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Abstract: The aim of the present paper is to examine both the fatigue behaviour and the phase transition mechanisms of an equiatomic 
pseudo-elastic NiTi Shape Memory Alloy through cyclic tests (up to 100 loading cycles).  More precisely, miniaturised dog-bone specimens 
are tested by using a customised testing machine and the contents of both austenite and martensite phase are experimentally measured 
by means of X-Ray diffraction (XRD) analyses.  On the basis of such experimental results in terms of martensite content, an analytical 
model is here formulated to correlate the stress-strain relationship to the phase transition mechanisms.  Finally, a validation of the present 
model by means of experimental data pertaining the stress-strain relationship is performed.  
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1. INTRODUCTION 

Shape memory alloys (SMAs) are an important class of mate-
rials since they are able to recover the initial shape thanks to 
reversible phase transition mechanisms, even after severe defor-
mations. 

The near equiatomic Nickel-Titanium binary system (NiTi) be-
longs to the class of SMAs (Shimamoto et al., 2004; Otuska and 
Ren, 2005; Li et al., 2009).  Large deformations induced in such 
alloys are perfectly recovered by two possible paths: 

 such alloys spontaneously return to the original pre-
deformation appearance when heated at a characteristic tem-
perature (shape memory effect); 

 such alloys recover the original pre-deformation appearance 
by simply removing the mechanical load (pseudoelasticity 
or superelasticity). 
The explanation of these peculiar behaviours can be found in 

the crystallography and thermodynamics of SMAs (Li et al., 2009). 
Due to the above unique features, NiTi alloys are currently 

used in mechanical, civil and medical field(Kuribayashi et al., 
2006), and the use of NiTi alloys is expected to rise due to 
a continuous improvement (Bujoreanu, 2008). 

In last decades, several experimental tests have been per-
formed in order to better understand the thermo-mechanical prop-
erties of such alloys, and some analytical and numerical models 
have been developed to describe their mechanical and functional 
behaviour (that is, the microstructural transition from austenite to 
martensite and vice-versa).  In particular, the scientific community 
has agreed that crack initiation and propagation are significantly 
affected by the phase transition mechanisms and, consequently, 
NiTi alloys exhibit unusual fatigue and fracture responses with 
respect to common alloys (Shimamoto et al., 2004). Experimental 

studies have recently been performed  for both static (Maletta et 
al., 2013) and cyclic loading conditions (Robertson et al., 2007; 
Gall et al., 2008). Furthermore, numerical studies have been 
carried out by using both standard finite element codes (Maletta et 
al., 2009) and special constitutive models for SMAs (Freed and 
Banks-Sills, 2001). Finally, many analytical models have been 
proposed (Maletta and Furgiuele, 2010; Baxevanis and Lagoudas, 
2012; Malett, 2012). 

The aim of the present paper is to examine both the fatigue 
behaviour and the phase transition mechanisms of an equiatomic 
pseudo-elastic NiTi Shape Memory Alloy through cyclic tests (up 
to 100 loading cycles).  Miniaturised dog-bone specimens are 
tested by using a customised testing machine, and the contents of 
both austenite and martensite phase are experimentally measured 
by means of X-Ray diffraction (XRD) analyses.  

On the basis of such experimental results, an analytical model 
is here formulated to correlate the stress-strain relationship to the 
phase transition mechanisms.  The model assumes that the fa-
tigue behaviour of the system (that is, phases and test machine) 
can be schematised as that of one spring, or two springs arranged 
in series or in parallel.  Finally, a validation of the present model 
by means of experimental data pertaining the stress-strain rela-
tionship is performed. 

2. EXPERIMENTAL CAMPAIGN  

An equiatomic pseudo-elastic NiTi alloy, which exhibits 
a pseudo elastic behaviour, is made in the laboratory by using 
a vacuum furnace.  The miniaturised specimens are characterised 
by a flat dog-bone shape and the geometrical sizes are reported 
in Fig. 1. 

The tensile cyclic tests are performed by means of a custom-
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ised testing machine, which allows in situ XRD measurements 
(details can be found in Di Cocco et al. (2014a, b).  

 
Fig. 1. Geometry miniaturised flat dog-bone specimen. 

In particular, a diffractometer equipped with a vertical powder 
goniometer is employed in order to perform the XRD analyses. 
Moreover, the PowderCell software allows to determine both the 
theoretical diffractograms and the structure models (details on the 
XRD analyses are provided in Di Cocco et al. (2014a). 

In order to carry out the XRD analyses at fixed values of the 
applied deformation, the testing machine is equipped with a re-
movable loading frame and two load cells Leane FGP 1000. Since 
no strain gauges are used, a linear variable differential transducer 
is employed in order to measure the whole elongation of the 
specimen.  

 
Fig. 2. Experimental fatigue behaviour: stress- strain relationship 

Each tensile cyclic test is performed step by step under dis-
placement control of the crosshead until a number of loading 
cycles equal to 100 cycles is reached. 

For each cycle, the phases content is experimentally deter-
mined at ten fixed values of strain (named strain steps in the 
following) by means of XRD analyses. 

The experimental relationship between stress,  𝜎, and strain, 

 𝜀 , is reported in Fig. 2.  
For each of the aforementioned steps, the XRD analyses al-

low to quantify the phase transition mechanisms through the 
diffraction spectra. For instance, considering the initial loading 

condition (𝜀 = 0), the diffraction spectrum corresponds to the 
austenite phase (cubic lattice cell), whereas the diffraction spec-
trum related to 𝜀 = 0.1 corresponds to the martensite phase 
(monocline lattice cell). Moreover, from the experimental results, it 
is in general observed that both the austenite-martensite transition 
in the loading condition and the martensite-austenite transition in 
the unloading condition are not characterised by a linear trend. 

The intensity of austenitic and martensitic peaks allows to 
quantify the contents of both austenite and martensite. For a given 

value of strain  𝜀 , the content of austenite is proportional to the 
maximum amplitude of austenite peak in undeformed initial condi-
tion, corresponding to fully austenitic structure. 

3. ANALYTICAL MODEL  

The fatigue behaviour of the NiTi SMA tested under tensile 
cyclic loading is hereafter described by means of a novel analyti-
cal model. In particular, the stress-strain relationship is defined 
in an analytical way as a function of the phase transition mecha-
nisms (from austenite to martensite and vice-versa). 

 
Fig. 3. Five regions characterised by different contents of austenite  

 and martensite in the stress-strain diagram of the i-th loading cycle 

On the basis of the experimental results presented in Section 
2, it is possible to define five regions, characterised by different 
contents of austenite and martensite, in the stress-strain diagram 

(Fig. 2).  For the 𝑖 -th cycle (with 𝑖 = 1, . . . ,100), the following 
five regions can be identified (see Fig. 3):  

1. Region 1 (ε0,i ≤ ε ≤ ε1,𝑖, 𝑅1 in Fig. 3): the content of the 

austenite phase is predominant and approximately constant 

with increasing ε; 

2. Region 2 (ε1,𝑖 ≤ ε ≤ ε2,𝑖, 𝑅2 in Fig. 3): the content of auste-

nite phase decreases while the content of martensite phase 
increases with increasing ε; 

3. Region 3 (ε2,𝑖 ≤ ε ≤ ε3,𝑖 𝑅3 in Fig. 3): the content of the 

martensite phase is predominant and approximately constant 

with increasing ε; 

4. Region 4 (ε4,𝑖 ≤ ε ≤ ε3,𝑖 𝑅4 in Fig. 3): the content of the 

martensite phase is predominant and approximately constant 
with decreasing ε; 

5. Region 5 (ε5,𝑖 ≤ ε ≤ ε4,𝑖 𝑅5 in Fig. 3): the content of mar-

tensite phase decreases while the content of austenite phase 

increases with decreasing 𝜀. 
Since the values of austenite and martensite are experimen-

tally measured only at 1, 50 and 100 loading cycles, a diffusion 
model is here employed to estimate the phase content as 

a function of the strain  𝜀, for each 𝑖-th cycle. The content 

of martensite,  𝑀, is given by the following expression: 
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 𝑀(%) =
100

1+𝑎⋅exp(−𝑏⋅ε)
 (1) 

where  𝑎  is equal to 700 and 70 for loading and unloading con-
dition, respectively.  Moreover,  𝑏 is a parameter depending on 

the number  𝑖  of cycles (with  𝑖 ≥ 1), defined as follows: 

𝑏 = −  4.2 ln(𝑖) + 1 (2) 

The content of austenite phase,  𝐴, is computed by using the 
following equation: 

𝐴(%) = 100 − 𝑀(%) (3) 

The aforementioned five regions are characterised by different 

limit values of  𝜀, which are defined for the  𝑖 -th cycle as follows: 

1. 𝜀0,𝑖 is computed according to the following expression, 

obtained from a best-fit procedure by considering the 

experimental values of 𝜀0,𝑖 for 𝑖 = 1.50 and 100 loading 

cycles: 

ε0,𝑖 = 0.009763 ⋅ (𝑖)0.1525 (4) 

2. 𝜀1,𝑖 is determined recalling Eqs (1) and (2) and assuming 

 𝑎 = 700, 𝑖 = 1 and 𝑀 = 3%, being 𝜀1,𝑖 almost 

independent of the number 𝑖 of cycles (Figs. 2 and 3):  

𝜀1,𝑖 = ε1 = 0.030750; 

3. 𝜀2,𝑖 is determined recalling Eqs (1) and (2) and assuming 

 𝑎 = 700, 𝑖 = 1 and 𝑀 = 95%, being 𝜀2,𝑖 almost 

independent of the number 𝑖 of cycles (Figs 2 and 3): 

ε2,𝑖 = ε2 = 0.094955;  

4. 𝜀3,𝑖 is determined recalling Eqs (1) and (2) and assuming 

𝑎 = 700, 𝑖 = 1 and 𝑀 = 98%, being 𝜀3,𝑖 almost 

independent of the number  𝑖 of cycles (see Figs 2 and 3): 

ε3,𝑖 = ε3 = 0.104429; 

5. 𝜀4,𝑖 is determined recalling Eqs (1) and (2) and assuming 

𝑎 = 70, 𝑖 = 1 and 𝑀 = 98%, being 𝜀4,𝑖 almost 

independent of the number  𝑖 of cycles (Figs 2 and 3): 

ε4,𝑖 = ε4 = 0.081280; 

6. 𝜀5,𝑖 is computed according to the following expression, 

obtained from a best-fit procedure by considering the 

experimental values of 𝜀5,𝑖 for 𝑖 = 1.50 and 100 loading 

cycles: 

ε5,i = 0.000158 ⋅ (𝑖) + 0.010990 (5) 

Considering the above limit values of  𝜀, an analytical model is 
hereafter formulated in order to describe the relationship between 
stress and strain of the NiTi SMA. In particular, the fatigue behav-
iour is analytically interpreted as a system of springs character-
ised by a stiffnesses depending on the phase transition mecha-
nism, and more precisely: 
a) Region 1 (loading condition). The stress-strain relationship 

is characterised by a linear trend and the fatigue behaviour 
of the system is schematised as that of one spring with 
a stiffness equal to 𝐾𝐴𝐹 : 

𝜎1,𝑖(𝜀) = 𝐾𝐴𝐹 ⋅ (𝜀 − 𝜀0,𝑖)  (6) 

where ε0,𝑖 is computed through Eq. (4).  The stiffness 𝐾𝐴𝐹  

is experimentally measured (Fig. 3), and corresponds to that 
offered by the austenite phase, being the content 
of martensite approximately equal to zero in this region; 

b) Region 3 (loading condition). The stress-strain relationship 
is characterised by a linear trend and the fatigue behaviour 
of the system is schematised as that of one spring with a stiff-

ness equal to 𝐾𝑀𝐹 : 

σ3,𝑖(ε) = 𝐾𝑀𝐹 ⋅ (ε − ε3) + σmax,𝑖  (7) 

where the dependence of σmax,𝑖  from 𝑖 is obtained by means 

of a best-fit procedure, by considering the experimental values 

of σmax,𝑖 for 𝑖 = 1.50 and 100 loading cycles: 

σmax,𝑖 = 421.92 ⋅ (𝑖)−0.0088 (8) 

The stiffness 𝐾𝑀𝐹  is experimentally measured (Fig. 3), and 
corresponds to that offered by the martensite phase, being the 
content of austenite approximately equal to zero in this region; 

c) Region 2 (loading condition). The stress-strain relationship is 
characterised by a non-linear trend and the fatigue behaviour 
of the system is schematised as that of two springs in series 

with stiffness depending on both 𝜀 and the number 𝑖 of load-
ing cycles:  

σ2,𝑖(ε) =
1

1

𝐾𝐴𝐹,𝑖(ε)
+

1

𝐾𝑀𝐹,𝑖(ε)

⋅ ε + 𝐷𝑖 = 

[𝐴𝑖ε
2 + 𝐵𝑖ε + 𝐶𝑖] ⋅  ε + 𝐷𝑖

 

(9)

 
where the dependence of 𝐴𝑖 and 𝐵𝑖  on 𝑖 are obtained 
through a best-fit procedure by considering the experimental 
values of 𝐴𝑖 and 𝐵𝑖 , for 𝑖 = 1.50 and 100 loading cycles: 

𝐴𝑖 = 390.625 ⋅ (𝑖)2 − 36719.659 ⋅ (𝑖) + 
1829350.489                                                                      (10a) 

𝐵𝑖 = −72.773 ⋅ (𝑖)2 + 6975.84 ⋅ (𝑖) − 
343752.288                                                                        (10b) 

Moreover, the crossing conditions of σ2,𝑖 by the two points 

(ε1, σ1,𝑖(ε1)) and (ε2, σ3,𝑖(ε2)) are employed in order to 

determine the coefficients 𝐶𝑖 and 𝐷𝑖 ; 
d) Region 4 (unloading condition). The stress-strain relationship 

is characterised by a linear trend and the fatigue behaviour of 
the system is schematised as that of two springs in parallel 
with constant stiffness:  

σ4,𝑖(ε) = (𝐾𝑀𝐹 + 𝐾𝑚) ⋅ ε + 𝐹𝑖                                          (11) 

where 𝐾𝑚  is the testing machine stiffness, experimentally 

measured and equal to 6227.57 MPa. Moreover, the 

crossing condition of σ4,𝑖  by the point (ε3, σmax,𝑖) is 

employed in order to determine the coefficient 𝐹𝑖; 
e) Region 5 (unloading condition). The stress-strain relationship 

is characterised by a linear trend and the fatigue behaviour of 
the system is schematised as that of two springs in series with 

stiffness depending on both  and the number  of loading 
cycles:  

σ5,𝑖(ε) =
1

1

𝐾𝐴𝐹,𝑖
(ε)

+
1

𝐾𝑀𝐹,𝑖
(ε)

⋅ ε + 𝐻𝑖 = 𝐺𝑖 ⋅  ε + 𝐻𝑖         (12) 

where the coefficients 𝐺𝑖 and 𝐻𝑖  are determined through 

crossing conditions of σ5,𝑖 by the two points (ε4, σ4,𝑖(ε4)) 

and (ε5,𝑖, 0). 

Finally, the relationship between stress and strain for each 
value of 𝑖 (that is, for 𝑖 = 1, . . . ,100 cycles) is computed through 
Eqs (1) – (12), where the strain limit values of the five above 
regions are computed according to Eqs (1),(2) for each cycle. 



Andrea Carpinteri, Vittorio Di Cocco, Giovanni Fortese, Francesco Iacoviello, Stefano Natali, Camilla Ronchei, Daniela Scorza, Sabrina Vantadori, Andrea Zanichelli  
Mechanical Behaviour and Phase Transition Mechanisms of a Shape Memory Alloy by Means of a Novel Analytical Model                                       DOI 10.2478/ama-2018-0017 

108 

 
Fig. 4. Analytical and experimental results in terms  

 of stress- strain relationship 

In Fig. 4, the analytical stress-strain relationship is plotted to-
gether with the experimental stress-strain results. The analysis 
of the results indicates that the agreement between experimental 
and theoretical stress-strain relationship is satisfactory, 

On the basis of such encouraging results, we can remark that 
the present model seems to be a promising engineering tool, able 
to describe the relationship between the fatigue behaviour and the 
transition phase mechanisms of SMAs with an adequate accura-
cy. 

4. CONCLUSIONS  

In the present paper, the fatigue behaviour and the phase 
transition mechanisms of a NiTi SMA have been examined by 
means of cyclic tests (up to 100 loading cycles).  Miniaturised 
dog-bone specimens have been tested by using a customised 
testing machine, and the contents of both austenite and marten-
site phase have been experimentally measured by means of X-
Ray diffraction (XRD) analyses.  

On the basis of such experimental results in terms of marten-
site content, an analytical model has been formulated to correlate 
the stress-strain relationship to the phase transition mechanisms 
(in terms of martensite content).  Five regions, characterised by 
different contents of austenite and martensite phase, have been 
identified in the stress-strain curve, for each cycle. For each 
of such regions, the stress – strain relationship has analytically 
been formulated, and the fatigue behaviour of the NiTi SMA has 
been evaluated. 

Although the agreement between analytical and experimental 
results in term of stress-strain relationship has been satisfactory, 
further experimental tests need to be performed in order to 
develop a robust procedure appropriate for practical applications. 
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