

the two-fluid model as a single, coupled system of equations, yielding superior stability in the

presence of highly non-linear source terms and constitutive relations, as appear in the closure of

the solid phase stress tensor. This results in a system of coupled equations of the form

J∆ϕ = −F , (4.48)

where

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ag +D −D Bg −Rg

−D As +D Bs Rs

Hg Hs Gg +Gs −Eg +Es

0 Hs Gs Es

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.49)
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is the Jacobian,

∆ϕ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∆Ug

∆Us

∆p

∆αs

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4.50)

is the update vector, and F is the non-linear residual function, for further details, including

the definition of the coefficient matrices, see chapter 3. The fluctuating kinetic energy of both

phases is updated separately from the coupled pressure-velocity-volume fraction system and

used to calculate the transport coefficients for the next time-step.

4.4 Test Cases and Results

The ensemble and Favré averaged two-fluid model, with the closures presented in §4.2 and

solved using the fully-coupled algorithm described in §4.3 is evaluated using two comprehensive

and challenging test cases. The first is a vertical particle-laden flow over a backward facing

step, based on the experimental data of Fessler and Eaton [40], and simulated previously by

Benavides and van Wachem [8]; used here as a validation case. The second case investigated is

the particle-laden bluff body flow studied experimentally by Boree et al. [10].

The initial conditions and inlet and outlet boundary conditions are specific for each case.

However, the boundary conditions applied at the solid walls are the same for both cases. For the

fluid phase, it is assumed that the standard wall functions for the k − ε model are unaffected by

the presence of particles. The boundary conditions for the fluid phase at solid walls are given as

τ g,w = ρgcµ
1/4
√
kg,P

Ug,P

u+
, (4.51)

∂kg

∂n

⏐⏐⏐⏐w = 0 , (4.52)

and

εg,P =
cµ

3/4
√
kg,P 3

κ∆y
, (4.53)

where τ g,w is the shear stress acting at the wall, Ug,P is the velocity at cell P tangential to the
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wall, u+ is the tangential velocity in wall units and ∆y is the wall-normal distance to cell P .

As a first approximation, free slip boundary conditions are applied at the walls for the solid

phase and the normal gradients of granular temperature set to zero. The normal gradients of

volume fraction, granular and fluid pressure are set to zero at the walls, except when the wall

normal is parallel to the gravity vector in which case the fluid pressure at the wall is extrapolated

from the interior of the domain.

4.4.1 Backward Facing Step

The model implementation as described in this chapter is validated against the experimental

data of Fessler and Eaton [40] for downwards particle-laden flow over a backwards facing step.

The domain consists of an inlet section of height h = 40 mm extending 65h upwind of the step,

and an outlet section extending 34H downwind of the step where H = 26.7 mm is the step

height, as illustrated in fig. 4.1. The coordinate origin is located at the base of the step and the

x axis aligned with the gravity vector.

H

h

65h 34H

U in g

Figure 4.1: Diagram of the backward facing step domain.

Four different flow cases are considered: a single phase flow case, presented in §4.4.1.2, and

three gas-solid flow cases, presented in §4.4.1.3. The phase properties are given in table 4.3 and

the boundary and initial conditions in §4.4.1.1.

Table 4.3: Backward facing step phase properties

Quantity Value

ρg [kg m3] 1.19

ρs [kg m−3]
2500 (case 1)
2500 (case 2)
8800 (case 3)

µg [Pa s] 1.81× 10−5

dp [µm]
150 (case 1)
90 (case 2)
70 (case 3)

es [-] 0.9
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4.4.1.1 Boundary and Initial Conditions

The velocities of both phases, the turbulent kinetic energy and dissipation of the fluid phase and

the granular temperature of the solid phase are initialised with uniform fields given by the inlet

values, whilst the shared pressure field is uniformly zero initially. The volume fraction field is

initialised based on the inlet value above the step (αs,0 (y > H) = αin
s ) whilst behind the step, a

lower initial value (αs,0 (y < H) = 10−5) is specified.

Uniform values are specified at the inlet boundary. The fluid inlet velocity is set to Ug,in =

9.3 m s−1 to obtain a centreline velocity of Ug,cl ≈ 10.5 m s−1 at the step. The inlet velocity for

the solid phase is specified at the inlet based on the particle Reynolds number for each case,

given in table 4.4, and the volume fraction determined by satisfying the mass-loading for the

case where the mass-loading, ML is defined as

ML =
αs,inρsU s,in(

1− αs,in
)
ρgUg,in

. (4.54)

The inlet boundary conditions for the turbulent kinetic energy and granular temperature are

given based on a turbulence intensity of It = 1% in both phases, and the dissipation of turbulent

kinetic energy defined based on a boundary layer thickness δ =
1

2
h and setting the turbulent

length scale as

lg,t =
kg,in

εg,in
= 0.1δ . (4.55)

A fully developed boundary condition is applied at the outlet of the domain with zero normal

gradients for all variables except pressure which is fixed at pout = 0 Pa.

To allow sufficient time for a steady flow to develop, each flow is simulated for T = 2.85 s,

corresponding to 10 flow-throughs for the fluid phase based on the inlet velocity. The setup is

first validated by simulating a single phase flow, presented in §4.4.1.2, and then simulations of

particle-laden flows are presented in §4.4.1.3.

4.4.1.2 Single Phase Flow

To validate the setup of the case, the numerical results are compared against experimental data

for single phase flow at several stations downstream of the step. Figure 4.2 shows the streamwise

velocity profiles at several stations downstream of the step, normalised by the channel centreline
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velocity measured at the step (x = 0).
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Figure 4.2: Comparison of stream-wise velocity profiles, normalised by Ug,cl. Experimental
data is plotted as points, whilst numerical results are shown as solid lines. Dotted lines indicate
the bounds of normalised velocity between zero and one at each station and the step is shown
by dashed lines with the corner located at (0, 0).

Comparison of the numerical results with the experimental data shows good agreement

between both at all measurement positions. In particular, the recirculation region is well

captured and the length of the recirculation region lrecirc. ≈ 7H is well predicted. Based on this

comparison, the mesh is sufficiently refined to capture the essential flow physics and this setup

is used to simulate the particle-laden flows.

4.4.1.3 Particle-Laden Flow

Simulations are performed for flows of three different particle types, as detailed in table 4.4.

A single mass-loading is considered for cases 1 and 2 whilst two different mass-loadings are

considered for case 3. The results obtained are compared with those of Benavides and van

Wachem [8] and the experimental data of Fessler and Eaton [40], presented below.

The prediction of the solid phase velocity and fluid phase turbulent kinetic energy shows

generally good agreement with the numerical data of Benavides and van Wachem [8] and
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Table 4.4: Description of particle phase for particle-laden backward facing step flow.

ML [%] dp [µm] ρs [kg m−3] Rep St

case 1 40 150 2500 10.1 7.9
case 2 20 90 2500 2.9 3.8

case 3
10

70 8800 4.4 7.4
40
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Figure 4.3: Gas phase fluctuating kinetic energy for case 1 at mass loading ML = 40%.
Numerically obtained data is plotted as solid lines, experimental data as points and the numerical
data of Benavides and van Wachem [8] as dashed lines.

experimental data of Fessler and Eaton [40], however there is a slight over-prediction of the

solid phase velocity compared to the experimental data towards the outlet which is also seen

in the numerical data of Benavides and van Wachem [8]. The solid phase velocity predicted

numerically in this work does however show a deterioration in agreement with the experimental

and numerical data used for comparison towards the lower wall. One possible cause for this

discrepancy is the generally poor prediction of granular temperature, however the numerical

results of Benavides and van Wachem [8] show a relatively wide spread of granular temperature

also. At the same time the better prediction of solid phase velocity by Benavides and van

Wachem [8] even where the granular temperature is underpredicted suggests that the simplified

boundary conditions applied here in the form of free slip at the wall for the solid phase deserves
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Figure 4.4: Solid phase granular temperature for case 1 at mass loading ML = 40%. Numeri-
cally obtained data is plotted as solid lines, experimental data as points and the numerical data
of Benavides and van Wachem [8] as dashed and dash-dotted lines.

revisiting. For example in Benavides and van Wachem [8] a wall stress is imposed in the solid

phase similarly to the boundary conditions used for the gas phase, given as

τ s,w =
παs,P

6αs,max
ρsψs,wg0

√
Θs,PUs,P (4.56)

where ψs,w = 0.005 is the specularity coefficient, the proportion of collisions transferring

momentum to the wall. By changing the shear stress at the wall, this would also have an

impact on the production of granular temperature. In particular, the predictions for granular

temperature in this work show worst agreement in the near wall regions towards the walls and it

is thought this can be attributed, at least in part, to the lack of production there due to the

free slip boundary condition. It is noted that Benavides and van Wachem [8] also imposed a

boundary condition for granular temperature based on a balance of energy at the wall, however

it has elsewhere been reported that the granular temperature is relatively insensitive to the use

of adiabatic boundary conditions as applied here [6, 89].

131



2 5 7 9 14
x
H

0.0

0.5

1.0

1.5

2.0

2.5
y H

0.0 1.0

Us

Ucl

Figure 4.5: Solid phase stream-wise velocity for case 1 at mass loadingML = 40%. Numerically
obtained data is plotted as solid lines, experimental data as points and the numerical data of
Benavides and van Wachem [8] as dashed and dash-dotted lines.
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Figure 4.6: Gas phase fluctuating kinetic energy for case 2 at mass loading ML = 20%.
Numerically obtained data is plotted as solid lines, experimental data as points and the numerical
data of Benavides and van Wachem [8] as dashed lines.
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Figure 4.7: Solid phase stream-wise velocity for case 2 at mass loadingML = 20%. Numerically
obtained data is plotted as solid lines, experimental data as points and the numerical data of
Benavides and van Wachem [8] as dashed and dash-dotted lines.
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Figure 4.8: Gas phase fluctuating kinetic energy for case 3 at mass loading ML = 40%.
Numerically obtained data is plotted as solid lines, experimental data as points and the numerical
data of Benavides and van Wachem [8] as dashed lines.
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Figure 4.9: Solid phase granular temperature for case 3 at mass loading ML = 10%. Numeri-
cally obtained data is plotted as solid lines, experimental data as points and the numerical data
of Benavides and van Wachem [8] as dashed and dash-dotted lines.
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Figure 4.10: Solid phase stream-wise velocity for case 3 at mass loading ML = 10%. Numeri-
cally obtained data is plotted as solid lines, experimental data as points and the numerical data
of Benavides and van Wachem [8] as dashed and dash-dotted lines.
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4.4.2 Bluff Body Flow

The bluff body flow studied experimentally by Boree et al. [10] consists of a central jet and a

coaxial flow discharging into a plenum as shown in fig. 4.11. Three different flows are considered:

a single phase flow and two gas-solid flows with glass beads injected into the central jet to give

mass loading ratios of ML = 22% and ML = 110%. The phase properties, flow conditions and

dimensions of the domain are given in table 4.5. In the experiment the solid phase consists of

polydispersed particles with diameters in the range 20 µm ≤ dp ≤ 100 µm [10], here the solid

phase is represented by a single Eulerian phase using the mass-averaged particle diameter and it

is this value that is reported in table 4.5.

rjet

rbluff

rcoax.

U in
jet

U in
coax.

U in
coax.

g

lin lplen.

Figure 4.11: Diagram of the bluff body domain.

Table 4.5: Bluff body flow conditions.

Quantity Value

rjet [m] 10× 10−3

rbluff [m] 75× 10−3

rcoax. [m] 150× 10−3

lin [m] 200× 10−3

lplen. [m] 500× 10−3

Ug,cl
jet [m s−1] 4.1

Ug,cl
coax. [m s−1] 6

ṁs
jet [kg h−1]

1 (ML = 22%)
5 (ML = 110%)

dp [µm] 63
ρg [kg m−3] 1.19
ρs [kg m−3] 2470
µg [Pa s] 1.81× 10−5

The computational domain is truncated at the inlet rather than use the full 2 m length of

inlet in the experiment and similarly the plenum is truncated to reduce computation time. As
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reported, the length of the jet inlet is sufficiently long for the gas to reach a fully-developed

state whilst the coaxial flow is thought to be slightly underdeveloped [10], therefore to account

for the truncation of the computational domain, one-seventh power law profiles are specified as

inlet conditions for the gas phase velocities. The solid phase is introduced at the jet inlet with

velocity equal to the gas velocity and the volume fraction determined by satisfying the mass

loading conditions for the given case. A small amount of particles are also introduced in the

coaxial flow for the simulations to prevent the solid phase attaining unreasonably high velocities

there which may impact upon the gas phase, setting a mass loading ML ≈ 2× 10−3 %, their

presence should have a negligible effect on the gas phase. All variables are initialised to their

inlet values in the jet and coaxial inlet regions (z < 0 mm) whilst in the plenum (z > 0 mm)

they are initialised with area averaged values. Based on the experimental data, the turbulent

intensity of the single phase flow in the jet and coaxial sections is estimated to be Itjet = 10.4%

and Itcoax. = 8% respectively.

Grid dependence of the simulation is investigated by first simulating the single phase flow on

three meshes of increasing resolution, presented in §4.4.2.1. In all cases the numerical results are

compared against the experimental data available at [50]1.

4.4.2.1 Single Phase Flow

Of particular interest in this flow is the recirculation region and the stagnation points which

occur within it and how the particles interact with these flow structures. The single phase flow

is therefore used to study grid dependence, paying particular attention to the prediction of the

stagnation points. Three meshes are considered, approximately doubling the number of cells in

each coordinate direction with each refinement, corresponding to 1, 092, 9, 975 and 79, 856 cells

respectively and referred to as the coarse, medium and fine meshes below.

The numerically obtained velocity profiles on the three meshes are plotted at several stations

downstream of the bluff body and compared against experimental data in fig. 4.12. All three

meshes show good agreement with each other and the experimental data in the outer or annular

region of the flow. The main observed difference between numerical predictions occurs at the

station corresponding to non-dimensional location
3z

rcoax.
= 1.6 where it can be seen that the

1The database is no longer available at the original location ([49]) referenced by Boree et al. [10] and was
accessed at [50] using the web archive.
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axial velocity is severely underpredicted on the centreline on the coarse mesh. The medium

mesh shows very good agreement with the centreline velocity, however the shape of the velocity

profile in the recirculating region (approximately 0.067 <
r

rcoax.
< 0.5) is best predicted by the

fine mesh data.
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Figure 4.12: Comparison of experimental and numerically predicted velocity profiles down-
stream of the bluff body. Experimental data is indicated by points, numerical data on the
coarse mesh with dash-dotted lines, numerical data on the medium mesh with dashed lines
and numerical data on the fine mesh with solid lines. The zero velocity at each axial station is
marked by fine dotted lines.

The prediction of the stagnation points, located at z ≈ 112.5 mm and z ≈ 216.7 mm

respectively [10], is investigated by plotting the axial velocity along the domain axis, shown

in fig. 4.13. The predicted location of the first stagnation point is in good agreement with

the experimental data. This is important in the context of continuing these simulations for

particle-laden flows as, at least in the case of the lower mass loading, the particles will stagnate

also and be dispersed into the recirculation region [10]. The location of the second stagnation

point shows poorer agreement with the experimental data, it is in fact best predicted by the

medium mesh. However, it is thought that the location of the first stagnation point, indicating

the penetration of the central jet into the recirculation zone is most important, particularly as

Boree et al. [10] show in their gas-solid flow experiments, when the mass-loading is increased
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(hence the jet to coaxial momentum ratio) the jet extends through the recirculation zone. In an

attempt to improve the prediction of the second stagnation point location a refinement of the

fine mesh (fine-ref), refining only in the axial direction for z ≥ 0 mm is considered, the numerical

data for which is shown in fig. 4.13 as a dotted line. This shows little or no change relative to

the fine mesh data, hence considering these observations and those above comparing the velocity

profiles at several downstream locations, the fine mesh is used for the gas-solid flow simulations.
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Figure 4.13: Comparison of numerically predicted axial evolution of axial velocity with
experimental location of stagnation points. The location of the stagnation points is indicated by
points and the numerical data obtained on the coarse, medium and fine meshes with dash-dotted,
dashed and solid lines respectively. The data obtained on the fine mesh with axial refinement
(fine-ref) is indicated by the dotted line.

4.4.2.2 Particle-Laden Flow

In this section, the results of the particle-laden flow simulations are presented. As identified

in the single phase results, presented above in §4.4.2.1, the “fine” and “fine-ref” meshes show

convergence of the axial velocity profile and give good prediction of the first stagnation point

of the central jet, thought to be critical in predicting the behaviour of the particles, hence the

“fine” mesh is used for the particle-laden simulations. Before presenting the numerical results for

particle-laden flow, changes which were made to the model to obtain a solution are discussed.
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Of particular concern in this simulation is that the coaxial flow of gas is significant and

much of the domain clear of particles, representing a similar numerical problem for the two-fluid

model as in the fluidised bed simulation discussed in §3.4.4; the problem is again countered, as

in §3.4.4, by introducing a small flux of particles in the coaxial flow. To further guard against

poor numerical behaviour of the momentum equations as αs → 0, the solids phase volume

fraction is clipped at a small, non-zero value,2 αs
c ≪ 1, when computing the momentum exchange

term. This clipping prevents the solids phase momentum equations becoming singular in regions

where αs → 0, instead the solids phase momentum equations tend to us = ug as the volume

fraction approaches zero.

During simulations it was found that the closure for ksg, the correlation of gas and solids

fluctuating velocities, given by Koch [57] as

ksg =
βdp(Ug −Us)2

4αsρsg0
√
πΘs

, (4.57)

used initially presented difficulties in obtaining a solution. Equation (4.57) shows that as αs

or Θs approach zero this term becomes very large, representing significant sources in the gas

turbulent kinetic energy and solids granular temperature transport equations. Therefore a

simpler model, given as ksg = csg
√
kgΘs with csg = 0.2 [7], which tends to zero with gas phase

turbulent kinetic energy and solids phase granular temperature was used and found to be more

stable.

The particle-laden flow at 22% mass loading was simulated using the semi-coupled algorithm

and the numerical results obtained compared with the experimental data of Boree et al. [10]

and the numerical data from a Eulerian-Eulerian Large Eddy Simulation by Garćıa et al. [41].

As in §4.4.2, the defining features of the flow are the recirculation zones and corresponding

stagnation points of the gas and solids phases. Figure 4.14 shows the axial evolution of the gas

and solids phase axial velocity obtained numerically alongside the experimental and LES data.

One of the key features of the flow at 22% mass loading is the stagnation of both the gas and

solids phases, with the solids phase stagnation point occurring downstream of that of the gas

phase. This behaviour is visible in fig. 4.14 showing the centreline values of the gas and solids

phase axial velocities.

2This approach, to clip the solids phase volume fraction when used in computation of the momentum exchange
term was suggested by Alan Burns in private communication.
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(a) Gas phase axial velocity
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Figure 4.14: Axial evolution of gas and solids phase axial velocities. The numerical data are
represented by lines, the experimental data of Boree et al. [10] by solid markers and the LES
data of Garćıa et al. [41] by lines with open symbols.

Both the numerical data obtained here and the LES data used for comparison agree reasonably

well for the gas phase velocity up to the minimum occurring at z ≈ 15rjet after which there is

a marked difference with the data obtained in this work underpredicting the recovery of gas

phase velocity whilst in the LES data it is overpredicted. A consequence of the underpredicted

recovery of the axial velocity (also observed in the solids phase) is that the second stagnation

point for both phases is predicted well, however the predicted length of the recirculation zones

suffers as a result relative to that predicted by Garćıa et al. [41] which more closely matches the

experimental values.

The first stagnation point of the solids phase can also be seen by examining the axial profile

of solids phase volume fraction, plotted in fig. 4.15. In this figure, the axial location of peak

concentration for dp = 60 µm class particles reported by Boree et al. [10] is indicated by a dotted

line at z = 16rjet. As can be seen, the peak solids phase volume fraction predicted numerically

occurs at z ≈ 14rjet, slightly upstream of the experimental location of peak concentration of

dp = 60 µm class particles. This offset in the predicted location of the volume fraction peak

is to be expected based on the location of zero axial velocity predicted numerically versus the

experimental location shown in fig. 4.14. The peak volume fraction is also overpredicted, Boree

et al. [10] report a peak concentration of approximately 3 times the inlet value whereas here

the peak is seen to be approximately 7 times the inlet value. This overprediction is potentially

caused by the use of a monodispersed solids phase in the simulations assigning the constant
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diameter as the mass averaged value: dp = 63 µm; in contrast to the experiments of Boree et al.

[10] which have a polydispersed solids phase with diameters in the range 20 µm ≤ dp ≤ 100 µm.

Therefore in the numerical simulations, all the particles are stagnating at a single location,

leading to a high volume fraction whereas in the experiments each class of particles, representing

only a proportion of the solids phase, stagnate at different points due to differences in particle

response times, resulting in a relatively lower peak in volume fraction.
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Figure 4.15: Axial evolution of solids phase volume fraction. Numerical data is indicated with
a solid line whilst the location of peak concentration for dp = 60 µm particles reported by Boree
et al. [10] is indicated by a dotted line.

In addition to the axial profiles, the radial profiles of axial velocity of both phases are

plotted at several stations downstream of the bluff body: z = 3rjet, z = 80rjet, z = 160rjet and

z = 240rjet, shown in fig. 4.16 and fig. 4.17 for gas and solids phases respectively.

The numerical predictions of the velocity profiles for the gas phase are generally in good

agreement with the experimental data. The major discrepancies are the underprediction of

the strength of recirculation visible at station z = 80rjet (fig. 4.16b), and the evidence of

the stagnation of the gas phase occurring too early in the numerical results is visible as the

underprediction of velocity at the centreline of station z = 160rjet (fig. 4.16c). The solids phase

velocity profiles are again in good agreement with the experimental data of Boree et al. [10] and
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(c) z = 160rjet
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(d) z = 240rjet

Figure 4.16: Radial profiles of gas phase velocity at several axial stations. Numerical data is
indicated by a solid line, the experimental data of Boree et al. [10] is indicated by solid symbols.

the LES results of Garćıa et al. [41], except at station z = 160rjet at which both the numerical

results presented here, and those of Garćıa et al. [41], significantly underpredict the penetration

of the solids jet as visible in the difference between the numerical data (which are in good

agreement) and the experimental data near the centreline.

The good prediction of velocity profiles at the first station (z = 3 mm) with subsequent

deterioration downstream observed in both the axial and radial profiles of velocity is attributed

to the poor prediction of turbulent statistics, related in part to a lack of upstream data for

boundary conditions. For example, as described in §4.4.2, the velocity profiles at the inlets to

the jet and coaxial flow are determined by assuming that the gas phase is a fully developed

turbulent flow following a 1/7th power law profile and the velocity of the solids phase set equal to
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(b) z = 80rjet
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(c) z = 160rjet
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Figure 4.17: Radial profiles of solids phase velocity at several axial stations. Numerical data
is indicated by a dashed line, the experimental data of Boree et al. [10] is indicated by solid
symbols and the numerical data of Garćıa et al. [41] by dashed line with open symbols.

the gas phase. The volume fractions at the inlet are then specified to satisfy the given mass flow

rates in the experiment, and as fig. 4.16a and fig. 4.17a show, there is good agreement between

the numerically predicted and experimental velocity profiles at the first station. However, the

first data available for turbulent quantities is at the first station, and this was used as the inlet

boundary condition, with ε estimated using the approach given by Ferziger and Perić [39]

εg,in ≈ kg,in
1.5

lg,in
, (4.58)

where lg,in is equal to 1/10th the height of the shear layer at the inlet. This, of course, does not

take into account turbulent dissipation within the upstream region of the flow. To resolve these
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issues, forcing was applied to the transport equations for tubulent quantities so that the radial

profiles match the experimental data at the first measurement location. The forcing takes the

form:

αgρg
Dkg

Dt
= F k,g + c

(
kg,in − kg

)
, (4.59)

for z ≤ 0 where D(·)
Dt is the material derivative; the diffusion, production and dissipation terms

in the model have been collected into F k,g for clarity; and the additional forcing term added is

comprised of the inlet value, kg,in, (estimated using the experimental data at z = 3 mm) and

c≫ 1 chosen sufficiently large that the transport equation in the inlet section reduces to

kg = kg,in , (4.60)

ensuring that at the jet/coaxial flow exit the turbulent quantities remain near the reported

values. An equivalent approach is also taken in the transport equations for dissipation of gas

phase turbulent kinetic energy and the solids phase granular temperature. The numerical results

obtained using such an approach are presented below and compared with the original numerical

results and the experimental data of Boree et al. [10].

The comparison between the initial results and those with forced turbulent quantities illustrate

the sensitivity of this case to the turbulent quantities in the gas and solids phases. In particular,

the stagnation points of the gas and solids phases are delayed relative to the initial numerical

results. Consequently, the penetration of the solids phase jet to station z = 160rjet (fig. 4.19c)

can be seen, whereas both the initial numerical results presented earlier, and those of Garćıa

et al. [41] failed to capture this.

Finally, the case is also simulated with the fully-coupled algorithm and the results compared

against those obtained with the semi-coupled algorithm; the results presented are those obtained

using forcing of the turbulent quantities in the inlet region described above.

As expected, the semi- and fully-coupled algorithms show excellent agreement with each

other with only minor discrepancies. These minor discrepancies, noting the generally good

agreement between both algorithms, suggest that the solution is close to, but has not quite

reached, a steady state. The wall clock times were 46, 046 s and 41, 223 s running on 16 cores

for the semi- and fully-coupled algorithms respectively, however it should be noted that the
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Figure 4.18: Radial profiles of gas phase velocity at several axial stations. Numerical data as
originally simulated is indicated by a solid line, experimental data of Boree et al. [10] by solid
symbols and numerical data obtained with forcing of turbulence in inlet by solid line with clear
symbols.

simulations were performed with adaptive time-steps, using the criterion CFL ≤ 0.2, making it

difficult to draw meaningful performance conclusions from this data.
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Figure 4.19: Radial profiles of solids phase velocity at several axial stations. Numerical data
as originally simulated is indicated by a dashed line, experimental data of Boree et al. [10] by
solid symbols and numerical data obtained with forcing of turbulence in inlet by dashed line
with clear symbols.
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Figure 4.20: Radial profiles of gas phase velocity at several axial stations. Both sets of data
simulated with forcing of turbulence in inlet. Numerical results for semi-coupled algorithm
indicated by solid line and for fully-coupled algorithm by solid line with clear symbols.
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Figure 4.21: Radial profiles of solids phase velocity at several axial stations. Both sets of
data simulated with forcing of turbulence in inlet. Numerical results for semi-coupled algorithm
indicated by dashed line and for fully-coupled algorithm by dashed line with clear symbols.
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4.5 Conclusions

Turbulent flows have been simulated in two configurations: a backwards facing step and a bluff

body flow. In both cases single phase and gas-solid flows are considered, with the gas-solid flows

modelled with the two-fluid model. The gas phase turbulence was modelled using the k−ε model

and turbulence in the dispersed phase using KTGF with the viscosity closure models proposed by

Benavides et al. [9] and Benavides and van Wachem [8], accounting for the interaction between

particles and turbulent eddies in the gas. The two-fluid model with the presented closures was

solved using the fully-coupled algorithm developed in chapter 3.

The numerical results obtained for the single phase flow in the backwards facing step showed

good agreement with experimental data, however it was found that there is room for improvement

in the simulation of gas-solid flow. In particular, the use of simplified boundary conditions for the

solid phase in the form of free slip at the wall is identified as a possible cause for the discrepancy

with the fluctuating energy of the gas phase showing good agreement with the experimental

data and the numerical data of Benavides and van Wachem [8] used for comparison.

Results for the single phase flow in the bluff body case show good prediction of the location of

the first of two stagnation points. As the purpose of this test case is to investigate the dispersal

of the particles in the recirculation region, accurate prediction of these flow structures is vital,

however further axial refinement of the “fine” mesh in the plenum did not improve the prediction

of the second stagnation point (which was in fact better on a coarser mesh) and the “fine” mesh

was taken as the mesh to work with for the particle-laden flow. The numerical predictions of the

particle-laden flow showed generally good agreement for the gas phase with the experiments,

however the location of the stagnation points was poorly predicted, as also found in Garćıa et al.

[41], and the recovery of axial velocity is underpredicted in contrast to Garćıa et al. [41] where

it is overpredicted. The situation for the solid phase is similar with both the numerical data

presented here and that of Garćıa et al. [41] underpredicting the penetration of the central jet of

solids into the domain. An attempt was made to improve the results by forcing the turbulent

quantities in the inlet region owing to lack of data for the inlet boundary condition, leading to

some improvement in terms of predicting the penetration of the central jet of solids, however it

is clear that the case is extremely dependent on these quantities and further work is required.
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Chapter 5

Conclusion

In this thesis, a fully-coupled solution algorithm for the two-fluid model was developed. Driving

this development was the highly non-linear nature of the two-fluid model and the stiff source

terms which can arise both within and between each phase when modelling gas-solid flows. By

solving the two-fluid model implicitly, as in the fully-coupled algorithm, these stiff source terms

might be treated implicitly due to the additional coupling between equations resulting from

Newton linearisation. By treating these stiff source terms implicitly, the aim was to obtain a more

robust algorithm. An additional benefit is that, being based on Newton’s algorithm, convergence

should be fast for starting data sufficiently close to the solution. In developing the fully-coupled

algorithm, it was noted that the Newton linearisation of the momentum equations gave rise to

terms implicit in volume fraction (specifically the transient and advective contributions) that

could become large relative to the main diagonal terms acting on velocity if the volume fraction

approaches zero. Numerically, it is desirable to maintain diagonal dominance to promote stability

when using iterative solvers, therefore it was proposed to discretise the momentum equations

according to the practice proposed by Patankar [71]. This enhances the diagonal dominance of

the momentum equations in the fully-coupled algorithm by removing the transient contribution

coming from volume fractions. Furthermore when the velocity field is uniform, the volume

fraction terms drop out entirely, resulting in an easier equation to solve.

For comparison purposes a semi-coupled algorithm based on a Picard linearisation of the two-

fluid model was also implemented. By using a Picard linearisation, the two-fluid model segregates

into two smaller sub problems: a coupled pressure-velocity equation system and a separate

equation system for the volume fraction transport. Applying both algorithms to several test

150



cases showed that in a complex transient flow such as a fluidised bed, the fully-coupled algorithm

offers some benefit in terms of time-to-solution, however in simpler flows the difference between

the two algorithms is minimal with the simplest case favouring the semi-coupled algorithm.

The theorised improvement in robustness of the fully-coupled algorithm over the semi-coupled

algorithm was not realised, in practice it was found that the same time-step was required to

simulate the fluidised bed as for the semi-coupled algorithm. This suggests that it is the implicit

coupling of pressure and velocity and the implicit treatment of interphase coupling terms that is

shared by both the semi- and fully-coupled algorithms that contribute most to the robustness of

the algorithms.

Both algorithms were implemented in the context of an unstructured FVM code using a

collocated variable arrangement. To prevent pressure-velocity decoupling in collocated variable

arrangements, a discretisation enforcing a link between adjacent pressure values, such as MWI,

is required. Due to the additional complexity of the two-fluid model as applied to gas-solid

flows sharing a single pressure field between both phases, and the central role played by MWI in

forming the discrete pressure equation, a detailed study of MWI starting from first principles

was undertaken. It was shown that as MWI enforces a spatial coupling of the discrete pressure

field, when the problem gives rise to pressure fields the discretisation cannot reproduce, this

error results in a force imbalance, accelerating the fluid. Situations in which this can arise

include discontinuities in the momentum source term or density fields. In both cases, the correct

solution is a discontinuous pressure gradient, however a linear discretisation of the pressure field

cannot reproduce this discontinuous gradient, leading to artificial accelerations as described

above. It was shown that by rediscretising the source terms consistently with the pressure

gradient, this might be avoided, however care must be taken in unstructured meshes to ensure

that the discretisation of the pressure gradient and the source term exactly match otherwise force

imbalances may still occur on complex meshes. Also it was shown that the rediscretisation of the

source terms is dissipative, essentially smoothing discontinuities in the source term field. When

rediscretising a point source on nonuniform meshes, the total force is reduced, leading to the

pressure drop being underpredicted. This was resolved by accounting for the mesh nonuniformity

in the source term discretisation, ensuring the force applied by the input, and rediscretised

source is the same, giving the correct prediction of pressure drop even on highly stretched meshes.

These proposed modifications to MWI are generally applicable to the discretisation of flows
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using a collocated variable arrangement.

5.1 Future Work

The work presented in this thesis demonstrates that a fully-coupled algorithm is a viable approach

for solving the two-fluid model. However, as noted, the difference in performance relative to the

semi-coupled algorithm is marginal in many cases. One potential area for improvement is the

development of a custom preconditioner for the fully-coupled algorithm. A starting point for

the development of such a preconditioner would be to extend the SIMPLE-type preconditioners

employed in coupled solvers for single phase flows [55] to the two-fluid model based on the IPSA

algorithm [84]. This would also be of benefit to the semi-coupled algorithm as the velocity

prediction - pressure correction step embedded within the IPSA algorithm could be used to

precondition the coupled pressure-velocity problem of the semi-coupled algorithm. Indeed, just

as the development of the semi- and fully-coupled algorithms complemented each other, so too

could the preconditioner be developed in stages, first as a preconditioner for the semi-coupled

algorithm before being extended to the fully-coupled algorithm. In theory the semi-coupled

algorithm itself could be used as a preconditioner to the fully-coupled algorithm, however there

is a trade-off between the power of the preconditioner and the effort required in its application.

It is expected that whilst such an approach would likely be robust, the resulting solver would

require significant computational effort.

In both the semi- and fully-coupled algorithms αk > 0 is required to prevent the momentum

equations for phase k becoming singular (see for example the discussion relating to the freeboard

of the fluidised bed in §3.4.4 and [87, 89]). Oliveira and Issa [69] present an approach to

circumvent this problem by solving the two-fluid model equations in non-conservative form,

allowing the momentum equations to be divided through by volume fraction prior to discretisation

and linearisation, avoiding the problem of singular equations as αk → 0. This approach was

not pursued here because, as Venier et al. [93] show, the two-fluid model should be solved in

conservative form to ensure good prediction of transient behaviours. However, if the equations

are discretised in conservative form, a similar approach might be taken by dividing the resulting

algebraic equations by the diagonal volume fraction, i.e. αk,P . This would ensure for example that

the transient term always contributes a non-zero value to the discretised equations, preventing
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singular equations if the phase disappears. Care would still have to be taken in the treatment

of the advection terms as the ratio
αk,f

αk,P
would need to be evaluated, however as Oliveira and

Issa [69] point out evaluating a similarly problematic term, use of the average of face values to

evaluate the denominator ensures the ratio reaches zero before the denominator.

Multiphase flows were shown to present multiple difficulties in the MWI, in particular the

discontinuous source term and density fields that characterise multiphase flows. As shown, these

features result in discontinuous pressure gradients that cannot be represented by the linear

interpolation used to discretise the pressure gradient at cell centres. The proposed modifications

in the form of rediscretising the source terms and using density weighting in MWI are designed

to overcome these shortcomings and are shown to be successful. However there are trade-offs

inherent in these solutions: the rediscretised source terms are diffuse relative to the input

sources whilst the density weighting stabilises the solution by forcing the pressure gradient

across a density jump to take the value in the lighter fluid. An alternative approach would be to

reexamine the discretisation of the pressure gradient itself, as these issues demonstrate the current

discretisation fails in these situations. A potential remedy would be to combine the current

discretisation using interpolation to evaluate face values with an extrapolation based approach

evaluating face values by extrapolating from cell centres. Combined with a suitable indicator

function this would allow retaining the current discretisation where the pressure gradient varies

smoothly and switching to extrapolation at discontinuities. This should allow the use of MWI

without rediscretising the source terms or density weighting and could be compared with the

current approach to investigate the accuracy and robustness of both approaches.
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