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Man is a mystery. It needs to be unravelled, and if you spend your whole
life unravelling it, don’t say that you’ve wasted time. I am studying that
mystery because I want to be a human being.

Fyodor Dostoevsky.

11



Abstract

At the molecular scale, even in conditions of thermodynamic equilibrium,
the fluids do not exhibit a deterministic behavior. Going down below the
micrometer scale, the effects of thermal fluctuations play a dominant role in
the dynamics of the system, calling for a suitable description of thermal fluc-
tuations. These models not only play an important role in physics of fluids,
but a deep understanding of these phenomena is necessary for the progress
of some of the latest nanotechnology. For instance the modeling of thermal
fluctuations is crucial in the design of flow micro-devices, in the study of bio-
logical systems, such as lipid membranes, in the theory of Brownian engines
and in the development of artificial molecular motor prototypes. Another
problem with a huge technological impact is the phenomenon of nucleation —
the precursor of the phase transition in metastable systems — in this context
related to bubble formation in liquid-vapor phase transition. Vapor bubbles
form in liquids by two main mechanisms: boiling, by increasing the tempe-
rature over the boiling threshold, and cavitation, by reducing the pressure
below the vapor pressure threshold. The liquid can be held in these metasta-
ble states (overheating and tensile conditions, respectively) for a long time
without forming bubbles. Bubble nucleation is indeed an activated process,

requiring a significant amount of energy to overcome the free energy barrier



and bring the liquid from the metastable conditions to the thermodynami-
cally stable state where vapor is observed. Depending on the thermodynamic
conditions, the nucleation time may be exceedingly long, the so-called "rare-
event" issue. Nowadays molecular dynamics is the unique tool to investigate
such thermally activated processes. However, its computational cost limits
its application to small systems (less than few tenth of nanometers) and to
very short times, preventing the study of hydrodynamic interactions. The
latter effects are crucial to understand the cavitation phenomenon in its en-
tirety, starting from the vapor embryos nucleation up to the macroscopic

motion.

In this thesis a continuum diffuse interface model of the two-phase fluid
has been embedded with thermal fluctuations in the context of the so-called
Fluctuating Hydrodynamics (FH) and has been exploited to address cavita-
tion. This model provides a set of partial stochastic differential equations,
whose deterministic part is represented by the capillary Navier-Stokes equa-
tions and reproducing the Einstein-Boltzmann probability distribution for
the macroscopic fields. This mesoscale approach enables the description of
the liquid-vapor transition in extended systems and the evaluation of bub-
ble nucleation rates in different metastable conditions by means of numerical
simulations. Such model is expected to have a huge impact on the under-
standing of the nucleation dynamics since, by reducing the computational
cost by orders of magnitude, it allows the unique possibility of investiga-
ting systems of realistic dimensions on macroscopic time scales. In addition,
after the nucleating phase, the deterministic equations have been used to
address the collapse of a cavitation nanobubble near a solid boundary, sho-

wing an unprecedented description of interfacial flows that naturally takes



into account topology modification and phase changes (both vapor/liquid

and vapor/supercritical fluid transformations).






Overview

Nucleation is a complex and intrinsically multiscale problem representing the
precursor of phase change in first order phase transitions. Among the huge
variety of nucleation problems in nature, this thesis is devoted to the study
of liquid-vapor phase change inception. The proposed model is based on a
mesoscale approach exploiting a diffuse interface approach embedded with
thermal fluctuations. The approach I follow in this PhD project is theore-
tical and numerical, and basically, can be structured as follows: I coupled a
diffuse interface model with fluctuating hydrodynamics, exploiting the model
to address homogeneous and heterogeneous nucleation. In order to perform
in silico experiments, an in-house parallel code has been developed. Nu-
cleation rates, have been calculated by numerically integrated the resulting
equations (Landau-Lifshitz-Navier-Stokes equations with capillarity) showing
very good agreement with MD simulations as well as more classical approach.
The model is also able to capture long terms dynamics in nucleation —not
easily detectable with conventional techniques— revealing some interesting
effects. In fact, in closed system, the hydrodynamic effects have a great in-
fluence on the nucleation dynamics, where the "bubble crowding” strongly
change the nucleation rate. Furthermore, I proposed a spherical version of

the LLNS, particularly useful when dealing with homogeneous nucleation,



since it is reasonable to assume the spherical shape of nucleation embryos.
In addition LLNS equations can be also used in a pure deterministic set-
ting, showing a very accurate description of the hydrodynamics of a two
phase system. In particular, the model is exploited to study the collapse of
a cavitation nanobubble near a solid surface, showing an accurate reproduc-
tion of the main physical phenomena detected in the experiments, namely:
strong peaks of pressure and temperature, shockwave emission and liquid jet

formation.

In the first chapter, an introduction to vapor bubble nucleation will be
given, with particular emphasis on cavitation. The main features of the
phenomenon are exposed as well as the technological implications. Further-
more a brief overview on the state of art and about the importance of using

mesoscale approaches in this context will be illustrated.

The second chapter retraces a detailed description of the Van der Walls
diffuse interface approach. In the first sections the thermodynamics of a non-
homogeneous system is recalled, deriving a thermodynamically consistent
equations of motion for a multiphase system. In this context, I proposed a
general expression to uniquely identify the solid-fluid contact angle, relating
the solid-fluid free energy contributions with the bulk properties of the fluid.
Furthermore a rare event technique (String Method) is coupled with the

phase field description to address the bubble nucleation rate.

The third chapter recalls the Einstein theory of hydrodynamic fluctua-
tions, focusing on capillary fluids. Starting from the probability density
functional, under the hypothesis of small fluctuations, the field correlations
of a Van der Walls fluid are obtained in a closed form. The celebrated fluc-

tuation dissipation theorem is than derived in a phase field context, leading



to the Landau-Lifshitz-Navier-Stokes (LLNS) equations for a capillary fluid.
These equations are used to address the vapor bubble nucleation in a meta-
stable liquid. Furthermore, I derived a new set of stochastic equations for

nucleation, arising from a spherical version of LLNS.

The fourth chapter is focused on the numerical analysis of the LLNS
equations, highlighting the principal numerical issues in capillary and sto-
chastic equations. The first sections concern the numerical analysis of the
deterministic part of the equations, while the other ones are focused on the

stochastic part.

Chapter 5 is devoted to draw the conclusions about this research activity,

its implications and further possible developments.

The remaining chapters report the papers I published on high-impact
peer-review journals. In particular in Chapter 6 the Van der Waals diffuse
interface model is exploited to address the dynamics of a cavitation nanobub-
ble near solid boundary, and in Chapter 7 the same diffuse interface model
is coupled with a fluctuating hydrodynamic theory to study the vapor bub-
ble homogeneous nucleation. Chapter 8 report the model extension to study

heterogeneous nucleation (paper in preparation).

Finally, since the present PhD project is framed in an interdisciplina-
ry context between engineering and physics, in the appendices are retraced
the main features of mathematical techniques that are commonly known in
the statistical physics community and not entirely taken for granted in the
engineering one.

During my PhD work an international collaboration with Dr. X. Noblin
from the “Institut de Physique de Nice”lead to the publication of paper con-

cerning the acoustics of a micro-confined cavitation bubble [127]. In addition
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Capitolo 1

Introduction

The fundamental aspect underlying the phase change inception draws simila-
rities in a very large number of applications such as vapor bubble cavitation
on propeller blades and on turbines, ice formation on aircrafts, drying or
de-foaming procedures in the food industry, solidification in material science
and alloy production. The variety of technological applications combined
with the complex nature of the phenomenon make nucleation a stimulant
research area. The main challenging aspect concerning nucleation is its mul-
tiscale nature, ranging from the molecular scale up to the hydrodynamic one.
From an experimental point of view, quantitative measurements during the
phase change inception are not easy to perform, due to the wide spectrum
of space-time scales to be investigated. This issue represents also a great
challenge for theoreticians who need to develop consistent multiscale models
to correctly capture the critical features of the nucleation phenomenon.
This Chapter is devoted to the presentation of the peculiar aspects of
nucleation, with particular attention to the nucleation of vapor bubbles
in liquids. The main features of the liquid vapor phase transition will be

highlighted, as well as the possible technological implications.
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1.1 The impact of nucleation phenomena in na-
ture and technological applications

Nucleation is the “incipit” in the formation of a new thermodynamic pha-
se, representing the precursor of phase transformation. In particular, the
liquid-vapor phase transition can be achieved by two different mechanism:
by increasing the temperature up to the boiling threshold, or by decreasing
the pressure below the vapor pressure. We will refer to these two processes
as boiling and cavitation, respectively. The qualitative mechanism during
cavitation of water flowing at ambient conditions, for example, is simple:
vapor nuclei locally appear where the liquid accelerates and its pressure de-
creases. Inside these bubbles the pressure is as low as the vapor pressure
(that at ambient temperature is about 2.3k Pa) hence they can survive, and
even grow, as long as they remain in the liquid low pressure regions. Howe-
ver, when the flow transports them in a region with higher pressure, they
suddenly become unstable and collapse. Vapor bubble implosion is a very
complicated physical phenomenon, which comprises large bubble deforma-
tion and topological changes, shockwave emission and propagation through
the liquid, phase transition to and from supercritical conditions [60], and in-
tense pressure and temperature peaks on the order of dozens GPa and 10*K,
respectively, [111]. The aforementioned effects are considered the main cause
of damage that is observed on the ship propellers, hydraulic turbines, diesel

engines [17, 14, 120].

Nowadays cavitation is also exploited as a positive source of damage in
different areas of applied sciences, for instance in medicine SWL (shock wa-

ve lithotripsy) it is used to comminute kidney and gall stones with acoustic
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waves and HIFU (high intensity focused ultrasound) for tumor treatment
and other surgical applications |27, 29, 70]. In biochemistry applications the
vorticity induced during the last stage of bubble collapse is being used to
enhance mixing [389], furthermore manipulation of cavitation nuclei is em-
ployed in drugs and genetic material delivery, e.g., to enhance biological
barrier layer permeability [35, | . Concerning nuclei manipulation, liposo-
mes and microbubbles are designed with a variety of contents, structures and
appendage in order to carry drugs to the target site. Drug can be incorpora-
ted by themselves, or if insoluble in water, within the lipid layer. After the
bubbles/liposomes have reached the specific site, cavitation can be triggered
by using ultrasound or laser-pulses. Hence by controlling liquid-jet formation
or shockwave emission cell membrane poration (the so-called sonoporation)
can be achieved. Recently gene-loaded structures have been used for DNA
injection without destroying effects on the cell[19]. In a completely different
context cavitation devices have been developed for the treatment of water
pollution [I]. In wastewater treatment, the combined mechanical, thermal
and chemical effects of bubble collapse are exploited. In particular the pro-
duction of free radicals [131] is found to enhance enhances the oxidation of

contaminants in water.

Another example of the cavitation occurrence is the phenomenon of crac-
king knuckles which have been recently theorized to derive from cavitation
bubbles formed into synovial liquid within articulations. According to some
authors osteoarthritis can be caused by repeated cavitation events occurring

into joints when they are subjected to traction stress [110].

The crucial issue, and the important challenge, is to obtain quantitative

information on all the different aspects involved in cavitation. An appropria-
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te investigation down to the smallest length and time scale is needed in order
to capture all the macroscopic effects. From an experimental point of view,
quantitative measurements of relevant physical observables in cavitation are
not easy to perform, due to the reduced space-time scales on which the phe-
nomenon occurs (ns/us in terms of time and nm/pm in terms of space), thus
developing theoretical and numerical models is crucial in order to achieve a
quantitative understanding of cavitation. On the other hand developing a
fully consistent theory is still a great challenge for theoreticians. Concerning
the bubble dynamics, the first mathematical model was developed by Lord
Rayleigh in 1917 and subsequently improved by M. Plesset [I18]. Raylei-
gh studied the dynamics of a bubble in an incompressible liquid under the
assumption of spherical symmetry. He modeled the bubble interface as a ma-
thematical, zero-thickness discontinuity, obtaining an evolution equation for
the bubble radius. This model has proven to be very useful for predicting the
time evolution of the gas pressure inside the bubble, the bubble oscillations,
and an overview of the approximate dynamics of the collapse. However the
model is not able to predict many other phenomena that characterise cavi-
tation: starting from the nucleation phase up to the reabsorption. The main
limitations of these sharp interface models emerge when the diffused nature
of the vapour-liquid interface becomes important. This typically happens
when the size of the bubble is comparable with the vapor-liquid interface
thickness, like e.g. in the case of nanobubbles during nucleation inception,
and during the last stages of bubble collapse. More complete models are
required in these cases to correctly follow the dynamics down to the smallest
relevant scales. One possible solution is relaxing the assumption of sharp

interface, by adopting, e.g., a phase field approach, to be discussed in full
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detail in Chapter 2.
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Figura 1.1:  The sketch qualitatively describes the state of matter as a
function of pressure and temperature. The S-zone represent the solid state,
the L-zone the liquid one and the V-zone the vapor phase.

1.2 Metastability and Phase Transitions

Let us now focus on the thermodynamic aspects of the liquid-vapour phase
transition analysing the phase diagram in Fig.1.1. Starting from the liquid
state, evaporation and cavitation are represented by the red and the blue
paths, respectively. This description is however oversimplified and a much
more rigorous analysis of these processes is needed for a complete under-
standing of the phase transition in liquids [11]. In fact, after reaching the
boiling temperature or the vapour pressure, the liquid can remain trapped

near coexistence line for a long time (depending on the level of overheating
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or stretching). The reason is that bubble nucleation is an activated process
that needs to surmount the free energy barrier separating the liquid and the
vapor states. As a consequence the system can remain trapped in a me-
tastable state, unless the barrier vanishes altogether, i.e. the system is at
the so-called spinodal conditions where the transition does not require an

activation energy (spinodal decomposition).

Figura 1.2: The sketch qualitatively describes the energetic configurations
of a thermodynamic system as a function of a generic reaction coordinate
X. The states 1, 2,3 represent the metastable, the critical and the stable
configurations respectively.

In order to better explain this important point, it is worth focusing on
a one dimensional system, whose free energy € is sketched in Fig. 1.2 as a
function of a reaction coordinate X. The state X; is a metastable state,

because it is living at the energetic level €21, which corresponds to a relative
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minimum of the free energy landscape. This “peculiar” state is not the
thermodynamic equilibrium state that the system is expected to reach on
the long time scale which corresponds to the absolute free energy minimum,
X3. Nevertheless, the system could remain trapped for a very long time
around X;. In fact, an amount of energy greater than AQ* = Qy — )y,
with €2y the energy value of the transition state Xs, is needed to bring the
system to thermodynamic equilibrium. In thermally activated process the
energy is provided by thermal fluctuations. In this case the life time 7 of
the metastable state is related to the energy barrier as 7 oc exp(AQ*/kgh),

suggesting the definition of metastability as a stability limited over time.

There are many metastable systems in nature. One of the most popular
is carbon in the diamond phase at ambient conditions that could undergo,
in principle, the diamond-graphite phase transition. In standard conditions,
the stable form of carbon is graphite. However the life time of diamond is so
long that diamond can remain stable for million years [137, 7]. Metastability
could be observed also in supercooled water [106, 103], (e.g freezing rain, icing
aircraft) or in emulsions and colloids |85, 48|, and in mechanical systems,
for instance when dealing with avalanches [68], and more in general with

sandpile-like systems [24].

Let us now focus on metastable liquids and liquid-vapor phase transition
at constant temperature (cavitation). Figure 1.3 provides the phase diagram
of a Lennard-Jones fluid [75] with binodal and the spinodal lines reported in
the inset. In the p — 0 plane, the binodal line is identified as the set of points
having same temperature, chemical potential and pressure, blu and azure
lines in the inset. The spinodal points are identified along isotherms where

Op/0p = 0. They are represented by the red and orange lines. All the states
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Figura 1.3: Phase diagram for the Lennard-Jones EoS[75]. In the main plot
the isotherm ¢ = 1.25 and the iso-chemical potential u = pg4¢ with the sa-
turation value are reported with dashed and dash-dotted lines, respectively.
The saturation densities are identified as the two points with equal tempe-
rature, chemical potential and pressure; the red circle represent the vapor
saturation point and the orange circle the liquid one. The other two circles,
blue and light blue, represent the spinodal points, vapor and liquid respecti-
vely, identified on the isotherm where dp/0p = 0. In the inset the loci of all
the saturation and spinodal points at different temperatures are reported in
the p — 6 plane.

in the regions comprised between binodals and spinodals are metastable (i.e.
drops and bubbles can nucleate in the metastable regions on the left (vapour)
and on the right (liquid) of the diagram, respectively).

Metastable liquid is represented by a point placed between the orange

and azure line, and it is separated from its stable state (homogeneous vapor

22



phase), by an energy barrier that must be surmounted to bring the system
in the new phase. This occurs due to thermal fluctuations, which, starting
from an ideally homogeneous liquid phase, eventually induce the formation
of vapour nuclei. After the nuclei reach a critical size, they start expanding
surrounded by their mother phase, in a complex non-equilibrium process,

leading the system to decompose in two different phases.

Depending on thermodynamic conditions, the time needed for the occur-
rence of a sufficiently intense fluctuation event able to produce a supercritical
nucleus can be very long. For this reason, nucleation can be seen as a rare
event. The relevance of thermal fluctuations underlines the microscopic na-
ture of the phenomenon. However, despite its origin is to be definitely found
at the atomistic level, nucleation takes place on temporal scales which, due
to the rare event issue, is several order of magnitude greater than the mole-
cular characteristic time. Moreover, in many cases the interest is centred on

systems of macroscopic size.

The presence of impurities or dissolved gas strongly lowers the energy
barrier and facilitates bubble formation. The presence of solid boundaries
makes a similar effect. In fact the energy needed to form a vapour bubble
on a solid surface depends on the contact angle and, as explained in the
next section, it can be considerably lower than it is in a bulk phase. This is
the reason why it is so common to observe cavitation in water at pressures
considerably larger than the extreme cavitation limit of ultra-pure water
which can sustain 1 kbar tensions [10]. Moreover recent experimental works
have highlighted how the wettability of ultra-smooth surfaces can strongly

influence the onset temperature of pool boiling in superheated liquids |26,

? ]
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Several theoretical models have been proposed in order to estimate the
energy barrier and the nucleation rate, i.e. the number of nucleated bubble
per unit time and volume, both in homogeneous and heterogeneous (near
extraneous boundaries) conditions. The classical nucleation theory (CNT)
[1%], poses the basis for the understanding of the phenomena, and it may be
casily extended to the non-homogeneous case [117], as recalled in Sec. 1.3.
The major contribution to the work to create a vapour bubble into a me-
tastable liquid is the positive work needed to create the bubble surface. Its
value is related to the surface tension and to the surface extension. The
counteracting contribution is the energy released to transform the liquid into
the stable vapour phase. Its value is related to the difference between the
vapour pressure and the ambient pressure and it is proportional to the bub-
ble volume. The (algebraic) sum of these two contributions gives the total
work needed to create a bubble of a given radius. At small radii the surface
contribution prevails up to a critical bubble radius where the needed work is
maximum and then the negative volume contribution becomes stronger and
the work start decreasing. This maximum work corresponds to the energy

barrier that must be overcome to create a vapor region.

1.3 Classical Nucleation theory

Classical nucleation theory (CNT) [30, 28, | provides the fundamental
understanding of bubble nucleation in a metastable liquid, both for homoge-
nous (bubble forming in the bulk liquid) and heterogenous conditions (bub-
ble forming in contact with an extraneous phase, typically a solid with given
geometry and chemical properties). The simplest example of heterogenous

nucleation is a vapor bubble nucleating on a flat solid surface at fixed contact
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angle ¢. The free energy of a spherical cup laying on a flat solid wall,

Q(R,¢) = —ApWw (R, 0) +yvAry (R, ¢) +
+ ysvAsy (R, ¢) + vusALs (R, ) (1.1)

depends on the vapor-liquid pressure jump Ap = py —p, (the Laplace pressu-
re), the bubble volume Vi, the area of liquid-vapor Ay, solid-vapor Agy and
liquid-solid A g interfaces and the respective surface energies v.v, vsv, Yrs-
Introducing the equilibrium (or Young) contact angle ¢ = cos™!(yrs —
vsv)/vLv) (see the sketch in Fig. 1.4, where, at variance with the stan-
dard convention, the angle is measured from the vapor-solid interface, i.e.
¢ > /2 means hydrophilic) allows for re-expressing the relevant geometric
quantities as Agy = mR?sin® ¢, Apy = 2rR%(1 — cos @), Aps = Ay — Asy,
Vv (R, ¢) = Vi (R, m)¥(¢), where is A, the total surface of the solid wall and
U(p) = 1/4(1 — cos ¢)*(2 + cos ¢). As ¢ — 7 the free energy reduces to the
homogeneous case. Thus, starting from a homogeneous metastable liquid and
denoting by AQpom = —ApWVi (R, ) + v ALy (R, ) the free energy spent
for a spherical bubble of radius R in the bulk liquid, the energy required to

form a spherical cup at the wall reads
AQ (R7 ¢) - Aglho’m (R) v (¢> . (12)

The free energy consists of two contribution, one associated with volume
terms and decreasing like R?® with increasing bubble radius and the other
depending on the surface area which increases with like the square of the
bubble radius. The free-energy attains a maximum, the critical state, at the

critical radius R*.
_ 2y

R Ap

(1.3)
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Figura 1.4: Left panel: bubble sketch illustrating the equilibrium contact
angle ¢ and the bubble radius R. Right panel: CNT prediction of free-energy
profiles for different contact angle ¢, the continuous line corresponds to the
homogeneous case (¢ = 7), the dotted lines represent the heterogeneous case.

The corresponding free energy barrier is

vio)= Sy . ()

AQ" = AQ(R*, ¢) = AQ;
(R",9) e

hom
The critical radius is the same both for heterogeneous and homogenous nu-
cleation. On the opposite, the barrier AQ* for heterogenous nucleation is
lower than AQpem, (U(¢) < 1). Clearly, for trivial geometrical reasons, also
the critical volume V* = 4/37 R*3¥(¢) is smaller for the heterogeneous case.

As an example let us compare the work needed to form a vapour bubble in
the bulk of the liquid phase Ay, (homogeneous nucleation) with the work
needed to form a vapour bubble on a flat solid surface AQy,.; (heterogeneous
nucleation) by assuming, for the sake of simplicity, the contact angle ¢ = 7/2.
It is straightforward to realize that AQy,,, = 2AQ),., since the critical bubble
is expected to be a perfect half of the one in homogeneous condition. It

follows that the probability of observing a nucleated bubble on a solid surface
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is significantly larger than the probability of observing a vapour bubble in
the bulk.

1.3.1 The Blander and Katz Nucleation Rates

The crucial observable in the nucleation process is the nucleation rate, i.e.
the normalized number of super-critical bubbles formed per unit time. In
the heterogeneous context the normalization is per unit surface (as opposed

to unit volume used in homogeneous conditions). The expression for the

nucleation rates|!8, 11] are
2yLv AQ*
Trw — — 1.5
BK = N[ . exXp ( ksl ) (1.5)
concerning the homogeneous nucleation, and
1 —cos¢) [2vLy AQ*
T 213! _ 1.6

for the heterogeneous one, where ny, is the liquid number density and m the
mass of the liquid molecule.

Equations (1.5-1.6) represent the famous Blander and Katz expressions
for the nucleation rates in the CNT context. They are commonly used as a

reference theory in nucleation.

1.3.2 The Kramers theory

Kramers theory [33] provides the mean time 7 for the diffusion across a barrier
(mean first passage time) of a random walker trapped in the metastable basin
of a given potential. Let us denote B C S the metastable basin where S is

the space of the states for the physical system (each trajectory X(t) € S).
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In the present context the random walker is assumed to obey the Langevin
equation

O = h(X) + (2D)% (1), (17)

where ¢ is delta-correlated process, (£(t) ® €7(t)) = 6(t — t') with D the
diffusion tensor. Let us denote P(X,t|Y,%y) the transition probability from
the state Y at the time ¢y to the state X at the time ¢. It obeys the Fokker
Planck equation (see Appendix B for details)

OP (X, 1Y, o)

5 = —FP(X,t|Y,ty) , (1.8)
where
0 0 0

is the Fokker Planck operator.
Eq. 1.8 must be complemented with initial and boundary conditions, that

in the context of barrier crossing problems can be assumed to be
P(X,t0|Y,t0):(5(X—Y) XGB,

P(X.t[Y.,t) =0 X €aB,

in other words 0B is an absorbing boundary.

The probability that the trajectory X is still contained in the basin B,
or equivalently, the probability that the mean first passage time 7(Y) (time
required to reach OB starting from Y) is greater than the current time ¢, can

be easily evaluated as

(Y, t) = /B P (X, t|Y,tg)dX = Pr(r(Y)>1t) = /t+oo7r(T|Y) dr,
(1.10)
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with 7 (7]Y) the probability density distribution of the first passage times.

Thus the mean value of 7 is

+00 +oo T
<T<Y>>:/O TW(T\Y)dT:—/O YO

that, after integrating by parts provides

+oo
:/ dT/ P(X,7|Y,0)dX. (1.12)
0 B

Since Y is the starting state for the random walker X, the governing equation
for the mean first passage time, will be related to the Kolmogorov Backward

equation, in fact by applying the adjoint of the operator F to the Eq. 1.12

+oo
/ dT/ 9P (X T|Y 0 x (1.13)

where Eq. C.13 in Appendix B has been enforced, and the stationary condi-
tions are invoked P (X,t|Y,tg) = P (X,t —,]Y,0). So, the Eq. 1.13 can be

one finds

integrated, by using Eq. 1.10 leading to
FHr (X)) =1, (1.14)

representing a differential equation for the mean first passage time, with the
boundary condition (7 (X)) = 0 on 9B.
In the light of above general description, for a one dimensional physical

system, moving in a bistable potential (X)), according to the equation

X
Ez——jt\/_f() (1.15)

a simple equation for (1) can be deduced by enforcing Eq. 1.14,

aQ d 2
— (T )+ Do (7 (X)) +1=0, (1.16)
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By multiplying both sides of Eq. 1.16 by the integrating factor exp(—£Q2)/D,

the equation is rearranged as

d(7(X))

% (exp (—ﬁQ) T) = —%exp (—BQ) y (1.17)

with 8 = 1/kg#.

Hence by initialising the system in the metastable basin U, the mean time
required to reach the saddle point in the unstable basin N, is obtained by
integrating Eq. 1.17, leading to

(r) = /U exp (—%(;;)) dX/m %exp (%(;;)) dx . (1.18)

The relationship between barrier crossing and nucleation, becomes evident

when one considers the free energy of a vapor bubble in a surrounding liquid,
as prescribed by CNT. In fact by imposing the potential 2 = AQ in Eq. 1.2,
the mean time required to form a critical bubble can be evaluated by solving
Eq. 1.18.

Here for the sake of simplicity a simple approximation of Eq. 1.14 based
on the Laplace’s method is reported. This method provides accurate results
for high barriers. Alternatively a numerical approach should be adopted.

The approximation is

1 AQ* oo 1 x o ?
_ —— 1.1
T D ( kg6 > {/_oo drexp ( 2 kBHT )] ’ (1.19)

with x = A?AQ/dR?|p=o = 87y ¥(#). The RHS of Eq. (1.19) is a Gaussian

integral that is easily calculated providing

1 kgl AQ*
T(9) = D" 19 (0) 1y exp ( kBQ) : (1.20)

The diffusion coefficient D* = kgf/16umR* as evaluated in [101], by enfor-

cing the fluctuation dissipation balance for the overdamped Rayleigh-Plasset

equation, where p is the fluid viscosity.
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Once 7 is evaluated, the nucleation rate may be estimated as |

9]

nr

Jhom = . (1.21)
for the homogeneous case, and
et = i (1.22)
T oT(9)]

for the heterogeneous one.

1.4 Modelling Thermal Fluctuations at the Con-
tinuum Level

As discussed in the previous sections, a suitable modelling of thermal fluctua-
tions is crucial to address nucleation, and in general multiphase flow involving
spontaneous phase transformations. For this reason a brief description of the
theory of hydrodynamic fluctuations at the continuum level is included in
the present Introduction.

At the molecular scale, even in conditions of thermodynamic equilibrium,
the fluids exhibits a stochastic behaviour. In fact, going down below the
micrometer scale, the effects of thermal fluctuations play a dominant role in
the dynamics of the system. As a consequence, a suitable description of me-
soscale fluid dynamics must include thermal fluctuations. Such fluctuations
have been experimentally investigated by light and neutron scattering [15].
Since the pioneering work of Landau and Lifshitz (1958, 1959) [34] several
models, describing the hydrodynamic fluctuations at the continuum level,
have been developed [61, , , |. In the literature these approaches

are grouped under the name of "Fluctuating Hydrodynamics". The main
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idea of Lifshitz and Landau theory is to treat the thermodynamic fluxes as
stochastic processes. As prescribed by the thermodynamics of irreversible
processes, at macroscopic level, thermodynamic fluxes are the expression of
microscopic molecular degrees of freedom of the thermodynamic system. Un-
der this respect dissipation in fluids can be seen as macroscopic manifestation
of the energy transfer arising from random molecular collisions [10]. Thus
at mesoscopic scale, thermodynamic fluxes have to be modeled as stochastic
tensor fields, whose statistical properties can be inferred by enforcing the
fluctuation-dissipation-balance (FDB). Since the eminent work of Einstein on
the theory of equilibrium thermal fluctuations [57], other investigators have
analised the statistical fluctuation by considering the entropy as the proba-
bility functional of the fluctuations |61, ) |. Each fluctuation results
in an entropy deviation from the equilibrium value (the maximum value).
Evidently, every large deviation from the equilibrium conditions (resulting

for a great fluctuation) will have a very small probability of occurrence.

Once a suitable probability distribution functional of the fluctuations is
available, a stochastic process reproducing such equilibrium statistical pro-
perties can be appropriately defined. In this context, the fluctuating hydro-
dynamics equations can be seen as a set of stochastic processes reproducing
the Einstein-Boltzmann probability distribution for the fields, whose deter-
ministic part is represented by the Navier-Stokes equations. In principle
the theory of fluctuating hydrodynamics has been derived for the linearised
Navier-Stokes equations, and as such, it can be considered valid only for
small fluctuations. However some important works have advanced the theo-
ry to the non-linear regime [132, , |, highlighting several differences

with respect to the linear one. In particular the study of one dimensional
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non-linear stochastic Burgers equations provides connections with the KPZ
scaling behavior [78], and the Levy distribution. In addition, non-linear ver-
sion of FDB are well know [136], as well as stochastic equations for non-linear
hydrodynamics [59]. These theories, far away from equilibrium, provide cri-
tical changes in the field statistics, resulting in long-ranged correlations also
in stationary non equilibrium conditions, like, e.g. in the Rayleigh-Bernard
problem [39]. More commonly, the extension of the theory to the non-linear
case, is based on the assumption on the local-equilibrium |21, 10]. This as-
sumption implies that in a non-equilibrium condition, the expressions for the
fluctuation statistics of a system in equilibrium continue to be valid, by sub-
stituting the equilibrium values with the local values of the hydrodynamic
fields. Starting from the pioneering work of Garcia et al. [65], in recent years
there has been an exponential increase of numerical methods for fluctuating
hydrodynamics equations |54, 46, 11, 53, 13]. These models not only play
an important role in the physics of fluids, but their predictive power can be
useful to improve some of the latest nanotechnologies. For instance the mo-
deling of thermal fluctuations is crucial in the design of flow micro-devices
[17, 20], in the study of biological systems, such as lipid membranes [107], in
the theory of Brownian engines and in the development of artificial molecular
motors prototypes [115]. Inspired by organic devices able to convert chemi-
cal into mechanical energy by means of thermal noise, devices operating with
the same principles have been theorised. For instance, the cell division is a
mechanical process, driven by the chemical energy released during the ATP
hydrolysis , with much higher efficiency than the common operating machi-
nes. Actually RNA and DNA polymerase can be seen as molecular motors.

In addition, thermal fluctuations play also an important role in the breakup
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of droplets in nano jets [105, 56, 77].

1.5 Beyond Classical Nucleation Theory

In the previous sections, the main features of nucleation have been described,
highlighting the fundamental physical aspects. The CNT poses the founda-
tions for basic understanding, however it still lacks some crucial features.
More sophisticated theories like density functional theory (DFT) [113, 91],
interesting extensions [95, |, and molecular dynamics (MD) simulations
can give more precise estimates of the barriers and can correct some mis—
prediction of CN'T. Such methods are extremely powerful in stationary condi-
tions and need to be coupled to specialized techniques, like the string method
[118], to study the nucleation events and the transition path [67].

Often, depending on the thermodynamic conditions, the time to be awai-
ted to observe the nucleation event is so long and its probability is so small
that the phenomenon is labeled as a “rare events”. In particular this time
grows exponentially as the energy barrier [33]. For this reason, in the last
decades there have been several works addressing nucleation by the means of
rare-event techniques |3, 1, 22, 12|. Forward Flux Sampling (FFS) explores
a series of interfaces placed between an initial and final states to calculate
rate constants and transition paths, both in equilibrium and nonequilibrium
systems driven by stochastic dynamics. Transition Path Sampling (TPS)
perturbs random paths in the space of configurations —as in Monte Carlo
walks— by accepting or rejecting configurations to reconstruct the correct
path probability. Alternatively the study of nucleation processes is almost
uniquely addressed by direct molecular dynamics simulations [0, 19], which

for a large part of the real systems are often computationally too expensive,
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limiting its application to very small domains, often far from the technologi-
cal applications. In addition molecular dynamics simulations are not able to
capture the hydrodynamics effects, crucial for the next phases of the nuclea-
tion process. These aspects suggest the adoption of mesoscale models for the
study of nucleation in its entirety, starting from the phase change inception

up to the macroscopic motion.

Promising approaches are based on phase field models, having as order
parameter the mass density itself. In stationary conditions they recover the
DFT descriptions with a squared-gradient approximation of the excess energy
[92]. The phase field models have the advantage of being easily extended to
unsteady situations, enabling the full description of both the thermodynamic
and the fluid dynamics fields [96, 99, 97]. The model, in its original form,
is deterministic and cannot capture spontaneous nucleation originated by
thermal fluctuations, in absence of external forcing. To this purpose, the
theory of fluctuating hydrodynamic [10, 33] represents the natural framework
to embed thermal fluctuations inside the phase field description, and also it
has been recently stressed as the theory can be used to formulate dynamical
theory of nucleation 93], providing stochastic equations for the evolution of

order parameter and a formalism to evaluate the nucleation pathways.

During my PhD research, I developed a novel mesoscale approach, based
on a diffuse interface description of the two-phase vapor-liquid system em-
bedded with thermal fluctuations through a fluctuating hydrodynamics mo-
deling. The model has been used to address vapor bubble nucleation in both
homogeneous |63, (4] and heterogeneous case (see Chapter 7). This mesosca-
le approach offers a good level of accuracy (as exposed in the next sections)

at a very cheap computational cost compared to other techniques, providing
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the possibility of dealing with macroscopic system. The typical size of the
simulated system on a small computational cluster (200 x 200 x 200 nm?, cor-
responding to a system of order 10% atomistic particles) is comparable with
one of the largest MD simulations [19] on a tier-0 machine. Moreover the
simulated time is here T},,x ~ ps to be compared with the MD T,,,, ~ ns.
The enormous difference between the two time extensions allows us to ad-
dress the simultaneous nucleation of several vapor bubbles, their expansion,
coalescence and, at variance with most of the available methods dealing with
quasi-static conditions, the resulting excitation of the macroscopic velocity
field. These hydrodynamic effects —not easily detectable with conventional
techniques— have a great influence on the nucleation dynamics, specially for
closed systems [63], where "bubble crowding” strongly affects the nucleation
rate. The above approach has been extended also to address heterogeneous
vapor bubble nucleation, showing its applicability even when dealing with
more complex physical systems, e.g., vapor bubble nucleation on solid surface

having different wetting properties (see Chaper 8).
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Capitolo 2

Diffuse interface models

Aim of this chapter is to introduce the diffuse interface approach that will be
exploited in the present thesis. The chapter will start discussing the general
thermodynamic description of the two-phase, liquid-vapour systems, and will
analyse with great detail the particular case of the Van der Waals model, the
so-called “square-gradient approximation”. The resulting model provides a
mesoscale description of the liquid-vapour system, enabling a robust charac-
terisation of the interfacial properties, namely the interface thickness and the

surface tension, down to the nanometer length scale.

The presence of a confining solid surface with different wetting properties
can be also taken into account with this approach. In this context I propose
a general expression to uniquely identify the solid-fluid contact angle, rela-
ting the solid-fluid free energy contributions with the bulk properties of the
fluid. This model recovers the classical Young-Laplace equilibrium wetting
condition and the prescribed expressions for the diffused contact line in the
context of the famous Cahn-Hilliard phase field approach for binary flows.
Successively, the governing equation of multiphase systems enodowed with

capillarity will be derived in details, by choosing a thermodynamic consistent
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constitutive relationship between thermodynamic forces and thermodynamic
fluxes. During my research I exploited this model to address the collapse of a
cavitation bubble near a solid boundary, showing an unprecedented descrip-
tion of interfacial flows, that naturally takes into account topology modifica-
tion and phase changes (both vapour/liquid and vapour/supercritical fluid
transformations).

In order to deal with the rare event issue described in the Introduction
which, of course, is still present in the proposed mesoscale description, the
diffuse interface model will be coupled with the string method, one of the
specialised rare event techniques, in order to extract the free energy barriers
and the transition paths during both homogeneous and heterogeneous vapour

bubble nucleation.

2.1 Thermodynamic of non-homogeneous systems

Let us briefly describe the thermodynamic equilibrium of a two-phase sy-
stem, focusing on a closed system with fixed temperature and volume. Van
der Waals was the first to recognise that a description of the Helmholtz free
energy based only on the local values of temperature and phase indicators
was not sufficient to describe the internal structure of a transition zone se-
parating two different phases. Indeed he showed how a local description
of the free energy provides a separating interface having zero-thickness and
zero surface tension. Thus, in order to describe to thermodynamics of a
non-homogeneous system, in which the different phases are separated by a
smooth transition zone, a non-local term (depending on the spatial gradients
of the phase indicator) should be added to the free energy of the system. In

modern terminology, the non-local terms in the free energy can be justified in
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the context of Density Functional Theory, see Lutsko ([91, 92]) for a detailed
derivation and related comments. Accounting for the presence of a solid wall
in contact with the fluid, the general form of the (Helmholtz) free-energy
functional F' as a function of the temperature 6 and a phase indicator ®

takes the form

F[®,0] :/ £2(0,0) + £, (VO, .. VDD .. VD) dV + | fu(®,0)dS,

v oV 2.1)
where f, is the homogeneous bulk free-energy contribution, f,, is related to
solid-fluid interactions and fs is the gradient contribution, depending on the
spatial gradients of the phase indicator ®. At fixed temperature 6 = 6, the
equilibrium condition is reached when the first variation of the functional 2.1
with respect to the phase indicator ® is zero, leading to the Euler-Lagrange

equation
N

5F 0 Ifs

08 _Oh N capww . O (2.2)

0P 9P o (V(k)q)>
where the superscript **) on the differential operator V denotes rank k ten-
sor operator defined as the n-fold tensor product of V with itself. Eq. 2.2 is a
partial differential equation for the equilibrium profile of the phase indicator

® with boundary conditions

%W(V@,...,V@@...@V@,n):o, (2.3)

with n as a unit normal on the domain V' and g is a function arising from the
boundary terms when integrating by parts. The boundary conditions arise,

in fact, from the extremality condition on the free-energy functional, due the
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presence of the solid-fluid interactions described by the free-energy boundary
term.

It is worth stressing that the existence of a smooth equilibrium configu-
ration ®., of two distinct phases, i.e. a diffuse interface separating them,

originates from the presence of the gradient contribution to the free energy.

2.2 The Van der Waals approach

In the last part of XIX century scientists were starting to recognise that the
separation surface between two thermodynamic phases could have a finite
thickness. Van der Waals, based on phenomenological assumptions, proposed
a gradient theory that led him to predict the interface thickness of a fluid
near the critical point. In the framework of a general phase field theory, Van
der Waals assumes the density field as the relevant phase indicator, and the
density gradient square norm as a surface contribution basically localised at
the liquid-vapour interface where the density gradient is large (see. Eq. 2.4
below). The model is extremely powerful both for steady and unsteady
conditions, providing a robust description of interfacial flows that naturally
accounts for topology modification of the regions occupied by the two phases
and the phase change between them [96, 98]. Since in this initial illustration
of the model the focus is on the properties of the fluid irrespective of the
solid walls it may be in contact with, like e.g. surface tension, interface
thickness and the constitutive relationship for thermodynamic fluxes, for the
time being the solid-liquid free energy contribution is neglected. It will be
taken up again in some detail in the forthcoming sections.

For a closed system, with a given mass M, the constrained Helmholtz

free-energy of a two phase flow in the Van der Waals gradient approximation
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Fp.0) = F[p,9]+z(MO—/Vpdv> :/Vfdv+z<Mo—/Vpdv) =

_ /‘/(fb(p,e)—l—%Vp-Vp) dV+l<M0—/VpdV) ;o (24)

where [ is a Lagrange multiplier, f = f, + A\/2|Vp|?> with f, (p,0) the classi-
cal Helmholtz free energy density per unit volume of the homogeneous fluid
at temperature 6 and mass density p. The coefficient A(p, @), in general a
function of the thermodynamic state, embodies all the information on the
interfacial properties of the liquid-vapour system (i.e. surface tension and in-
terface thickness). At given temperature, equilibrium is characterized by the
minimum of the free energy functional (2.4), where variations are performed
with respect to the density distribution p assumed to be the proper phase de-
scriptor for the liquid-vapour phase transition. The relevant Euler-Lagrange
equation is

W=V - (AVp) —1=0. (2.5)

where the temperature is constrained to be constant, § = const, u’ =
Ofy/0plg is the classical chemical potential, and the Lagrange multiplier is
identified as | = p — V - (AVp) = pe(peq) = teq evaluated at the equili-
brium density field. The equation defines a generalised chemical potential
e = 12 — V - (AVp) that must be constant at equilibrium.

The consequence of the above equilibrium conditions is better illustrated
in the simple case of a single planar liquid-vapour interface separating the two
bulk, homogenous phase (liquid and vapour, respectively). The only direction
of inhomogeneity is s and a constant A is assumed. The constant temperature

appears in the problem as a parameter and will not be further mentioned
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throughout the present section. Hence, determining the equilibrium density

distribution amounts to finding a solution of
o= 1) = XL = . (26)
The boundary conditions for this second order ordinary differential equation
are obtained by evaluating the generalised chemical potential far away on the
two sides of the interface, namely in the bulk liquid and bulk vapour where
dp/ds = 0. Tt follows jig = pb(pv) = pb(pr)-
The solution of Eq. (2.6) is readily obtained by multiplying through by
dp/ds and integrating between p,, = py and p,

2

)~ wilor) = 5 (£) @)
where wy(p) = fo(p) — pegp- Equation (2.7) shows that w, has the same
value in both the bulk phases, where the spatial derivative of mass density
vanishes: wy(pr) = wy(py ).

The grand potential, defined as the Legendre transform of the free energy,

OF
Q:F—/p—dV:/de, (2.8)
v 0p 1%
has the density (actual grand potential density)
Afdp\* ([, dPp
=f—pp=Hh+5(>=) - (- 2r=L 2.
wlp] = f = pep = fo+ 5 (ds) (MC Aos )P (2.9)

implying that, in the bulk, w = wy, i.e. wy is the bulk grand potential density.
Given the form of wy(p), the solution of Eq. (2.7) provides the (implicit

expression for the) equilibrium density profile p(s):

p
s = \/E dp + const . (2.10)
2 Jo, Vwn(p) — wi(pv)
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Eq. (2.10) provides the equilibrium density profile characterized by two bulk
regions separated by a thin layer. The layer thickness can be estimated as

PL — PV

== 2.11
¢ dp/ds|maz ( )

The equilibrium condition, Eq. (2.7), provides the interface thickness in terms

of the bulk grand potential density wy(p) and of the parameter A,

A
€= (,OL - pV) \/2 [wb<)5) _ wb(/)V)] ) (212>

without explicitly addressing the density profile. p is the density correspon-

ding to the maximum of dp/ds, achieved where dw,/dp = 0, in Eq. (2.7).

The surface tension can be defined as the excess (actual) grand potential

density,
Vo= /O; (w(p] —wlpy]) ds + /sjo (wlp] — wlpr)) ds = (2.13)
= [l iy as,

where S; is the position of the Gibbs dividing surface, whose precise value
is ininfluential since wlpy] = w[pr] (we stress that, e.g., w[py] should be
interpreted as the functional (2.9) evaluated at the constant density field
pv). Given the definition of w[p], Eq. (2.9), and exploiting the equilibrium
condition for the chemical potential, Eq. (2.6), it follows that

o [ d 2
Y = / fb + 1/\ (d_§> — HegP — wb(pV)] ds = (214)

—0o0

—/OO () (ov) | d
= . Wy 5 ds Wy pv S .




Using Eq. (2.7) one finds

= [ A(E ) - [ - 215)
= /pv \/2)\ (wy(p) —ws(pv)) dp,

where the second expression can be evaluated with no a priori knowledge of

the equilibrium density profile. It worths stressing that, as for the interface
thickness, the surface tension only depends on the form of the bulk grand po-
tential density wy(p) in the density range between the two equilibrium values,
[pv; pr], and on the parameter A. Figure 2.1 reports the comparison between
the diffuse interface prediction of surface tension and molecular dynamics
simulations, for a Lennard-Jones fluid. A constant value of A was assumed
to reproduce the simulation data. It is evident how the Van der Waals model
is able to capture the temperature dependence of surface tension. Of course,
equation (2.7) applied to the two adjoining bulk regions where dp/ds = 0

implies the mechanical equilibrium condition p(py) = p(py ), where

R

is the classical thermodynamic pressure, fb = f»/p the specific bulk free

energy, and v = 1/p the specific volume. Indeed Eq. (2.7) implies wy(py) =
wy(pr), which corresponds to the equality of the pressures given that p =

—Wyp.

2.3 Solid-Fluid Free Energy

In order to describe a non-homogeneous liquid-vapour system interacting
with a solid surface, I again start from the Van der Waals square gradient

approximation of the (Helmoholtz) free energy functional,
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Figura 2.1: Comparison between the temperature dependen-
ce of the surface tension obtained through Eq. (2.15), when using
the Lennard-Jones EoS [75], and the benchmark data provided

at the wurl https://www.nist.gov/mml/csd/chemical-informatics-research-
group /lennard-jones-fluid-properties. The value of the capillary coefficient is
fixed to Am?/(c%) = 5.224. The results are presented in a non-dimensional
form, taking as reference values the Lennard-Jones parameters.
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Figura 2.2: Bubble sketch illustrating both geometrical and wetting
properties.

Fc[p,H]:/VdV (fb(p,e)-l-%)\Vp-Vp)—i-l (MO—/Vpdv)+/av dSfs (p.0) .
17)

For the sake of uniformity with the previous section, I address the equilibrium
problem in the canonical ensemble, i.e. at constant mass, volume and tem-
perature, but the generalization to the microcanonical ensemble (constant
mass, volume, energy) is straightforward and is addressed in Chapter 8. By
minimising the free-energy, it follows that, in equilibrium, temperature and

(generalized) chemical potential . must be constant, as expected,

0 = const = b, (2.18)

fte = 2 — A\V?p = const = u? . (2.19)
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Furthermore the boundary term gives rise to the additional requirement

()\Vp-fH- %>

= 2.2
) 0, (220)

ov

where 10 is the outward normal, to be read as a (non-linear) boundary condi-
tion for the density. The free energy contribution f,, arises from the fluid-wall
interactions and accounts for the wetting properties of the surface. In order
to come up with a model f,,, I deduced an analytic form that generalises an
approach that has been already used to describe two immiscible fluids, see
e.g [126, 71].

The analytic form of f,, is constructed by observing that the equilibrium
contact angle ¢ is related to the inhomogeneity direction § as §-n = — cos ¢,
(see Fig. 2.2), and the density gradient is Vp = dp/dss, so that Eq. 2.20
reads

df dp

d_p_ £COS¢:O, (221)

the above equation can be integrated by using Eq. 2.7 providing

fulp) = cos / N () —w () dp + fu(ov) . (222)

The analytic form of f, recovers the physical evidence that for a pure vapor
of density py in contact with the wall, the free-energy should be given by
the solid-vapor surface tension, f,(py) = 7vsy. Similarly, for a pure liquid
of density pr, fu(pr) = vrs- These aspects become even more evident by

enforcing Eq. 2.15, leading to

Jw(pr) = vLs = yLv cos ¢ + vsv (2.23)

the famous Young equilibrium wetting condition.
Using the expression (2.22), df,/0p = 0 in both stable liquid and sta-

ble vapor. In this case Eq. (2.20) is tantamount to enforcing zero normal
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derivative for the density outside coexistence and metastable regions and
assigning the contact angle ¢ otherwise, i.e. in the small region where the
finite thickness liquid-vapour interface meets the wall. In fact Eq. (2.21) pro-
vides a uniquely defined relationship between contact angle and the normal
derivative of the density, confirming that the surface energy f,, encodes the
wetting properties of the wall. In addition, when a pure liquid in metastable
state is in contact with the wall, the model provides a wall normal strati-
fied density profile, in which the density is higher toward the solid surface,
for a hydrophilic wall, and is lower for a hydrophobic one. In Fig. 2.3 the
equilibrium density profiles are reported as a function of the wall normal z,
showing the depletion or absorption layering of the liquid in proximity of the
solid surfaces, as commonly detected |34, 71] in MD simulations. As evident,
the density profiles are not monotonic, foretelling the existence of an exten-
ded region near walls where p(z) < p; for hydrophilic interactions (¢ > 7/2)
and p(z) > p, for hydrophobic ones. Such behaviour is consistent with the
constant mass constraint which characterises closed systems. These aspects
play an important role in heterogeneous nucleation, inasmuch bubble forma-
tion is favoured on hydrophobic walls and discouraged on hydrophilic ones.
Such qualitative statement is corroborated both by energetic considerations
and by fluctuating hydrodynamics simulations of spontaneous heterogeneous

bubble nucleation to be discussed in forthcoming sections (see Chapter 8).

2.4 The String method: energy barriers and
the critical bubble

During my PhD research, I coupled the diffuse interface description together

with a rare-event technique (the string method), in order to obtain the cri-
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1.02

1.01

Figura 2.3: Spatial density distribution in wall normal direction z. The den-
sity values are normalized with mean bulk density py, the normal coordinate
z is normalized with the total domain lenght L,. Two walls with the same
wetting properties are located at z = 0 and z = L,. The different profiles
refer to different contact angle ¢.

tical configurations of the bubbles both in homogeneous and heterogeneous
nucleation. The procedure was successfully exploited by Ren [122] to study
the wetting transition on structured hydrophobic walls for a Cahn-Hillard
binary fluid. In this work, it is extended to study vapour bubble nucleation,
for a Van der Waals diffuse interface model.

The minimisation of the free energy functional (2.4), stating that the ge-
neralised chemical potential p, = pb(p) — AV?p must be constant and equal
to the external chemical potential fic.;, allows the evaluation of the equili-

brium density profiles at the different thermodynamic conditions. Clearly, in
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thermodynamic conditions where either the liquid or the vapour are stable,
constant chemical potential corresponds to a homogeneous phase. When the
liquid or the vapour are metastable instead three solutions at constant che-
mical potential are found: i) the homogeneous vapour; ii) the homogeneous
liquid; iii) a two-phase solution with a spherical (critical) nucleus of a given
radius (vapour/liquid in the case of bubble/droplet, respectively), the critical
nucleus being surrounded by the metastable phase.

Dealing with nucleation, the non-trivial solution of case (iii), p(r) =
perit(r) where the critical bubble is surrounded by the metastable liquid at
p=p7e 0 =0and p.(p7e, 0) = W™ is particularly significant. The solution
p(1) = perit(r) is found by solving the non linear Euler-Lagrange equation of

the functional 2.4 which, in spherical coordinates and at fixed temperature,

reads

) - o (P ) = (224)
The critical bubble, p.(r), is an unstable solution of Eq. (2.24) which requires
specialised numerical techniques. In this work the powerful string method is
applied [119] which, as additional information, identifies the minimum energy
path (MEP) joining the metastable fluid (e.g. the liquid) to the fluid (e.g.
the vapour ensuing form cavitation). Since our interest here in mainly on
cavitation, the problem is specified as a liquid in metastable conditions inside
a domain of fixed volume. The stable state will correspond to the presence
of an equilibrium bubble enclosed by the liquid contained in the domain.
Please note that at fixed volume, mass and temperature the stable state is
in fact a vapor bubble surrounded by the liquid phase. The MEP can be
visualised as the continuous sequence of density configurations, p(r,«), the

system assumes when transitioning from the metastable to the stable state,
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where « is a suitably defined parameter along the path. The distance between

two configurations is expressed as

Al = \/%/ApQ(T)dV (2.25)

and defines the arclength along the path. The discrete form of the path,

consisting of a finite number of configurations, is called the string. The
string method numerically approximates this path starting from an initial
set of N, configurations {p*(r)}. The head of the string (k = 1) is initialised
as a uniform density field corresponding to the uniform metastable liquid
p(r) = pPet; the tail (k = N,) is initialised as a guessed tanh-density profile
adjoining the liquid and the vapour density to approximate a vapour bubble.
All the intermediate images on the string are obtained by interpolation of
these two density fields with respect to the above defined arclength. The
algorithm used for relaxing the string to its final configuration, follows two

steps:

1) All the images p*(r) are evolved over one pseudo-time-step A7 following

the steepest-descent algorithm (over-damped regime)
dp t b AD ([ ,0p
— =" = - == — . 2.26
5 = H {uc(p) i (7“ B (2.26)

2) The images are redistributed along the string following a reparametri-
zation procedure by equal arclength. The algorithm is arrested when

the string converges within a prescribed error.

It is worthwhile noting that the transition path geometry depends in general
on the relaxation dynamics used to evolve the string. In an over-damped re-

gime, steepest descent relaxation (Eq. 2.26), could still be used as a reference
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theory, as often done in the current literature. In this context the string con-
verges to the MEP connecting the local minimum to the saddle point, that
under the above assumption is also the most probable transition path [122] .
However critical cluster as well as the energy barriers do not depend on the
relaxation dynamics. The density profile of the critical nucleus, plotted in
panel of Fig. (2.4) at different metastable conditions, allows the evaluation

of the critical radius, by following the relation [11]
/ r(dpe/Or)*r* dr
0

R = —
/ (8,00/87“)27“2 dr
0

: (2.27)

and the evaluation of the energy barrier

AQ = / "Ll = £t — 5 [pr) — o]} 4mridr, (228)

defined as the difference in grand potential 2 between the critical nucleus
and the metastable liquid.

The results of the string method are compared in Tab. 2.1 with tho-
se obtained by classical nucleation theory (CNT) which yields the estimate
AQ*NT = 4/37yR?. The data show that CNT underestimates the energy
barrier at high temperature while overestimates it near the spinodal [31].

In Fig. 2.4 the critical density profiles as evaluated from the string method
are reported for different temperatures. In The thermodynamic conditions
considered here a significant zone of transitions is detected, confirming the
importance of considering a phase field approach when dealing with phase
transitions, specially for high temperatures and near spinodal conditions. In
addition, the energy landscape for a specific thermodynamic condition py =

0.47 and 0 = 1.25 is reported in Fig. 2.5 as a function of the bubble radius.
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Figura 2.4: Density profiles of the critical nuclei, evaluated with the string
method, at different thermodynamic conditions of the metastable liquid. The
results are presented in a non-dimensional form, taking as reference values
the Lennard-Jones parameters.
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90 vaLet R* R*C’NT AQ*/QO AQ*CNT/HQ
1.25 0.45 12.04 8.07 2.99 12.89
1.25 0.46 11.16 8.42 11.21 14.05
1.25 0.47 11.85 9.17 22.81 16.67
1.25 0.48 14.18 10.64 43.5 22.41
1.20 0.51 8.28 6.35 19.20 18.13
1.20 0.52 8.79 6.93 33.58 21.60

Tabella 2.1: Comparison between CN'T and the string method applied to the
Diffuse Interface model. Critical radii and (Landau) free energy barriers AQ*
for bubble nucleation from the liquid. The discrepancy close to the spinodal
and at higher temperature are well known from the literature.

The free energy profile shown in Fig. 2.5, differs by the CNT prediction not
only for the energy barrier value (see Table 2.1), but also for the curvatures

in both metastable and transition basins.

2.5 Navier-Stokes equation with capillarity

Since my PhD project combined statistical thermodynamics of nucleation and
dynamics of nucleated bubbles, an appropriate description of the macroscopic
motion is needed. The present section is devoted to the latter issue and
describes the hydrodynamics of two phase systems.

Hydrodynamics is governed by the conservation equations for mass p,

momentum pu, and total energy F

dp _
o TV () =0, (2.29)
dpu
%—]f+v-(uE):V-[z-u—q]. (2.31)
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Figura 2.5: Free energy profile as a function of the bubble radius as evaluated
by string method (solid line) and CNT (dotted line). All quantities are
normalized with their critical values, i.e. energy barrier AQ* and R*.
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System (2.29 — 2.31) needs to be complemented with thermodynamically
consistent constitutive relations for the stress tensor 3 and the energy flux
q. Their derivation is outlined below for the simplest case of constant A,
following the general approach for non-equilibrium processes described in
[37].

It is instrumental to rewrite the energy equation in terms of specific in-
ternal energy U, obtained by subtracting the equation for the kinetic energy
from Eq. (2.31)

DU

— =23 — 2.32

where D/Dt = 0/0t + u - V is the material derivative. By definition U =
f+ 0 n, with f=7 /p the specific Helmholtz free energy and 7 the specific
entropy. The total derivative of U reads

af f

dU =
The partial derivatives of the specific free energy can be derived from its
definition, Eq. (2.4), and from the definition of the thermodynamic pressure,
Eq. (2.16). Explicitly, one finds

DU 1 9 Dp Dn A DVp
- _2 vy 2P 234
D = o (v 3IV0F) B ropl 42V IR0 230

The material derivative of the density gradient (last term in the RHS of
Eq. (2.34)) can be evaluated by applying the gradient operator to the

equation of mass conservation, Eq. (2.29):

A DV A A
—Vp-—p:——Vp-V(pV-u)——Vp®Vp:Vu. (2.35)
p Dt p p

After substitution of Eqs. (2.29, 2.34, 2.35) into Eq. (2.32), a few more ele-

mentary manipulations allow to write the evolution equation for the entropy
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as

Dn v. AV pV .-u—q
Dt~ 0

1
) + 5 AVpV.-u—q]-VO+  (2.36)

1 A
+ 7 {24— (p— §|Vp\2 —pV-()pr)) I—l—AVp@Vp} :Vu.

The term under divergence defines the entropy flux. The remaining terms
define the entropy production. Since the entropy production must be positive
definite in terms of the thermodynamic forces (Clausius-Duhem inequality),
the sum of the other two contributions on the right hand side is required
to be positive. In fact by using the so-called Curie principle [37], one can
show that each single term should be positive. Assuming linear dependence
of thermodynamic fluxes — terms in square brackets in (2.36) — on thermo-
dynamic forces [37], namely V6 and Vu, leads to identify the stress tensor

with the following expression,
A 2
¥ = (-p+ §\V,0| +pV - (AVp) | I+
2
— AVpaVp+u [(Vu +Vvu') - §V : uI} , (2.37)

where the usual viscous terms with p > 0 in the last line are the source
of mechanical irreversibility (for the sake of simplicity we have assumed the
second viscosity coefficient equal to —2u/3). Concerning the energy flux,

positive entropy production, second line in Eq. (2.36), calls for
q=MVpV . .u—-£kVo, (2.38)

where k£ > 0 is the thermal conductivity.
It is worth noting that the spatial inhomogeneities of the density field

(related to the surface tension), strongly influence the dynamics of the two
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phase system. In particular the density gradients modify the structure of
thermodynamic fluxes, providing for instance shear stresses, even when the
fluid is at rest (u = 0). From a mechanical point of view these features are
not detected in simple continua, e.g. Cauchy continua, and are framed in the

general context of second gradient continua |14, 9].
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Capitolo 3

Fluctuating Hydrodynamics

This chapter will introduce the theory of fluctuating hydrodynamics, focu-
sing on capillary fluids. It will be shown how capillarity induces different
correlations for the density field, with respect to simple Newtonian fluids.
Under the assumption of small fluctuations, the probability functional of the
field fluctuations turns out to be Gaussian and the correlation tensor can be
evaluated in a closed form by solving Gaussian path integrals. Once the pro-
bability functional of equilibrium thermal fluctuations has been determined,
a set of stochastic processes (Langevin equations) is designed to reproduce
the same statistical properties. The stochastic partial differential equations
we are arriving at have the Navier-Stokes equations with capillarity descri-
bed in Chapter 2 as deterministic part. The random part accounts for the
fluctuating components of the thermodynamic fluxes which are expressed by
a Gaussian white noise acted upon by suitable operators in order to enforce

the fluctuation dissipation balance.
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3.1 Thermal fluctuations for a capillary fluid at
equilibrium

As anticipated in the previous sections, in order to achieve a suitable de-
scription of fluids at mesoscopic scale the effects of thermal fluctuations have
to be included in the classical hydrodynamic equations. The aim of this
chapter is to retrace the theory of fluctuating hydrodynamics, extending the
Landau-Lifshitz approach to the phase field context.

The static correlation functions of a thermodynamic system in equilibrium
can be evaluated from the entropy deviation AS from its equilibrium value
Sp. For single component systems AS can be expressed as a functional of

fluctuating fields of mass density, dp(x, t), velocity, dv(x, t), and temperature,

00(x,t)

AS =S — Sy = AS [8p,6v,00] = / (s (x,¢) — so] dV (3.1)
1%

where the integration is over the system volume V| s(x,t) is the entropy
density per unit volume, and sy is its equilibrium value, (i.e. Sy is the entropy
mazximum). The actual entropy maximum must respect the constraint of
given total mass (Mj) and given total energy (Ep), if we are interested in
the study of closed and isolated systems. Hence the correct functional to be

maximized at equilibrium is the constrained entropy AS. expressed as

AS, = AS + k; <M0—/pdV)+k2 <E0—/edv>, (3.2)
Vv Vv

where k; and ky are two Lagrange multipliers. In order to describe the
two phase liquid-vapour system the famous Van der Waals square gradient

approximation of the free energy functional is adopted
1
Fipol= [ av (fb (00) + £XVp- Vp) | (33)
v
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where, again, f, is the classical bulk free energy density and A is the capillary
coefficient, controlling both the surface tension and the interface thickness.
The entropy S as a functional of the density and temperature fields is the

functional derivative of the free energy with respect to temperature

B oF ofy ..
S[p,ﬁ]—/v 50 dv = a0 dV—/Vsb(p,H)dV, (3.4)

where the second equality holds if A does not depend on temperature, and
the last identity follows by the classical definition of the bulk entropy density

sp, i.e. the entropy density of the homogeneous pahse. Thus the constrained

functional in Eq. (3.2) reads

1
ASCZASb+k1 (MQ—/pdV) —{—kg (Eo—U—/ §pVVdV) y (35)
Vv Vv

where the internal energy functional U is defined in terms of free energy as

OF 1
U:F—/dV—Qz/ AV {uy (p,0) + =AVp-Vp |, (3.6)

00 v 2
with u, = f, — 00f,/00 where the bulk internal energy density. The two
Lagrange multipliers k1 and k5 are found by imposing that the first variation
of the functional in Eq. (3.5) evaluated in the equilibrium state, must be

Zero:

5ASC [po, O, 90] = 0, (37)

The above equation leads to k; = —peo/0o, k2 = 1/6y, where p.q is the
equilibrium chemical potential, u, = 0f,/0Jp is the bulk chemical poten-
tial. For small fluctuations, the entropy functional can be expanded in

a Taylor series around the equilibrium value with respect to the variables
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U= (p,Vp,...,V",0,v)T as follows

AS. = /Asc(p,Vp,...,V”p,G,v) dv = (3.8)
1%

0As,

= /VdV > 7

All terms appearing in the right hand side of Eq. (3.8) can be rearranged

1 27
U, + O Qs

17]

0

in terms of suitable thermodynamic coefficients and of the fluctuations of

density, temperature and velocity, e.g.
1 Hb
ds, = —duy — ?dp, (3.9)

0
du, = pc,df+ (,ub + 9%

dp
2
1
d,LLb = C?po—i‘(—@

where ¢, is the specific heat at constant specific volume, ¢y the isothermal

speed of sound, p the pressure.
Assuming that the fluid is very close to equilibrium and the fluctuations
are small with respect to the mean value, the entropy functional can be

approximated by a quadratic form in the fluctuating fields,

AS N—E/dv{@(s?—
T2 )y, eopop 6o

i(Sp (V?6p) + P sy . gv 4 P

2
(3.1
0 7 59} (3.10)

For future reference, it is worth expressing the above integral as

AS, ~ -1 //dedVg {5v(x)@5(x—5<).5v(5<)+
2 Jvl)v 0o
2

+0p(x) [@5 (x— %) — 225 (x — i)} 5p(X)+

topo to
+56(x) ”0;;05 (x — %) 59(&)} , (3.11)
0
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where integration by parts is used twice to move the Laplacian V? from the
density to the Dirac delta function. Eq. (3.11) can be rewritten in operator

form as

AS, = —%/ ATH AV, (3.12)
|4

where A = (dp,0v,d6) is the vector of the the fluctuating fields and H is a

diagonal, positive definite matrix operator

I'(x) = (HA) (x) = /VH(X, X)A(Xx)dVz = /Vfl(x)é(x —X)A(X)dVg,

(3.13)
where
N @_iv2 0 0
X Hspsp 0 0 bopo o ™ p
H(x) = 0 IHsps O - 0 9—01 0
0 0 Hsps0 0 8 PoCu0

03
involves differential operators and I is the 3 x 3 identity matrix. Note that,
indeed the Laplace operator —V? appearing in the first line, which is in gene-
ral non-negative, is strictly positive under the constraint of mass conservation
since the mean spatial density fluctuation is identically zero.

Under these assumptions the more general probability distribution func-

tional for the fluctuating fields A [5§]

1 AS,
Peg[A] = — exp ( o ) : (3.14)
can be rewritten by using the second order approximation, Eq. (3.12),
1 1
P, Al == ——— | ATHAd 1
J81= e (<o [ amaav), (3.15)

which can be factorized since H is diagonal
pel][A] = P&p[dp]PJV [5V]P69[59] ) (316)
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with

Ps, = ZGXP[ QkB//dXdX5p X) Hsp500 (x — x')dp(x )} , (3.17)
P

P, = Z—dvexp{ 2kB//alxalx5V X) Hsyov0(x x)5v(x)} (3.18)

Fsg = Z%GGXP{ 2kB//dXdX60( )Hs0500 (x — x')00(x )} , (3.19)

and is normalized by the constant Z

1
= /D(SpDéVD(SQ exXp (_W/ ATHAdV) = Z(;pZ§VZ59 . (320)
B JV

The generic correlation function

Calx) =(A®A" = (3.21)

= l/D5pD6VD59A®AT exp i/ Asc(6p, 0v,80) dV
Z kg Jyv

can now be evaluated in closed form by integrating Gaussian path integrals.
To this end it is helpful to resort to the characteristic functional [136] of the

pdf which, for a generic process X (x), is

= /DX P [X]exp (/X(X)X (x) de> . (3.22)
For a Gaussian process governed by the pdf

PIX] = %exp ( —%X(X)A(X,X)X(i)dvxdvi)

the characteristic functional reduces to

/ DX exp {—- / / %X (%) A (%, %) X (%) + / ¥ (%) X (%) dx}szg)
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and is easily evaluated by completing the square (see Appendix A) as
1
o] = B[0] exp (5 [ [ dxaxxix) G x5 0 (fc)) , (3.24)

G (x,%x) = A1 (x,%) (3.25)

where

(we stress that A is the kernel of an operator A, such that A= should be
understood as the kernel of the inverse A™!). The two-point correlation can

be written in terms of the characteristic functional as

Crx (1,%) = (%)) = (3.26)
= ((I) 0 (X)CI)[X])XZO =G (x,X) .

In the present case, Eq. (3.15), the kernel of the operator A is given by

A(x,%x) = —H{ (x — %) , (3.27)
kp
implying the equation
/A(X, x"G X", x)dVyn = (3.28)
1 N N
— / Hié(x — x")G (x",x)dVer = Ud(x — %),

which, written in terms of operators, corresponds to the equation AA~! = U,
with U the identity operator on the space of fluctuations. U is the identity

matrix acting on the five-dimensional tangent space at a given position x,

A(x) = (6p(x), 6v(x), 60(x)).
In particular, since the matrix H is diagonal, the dpdp component of the

above equation is

/A(;p(;p(x, X”)G(;p(gp (XH, X/) dVyn = (329)
2
k;l / C_T . ivg( 5<X — X//) G5p5p (XH’ X/) dvx” = 6(X — X/).
Bopo o
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After integration by parts, Eq. (3.29) reads

2
Cr . A 5 L o
¢ — o ViG =5 (x— 3.30
Oopoks dpdp (X, X) Ok Vi Spép (X, X) (X X) ( )

After Fourier transformation the equation becomes

Ap A pokpo
Pk-kG (k) =2

Cr Cr

G (k) +

(3.31)

allowing to express the solution (the Green’s function for the Helmholtz
equation) as
Ao~ kppobo ik (X—%
G = [ dk——— k%) 3.32
dpdp (va) / c2T+,00)\k-ke ( )
Explicitly performing the inverse Fourier transform yields
kBHQ C%

Gopsp (X, %) = Cspsp (X, X) = mexp —|x — x| o] (3.33)

where we have recognised that G = Ca, Eq. (3.26). The same procedure
can be used to reconstruct the entire correlation tensor Ca = (A @ AT),
Egs. (3.34-3.37):

Cspsp 0 0

Ca=| 0 Cspsw 0 |, (3.34)
0 0 Csoso

with
_ kb .o |
Conir = T —x P | F =X ox ] (3:35)
k0
Covsy = 42168 (%X — X) | (3.36)
Po
kb2
Cigso = —226 (X — ) . (3.37)
PoCy

It can be deduced that, in the Gaussian approximation, the equilibrium
correlations for velocity and temperature are short-ranged (delta-correlated

in space, actually) and the cross-correlation of the fluctuating fields are zero.
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3.1.1 Static structure factor

An important quantity in the theory of liquids is the Fourier transform of
the correlation tensor, the so called static structure factor. In particular the

density structure factor, defined as
S(k) = (6p(k)ép (k)) (3.38)

assumes a key role, both from an experimental [15] and a numerical [51]
point of view. In Eq. (3.38) dp(k) is the Fourier transform of the density

fluctuation
5(k) = / dxe ™% (p(x) — (o)) (3.39)

with (p) being the bulk mean density and the symbol * denoting the com-
plex conjugate. For a single component fluid with capillarity, the Fourier
transform of the density correlation can be deduced from the spatial density
correlation Eq. (3.35), by enforcing the Wiener-Khinchin theorem as:

(p) kb
A+ (p) Ak -k

Sk) = /dxeik'x (0p(x)Ip(x)) = (3.40)

3.2 Fluctuation dissipation balance

To correctly model the stochastic fluxes (stress tensor and heat flux) one
needs to use the fluctuation-dissipation theorem which is worthwhile recalling
here in the context of the Navier-Stokes system for a capillary fluid. For the
sake of clarity, the full calculation is illustrated first for the one-dimensional
case. Apart from some attention needed to deal with the vector counterpart,
generalisation to the three dimensional case is straightforward, and it will be

postponed to the next section.
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The system of equations presented in Chapter 2 (eqgs.(2.29 — 2.31)) can

be rewritten in the 1D case as

Op+ 0, (pv) = 0, (3.41)
A
pCy (040 +v0,0) = —9%&6@ + k020 + (89071)2 + oWy + o,W, 0,0,

where, for the ease of calculation the energy equation is here expressed in
terms of temperature. In the equations p is the dynamic viscosity, k£ is the
thermal conductivity and the terms o,W, and oyW, represent the stochastic
forcing. W is a standard Wiener process and o, /s two suitable operators that
will be later identified by means of fluctuation-dissipation balance.

The above system of equations can be linearized around the mean solution
{po,0,6p}. Such linearization provides a set of stochastic partial differential
equations, whose equilibrium (statistically stationary) solution is a Gaussian

field. The linearized system can be formally expressed in the form
A =LA+, (3.42)

where L is the linearized Navier-Stokes operator with capillarity which reads

0 —p()ax 0
2
cr I 1
0 - 8617895 aacac
PoCy PoCy

f(z,t) is a Gaussian vector process (with three components, in the case of

Eq. (3.42)) whose correlation is
(£(5,5) @ F1(2,0)) = Q(, 2)3(s — ) (3.44)
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with Q(Z, Z) a matrix depending on & and . Note that delta-correlation in
time is explicitly assumed. The stochastic forcing f is related to the standard

Wiener process Wdt = dB by the linear relationship
f =KW, (3.45)

where W = {IW,, W, Wg}T is a Gaussian delta correlated process characte-

rized by the correlation

(W(y,5) @ W(3,q)) =16(7 — 9)d(s — q), (3.46)
and
0 0 0
O-'U
0 — 0
K= wo (3.47)
(R
PoCy

is a linear operator acting on the noise.

The solution of Eq. (3.42) is formally expressed as [30]
t
A (z,t) = / eL=9)F () ds + " Ay, (3.48)
0

where the last term which keeps memory of the initial conditions vanishes

for large times. Consequently the equilibrium correlation is
t
(A(Z,1) @ AT(2,1)) = / L= Q e =9)gs | (3.49)
0

where Q was introduced in Eq. (3.44) above. The integral can be performed
in closed form assuming the existence of a Hermitian non singular operator

E~! such that the operator Q can be decomposed as
Q=-LE'-E'L". (3.50)
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With this position the integrand appearing in Eq. (3.49) is the exact deriva-
tive with respect to the delay time s of L= E~1 ¢L'(t=5) Hence Eq. (3.49)

leads to

lim (A® AT =E™' =Cj, (3.51)

t—o00

hence the operator E~! exists indeed and coincides with the correlation
matrix Ca, see Eq. (3.34).
Given the expression for Q, Eq. (3.50), and the identity E~! = Cj, it

follows

Q = — (LCa + CaLf) = (M +M') = 2kz0, (3.52)

where M = —LCx and O is called the Onsager matrix. Relationship (3.52) is
the form the celebrated fluctuation-dissipation balance takes for the present
system. Highlighting the connection between the intensity of the fluctua-
tions and dissipation mechanisms. The physical interpretation is that, in
thermodynamic equilibrium, the response of a system to a perturbation is
equivalent to the one provided by spontaneous fluctuation. So that one can
infer non-equilibrium properties for a physical system looking at equilibrium
properties.

The unknown operators o,/9 can be finally identified by enforcing the
fluctuation-dissipation balance Eq. (3.52), by introducing Eqs. (3.44) and
(3.45),

Q(z,2)6(s — q) = KIWWNHK' = 2kgOd(s — q), (3.53)

KK' = 2kz0 = — (LCa + CaL') =M+ M . (3.54)
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The explicit calculation of the right hand side of this equation, where L and
Cx are known from Eq. (3.43) and (3.34), respectively, provides

0 k000, [6(z — )] 0
) k0 . kpt? )
Mo | kstode [0(n —8)] =B f 0 0y [6(z — )] pB 0 9ypdy [6(z — #)]
kBeo L kkgf? A
0 2 L0uDs (e = D) =520 0z — 3)

The expression for the Hermitian conjugate matrix is immediately obtained
by taking the transpose of the real matrix M after considering that even dif-
ferential operators are self-adjoint (9], = 0,,) while odd one are skew-adjoint

(0l = —0,). Summing together M and its hermitian conjugate Eq. (3.54)

becomes
0 0 0
2[1,01{300 N
MM =KK = | 0 T dwle =) 0 (3.55)
0 0 2l (5 4]
pD v
So, that
0,0, = —2ukphy0;:6 (& — T) (3.56)
O'QCTQJr = —Qkk39028j555 (l@ — f) s (357)

providing the explicit expressions

o, W, = /2ukpby 0, W, (3.58)
oWy = /2kkgby? 0, W, . (3.59)

The above results can be directly proved by choosing the form of the operator

—\20kp00;6 (& — ), in fact
0,0, (& — &) = 2ukph / 0:0 (2 —y) 0,0 ( — y) dy (3.60)
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and the action of the operator o, on the Wiener process W, reads

oW, () = —/2k50 / 055 (3 — ) W, (,8) dit = \/2kp00 W, (1) -
(3.61)

3.2.1 Restating the LLNS equations with capillarity in
terms of entropy functional

In the present section is reported a particularly impressive form of Langevin
equation, having as a drift term a linear functional acting on the entropy
deviation. This formulation provides a link between the fluctuation probabi-
lity distributions (the entropy functional) and the dynamics of the physical
system. In fact, as common in the linear non-equilibrium thermodynamics,
the thermodynamic forces are defined as the functional derivatives of the en-
tropy (see Eq. (3.12), with respect to the conjugate field A, that under the

hypothesis of Gaussian fluctuations read

OAS,
Y = =-HA 3.62
6A Y ( )
suggesting (see [12]| for details) the analogy with Hookean springs, in which

Y acts as returning force enforcing to restore che thermodynamic equilibrium
at maximum entropy.

As exposed in the previous sections, the thermodynamic force Y is re-
lated with the fluctuation through the correlation tensor as Y = —C™1 A,
providing the equality MY =L A.

Thus, after enforcing the FDB Eq. (3.52), the equation of motion (3.42)
can be rewritten in the form

O0AS,

N VoMW (3.63)

8tA:M
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where My = 1/2(M + M) = kp O is the Hermitian part of M and the ope-
ration (-)/2 has to be intended in the functional sense, i.e., M}{*Mi/? = My.

The Eq. (3.63) admits as static probability distribution P[A] = Z~! exp(AS./kg),
as evident as stationary solution of Fokker-Planck equation, see Eq. (C.8) in
Appendix B.

In fact the stationary probability distribution P [A] obeys to
) 0AS, o o
(5_A MY A%
that after imposing as P[A] = Z~! exp(AS./kp), yields

:MH> PlA] =0, (3.64)

0 § | P[A] 0 OAS. B
{(MH_M)E@)E} kn "’{(MH_M)-E@ 5A}P[A]—O,
(3.65)
so that
0 d | P[A] 0 OAS. B
[MSH'E@)E} i +{MSH.E® 5A}P[A]—O, (3.66)

the latter identity is satisfied since Mgy = 1/2 (M — Mp) is a skew-Hermitian

operator double contracted with two Hermitian ones.

3.2.2 FDB for the 3D system

In this section, the derivation of the FDB is retraced for a 3D system. As sho-
wn in the previous subsection, the Liftshitz -Landau-Navier-Stokes equations

can be formally written as
A =LA+f. (3.67)

For a 3D system, the linearised differential operator L is now rewritten as

Gy awye M (V2+1VV) Lo
L=| " A f or . (3.68)
0 — 2 9ppV V2
/)OCU p(]cv



The stochastic force f = KW is obtained through the linear operator K

0 0 0
Oy
0 =~ 0
K = % . (3.69)
0 0 ——°
PoCy

as exposed for 1D case (see Eq. 3.41), acting on the Gaussian delta correlated
process W. In three dmensions oy is a 3 X 3 matrix whose components are
scalar linear operators to be determined.

For the present system W = {WW,, W, Wg}T, where W, = (sz, W, WUZ)T.
It is worth remembering that the process W is characterized by the correla-
tion

(W(7,5) @ W(g,q)) = 16(5 = 9)d(s — q) , (3.70)

in which I is now, a (5 x 5) identity matrix in the space of W.

After discussing the specific structure of the operators appearing in Eq. (3.67)
and following the procedure illustrated in the previous part of the present
section for the one dimensional problem, it is straightforward to show that

the FDB for the 3D system takes the form
Q = — (LCa + CaL) = (M + M) = 2kz0. (3.71)

By using the new expression for L given in Eq. (3.68) and correlation matrix

Ca for the 3D system, Eq. (3.34), respectively, one finds

0 m12 0
M = mo1 1Mz M3
0 M3z 133

The entries of the matrix M are

mMig = Mg = kBQQV(S (X — )A() s (372)
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k502

Moz = M3y = 3 89pV(5 (X — }AC) y (373)
PoCu
kp0 1
0
kpl2k
Ma3z = —BQ—(;V25 (X — }A() . (375)
PoCy

Thus, the sum of M and its hermitian conjugate M provides the explicit
expression for the square of the unknown matrix operator K, Eq. (3.69), i.e.

the explicit form of the FDB,
0 0 0
KKi=M+Mi=|( 0 2myp 0 : (3.76)
0 0 2m33
Determining K amounts to solve the system of equations (3.76) satisfied
component-wise,
opo) = —2kph2kV?6 (X — %), (3.77)
1
Providing an explicit expression for the stochastic fluxes (denoted by the

prefix § before the deterministic counterpart)

- 1 -
5% = v/ 2ok W, — 5 mm&%(WOL (3.79)

(5q =4/ 2]61(3‘98W9 . (380)

Where W, = <WU + (WU)T) /V/2 is a stochastic symmetric tensor field,

and Wy is a stochastic vector, with the following statistical properties

(W2 (&, YW 5(5. 1)) = Gardasd(E — £)3(E — 1), (3.81)

(WO (&, )WO5(2,1)) = 6ugd(2 — 2)5(t — 1) (3.82)
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It can be easily shown that expressions (3.79), (3.80) are consistent with the

equations (3.77),(3.78), in fact
(ogWeW]ah) = (Vg - 0q(%,1) Vi - 6q (X, 1)) = —2kph2kV?5 (x — X) (3.83)
and

(o)W, @ Wigl) = (V4 02 (%,1) ® Vi - 02 (X,1)) = (3.84)
1
= —2u0kphy (I V2 + ;Ve V) 5 (% —X)

The covariance of the stochastic process corresponding to the stress is

(62(2,1) ® 6=1(3,1)) = Q¥5(& — 3)5(f — 1), (3.85)
with
2
Q%5 = 2kpbp <5w5ﬁn + SonOpy — gaaﬁa,m) : (3.86)

Analogously, the covariance of the fluctuating heat-flux is
(5a(2,1) ® 6q'(7,1)) = QU(3 — 7)8(t — 1), (3.87)

with
Q%5 = 2kp0kdas . (3.88)

It is worth noting that the correlation between thermodynamic force of diffe-
rent tensor rank is zero, consistently with the Curie-Prigogine principle i.e.
((6q'(2,1) ® 0%(%,1)) = 0).

Finally, combining these results all together yields the Landau-Lifshitz-
Navier-Stokes. The evolution of the system is driven by stochastic tensor
fields, with statistical properties defined by the fluctuation-dissipation balan-
ce (FDB), which force the deterministic part of the operator. The ensuing
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balance equations for mass, momentum and energy read

dp

E%—V-(pu) = 0, (3.89)
%—i-v-(pu@u) = V.- X+V. 4%,

OFE

E—I—V-(uE) = V- (X -u-—q)+V-(0X-u-dq),

where u is the fluid velocity, E is the total energy density, £ = U + 1/2p|u/?
with U the internal energy density. In the momentum and energy equa-
tions, 3 and q are the classical deterministic stress tensor and energy flux,

respectively, defined as
A 2
Y= |-p+ §\Vp| + AV - (AVp) | I-AVp® Vp+

m [(Vu +Vvul) - gv : uI} : (3.90)

q=MpVpV . -u—-£kVe. (3.91)

3.3 FDB for wall bounded systems

Wall bounded systems differ from unbounded systems under several respects.
This makes a short clarification concerning fluctuation dissipation balance
for wall-bounded systems worthwhile. For the sake of simplicity the focus
will be an a simple one dimensional problem —the stochastic linear diffusion
problem— with generic boundary conditions. Let c¢(x,t) be a scalar field, L
a self-adjoint differential operator and K a skew-adjoint one

The dynamics of ¢ is represented by the following stochastic equation

% = Lc+V2KW | (3.92)

7



Figura 3.1: Staggered grid: scalar fields like ¢ are defined at cell center, and
vector fields like W are defined on the cell faces. The field cells are colored
in dark gray, and the ghost cells in light gray. Black circles and rhombus
represent the spatial collocation of the field c.

where W is a Weiner process with statistical properties to be determined
by enforcing the fluctuation dissipation balance. Assuming ¢ as a Gaussian,
delta-correlated process ((c(z,%)c(#,t)) = 6(& — Z)0(f — t)), the procedure
previously discussed leads to (see Eq. 3.54)

L=-KWWNHK. (3.93)

The model problem Eq. (3.94) is now specified assuming L to be the Lapla-
cian V2 operator and K the divergence operator V-. For periodic boundary
conditions Eq. 3.93 is automatically satisfied if (WWT) = U, where U is the
identity operator on the space of fluctuations.

In presence of different boundary conditions, however, the structure of the
noise W needs to be changed to preserve the balance prescribed in Eq. 3.93.

This problem has been successfully addressed by Donev et al in [52],
where a simple recipe has been provided to modify the noise structure in the
discretized equations preserving the fluctuation dissipation balance. Here the
procedure is retraced for a staggered grid. The discrete form of Eq. 3.94 on
a staggered grid reads

de

- =Le+ V2KW (3.94)
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where ¢ = (¢g, ¢1, ..., ¢p—1) is a n-dimensional vector, collecting the n values
of the scalar field c(xz,t), W = (W_y)9, Wija,...,Wy_1/2) is the (n + 1)-
dimensional vector of the the stochastic process W(x,t). £ and K are the
discrete versions of Laplacian and divergence operators. In particular, for a
staggered grid IKC is represented by a rectangular (n x n + 1) matrix defined

as

K=Az 0 0 =1 ... (3.95)

as
a—2 1 0
1 -2 1 ..
L=Az? 0 L =2 .. , (3.96)
1 a—2

where Az is the constant grid space, and « is an integer number depending
of the boundary conditions, i.e. @ = 1 for Neumann BC and a = —1 for
Dirichlet ones. It is important to stress here that the adjoint of the discrete
divergence operator is the discrete gradient. By taking the product of discrete
divergence and discrete gradient it is clear that the discrete Laplacian is
recovered, at least at all internal grid nodes.

Let us come to the discrete version of the fluctuation dissipation balance

in Eq. (3.93) which reads
L=-KWWHIKT. (3.97)
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Evidently, assuming (WWT> to coincide with the identity matrix, as expec-
ted from a delta correlated process, shows that the discrete FDB is satisfied at
internal boundary points. The correlations at boundary points need however
to be modified. An additional degree of freedom, (3 in the following equation,
can be added to accomodate the discrete FDB, introducing a generalised form

of noise correlation

3 0 0
0 1 0 ...
wwh = 0 0 1 ..., (3.98)
0 B

By multiplying the matrix in Eq. (3.97) one obtains 8 = 1—a. This procedure
shows that, by modifying the nature of the noise one can have the discrete
FDB satisfied also in presence of non trivial boundary conditions. As a
comment, it could be stressed that this procedure is significantly less elegant
that the more clean approach available for bulk systems, since it lacks full
generality, being based on a specific discrete form of the equations. However
we are working on a general approach to address the fluctuation dissipation

balance for LLNS equations with capillarity for wall bounded systems.

3.4 Spherical Formulation of Fluctuating Hy-
drodynamics Equations and its application
to nucleation process

This section is devoted to the spherical formulation of the LLNS equations, in
particular is presented a procedure developed in collaboration with Davide
Cocco during his master thesis, I was Co-Advisor, and it is adapted from

a paper in preparation. This approach provides an equivalent noise term
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forcing the momentum balance equation. Such simplified model could be
particular useful when dealing with thermally activated processes since it
provides a set stochastic equations for the fields as a function of the reaction

coordinate (the radius of the cluster of the new phase).

Spherical symmetry is a reasonable assumption when searching for sim-
plified models. For instance it is always assumed in CNT, see Introduction
and recent work by Lutsko where a systematic hierarchy of increasingly sim-
plified nucleation models is derived from a general theory based on DFT
[94]. Quite naturally the reaction coordinate representing the progress of the
phase transition in a spherically symmetric model can be selected to be the
radius of the nucleus (see Lutsko [93] for discussion on the topic and the
alternative solution of assuming the mass of the nucleus as the most appro-
priate reaction coordinate). A reduced model that takes into account only
“averaged” information as a function of the bubble radius, is expected to
be able able to capture the main features of the nucleation process and the
subsequent bubble evolution, at a substantially cheaper computational cost,
(see however the paper by Valeriani at al. [140], showing from molecular
dynamics supplemented with suitable rare event techniques that the shape

of actual cavitation nuclei can hardly be classified as spherical.)

Concerning stochastic systems, the assumption of spherical symmetry,
seems to be quite strong, since the random flux breaks this symmetry of the
system. However stochastic spherical models, like e.g. stochastic Rayleigh-
Plesset equation, have been already considered to address nucleation [90,

|.

As anticipated, a more systematic approach, was developed by Lutsko

in [93], where the dynamical equations have been averaged on a spherical
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shell, to directly obtain an evolution equation for the order parameter of the
system. Here as a preliminary study, the spherical symmetry is taken as an
assumption.

Let us start from the capillary Navier-Stokes equations in spherical sym-

metry, reported here for the isothermal case, for the sake of simplicity

Op 10 5\ _

ot gy P =0, (3.99)
op 10 ,, S S s S 4
G g (o) = VBT 9 ane (3.100

where u(r, t) is the radial velocity, p(r,t) = p(r,t)u(r,t) the fluid momentum
density, 3% = —poI + 7° is the stress tensor and f the radial unit vector.
The superscript S denotes that spherical polar base coordinates are used. In
order to express the tensor appearing in RHS of Eq. (3.100) (known in the
Cartesian representation in the basis B = {e,, e,,e.} , so far) into the new
base spanned by the spherical-polar basis B = {e,,eg,e,} , we used the

orthogonal transformations
qu = BkaaBBssﬁBEkl 5E§q — Bfks_)BBZS_)B 5Ekzl ’ (3101)

where the transformation matrix B~ is an orthogonal (3 x 3) matrix,

whose entries are

sinflcosy sinfsiny cosf
Bgs_,g = | cosfcosy cosfsing —sinf |. (3.102)
—sin ¢ cos ¢ 0

so that the coordinate transformation is accomplished by rotating the Car-
tesian basis, i.e. BﬁS*BBﬁf_}B = 0;;. The above transformation lead to the
following expressions for the non vanishing components of the deterministic

stress tensor
1/9p\> p O dp
s _ N i = 2ZF
T”’_)\[ 2(87“) +r207’ (T or
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s _ |19 [ p 0 (20 w1
7'99—)\[2 ar +r28r r + 24 . (rPu)|,  (3.104)

and, the radial component (the only non-vanishing one under spherical sym-

metry) of its divergence of the fluxes reads

A dpp 10 2Tgg
VS . ES p= _a_: 4 EE <T2Trr) _ T i (3105)

Analogously, the stochastic contributions reduce to the three diagonal terms

0%, 0Xgg, 0244, such that the divergence on the stochastic stress is

vsoxsp= L0 (r30%,,) — O%ap _ OVge (3.106)

r2 Or r r

The correlations in the spherical representation are deduced from those kno-
wn in Cartesian coordinates, see Eq. (3.86), by enforcing transformation rules

(3.101),

A - 2
(0%, (2,105 (2,1) =T (5mp5nq + GrmgOnp — g(smnapq) , (3.107)

with Z = 2ukp0d(2 — 2)5(t — t) , and m,n,p,q = ,0,¢. BExplicitly, the

relevant correlations are

(55,2, D655, (3, 1)) = (5550 0, D50 (,B) = (055, (5, D955, (3, B) = 3T,
(3.108)

(555, 0S5 (2, 1)) = (955 (2,055, (7,B) = (5555, D98, (3 1) = —-7
(3.109)

The procedure to be followed to obtain the stochastic equation for the
spherically symmetric system consists in the integration of the Egs. (3.99,
3.100) on a sphere of radius R to obtain a new set of stochastic processes,
whose stochastic contribution will be modified by defining an equivalent noise

term.
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In the light of the above procedure mass conservation equation Eq. (3.99)

reads
9 10 ,,
o = = A1
P /KR p(r,t)dV + /KR 53, (r’p(r,t))dV =0, (3.110)
leading to
%—/;/l (R,t) +47R’p (R,t) = 0, (3.111)

where M(R,t) is the fluid mass inside the sphere of radius R.
Concerning the momentum equation, the same procedure applied to Eq. (3.100)

leads to

88—7; (R,t) + 47R*p (R, t)u (R,t) =T (R,t) + 0T (R,t) , (3.112)

where P(R,t) is the total fluid momentum inside the sphere of radius R. The
two terms on the RHS of are
I'(R,t) = V.25 +dV oL (R,t) = V.08 #dV, (3.113)
r<R r<R
respectively.

Let us focus on the stochastic term dI'. Since the angular terms 6349 and
0%, are two Gaussian processes with the correlations given by Eq.s (3.108,
3.109), it is useful to define the new Gaussian process d%45 = 0Xgp+ 0L, SO
that (044 (%, )04 (%, 1)) = 4/3Z, thus the stochastic force is decomposed
as
6T (R, t) = /KR %% (r*0%,,) dV—/KR % dV =T, (R,t)+6 (R, 1) .

(3.114)

The simplest way to proceed is by introducing a stochastic process equi-

valent to process Eq. (3.114). To this purpose we need the correlations of
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or,
10

<6F(R £>6F(R £)> B /<R /<R 7"2 or (A25ZTT(7Q’£)) T2 87" ( 2527“7“( )) +
: / / 72 087“ (P850 (7.1)) T5E¢¢(f7 t) +
F<R J7i<R
+ / / AV dv - 52¢¢( )= 52¢¢( i) . (3.115)

After some algebra one finds

(6T(R, )T (R, 1)) =

(3.116)

167 . R 5 R R R R
= —Z R25(R—R)+/ / 6(f—f)dfdf+2/ RS(R — 7)dr | |
0 0 0

with Z = 2ukpf6(t —t). It is now easy to show that the process

(5F*(R,t):/0 5( (r)E(r, 1)) dr+/ Be(r, t)d (3.117)

expressed in terms of the Weiner process &, (£(7,£)E(7, 1)) = 0(F — 7)6(t — 1),
is statistically equivalent to 0I' in Eq. (3.112), provided f = (32/37kgud),
a = Rp.

To summarise, the evolution equations for the mass and momentum
contained in a sphere of generic radius R can be written as

OM (R, 1)

AT 47R*p (R,t) =0, (3.118)

OP (R, 1)
ot
Equivalently, by taking the R-derivative of both equations, a correspon-

+47R*p (R, t)u (R, t) = T (R, t) + 0T (R,t) . (3.119)

ding local form is obtained as

dp 1 0 , ,
E+§@(R p) =0, (3.120)
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op, 10
ot R2OR

RN R SN N S I
(Bpu) = mogp (BEn) 2545 |97

(a(R)E(R,1)) + BE(R, T)
(3.121)

Egs. (3.120, 3.122) are the spherically symmetric form of the LLNS equa-
tions in spherical symmetry. Their main advantage is that only one stochastic
process £(r,t) is involved (clearly the FDB is already satisfied). The model
allows for the numerical modelling of spherical cluster nucleation — starting
from the very appearance of the phase formation up to the consequent hy-
drodynamic motion — at very cheap computational cost, in comparison with
the three dimensional case.

The model is validated by numerically evaluating the correlations of the
radial velocity field and comparing them with their theoretical predictions.
The general procedure needed to obtain the correlations will be explained in
detail in Chapter 4, where the effect of numerical discretisation is fully taken
into account. The procedure is based on expressing the probability density
function in terms of the entropy functional, Section 3, and Eq. (4.20) for

further detail. This leads to

(0u(R)6u(R)) = ko s

= 3.122
47 po Ar ’ ( )

with pg the mean density, Ar the step of the numerical grid, and 6, the
temperature. Figure 3.2 compares the theoretical prediction for the discrete
model with the numerical simulation focusing on the velocity variance. The
agreement between theory and numerics is rather good, confirming that the
FDB is preserved.

After validation, the model can be exploited to deal with vapour bubble
nucleation. Starting from the metastable state (uniform liquid) the evolution

of the system is followed by numerically integrating Eqgs. (3.120, 3.122) up
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Figura 3.2:  Velocity variance as a function of the radius R, the red li-
ne represent the theoretical prediction and the blue circles the numerical
calculation.

to the eventual stable state (specifically, a vapour bubble surrounded by
liquid in a confined system). The density profiles (broken lines) are plotted
in Fig.3.3 for different time instants along the transition up to the final
equilibrium state (black solid line). As explained in Chapter 2, the most
probable transition path, (under the assumption of over-damped regime),
and the critical state in particular, can be evaluated in parallel using the
string method. This provides access to the critical density profile and the
energy barrier (see Fig. 2.4 and Fig. 2.5 in Chapter 2). The red line in the
figure is the critical density profile from the string. In the stochastic system,
starting from the homogeneous liquid phase (the dotted dark green line),
thermal fluctuations lead to the formation of a vapour nucleus. In proximity
of the nucleation time —roughly ¢ = 30000 for the specific case reported in

Fig. 3.3 — the density profile obtained by time integration of the stochastic
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Figura 3.3: Density profiles as a function of radial distance r, the criti-
cal profiles (red line) is evaluated with the string method. The other ones
represent the numerical results.

system matches quite well the critical profile provided by the string. In these
thermodynamic condition the process conform precisely to the notion of a
thermally activated transition. Indeed, reaching the activated (transition)
state requires quite some time. After the critical state has been reached the
successive dynamics is comparatively much faster, requiring a dimensionless
time of 10 to be completed as compared to the tenfold time, 10%, required

to form the critical nucleus.

The simulations allow to evaluate the mean first passage time (7), from
the metastable(uniform liquid) to the critical state (when the critical densi-
ty profile is reached). Numerical results are compared with the theoretical
prediction of Kramers theory, showing an agreement, in particular far from
the spinodal limit, that can be considered quite reasonable, if the simplifying

assumption of theory are considered. In order to be as fair as possible in
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Figura 3.4: Mean first passage time for different thermodynamic condi-
tions, the blue squares represent numerical calculation and the red circles
theoretical prediction.

the comparison, Kramers theory (summarised in Chapter 1) has been used
in the context of the diffuse interface approach. This boils down to using the
potential (free-energy) obtained from the string method, AQ(R) = AQ,(R)
(see Fig. 2.5), as energy landscape in the theory. The integral providing

Kramers first passage time,

r) = /U exp <—A§B(f)) dR /m L exp (Agj) ) dR,  (3.123)

is numerically evaluated. In order to do so, a further modelling assumption is

needed to estimate the diffusion coefficient. In the present case, the diffusion
coefficient, D* = kgf/16umR*, has been estimated in correspondence with
the critical state following Menzl, et al in [101], i.e. by enforcing the fluc-
tuation dissipation balance on the stochastic over-damped Rayleigh-Plesset

equation.
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Capitolo 4

Numerical Analysis of the LLNS
Equations with capillarity

This Chapter is devoted to the numerical analysis of stochastic partial dif-
ferential equations arising from the diffuse interface model endowed with
thermal fluctuations. In particular a general overview on the deterministic
part of the equations is given, stressing the numerical challenges characteri-
sing the proposed approach to multiphase flows. Subsequently the stochastic
contribution will be addressed in detail, focusing on the preservation of the
statistical properties of the system in the discretised form of the equations.
The validation of the numerical algorithm is performed by comparing theo-
retical and numerical equilibrium properties, e.g the static structure factor

and the static probability distribution, of the macroscopic field.

4.1 The deterministic equations

The system of equations to be solved (2.29 — 2.31) must to be coupled with
a suitable equation of state. The van der Waals EoS has been exploited

to study the collapse of cavitation nanobubbles, since it qualitatively well
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represents the behavior of the most common fluids. Conversely, an EoS
recovering the physical properties of a Lennard Jones fluid has been used in
the bubble nucleation simulations, in order to directly compare the results
with Molecular Dynamics simulations available from literature.

The numerical solution of the system of equations (2.29 — 2.31) is challen-
ging due to a combination of different physical phenomena, which all require
a different specialized numerical techniques. Apart from the extremely thin
liquid-vapor interface that requires a high numerical resolution, the system
supports i) the emission and the propagation of shock waves; ii) viscous dif-
fusion and capillary dispersion; iii) phase change and transition to and from

supercritical conditions.

4.1.1 The different mathematical features of the equa-
tions

In the system of the equations (2.29 — 2.31) both hyperbolic features (Euler
equations) and diffusive and dispersive behavior induced by viscosity and ca-
pillarity (Navier-Stokes-Kortweeg equations) are present. Moreover, at least
for the van der Waals equation of state, a region of the thermodynamic pha-
se space exists where dpy/dpl, < 0. As well known, in ordinary conditions,
this derivative defines the square of the sound speed, implying that where
c? < 0 hyperbolic behavior changes into parabolic, see Fig. 4.1 for an expla-
natory diagram. From a numerical point of view, compressibility and shock
wave propagation would suggest the adoption of specialized shock-capturing
methods, like the Essentially Non Oscillatory schemes, or their Weighted
WENO extension [130]. Unfortunately these schemes fail when the system

explores a thermodynamic unstable state (certainly it happens in a two pha-
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Figura 4.1: Phase diagram in the p — p plane. In the zone (I) where p > p,
and 6 > 0. the fluid is in supercritical state. Zone (II), characterized by
p < pe but € > 6., is the gas region. Conversely, zone (III) where p > p. but
6 < 6. is the compressible-liquid region. In zone (IV) and (V) the fluid is
in liquid or vapor state, respectively. Under the binodal curve, which repre-
sent the saturation conditions, we find zones (VI) and (VII) of metastable
liquid and metastable vapor state, respectively. The spinodal curve, defined
as Op/0pls = 0, separates the metastable regions from the unstable region
(VIII). Finally, in subset of the unstable region, zone (IX), ¢* = dp/dp|, < 0,
i.e. the sound speed becomes imaginary.
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se system due to the diffuse interface). The strategy conceived to deal with
this complex mathematical structure, is based on two basic ingredients: 1)
Identification of the hyperbolic part of the operator and its extension to the
parabolic region where ¢? < 0; 2) Operator splitting into hyperbolic and non-
hyperbolic part. For convenience, these two ingredients will be discussed in

revers order.

4.1.2 Operator splitting strategy

As discussed in Chapter 2, the state of the system is identified by three
basic, conserved fields, namely mass, momentum and total energy density,
to be collectively addressed here as the state vector U(x,t) = (p, pu, E)".
Formally system (2.29 — 2.31) can be written as

ou
S = N[U = [U]+ P[U],

where H, is the extension to the whole phase space of the hyperbolic part of
the operator and P = N —H, is defined accordingly. The explicit expressions
of the two operators H. and P will be provided below. After the operator
is split as explained, the state vector can be evolved in time exploiting a
solution strategy in terms of Strang splitting [135]. Denoting F(t) the full

propagator such that
U(t+7) = Fx(m)U(2),
for small 7 we can approximate
Fi(7) = Fp(7/4) Py (7/2) Fp(7/4)

where Fp(7) is the propagator of system

ou

— =P|U

- =P[U],
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while Fy; (1) is defined by

ou
E =H, [U] .

Strang splitting allows for using different algorithms, specialized for each
component of the system. The algorithms we selected are a third order
WENO [130] scheme for the hyperbolic part and a second order accurate,
centered finite difference scheme for the parabolic part. We performed the
time integration of the hyperbolic part with a full explicit, third-order TVD
Runge-Kutta scheme. The parabolic operator is advanced in time with a
mixed, implicit-explicit scheme, where the linear terms (viscous stress and
heat flux) are treated implicitly in order to increase the stability limit. In the
region of phase space where the sound speed is well defined, the hyperbolic

step is

% = -V (pu), (4.1)
65;: = —-V.-(puu+pl), (4.2)
OB, 0 (pUe)
= = VB -5 (4.3)

where Ey = p (Uy + 1/2[u)?) is the total energy density deprived of the capil-
lary contribution, which reproduces the classical Euler equation. The capil-
lary contribution to the energy (pU,) is treated as an explicit forcing term
depending on the density gradient. Here, as already stated, a van der Waals

fluid is assumed in the equations of state. The parabolic part of the operator
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corresponds to

dp
£ = 4.4
dpu
— . 4.
5 V.r, (4.5)
OF 1 ,

where the capillary contribution (first term in the right hand side of the
equation for F) has been included in the energy flux. In the coexistence
region below the binodal (or coexistence curve, Fig. 4.1), which contains
the region where ¢? < 0, a Maxwell-like rule is used. Using the additivity of
specific volume and entropy, mass density and specific entropy can be written

as

l—(1—cv) ! +a !
p pv(0)  pr(0)

Nsat = (1 — a)nv(0) + anr(0)

where subscript L and V' denote pure liquid and vapor at the given tempe-

rature. The above relations can be inverted to yield

o = a(pa nsat)
0 =0(p,Nsar) -

For the mixture of vapor and liquid, the saturation pressure depends only on

temperature, such that

Psat = psat(e) = psat(p7 775at) .

This expression allows to extract the sound speed as

C2 o apsat
sat ap Neat

>0
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whose final expression is

(dpsat ) ?
2 = do (4.7)

e 2 dﬂ_’-idps“tdpL_p_pLdesat .
P\Cae T2 a0 o ppr de?

The interested reader is referred to [102] for details on the thermodynamic
derivation of the sound speed for the mixture.

In fact, the actual pressure differs from the saturation pressure,

b= p(e, P) = psat(e) + 5])(07 p) )

to the extent that ¢* = dp/dp|, may become negative. We stress however

that ¢2

sat

> 0, thereby allowing to identify the hyperbolic part of the evolution
operator in the region below the binodal (which includes the region where
? <0).

Concerning the energy density, we consistently address the energy of the

liquid-vapor mixture,
Eo = 1/2pu)® + p[(1 — @)Uy + aldy] .
Again, the actual energy is
E=F,+0F.

With the above position, the split system in the region below the binodal

reads
dp
D= V(). (48)
0
% = —V'(pU®u+psatI)a <49)
aEsat _ —85E
L V[V (Bt D))~ o (4.10)
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for the hyperbolic part and

dp
%o, (4.11)
e (4.12)

for the parabolic part, respectively.
We stress that the definitions of the operators given separately for the

two regions of phase space join continuously at the binodal curve.

4.2 The stochastic equations

The system of equations (3.89) has been discretized in the spirit of the me-
thod of lines, consisting in two stages: the first stage concerns the spatial
discretization, the second one is focused on the temporal integrator. Concer-
ning the spatial discretization it is worth stressing that the different physi-
cal phenomena described by the LLNS system ask for specialized numerical
techniques. A crucial point to be addressed is the correct reproduction of
the system statistical properties, in particular the adopted numerical scheme
need to be consistent with the fluctuation-dissipation balance. A necessa-
ry condition for this restriction is that the mathematical properties of the
relevant continuum differential operators are conserved in the discrete formu-
lation [3|. Egs. (3.89) have been discretized on a equi-spaced staggered grid,
following [54]. Due to staggering, scalar fields, like density, e.g., are located
at the cell center while components of vector fields in a given direction are
located at the center of the perpendicular face (see Fig.3.1 in Chapter 3 for
details).
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4.2.1 Thermal fluctuations for a capillary fluid at equi-
librium in a discrete system

Before discussing the numerical results, it is worth remembering the stati-
stical properties of fluctuations in equilibrium state, that will be used as
benchmark for the numerical validation. In Chapter 3 the Einstein theory
of fluctuations has been recalled. Here the main results are shortly repor-
ted for the reader convenience. By assuming that the fluid is very close
to equilibrium and the fluctuations are small with respect to the mean va-
lue, the entropy functional can be approximated by a quadratic form in the

fluctuating fields,

66° . (4.14)

2 59 (V25p) + L6u - u 4 P50

AS, N—l/dvﬁé 2 —
c — v p 00 0(2)

2 Bopo o

The probability distribution functional for the fluctuating fields A = (dp, du, §6)

18

1 AS.
P.,[A] = — ©XP ( o ) : (4.15)

hence the correlation tensor takes the fosllowing quadratic form
Cax) = (AR AT) = / DépDSuDS A @ AT P, dV (4.16)

and can be evaluated in closed form by elementary techniques for Gaussian
path integrals.

The discrete correlations are evaluated by dividing the system in cubic
cells V,, of volume AV = Ax?, such that the set V is written as V' = Uf:[:l V,
and V,, NV, = 0 if m # n, i.e. the subsets V, form a partition of V. The
discrete fields are defined at each cell as the space-average of the continuum

fields over that volume, i.e. letting U, = (p,, u,, 6,) be the discrete field at
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a generic grid cell n, one has

U, (1) = ALV/V AV U, (x.1) . (4.17)
It is worth stressing that the system of equations Eq. (3.89), can be linea-
rized around the mean value of the hydrodynamic fields, providing in a di-
scretized form, a set of Ito’s stochastic ordinary differential equations for the

fluctuations A,, = U,, — (U,,) as
dA, (t) = LymAy dt + Kymd By, (4.18)

where the first term of RHS of Eq. (4.18) is the discrete form of the deter-
ministic terms in the linearised Eq. (3.89), and the second one corresponds
to the stochastic contributions. The operators L,,,, .., are block matrices
acting on all the N five dimensional vectors A,, ,dB,,. The stochastic con-
tributions are constructed to reproduce the probability distribution of the

fluctuating fields that, in the discrete limit, reads (see Eq. (4.14))

1 AS.\ 1 AV &
P.,(A,) = — eXP ( = ) = - exp T Z Ay Hpn A | (4.19)
l,m

The corresponding covariance matrix is
1 [ k
A@A)=— [ [[PA.AA, Py (A) = ZH,, .
< 1 ® m> Z/nld n ] ey eq( n) Alem

To be more explicit, the set of fluctuating fields A,, have been collected in a

5N-dimensional vector, and H is a 5N x 5N block matrix defined as

h 613 611

@31 %133 @31
0

@11 613

H = (4.20)



with Iy, and Is3 are N x N and 3N x 3N identity matrices, respectively, and
©,, are pN X gN zero-matrices, with all zero entries. Particular attention
must be paid to the term h = 2, AV 1y, /0opo— NAV /Oy L, that for a capillary
fluids induces long-ranged correlations due to the presence of the discrete
Laplacian operator L (instead of the classical delta-correlation for simple
fluids).

After rearranging the fluctuating fields as above, the covariance matrix
(discrete Green’s function) is easily evaluated by solving the multidimensio-
nal Gaussian integral. The procedure yields the statistical properties of the

discretised equations,

A
(Opidpm) = / HdA AA,, exp | ——— Z Arhy, A, | =
n=1
%hh; , (4.21)
3N
_ AVpO
= z;! An AA A =
(dwbunm,) v /I[ld n A, exp 2k390 Z 1Ot A
kb
- pOBmO/(SZ"“ (4.22)
l _ AVpoe
_ 0ty
(061060,,) = Zy / []da, AA,, exp T Z Ay O A
n=1 l,m
kpb?
— pocBAOV&m' (4.23)

In other words, in the theory of (discrete) fluctuating hydrodynamics the
fluctuating fields are a set of Gaussian stochastic processes, with zero mean
and the variance given by Eq. (4.21,4.22,4.23). Tt is worthwhile noting as all
the fields are mutually statistically independent ((dudp) = 0, for example).
Also, the density field is not delta-correlated due to the presence of capillarity.
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4.2.2 Discrete static structure factor and weak conver-
gence analysis

As already discussed in Sec.3.1.1 a relevant quantity both from the ex-
perimental and the numerical point of view is the static structure factor
(see.Eq. 3.40). Here we report the comparison of the density static structure
factor, which is the Fourier transform of the static correlation function Cj,s),
in Eq. (3.35). In the discrete limit, the theoretical static structure factor

reads

0006E O  e=(<dp?>-<dp™> M<Op?>,,)
0.005E o
0.004F Q- ‘

-y ’
0.003F R4

C e 2

- ’
0.002 o .’ At

- ’ ’
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4
C 1 1 L1 1111l 1 1 L1111l
10° 102
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Figura 4.2: Left panel: Static structure factor comparison for a capillary
fluid in a 3D system. We report the relative error e = |S; — S;|/.S; between
the theoretical prediction and numerical calculation for each wavenumbers
ky, ky, k. in the Fourier space. Right panel: Error of the density variance
at different simulation time steps. As expected, the error follows a square
power law e oc At%.

pok b
kg) = 4.24
St( d) C%‘{'po)\kd'kd’ ( )
where
_ (sin (k,Ax/2) 2 sin (k,Ay/2)\’ sin (k.Az/2)\?
kd‘kd—(—Ax/Q ) \Tagz ) T\ Tae ) 42
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is the discrete version of the square norm of k, arising from the discrete
laplacian operator in Fourier space [33]. The numerical value of the density

structure factor is calculated, following its definition, as
St(ka) = (6p(ka)dp”(ka)) - (4.26)

As shown in the left panel of Fig. 4.2, the numerical results are in very good
agreement with the theoretical prediction. In particular the relative error
e is almost everywhere less than 2 — 3% in the field, except for the small
wavenumbers, due to the slow convergence of low wavelength modes [33].
Nevertheless, even in the latter case, the relative error is lower then 10%.

As a second test, we compared the variance of velocity and temperature
fluctuations. In particular, the velocity fluctuations must reproduce the

celebrated equipartition theorem, here reported in the discretized version:

kg0,
. = 4.2
(ou - du) 3p0AV’ (4.27)
k62
92\ = 270 4.2
(00%) = AV (4.28)

The values reported in Tab. 4.1 clearly show a perfect matching between

numerical results and theoretical expectation.

Variances | Theoretical prediction | Numerical value | Error %

(6u2) 1.3333- 1071 1.3332 - 1071 0.01
(0u?) 1.3333- 1071 1.3331-1074 0.02
(6u?) 1.3333-10~* 1.3335- 104 0.02
(66?) 5.8361-107° 5.8443-107° 0.15

Tabella 4.1: Numerical temperature and velocity variances in comparison
with theoretical values.

As a last test, we validated the accuracy of our time integration method.

We performed the time evolution by means of a second order Runge Kutta
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scheme [16]. We compared the numerical error, e, on the variance of density
fluctuations (dp(x)?) at different time steps At with respect to (9p(x)?)op
obtained with our finest integration step At = 10~*

e = |<(5,O(X)2> — <5P(X)2>0pt| ’ (429)

{0p(%)%)opt

where the average is evaluated as 1/(T'V) fOT [i 0p(x)* dVdt with the time

window T fixed as T' = 100 LJ units. The right panel of Fig. 4.2 clearly show
the expected power law, e oc At? as expected for the weak convergence of
such stochastic pde [16]. All these tests ensure that the numerical scheme
correctly reproduce the statistical properties of the system, i.e. the numerics

preserves the fluctuation-dissipation balance in the discretised equations.

4.2.3 Static Probability Distributions

In Fig. 4.3 we report the comparison between the theoretical probability
distribution functions of density and temperature, and the numerical calcu-
lation. Figure 4.4 provides the comparison between the numerical and theo-
retical normalised mean kinetic energy. Since the fields w, (po AV /kpfy)'/? are
normally distributed Gaussian stochastic processes, the mean kinetic energy
normalised with 1/2kg6# must be a Chi-squared stochastic process with mean
value 3. For the generic fluctuating field A the numerical variance is compu-
ted as 1/TV fOT [, A(x,t)* dVdt, where the time window is set to 7" = 100t.
As shown in Figs. (4.3,4.4) numerical results are in very good agreement with
the theoretical prediction. This ensures that the numerical scheme is able to

reproduce the statistical properties of the system.
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Figura 4.3: Probability distribution functions for density and temperature
fields, the red lines represent the theoretical predictions (Gaussian distri-
butions) and the blue circles the numerical calculations. The results are
presented in an non dimensional form, according to Lennard-Jones units.
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Capitolo 5

Conclusion and Perspectives

In these PhD thesis a mesoscale model based on the Van der Waals diffuse
interface approach endowed with thermal fluctuations has been developed to
address cavitation in its entirety, starting from the nuclei formation (nuclea-
tion) up to the macroscopic motion (bubble dynamics). In order to describe
spontaneous nucleation, two crucial aspects have been addressed. The first
aspect concerns the thermodynamics of two-phase system. For this purpo-
se a diffuse interface (DI) description has been adopted. The results show
a correct modeling of phase change, latent heat release, compressibility as
well as surface tension effects. The second one consists in modeling thermal
fluctuation, addressed by fluctuating hydrodynamics (FH). The FH theory
was developed for simple fluids in the eminent work of Landau and Lifshi-
tz. That approach has been extended in this thesis to the diffuse interface
context for capillary fluids. The model has been used to numerically address
vapor bubble nucleation both in homogeneous and heterogeneous conditions.
The calculated nucleation rates are favorably compared with state of the art
simulations. Concerning the comparison with classical approaches (CNT,

string method, Kramers theory) it is found that the simultaneous nucleation
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of several bubbles strongly affects the nucleation rate, providing different

view point with respect to the single-bubble models.

However the nucleation rate in the initial phase is only mildly affected
by the simultaneous presence of newly nucleated bubbles and compared fa-
vourably with the available results of large scale MD simulations. From a
computational point of view, the present technique has revealed extremely
more cheap than traditional MD simulations, allowing the analysis of the ve-
ry long bubble expansion stage where bubble-bubble interaction (coalescence
and collapse) events turn out to determine the eventual bubble size distribu-
tion. In order to complete the analysis, a spherical version of the model is pro-
posed, particularly useful when dealing with homogeneous nucleation, where
is is reasonable (and common) to assume a spherical shape for nucleation
embryos. The reduced model is able to reproduce the Einstein-Boltzmann
probability distribution for fluctuations and well agrees with Kramers theory

in predicting the mean first passage time.

The model has great potential also for use in a pure deterministic setting,
showing a very accurate description of the hydrodynamics of multiphase sy-
stems. In particular, it has been exploited to study the collapse of a cavita-
tion nanobubble near a solid boundary, showing an accurate reproduction of
physical phenomena observed in the experiments, namely: strong peaks of

pressure and temperature, shockwave emission and liquid jet formation.

In addition the Van der Walls model coupled with the a rare event tech-
nique (the string method) was used to evaluate critical cluster and energy
barriers. This method has been used under the hypothesis of over-damped
regime, where the MEP is also the most probable path for the gradient
dynamics (Allen Cahn equation). Notwithstanding the path geometry the
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system follows when transitioning from the metastable basin to the saddle
point, could be considerably different with respect to an over-damped regi-
me. Since inertial effects could be crucial. Thus, determining most probable
path from FH simulations, where inertial effects are considered , is a very
interesting perspective, and I am presently presenting this as an interesting
perspective objective for future work. Finally the most probable path could

be also determined for the simplified spherical model we developed.

The encouraging results obtained with the present mesoscale model, sti-
mulate its exploitation in more complex conditions. For instance, developing
a multi-species systems is crucial in liquid-vapour nucleation, since the pre-
sence of dissolved gases and impurities is unavoidable and always detected
in common liquids, e.g. water. The extension of the present model to multi-
species system consists in more or less straightforward generalisation of the
Helmholtz free energy both in its bulk part (depending on the density of
all the species involved) and in the capillary term (depending on a capillary
tensor and on the spatial gradients of all species). The model can be im-
mediately and directly coupled to macroscopic flows address nucleation in
dynamic environments —like the engineering contexts where cavitation pro-
cess usually occurs— focusing on nucleation rates and bubble interactions. A
little further ahead fluctuating hydrodynamics can be extended to the phase

field crystal framework, to address solidification dynamics at mesoscale level.

As final remark, I would like to point out an apparent conceptual incon-
sistency of Van der Waals theory when dealing with multiphase systems. In
fact, the diffuse interface model is derived from gradient expansion of exact
DFT expressions, under the assumption small density gradients on molecu-

lar length scales. This hypothesis is reasonable when studying fluids at high
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temperatures (the cases in force in this thesis), where the transition zone
between the two different phases is characterized by a smooth interface. Ho-
wever, its validity in more general contexts is not so evident, since the widths
of the derived interfaces are often only a few molecular diameters in extent.
These problems are also detected in phase field theory for crystallization,
where it is supposed to describe localization of the density onto molecular-
scale. Onto these length scales, molecular correlation effects can be crucial
in modeling fluids, showing the need of more sophisticated theories, namely
microscopic DFT models. Unfortunately, such microscopic theories are often
unaffordable in many cases in terms of computational resources. For this
reasons, at the expense of generality, the efficiency of the Van der Waals mo-
del in the description of both the phase change inception and macroscopic
motion, seems to be a fair compromise. Nevertheless, the theoretical advance
in phase field approaches will be crucial in continuum models of multiphase
systems.

In conclusion, we believe that the work done with this thesis could be
useful in the development of innovative continuum formulation for thermally

activated processes.
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Capitolo 6

Shock-induced collapse of a vapor
nanobubble near solid boundaries

The deterministic diffuse interface approach described in Chapter 2 has been
used to address the collapse of a cavitation nano bubble in proximity of a solid
wall. The method was found to be suitable in the description of the complex
mechanisms behind the cavitation collapse, namely: topology modification,
phase changes also in supercritical regime, shockwave emission, liquid jet
formation. Qualitatively reproducing the existing experimental observations.

The simulated system —consisting of a pure van der Waals fluid— is ini-
tialized with a vapor bubble of radius R, in equilibrium with a surrounding
liquid, and placed at a distance zy from the wall. The collapse is triggered
by an impinging shockwave, that as soon as it touches the bubble causes its
collapse. Several initial condition have been investigated, by changing both
the bubble initial wall distance and the intensity of the triggering shockwa-
ve. Overall the bubble dynamics is characterized by a sequence of rebounds
during which many complex physical phenomena are detected. In particular
when the bubble reaches its minimum volume extreme values of temperatu-

re and pressure are detected, these peaks are considered the forerunners of
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Figura 6.1: Simulation snapshot during bubble collapse.

the shockwave emission. The emitted shockwave strong interacts with the
dynamics following the collapse stage, especially when the collapsing bub-
bles are very close to the solid boundaries. In addition the presence of the
wall and the triggering collapse mechanism, determine the breaking of the
spherical symmetry in the system, leading, for sufficiently strong intensity of
the incoming shock wave, to the poration of the bubble and the formation
of a toroidal structure surrounding a liquid nano jet, as it is highlighted in

Fig.6.1 representing the latter phase.

Intense peaks of pressure and temperatures are found also at the wall,
confirming that the strong localized loading combined with the jet impinging

the wall is a potential source of substrate damage induced by the cavitation.
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The complete results have been published on IJMF (Volume
84, September 2016, Pages 34-45), and are reported here with the

permission of the authors.

abstract

The collapse of a nano-bubble near a solid wall is addressed here exploiting a
phase field model recently used to describe the process in free space. Bubble
collapse is triggered by a normal shock wave in the liquid. The dynamics
is explored for different bubble wall normal distances and triggering shock
intensities. Overall the dynamics is characterized by a sequence of collapses
and rebounds of the pure vapor bubble accompanied by the emission of shock
waves in the liquid. The shocks are reflected by the wall to impinge back
on the re-expanding bubble. The presence of the wall and the impinging
shock wave break the symmetry of the system, leading, for sufficiently strong
intensity of the incoming shock wave, to the poration of the bubble and the
formation of an annular structure and a liquid jet. Intense peaks of pressure
and temperatures are found also at the wall, confirming that the strong
localized loading combined with the jet impinging the wall is a potential

source of substrate damage induced by the cavitation.

Introduction

The collapse of vapor bubbles near solid boundaries has been deeply inve-
stigated in the last century. The triggering episode goes back to the finding
of the destructive effects of cavitation phenomena on the propellers of the

great ocean liners at the beginning of the XXth century. Similar effects ha-
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ve been observed successively on the blade of big hydraulic machines like
turbines and pumps [131, 88|. Only recently, due to the increasing impact
of the micro and nano technologies, the attention from millimeter-size bub-
bles has shifted downwards, toward micro or sub-micro bubbles. Indeed in
microfluidic devices, the so called lab on a chip, cavitation phenomena can
be employed for microfluidic pumping [50], to enhance mixing by means of
vorticity generation during the final stage of bubble collapse and for surfa-
ce cleaning purposes [112]. Cavitation bubbles are also used in advanced
medical procedures like high intensity focused ultrasound (HIFU) and extra-
corporeal shock wave lithotripsy (ESWL) [35] to enhance drug delivery or
increase local heat deposition deep within the body, to control localized cell
membrane poration [125], and to comminute kidney stones [151]. Moreover,
the use of femtosecond lasers, generating nanometric bubbles, has recently

found important applications in nanosurgery of cells and tissues |11, |-

The experimental investigation has played the most important part in
the understanding of bubble-wall interactions, so far. The improvements in
the bubble generation techniques led to cleaner and better reproducible data,
starting from the kinetic impulse technique [14]. This approach suffers from
the disadvantage that the bubble must be located before the application of
the impulse. Successively the problem of localization has been overcome by
means of the generation of the bubble by using an electric spark [108, |.
As a drawback, the electrodes perturb the bubble motion in the last stage of
the collapse. At the moment, the best bubble generation technique is, proba-
bly, the non-intrusive pulsed-laser discharge [143] that can focus an intense
local heating and vaporization of the liquid through application of a ther-

mal impulse. The visualization of the bubble dynamics can be performed by
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illuminating the scene with diffuse backlighting [16] and by means of high-
speed cameras, up to 20 million frames per second [111]. More recently, the
1-PIV technique has been used to measure the flow field during the bubble
collapse [125]. The experiments allowed the visualization of the jet formation
during the bubble collapse near solid surfaces and the assessment of the role
of shock-wave emission, jet-wall interaction and chemical effects on cavita-
tion damage |14, |. Notwithstanding the extreme frame-rate of modern
cameras, the complete and detailed description of thermo-acoustic and flow
fields, is still lacking. The temperature and pressure inside the bubble at
the collapse instant is not easily accessible with non-intrusive measuremen-
ts. The pressure indeed can be only extrapolated by measuring it with an
hydrophone at some distance from the bubble and by assuming a classical
1/r decay [37]. The temperature instead can be estimated by matching a
blackbody radiation with the measured spectrum of the emitted light upon
collapse [60].

On the other hand, the mathematical modeling of cavitation is still a
great challenge. The cornerstone in the theory of bubble dynamics was the
pioneering work of Lord Rayleigh [121] who described the collapse of a bub-
ble immersed in a unbounded incompressible liquid. Despite the significant
simplifying assumptions, the correspondence with experimental results is still
impressive. The model has been successively refined by taking into account
compressibility effects in the liquid [31, 69] and the presence of a dilute gas
in the bubble. These refined models provided an estimate of the pressure
peaks reached inside the bubble on the order of hundred times the pressure
of the liquid environment. Numerical simulations and more complex analysis

followed [117, , | in order to describe the effect of a nearby bounda-
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ry. Different numerical techniques have been used in order to capture the
interfacial dynamics, ranging from the Boundary Element Method (BEM)
for irrotational conditions [16] to the Arbitrary Lagrangian Eulerian (ALE)
schemes [138, 51]. Recently more sophisticated models have been proposed to
gain new insights on the effects of dissolved gas and phase change [2| and to
obtain a deeper knowledge in fascinating phenomena like sonoluminescence
[30]. Of particular interest is the diffuse interface approach which enables a
natural description of interfacial flows, changes of topology, vapor/liquid and
vapor /supercritical fluid phase changes which have been shown to be crucial
for the correct description of the final stages of the bubble collapse [96].

In this work we will exploit the diffuse interface model to numerically
investigate the collapse of a sub-micron vapor bubble near solid boundaries.
The effect of the initial bubble-wall distance will be analyzed and the vi-
sualization of the entire flow and thermo-acoustic fields will be provided.
Particular attention will be paid to the stress distribution on the solid wall
and we will address the role of the different pressure waves on cavitation
damage.

The paper is organized as follows: in § 1 the diffuse interface model and
the relevant conservation equations is derived; § 2 provides details on the
numerical scheme and describes the numerical setting of the simulations;
finally, the results of the numerical experiments will be discussed in § 3 to

finally draw conclusions and provide final comments in the last § 4.

Mathematical model

Thermodynamics of non-homogeneous systems We exploit an un-

steady diffuse interface description [5] of the multiphase flow in a domain
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D based on the van der Waals gradient approximation of the free energy

functional F[p, 0] |15, 72|
Fipo = [ jav = [ (fo (0.0) + §|Vp|2) av., (6.1)

where f = fo + A/2|Vp|? with fy(p,0) the classical Helmholtz free energy
density per unit volume of the homogeneous fluid at temperature § and mass
density p. The coefficient A(p,#), in general function of the thermodynamic
state, embodies all the information on the interfacial properties of the liquid-
vapor system (i.e. surface tension and interface thickness). In particular, for

a van der Waals fluid, the free energy reads

A _ K 01/
fo(p,8) = Rpb [—1 + log (pl_—bpﬂ —ap’, (6.2)

with 6 = R/c,, R the gas constant, c, the constant volume specific heat,
a and b the van der Waals coeflicients and K a constant related to the de

Broglie length [150].

Equilibrium conditions The present paragraph summarizes, for the rea-
der convenience, results concerning thermodynamic equilibrium for systems
described by the free energy functional (6.1). Although well known to spe-
cialists, we deemed useful to present a short summary to rationalize this
classical material which is hardly described comprehensively in literature,
751,

At given temperature, equilibrium is characterized by the minimum of the
free energy functional in Eq. (6.1), where variations are performed with re-
spect to the density distribution p. The evaluation of the functional derivative

leads to the following equilibrium condition:

pd — V- (AVp) = const , (6.3)
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where the temperature is constrained to be constant, § = const, and p° =
dfo/0pls is the classical chemical potential. The equation defines a gene-
ralized chemical potential y, = p2 — V - (AVp) that must be constant at
equilibrium.

The consequence of the above equilibrium conditions is better illustra-
ted in the simple case of a planar interface, where the only direction of
inhomogeneity is x, under the assumption of constant A\. The constant tem-
perature appears in the equilibrium problem as a parameter and will not be
further mentioned throughout the present section. Hence, determining the

equilibrium density distribution amounts to finding a solution of

He = MS(P) - )\d2p/d$2 = Heg » (64)

where the chemical potential in the bulk fluid (the vapor phase, say), far
from the interface where dp/dz = 0, determines the constant p., = p2(py) =
12(pr). By multiplying Eq. (8.16) by dp/dx and integrating between p., = py
and p, leads to

i) — iin(pv) = (?) , (6.5)

where @y(p) = fo(p) — ftegp- Equation (6.5) shows that @, has the same
value in both the bulk phases, where the spatial derivative of mass density
vanishes: wy(pr) = wWo(py ).

The grand potential, defined as the Legendre transform of the free energy,

F
Q:F—/pé—d\/:/u?dv, (6.6)
p Op D

has the density (actual grand potential density)
S M (dp\? o P
Wlp] =f — pep = fo + 5 <%) (Mc Az P (6.7)
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implying that, in the bulk, w = g, i.e. wq is the bulk grand potential density.
Given the form of wy(p), the solution of Eq. (6.5) provides the equilibrium
density profile p(z):

A [P dp
T =1/ —= const . 6.8
¢;m¢ww—mma+ : 0

Eq. (6.8) provides the equilibrium density profile characterized by two bulk
regions separated by a thin layer. The layer thickness can be estimated as

PL — PV

S e L S 6.9
‘ dp/dz|max (6.9)

The equilibrium condition, Eq. (6.5), provides the interface thickness in terms

of the bulk grand potential density wg(p) and of the parameter A,

A
€= (P =pv) \/2 [iWo(p) — wo(pv)]’ (6.10)

without explicitly addressing the density profile. p is the density correspon-

ding to the maximum of dp/dz, achieved where diy/dp = 0, Eq. (6.5).
The surface tension can be defined as the excess (actual) grand potential

density,

o:[“mm—wwmm+/mmm—wmmm:
/www—wmwm, (6.11)

where x; is the position of the Gibbs dividing surface, whose precise value
is not influential since w[py| = W[py] (we stress that, e.g., w[py] should be
interpreted as the functional (6.7) evaluated on the constant density py ). Gi-

ven the definition of w[p], Eq. (6.7), and exploiting the equilibrium condition
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for the chemical potential, Eq. (6.4), it follows that

Rl I 1 dp 2 R
o= N Jo+ 5)\ dp ) HeaP T wo(pv) | do =
> 1. [(dp 2

Using Eq. (6.5) one finds

o (dp)? v d
a:/ )\(—p) da::/ ALy =
oo dx oy dx

/ "IN (o () — dhav)) dp. (6.13)

where the second expression can be evaluated with no a priori knowledge
of the equilibrium density profile. We observe that, as for the interface
thickness, the surface tension only depends on the form of the bulk grand
potential density wg(p) in the density range between the two equilibrium
values, [pyv; pr], and on the parameter \.

Equation (6.5) applied to the two bulk regions where dp/dx = 0 implies

the mechanical equilibrium condition po(pr) = po(pv), where

_afo _ _3f0/P _ 0 _F
0 GR = pitec — Jo (6.14)

Po =

is the classical thermodynamic pressure, f, = fg /p the specific bulk free
energy, and v = 1/p the specific volume. Indeed Eq. (6.5) implies wq(py) =
wo(pr), which corresponds to the equality of the pressures given that py =

—adp.

Equations of motion The dynamics of the inhomogeneous system is de-

scribed by the conservation equations for mass p, momentum pu, and total
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energy F densities of

Ip _
E—I—V-(pu) =0, (6.15)
Jdpu
W‘FV'(DU@)U):V‘T? (616)
OV B =V [ru-ad. (6.17)

The system (6.15 — 6.17) needs to be complemented with thermodynamically
consistent constitutive relations for the stress tensor 7 and the energy flux
de. Their derivation is outlined below for the simplest case of constant A,
following the general approach for non-equilibrium processes described in
[37].

It is instrumental to rewrite the energy equation in terms of specific in-
ternal energy U, obtained by subtracting the equation for the kinetic energy

from Eq. (6.17)

D
pFZ;{:T:Vu—V-qe, (6.18)

where D/Dt = 0/0t +u - V is the material derivative. By definition U =

f+6n, with f = f /p the specific Helmholtz free energy and 7 the specific
entropy. The total derivative of U reads

_6_J _EJ -dVp + ) 1
du dp + v dVp + 6dn (6.19)

The partial derivatives of the specific free energy can be derived from its
definition, Eq. (6.1), and from the definition of the thermodynamic pressure,
Eq. (6.14). Explicitly, one finds

DU 1 A Dp Dn A DVp
L= =2Vl ) 2L e Py 2L
Dt p2(p° 5! p|)Dt—}- TP
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The material derivative of the density gradient (last term in the RHS of
Eq. (6.20)) can be evaluated by applying the gradient operator to the equa-

tion of mass conservation, Eq. (6.15):

A D A A
Vp- Vp:—;Vp-V(pV-u)—;Vp®Vp:Vu. (6.20)

p P Dt
After substitution of Eqgs. (6.15, 6.20, 6.20) into Eq. (6.18), a few more ele-
mentary manipulations allow to write the evolution equation for the entropy

as

Dn ApVpV - u —qe
il V&
"Dt ( 0 )+

1
tm AV pV -u—qe|- VO +

1 A
t5 | (31008 -7 090 ) 14

AVp® Vp} : Vu. (6.21)

The term under divergence defines the entropy flux. Since the entropy
production must be positive definite in terms of the thermodynamic for-
ces (Clausius-Duhem inequality), the other two contributions on the right
hand side are required to be positive. Assuming linear dependence of ther-
modynamic fluxes — terms in square brackets in (6.21) — on thermodynamic

forces — V& and Vu — leads to identify the stress tensor with the following

expression,
T = —poI + 2
A
= (—po + 5[Vl + 9V (AVp)> I
—-AVp® Vp+
2
+p [(Vu +Vu') - 3V uI] : (6.22)
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where the usual viscous terms with ¢ > 0 in the last line are the source
of mechanical irreversibility (for the sake of simplicity we have assumed the
second viscosity coefficient equal to —24/3). Concerning the energy flux,

positive entropy production, second line in Eq. (6.21), calls for
de = \0VpV -u—£kVE, (6.23)

where k£ > 0 is the thermal conductivity.
Hereafter we assume constant values for p and k£ and we adopt the van

der Waals free energy density fo, Eq. (6.2), to obtain

5 PY 2
- R — 24
po =l —an, (6.24)

R A
=20 —ap+ 2 |Vp? 2

where the last term corresponds to the capillary contribution to the internal

A
energy, U, = 2—p\Vpl2-

Dimensionless parameters By introducing the dimensionless (or redu-

ced) variables

p*=p/pe, P =p/pe, 6" =0/0.,

where
1 a 8a

— 5 c = — 5 ec = —
30 DT ome 27Rb
are the critical values of density, pressure and temperature, respectively, the

Pe =

caloric and thermal equations of state take the form

8 1
E* — _*9*_3*2 T K]4q%|2
25 PG

1
e, (6.26)
0 = —3p* 6.27

125



where ug = \/m is a reference velocity and Lg is a reference length.
Time is made dimensionless with respect to the reference time tgp = Lg/ug.
C = M\p?/(p.L%) is a dimensionless parameter quantifying the relevance of
capillary stress to the dynamics.

For the reader’s convenience, the constitutive laws are rewritten in dimen-
sionless variables to highlight the relevant control parameters. The asterisk

(*) is hereafter suppressed for the ease of notation:
C
T = (—po + §|Vp|2 + CpV2p> I-CVpeVp+

1 2
+ s [(Vu +Vu') - SV uI} : (6.28)

de =CpVpV -u—

v . 6.29
Re Pr ( )

Re = Lp\/pepe/pt is a Reynolds number based on critical quantities and
Pr = 3uR/(8k) is the analogous for a van der Waals fluid of the familiar

Prandtl number.

Algorithms & solution techniques

The numerical solution of the system of equations (6.15 — 6.17) is challenging
due to a combination of different physical phenomena, which all require a
specialized numerical technique.

Apart from the extremely thin liquid-vapor interface that requires a high
numerical resolution, the system supports i) the propagation of shock waves;
ii) viscous diffusion and capillary dispersion; iii) phase change and transition
to and from supercritical conditions.

From a numerical point of view, compressibility and shock wave propaga-

tion would suggest the adoption of specialized shock-capturing methods, like
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Figura 6.2: Phase diagram in the p — p plane. In the zone (I) where p > p.
and € > 0. the fluid is in supercritical state. Zone (II), characterized by
p < p. but 6 > 0., is the gas region. Conversely, zone (III) where p > p. but
6 < 0. is the compressible-liquid region. In zone (IV) and (V) the fluid is
in liquid or vapor state, respectively. Under the binodal curve, which repre-
sent the saturation conditions, we find zones (VI) and (VII) of metastable
liquid and metastable vapor state, respectively. The spinodal curve, defined
as Op/dplg = 0, separates the metastable regions from the unstable region
(VIII). Finally, in subset of the unstable region, zone (IX), ¢* = dp/dp|, < 0,
i.e. the sound speed becomes imaginary.

the Essentially Non Oscillatory schemes, or their Weighted WENO extension
[130]. However hyperbolic features conflict with the diffusive and dispersive
behavior induced by viscosity and capillarity. Moreover, at least for the van
der Waals equation of state, (6.27), a region of the thermodynamic phase
space exists where Opy/0p|, < 0. As well known, in ordinary conditions, this
derivative defines the square of the sound speed, implying that where ¢ < 0
hyperbolic behavior changes into parabolic, see Fig. 6.2 for an explanatory
diagram. The strategy conceived to deal with this complex mathematical
structure, is based on two basic ingredients: 1) Identification of the hyper-

bolic part of the operator and its extension to the parabolic region where
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c? < 0; 2) Operator splitting into hyperbolic and non-hyperbolic part. For

convenience, these two ingredients will be discussed in revers order.

Operator splitting As discussed in § 1, the state of the system is iden-
tified by three basic, conserved fields, namely mass, momentum and to-
tal energy density, to be collectively addressed here as the state vector
U(x,t) = (p, pu, E)". Formally system (6.15 — 6.17) can be written as

ou
S = N[U =, [U]+P[U),

where H, is the extension to the whole phase space of the hyperbolic part of
the operator and P = N —H, is defined accordingly. The explicit expressions
of the two operators H. and P will be provided below. After the operator
is split as explained, the state vector can be evolved in time exploiting a
solution strategy in terms of Strang splitting [135]. Denoting Fx(t) the full

propagator such that
Ut +7) = Fn(1)U(t),

for small 7 we can approximate
En(1) = Fp(1/4) Fy, (7/2) Fp(7/4)

where Fp(7) is the propagator of system

ou
5 = P1ul,
while Fy_(7) is defined by
ou
e H [U] .

Strang splitting allows for using different algorithms, specialized for each

component of the system. The algorithms we selected are a third order
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WENO [130] scheme for the hyperbolic part and a second order accurate,
centered finite difference scheme for the parabolic part. We performed the
time integration of the hyperbolic part with a full explicit, third-order TVD
Runge-Kutta scheme. The parabolic operator is advanced in time with a
mixed, implicit-explicit scheme, where the linear terms (viscous stress and

heat flux) are treated implicitly in order to increase the stability limit.

Definition of the operators above the binodal In the region of phase

space where the sound speed is well defined, the hyperbolic step is

dp

5 = V() (6.30)
0

8Ltu = —V-(puu+pl), (6.31)
aEO o 8(puc)

= V(B )] - T (6.32)

where Ey = p (Uy + 1/2|ul?) is the total energy density deprived of the capil-
lary contribution, which reproduces the classical Euler equation. The capil-
lary contribution to the energy (pU,) is treated as an explicit forcing term
depending on the density gradient. Here, as already stated, a van der Waals
fluid is assumed in the equations of state. The parabolic part of the operator

corresponds to

dp

5 0, (6.33)
Jdpu
o = V-X, (6.34)
OF 1 )

5 = V. (—5/\|Vp| u—l—E-u—qe) : (6.35)

where the capillary contribution (first term in the right hand side of the

equation for F) has been included in the energy flux.
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Definition of the operators below the binodal In the coexistence re-
gion below the binodal (or coexistence curve, Fig. 6.2), which contains the
region where ¢ < 0, a Maxwell-like rule is used. Using the additivity of spe-
cific volume and entropy, mass density and specific entropy can be written
as

1 1 1

o - a)pv(e) " “on0)

Nsat = (1 — a)nv(0) + ang(0)

where subscript L and V' denote pure liquid and vapor at the given tempe-

rature. The above relations can be inverted to yield

o= 04(;07 775(115)
0 = e(pa nsat) .

For the mixture of vapor and liquid, the saturation pressure depends only on

temperature, such that

Psat = psat(e) = psat(p7 nsat) .

This expression allows to extract the sound speed as

2 apsat

= >0
sat ap

MNsat

C

whose final expression is

(dpsat ) 2
2 49 (6.36)

C = .
sat ) dnL + idpsat dpL _ P — PL d2psat
P\ T2 a0 a0 ppr ae

The interested reader is referred to [102] for details on the thermodynamic

derivation of the sound speed for the mixture.
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In fact, the actual pressure differs from the saturation pressure,

Po = p()(e’p) = psat(e) + 5]9(97/)) )

to the extent that ¢* = dp/dp|, may become negative. We stress however

that ¢2

sat

> 0, thereby allowing to identify the hyperbolic part of the evolution
operator in the region below the binodal (which includes the region where
c* < 0).

Concerning the energy density, we consistently address the energy of the

liquid-vapor mixture,
Eo = 1/2plu)? + p[(1 — a)Uy + aldy] .
Again, the actual energy is
E=FE,+J/E.

With the above position, the split system in the region below the binodal

reads
dp
5 = V() (6.37)
0
% = V.- (pu®@u+pul), (6.38)
OBt OOF
ot = -V [u (Esat +psat)] - ot 5 (639)
for the hyperbolic part and
dp
o 4
ot 0, (6.40)
ag;: = —Vop+V-X, (6.41)
OF
5 = V. [-u(@E+dp)+X-u—q,., (6.42)
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for the parabolic part, respectively.
We stress that the definitions of the operators given separately for the

two regions of phase space join continuously at the binodal curve.

Thermodynamic state of the liquid-vapor mixture Concerning the
thermodynamics of the homogeneous vapor-liquid mixture below the binodal,
the saturation densities py (0) and pr (), are evaluated as follows. Given the
state of the system in terms of density and temperature, the corresponding
chemical potential is
1

pd = g@ {STpp — log ([((3;—WS>] —6p. (6.43)
Chemical, thermal and mechanical equilibrium require equality of tempera-
ture, 6y = 01, = 0, pressure, py = pr, and chemical potential 1y, = 2. After

some algebra, one ends up with the following non-linear 2x2 system for p,

and py
80p1 2 _ SOpy 2
—3p% = -3
31 PL 3_ Pv
3 — 3 —
(oL = pv) 4 log (/)L( Pv))} _
(3=p1) B =pv) pv (3= pr)
= 5o =)

which is solved by a standard Newton algorithm.

Simulations setup All the simulations have been performed using an axi-
symmetric code, exploiting cylindrical symmetry, see the sketch in Fig. 6.3.
The system is initialized with a vapor bubble of radius R., centered in z,
the distance between the wall and the bubble center. The effect of the initial

distance is analyzed by performing 5 simulations at different z,. The vapor
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shock | P,

Figura 6.3: Sketch of the simulation setup.

bubble is in equilibrium with the confining liquid at temperature 6/6. = 0.6.
A shock wave with intensity I = (ps — p1)/p1, with ps and p; the pressure
in the perturbed and the unperturbed state, respectively, is initialized to hit
the bubble and trigger the collapse. In most of the results to be discussed,
I = 75. A further case at I = 400 is also considered, to highlight the destabi-
lizing effect of the impinging shock intensity. The fluid domain has dimension
4R.y X 4R, and has been discretized with a uniform grid 2048 x 2048. The
mesh influence has been analyzed by comparing the bubble evolution on a
coarser mesh, 1024 x 1024. Since the results are nearly indistinguishable,
only those obtained with the finer mesh has been produced here since the
accuracy, in particular during the final stage of the collapse, is expected to

be slightly better. An adaptive timestep, ranging from 10~° down to 1078,
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has been used during the simulations to comply with stability and accuracy
requirements. In particular, the smaller ones are used during the collapse
stage, when the shockwaves are formed, in order to follow the large and fa-
st changes experienced by the field. Selecting Lr = R.4, the dimensionless
parameters of the simulations are: Re = 50, Pr = 0.2 and C = 1.6 x 107%.
These values correspond, e.g., to a bubble radius order of 100nm with typical

viscosity, thermal conductivity, surface tension and critical values of water.

Results and discussions

Overall, the dynamics of the bubble is characterized by a sequence of re-
bounds, as shown by the plots of bubble volume vs time reported in Fig. 6.4
for different wall normal distances of the bubble and for the triggering shock
strength I = 75. Generically, the first collapse phase (volume decreasing in
time), is only slightly affected by the initial wall distance. After the mini-
mum volume is reached, a plateau is observed. It will be shown to be related
to the interaction of the bubble with the shock wave which is emitted when
the collapse is arrested and is successively reflected back by the wall. After
the shock/bubble interaction is completed, the bubble starts expanding up
to a maximum volume, which is systematically lower than the initial value.

The process ends with the full condensation of the bubble.

Equilibrium vapor bubble Before discussing in detail the actual dyna-
mics observed in the simulations, it may be instrumental to identify the effect
of a compression on an equilibrium bubble. Given the temperature, a system

formed by a vapor bubble in equilibrium with the liquid should satisfy the
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Figura 6.4: Time evolution of the bubble volume for different initial wall-
bubble distance zy. The initial distance does not substantially affect the
bubble dynamic during the first collapse, indeed the collapse time remains
unaltered in all the numerical experiments. The characteristic frequency of
collapse and re-expansion is not a function of the initial position. Conversely,
the dynamic of the re-expansion and of the successive collapses is influenced
by the initial position in a non trivial way. In the inset it is reported the
comparison between the shock-induced collapse near a wall (the solid red
curve, zo = 1.3) and in free space (dotted black curve) where the bubble
does not experience a volume plateau after the collapse.

conditions of constant chemical potential, Eq. (8.16),
0 _
tie(pL, 0) = peg
Ng(va 6) = Heq s

where the equilibrium state is parametrized by 6 and ji.,, and the chemical

potential for a van der Waals fluid is explicitly provided in Eq. (6.43).
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Figura 6.5: Illustration of the iso-chemical potential (black curves), isotherm
(red curve, = 0.6) and isobar (blue curve) for a van der Waals equation of
state in the p—p plane. The range of very low densities is enlarged in the top
inset. The equilibrium properties (same chemical potential, temperature and
pressure) identify the saturation densities (py e and prsq:) as the intersection
of the iso-chemical potential jis, (thicker black curve) and the isotherm and
isobar. The two colored regions span the chemical potential values where
a vapor bubble (light blue) or a liquid drop (light red) can be found as a
metastable equilibrium condition for the fluid system. In the bottom inset
the effect of reducing the liquid pressure, py, under the saturation value on
the equilibrium pressure difference, Ap, between the vapor bubble and the
external liquid, is plotted for different fixed temperatures. The corresponding
bubble radius can be obtained by the classical Young-Laplace equation.

The equilibrium conditions are described in Fig. 6.5, where a constant
chemical potential line, thin solid line, is plotted in the p — p plane. An iso-

therm is also reported as a red solid line. The intersection of the two curves
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determines three points in the plane. The low density one corresponds to the
vapor, py, pyv, and is hardly visible on the scale of the plot, see the enlar-
gement on the upper part of the figure. The intersection at largest density
corresponds to the liquid, p, pr. The third intersection, at intermediate
density pi?'(0) < pun < pi¥'(0), always belongs to the unstable region of the
phase space, below the spinodal, see Fig. 6.2. The region of the phase space
where the above three intersections exist is shown by the colored band in the
figure. More specifically, denoted by 7 (0) and ;¥ (0) the chemical poten-
tial at the liquid and vapor spinodal, the condition 1" (0) < peq < i (0)
defines the relevant range of chemical potential. Outside the colored band,
only one intersection is found, corresponding to vapor or liquid, according to

the condition jie, < 157" OF preq > pi¥", respectively.

The pressure, of the vapor, say, is recovered from the pressure equation
of state (6.24), in combination with the expression for the chemical potential
Eq. (6.43), to yield py = pv(pteq,?). The chemical potential at saturation,
black thick line in Fig. 6.5, is such that py (iset, ) = pr(tsat, 0) = Dsar(0).
As a property of the solution, p;, S py when fieq S fisqe. It follows that, in
order to have a bubble (py > pr), the chemical potential must be smaller
than the saturation value, 15" < fieq < fisar, light blue band in Fig. 6.5. In
this case the vapor is stable (i.e. the vapor point is above the binodal) and
the liquid is metastable (liquid between binodal and spinodal). The other

spi

case, [ty > [leqg > Msat, corresponds to a drop of stable liquid in metastable

vapor (light red band in the figure).

By inverting the relationship p;, = pr(pteq, #) and inserting it in the ex-

pression for vapor pressure, py = py (fteq, #), allows to express the pressure
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difference between vapor and liquid as a function of the liquid pressure,

Ap =py —pL = f(pr,0),

where Ap > 0 (vapor bubble) when p; < pgy. This relation, illustrated in
the lower inset of Fig. 6.5 for several temperatures, is hardly distinguishable
from a straight line on the adopted scale. Since " < fioq < fisat, the
corresponding range of liquid pressure is p”* < pp < ps(f), where pi¥
is the pressure at the liquid spinodal. When the liquid pressure belongs
to the allotted interval, the equilibrium radius of the bubble can then be
estimated by using the Young-Laplace equation, R., = 20/Ap (the exact
solution requires solving the corresponding problem in the phase field context
[45]).

Let us consider the bubble-liquid system in equilibrium with a given pres-
sure py, in the liquid. Assume the liquid is now compressed to a new state,
P} = pr+dpr. If the compression is such that p} < ps., the bubble will find
a new equilibrium condition, with a new pressure py, and a new radius R,
A counterintuitive effect is that, under compression of the liquid, the radius
of the new equilibrium bubble increases. This is opposite to the behavior
expected from a gas bubble, and is explained by the inset of Fig. 6.5 where
the pressure jump across the interface is shown to be a decreasing function of
the liquid pressure. A little more though immediately provides the clue for
understanding this behavior. In fact, increasing the pressure, the liquid gets
closer to saturation conditions, implying that also the vapor inside the bub-
ble approaches saturation, see the inset of Fig. 6.5. The consequence is that
the pressure difference Ap between vapor and liquid decreases, leading to a

larger equilibrium radius as a consequence of the Young-Laplace equation.
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Figura 6.6: Snapshots during the evolution of a collapsing bub-
ble with 2z, = 1.3. The sequence runs from left to right and
from top to bottom and is not uniformly spaced in time (t =
0,2.237,2.261,2.28,2.316,2.376,2.527,4.152,6.407, 7.474,7.683,7.736). The
grey tones from darker to lighter represent the density field from smaller
(vapor phase) to higher (liquid phase). The black lines are Schlieren-like
iso-lines obtained as S = exp(—|Vpol/|VPolmaz). The drawn iso-levels are
S =0.9and S =1 in order to highlight the regions with the highest pressure
gradients, i.e. the vapor-liquid interface and the shockwaves.
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If the compression exceeds the saturation pressure, no vapor bubble can
exist in equilibrium with the compressed liquid: in this case the vapor conden-
ses altogether, and the new equilibrium state corresponds to a single phase,
pure liquid. Our interest here is focused on the non equilibrium process that
leads to such eventual condensation, when the compression is associated to
a shock wave in the liquid impinging the vapor bubble. In order to achieve
full condensation the shock wave amplitude ps — p; should be larger than
Dsat — D1, 1.6. 1 > pgar/p1 — 1, where p; is the liquid pressure in equilibrium

with the initial vapor bubble.

Non-equilibrium process Experiments on laser induced bubbles in water
[109] show that energy deposition by a focused laser beam leads to a fast local
vaporization and the compression of the liquid. By measuring the speed of
the shock wave, the authors could find the intensity of the shock wave as a
function of the energy of the laser pulse. It is found that pressures in excess
of 10 GPa are easily excited in water at standard conditions. Clearly the
strength of the shock wave decreases with the distance from the focusing
point, confirming that almost planar waves can easily be generated in the
liquid with the intensity we are using here to trigger the collapse of the

bubble (I € [75,400]).

The evolution of the vapor bubble is represented in Figs. 6.6-6.7 for two
different initial wall distances, zp = 1.3 and 2y = 1.9, respectively. The weak
impinging shockwave and the proximity of the wall is not sufficient to imme-
diately break the spherical symmetry and to produce the classical liquid jet
that porates the bubble, clearly observed in millimeter-bubble experiments

[14, 86, |. At sub-micron scale the surface tension is, in fact, predominant
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Figura 6.7: Snapshots  during the evolution of a col-
lapsing  bubble with 2z = 1.9 taken at times ¢ =

0,2.266,2.319,2.395,2.399, 2.771,4.545,4.627,7.04,7.533,7.736,9.482.  The
grey tones and the iso-lines are the same of Fig. 6.6.

and preserves the nearly spherical shape during the first part of the evolu-
tion. Symmetry breaking eventually occurs when the bubble shrinks to its
minimum volume and a non-spherical shockwave is emitted. By comparing

Figs. 6.6 and 6.7, the asymmetry is stronger for the bubble closer to the wall,
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Figura 6.8: Snapshots during the evolution of a collapsing bubble with zy =
2.2 and a trigger shockwave with intensity I = 400. The time instants
correspond to ¢ = 0,0.948,0.985,1.007,1.068, 1.156, 1.766, 2.36, 2.822. The
grey tones and the iso-lines are the same of Fig. 6.6. The stronger impinging
shock initiates the liquid jet formation and leads to the bubble poration.

where, instead of being more or less spherical, the shockwave produced at
collapse consists of two curved shock fronts that propagate toward and away
from the wall. The former is eventually reflected by the solid wall and strikes
again the re-expanding bubble. During this stage the bubble becomes flatter
(elongated in the radial direction) and moves toward the wall. The expansion
stage is strongly affected by the bubble—wall distance, with the closest bubble
(Fig. 6.6) touching the wall and the farthest one (e.g. in Fig. 6.7) remaining
detached. During the bubble expansion, the liquid in the thin layer between
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vapor and wall is compressed and a new shockwave is observed, third row
of Fig. 6.7. This sequence of events completely breaks the spherical sym-
metry, thereby reducing the strength of the successive collapse. Eventually,
the field becomes more and more complex, until dissipation prevails. It is
worth noting that, at a qualitative level, the configuration of the shock waves
compares very well with results found in experiments in similar conditions,
[139]. It should be stressed however that in the experiments the bubble is
usually much larger, typically millimeter size. However femtosecond lasers

allow to generate nano-sized bubbles, see [115].

Increasing the strength of the impinging shockwave, liquid-jet formation
is observed. In Fig. 6.8 the evolution of the vapor bubble triggered by a
shockwave of intensity I = 400 is represented up to the first re-expansion
stage. The shape of the collapsing bubble becomes much flatter than observed
at weaker shock strengths and the strong vorticity generated at the periphery
of the bubble gives rise to the bubble poration by inducing a liquid jet focused
toward the wall. In the third row of Fig. 6.8, during the re-expansion stage,
the bubble acquires an annular shape and the liquid jet impinges the wall

and produces a radial flow.

A direct comparison of the flow induced by the bubble collapse at different
strengths of the triggering shockwave is reported in Fig. 6.9. The liquid jet
directed toward the wall is more pronounced for I = 400 and the flow is
strong enough to pierce the bubble leading to an annular shape. In fact,
although a wall-directed flow is observed also in the case of the weaker initial
shockwave, at I = 75 the bubble is not flat enough to be pierced by the liquid
jet and the overall effect reduces to a displacement of the bubble toward the

wall.
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Figura 6.9: Comparison of the flow fields for two different shock intensities.
On the left the case I = 400 where it is apparent the liquid jet formation.
On the right the case I = 75. The plotted vectors are not at the maximum
grid resolution to increase the clearness of the figure.

A crucial aspects of the phenomenology is the transition to supercritical
conditions during the last stage of the collapse [96]. The formation of an
incondensable phase prevents the complete collapse of the bubble, reverting
the motion to an outward expansion. Overall, a sequence of oscillations sets
in, as shown in Fig. 6.4, where the quantity reported on the ordinate is
the volume of the non-liquid phase in the system (vapor and supercritical
phases). During each successive collapse, the vapor is compressed and its
temperature raises locally bringing the system in supercritical conditions.

As already anticipated, Fig. 6.4, the volume during the first collapse stage

is almost independent of the bubble-wall distance. On the contrary, the re-
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expansion stage is affected by the initial position. The following dynamics is
affected by the complex interactions between the reflected shockwaves and
the bubble motion. The time of the successive collapses are slightly different
for the different cases (differences up to 10%) and the maximum volume
achieved after the second re-expansion is not monotonous with z5. In the
inset of Fig. 6.4 we compare the volume evolution of a shock-induced collapse
in free space (black dotted curve) with the one near the wall (red solid curve,
2o = 1.3). The overall dynamics is again a series of collapses and rebounds
but, after each collapse, the bubble in free space does not experience the
volume plateau which is an effect of the interaction between the re-expanding
bubble and the shockwave reflected back by the wall. The reflected shock

counteracts the re-expansion and keeps the bubble small for a longer time.

The eccentricity of the bubble, e = a/b, where a is the semi-axis in the
z-direction and b is the other semi-axis of the ellipsoid with the same volume
of the bubble, V' = 4mab?/3, can be used to quantify the change in bubble
shape, with e < 1 for a flat bubble (elongated in the radial direction). The
time evolution of the eccentricity is reported in Fig. 6.10, for several initial

distances zp.

Let us focus on the first collapse stage. As anticipated, during the initial
phase of the first collapse, all the bubbles remain almost spherical. The
initial distance affects, instead, the shape in the final part of the collapse in
such a way that the farther bubbles take a flatter shape (e < 1) while the
closer ones get slightly elongated toward the wall (e > 1) . This trend is
the consequence of two counteracting effects of the triggering shockwave. On
one hand the impinging shock flattens the bubble during the collapse. On

the other hand the bubble-shock interaction weakens the pressure wave and
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Figura 6.10: Time evolution of eccentricity for different initial distance. The
first stage of the collapse is substantially spherical for all the initial distances.
The break of symmetry occurs during the final stage of the collapse with the
nearest bubble (red curve in the online version) that slightly extends toward
the wall while the others in the radial direction. During the shock-interaction
stage all the bubbles assumes a pronounced flat shape and remains elongated
in the radial direction through all the re-expansion phase. The more drastic
change of topology occurs during the second collapse when all the bubbles
rapidly invert the elongation toward the wall.

slows it down locally in the region occupied by the bubble (see the second and
third snapshots in the first row of Fig. 6.8). Its reflection at the wall produces
a non-uniform shockwave impinging again the bubble. The reflected shock
is now more intense on the sides than on the center of the bubble thereby
enhancing the elongation in the z-direction. The effect is clearly more intense

for bubbles closer to the wall.

After the first collapse, up to the re-expansion stage, all the bubbles
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Figura 6.11: Evolution of the position of the bubble center. The faster
migration toward the wall occurs between the collapse and the re-expansion
stages when the flow produced during the bubble collapse is stronger and
convects the bubble. The two snapshots in the insets show the velocity
vectors in two different stages: on the left it is highlighted the axial flow
during the bubble migration, while on the right it is shown the characteristic
quasi-radial flow during the re-expansion phase that stops the axial motion

of the bubble.

flatten as a consequence of the radial flow occurring near the wall. The
second collapse is characterized by a rapid reduction of the radial semi-axis b
(see the third and the forth rows of Fig. 6.7) and therefore by a quick increase
of the eccentricity as a consequence of the local high curvature at the equator
of the bubble in association with surface tension.

The flow produced during the bubble collapse and the consequent bubble
motion is investigated in Fig. 6.11 showing the position of bubble center of

mass, z.. A strong axial flow, clearly visible in the inset on the left, is produ-
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ced near the bubble axis during the collapse stage. This flow is responsible
for the bubble migration toward the wall after the collapse (t > 2). Overall,
despite the difference in lengthscale, the observed phenomenology is entirely
consistent with the experimental observations on millimeter bubbles reported
in [116]. During the re-expansion stage the flow is directed radially outward
(inset on the right), stopping the bubble motion toward the wall. The subse-
quent collapse regenerates the axial flow and the bubble approaches the wall

again.

Shockwaves and jets formed during bubble collapse are associated with
intense pressure and temperature peaks. At each time instant maximum
pressure and temperature are recorded and reported in the plots of Fig. 6.12
and 6.13, respectively. The first peak, both in pressure and temperature,
occurs at the end of the first collapse stage, when the bubble stops shrinking.
This peak is the strongest one for a bubble collapsing in free space [90].
Figure 6.12 shows that the end of the first collapse is the instant of maximum
pressure also for most cases of bubbles collapsing near the wall. However
there are conditions where a successive peak exceeds by far the first one.
When it occurs, such extremely intense pressure peak is due to the bubble
experiencing the second collapse after it translated to get in touch with the
wall, see the snapshots in the last row of Fig. 6.6. It may even happen that an
intermediate pressure peak occurs between the first and the second collapse.
When present, this is due to the expansion of the bubble at a suitable distance
to the wall that generates a compression of the fluid between bubble and wall
(third row of Fig. 6.7). As already commented, the increase in the triggering
shock intensity leads to bubble poration and jet development. Interestingly,

at the moment of jet formation, a peak in the pressure field is observed, inset
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Figura 6.12: Time evolution of the maximum pressure recorded in the whole
fluid domain for the five different initial wall-bubble distances. As a reference
the dotted curve reports the bubble volume evolution. The most intense
pressure peaks are observed when the bubble reaches its minimum volume.
In the case of zy = 1.3, the maximum value is reached at the second collapse
because the bubble is pinned on the solid boundary and its collapse is more
intense. Of particular interest are the pressure peaks observed during the re-
expansion stage for the cases zg = 1.6 and zy = 2.2 which are related to the
compression of the liquid film between the bubble and the wall, as explained
in the text. In the inset we report the time evolution of the maximum
pressure in the case with the higher triggering shock intensity.

of figure 6.12. The origin of the pressure peak is purely hydrodynamical, since
no corresponding temperature peak occurs, see inset of figure 6.13. Since the
jet-induced pressure peak is comparable with that of the shock, the present

results seems to confirm the high damaging potential of the jetting phase.

The collapsing bubble induces a strong stress on the solid wall. Figu-
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Figura 6.13: Time evolution of maximum temperature recorded in the whole
fluid domain. As well as the pressure peaks, the temperature reaches the
local maxima when the collapse is completed. Again, it is possible to observe
a temperature peak during the re-expansion stage, but it is less apparent
than its pressure equivalent. In the inset we report the time evolution of the
maximum pressure in the case I = 400.

re 6.14 reports the envelope of the pressure maxima at the wall for different
initial bubble positions. The inset illustrates the way the envelope is con-
structed from instantaneous pressure distributions at the wall at successive
time instants. By comparing with the pressure maxima in the field, Fig. 6.12,
it is clear that the pressure at the wall is much weaker than the maximum
inside the field. Nevertheless the typical pressure at the wall is very large,
order ten times the critical pressure of the fluid. For water, this would cor-
respond to a pressure in the order of 200 MPa, a figure which compares well

with experimental measurements on collapsing bubbles near solid walls [139].
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Figura 6.14: Spatial evolution of the maximum pressure values recorded on
the wall during propagation of the shock wave for each initial condition. The
pressure values are decreasing with increasing of initial bubble distance from
the wall. It’s possible to observe that for the bubbles placed at distances
closer to the wall the shape of the envelope varies strongly due to interaction
with the shockwave reflection. Inset: Radial evolution of the pressure range
recorded on the wall for initial condition zg = 2.2. The different dotted lines
correspond to different time instants and the purple line corresponds to the
envelope of the maximum pressure values.

Concerning the temperature at the wall, in the present conditions extreme
values were never experienced, except in cases where the collapsing bubble

came in direct contact with the wall.
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pmax/pc emax/ec
spherical 3 x 10° 708
shock induced - no wall 175.16 3.29
shock induced - near wall 384 8.22

Tabella 6.1: Comparison of the maximum pressure and temperature reached
during the first collapse in three different geometrical configurations. In all
the cases the overpressure that triggers the collapse is of intensity I = 75.
The data shown as representative of the shock induced collapse in proximity
of the wall is referred to the case with zy = 1.6.

Conclusions

We have numerically studied the collapse of a pure vapor nanobubble near
a solid boundary by applying a diffuse interface approach. The model is
specially suitable to describe in a consistent and unified way the complex
phenomena occurring during cavitation, namely: phase change, latent heat
release, shock wave formation and propagation, transition to supercritical
conditions. Like in the case of spherically symmetric collapse, a pure vapor
bubble is found to collapse with a sequence of volume oscillations, associated
to a sequence of successive collapses which are arrested and inverted by the
formation of the incondensable, supercritical phase due to compression and
latent heat release. In comparison with symmetric collapse, the peak pressu-
res and temperature are significantly lower in the case of aspherical bubble
collapse, see Table 6.1. Interestingly, the peak pressure for shock wave indu-
ced collapse in free space leads to even lower pressure and temperatures in
comparison with those reached when the collapse is triggered near the wall.
This indicates that the wall, by confining the radial expansion of the bubble
and reflecting the triggering shock enhances the peak pressure level. Despite

the pressure peak realized at the wall is significantly lower than the maxima
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found inside the field, still large level of stress is transferred to the wall, as
potential source of damage. A strong jet is found when the triggering shock
strength is sufficiently large. In fact, jet impingement on the wall is often
quoted as a concurrent cause of material damage [139].

It is worthwhile noting that the peak pressure and temperature levels
obtained in the present simulations are expected to overestimate the experi-
mental values. The reason is the simple equation of state used to make the
computations more easily affordable. In particular, a pressure equation equa-
tion of state better suited to model a real fluid could help to reduce the peak
temperature and pressure values. Moreover, unless extremely weak forcing
is used to initiate the bubble collapse, the large temperatures reached inside
the bubble are expected to lead to dissociation and ionization phenomena,
which concur in substantially limiting the peak temperature.

A further aspect to be considered for future works is the presence of
dissolved gas in the liquid to reproduce the condition of partially gas-filled

cavitation bubbles that are more commonly found in applications.
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Capitolo 7

Thermally activated vapor bubble

nucleation:
the Landau—Lifshitz/Van der
Waals approach

In this work a the stochastic approach described in Chapter 3 is exploited to
study the homogeneous nucleation process. In particular, the liquid-vapor
spontaneous phase transition is addressed in a closed system (NVE ensem-
ble) for a Lennard-Jones fluid, initialized in a metastable state (metastable
liquid). Starting from a homogeneous liquid phase, thermal fluctuations lead
the system to spontaneously decompose in two different phases, and ove-
rall the nucleation dynamics can be framed in three different phases. The
initial phase (nucleating phase) is characterized by a linear growth of the
bubble number in time (i.e. at a constant nucleation rate). The second
phase (collapsing phase) depicting the first part of the expansion stage, and
is characterized by a rapidly decreasing number of bubbles mainly due to
collapse. Finally, the last phase (slowly expanding phase), preceding the new

equilibrium state for the system, is governed by the long-time dynamics of
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Thermally - activated
multi-bubble nucleation

Figura 7.1:  Simulation snapshots illustrating the different phases of the
nucleation dynamics.

the multi-bubble system. These aspects are clearly summarized in Fig.7.1,
representing the different phases we discussed above. The evaluation of the
bubble nucleation rates, showed good agreement has been found with MD
simulations and with more conventional techniques. Furthermore, in compa-
rison with more classical approaches, this methodology allows to deal with
much larger systems observed for a much longer times, otherwise not possible
with even the most advanced atomistic models, providing the possibility of
observing the long term dynamics of the metastable system, up to the bubble

coalescence and expansion stages.
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The complete results have been published on PRF (PHYSICAL
REVIEW FLUIDS 3, 053604 (2018)), and are reported here with
the permission of the authors.

Note: for the sake of brevity the appendices of the paper are not reported,

however all the details required are reported in Chapter 3.

abstract

Vapor bubbles are formed in liquids by two mechanisms: evaporation (tempe-
rature above the boiling threshold) and cavitation (pressure below the vapor
pressure). The liquid resists in these metastable (overheating and tensile,
respectively) states for a long time since bubble nucleation is an activated
process that needs to surmount the free energy barrier separating the liquid
and the vapor states. The bubble nucleation rate is difficult to assess and,
typically, only for extremely small systems treated at atomistic level of de-
tail. In this work a powerful approach, based on a continuum diffuse interface
modeling of the two-phase fluid embedded with thermal fluctuations (Fluc-
tuating Hydrodynamics) is exploited to study the nucleation process in ho-
mogeneous conditions, evaluating the bubble nucleation rates and following
the long term dynamics of the metastable system, up to the bubble coale-
scence and expansion stages. In comparison with more classical approaches,
this methodology allows on the one hand to deal with much larger systems
observed for a much longer times than possible with even the most advanced
atomistic models. On the other it extends continuum formulations to ther-
mally activated processes, impossible to deal with in a purely determinist

setting.
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Introduction

Thermal fluctuations play a dominant role in the dynamics of fluid systems
below the micrometer scale. Their effects are significant in, e.g., the smallest
micro-fluidic devices [17, 20] or in biological systems such as lipid membranes
[107], for Brownian engines and in artificial molecular motors [115]. They are
crucial for thermally activated processes such as nucleation, the precursor of
the phase change in metastable systems. Nucleation is directly connected to
the phenomenon of bubble cavitation [28] and of freezing rain [32], to cite a
few. There, thermal fluctuations allow to overcome the energy barriers for
phase transitions |76, 79, 90]. Depending on the thermodynamic conditions,
the nucleation time may be exceedingly long, the so-called “rare-event” issue.
Classical nucleation theory (CNT) [18] provides the basic understanding of
the phenomenon which is nowadays addressed through more sophisticated
models like density functional theory (DFT) [113, 92] or by means of mole-
cular dynamics (MD) simulations [19]. These approaches need to be coupled
to specialized techniques for rare events, like the string method [1418], the
forward flux sampling [/] and the transition path sampling [23], to relia-
bly evaluate the nucleation barrier and determine the transition path [67].
For many real systems they are often computationally too expensive and

therefore limited to very small domains.

Here we adopt a mesoscopic continuum approach, embedding stochastic
fluctuations, for the numerical simulation of thermally activated bubble nu-
cleation. Since the pioneering work of Landau and Lifshitz (1958, 1959) [3/]
several works contributed to the growing field of “Fluctuating Hydrodyna-
mics” (FH) [61]. More recently the theoretical effort has been followed by a
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flourishing of highly specialized numerical methods for the treatment of the
stochastic contributions |54, 46, 11, 53]. The present model is based on a
diffuse interface [111] description of the two—phase vapor-liquid system [96]
similar to the one recently exploited by Chaudhri et al. [33] to address the
spinodal decomposition. The thermodynamic range of applicability of this
approach is subjected to some restrictions: i) at the very first stage of nuclea-
tion the vapor nucleii, smaller than the critical size, need to be numerically
resolved; analogously, ii) the thin liquid-vapor interface needs to be captured
for the correct evaluation of the capillary stresses; iii) fluctuating hydrodyna-
mics predicts that the fluctuation intensity grows with the inverse cell volume,
AV, leading to intense fluctuations, contrary to the assumption of weak noise
needed to derive the model (1/(5f2)/(f) < 1). Notwithstanding these re-
strictions, where it can be applied, this mesoscale approach offers a good level
of accuracy (as will be shown when discussing the results) at a very cheap
computational cost compared to other techniques. The typical size of the
system we simulate on a small computational cluster (200 x 200 x 200 nm?,
corresponding to a system of order 10® atomistic particles) is comparable
with one of the largest MD simulations [0] on a tier-0 machine. Moreover the
simulated time is here Ti,.x ~ ps to be compared with the MD T,,,, ~ ns.
The enormous difference between the two time extensions allows us to ad-
dress the simultaneous nucleation of several vapor bubbles, their expansion,
coalescence and, at variance with most of the available methods dealing with

quasi-static conditions, the resulting excitation of the macroscopic velocity

field.

The approach we follow basically amounts to directly solving the equa-
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tion of motion for the capillary system endowed with thermal fluctuations.
In order to interpret the results, a reference nucleation theory is needed. In
literature classical nucleation theory (CNT) is the standard choice [1&]. In
CNT, the two phase system comprising an isolated bubble immersed in the
metastable liquid is described by the so-called sharp-interface model where,
at fixed temperature, the density field is piecewise continuous, with the densi-
ty of the liquid outside and that of vapor inside the bubble. CNT determines
the size of the critical bubble, corresponding to the transition state. It may
happen that the size of the critical bubble is so small to be comparable with
the physical thickness of the interface. In such conditions the predictions of
CNT can be inaccurate. In order to consider a nucleation theory consistent
with our diffuse interface approach, which takes into account the actual thic-
kness of the interface, a more sophisticated theory is needed. Hence, beside
CNT, we will use the so-called string method applied to the diffuse interfa-
ce model to identify the critical state and the transition path leading from
the metastable liquid to the cavitated vapor. The two reference nucleation
theories will be used to interpret the results of the direct simulation of the
nucleation process. In such comparison, one should take in mind that the
actual process we simulate is typically significantly more complex than as-
sumed in the reference theories. In particular, at least three effects which
are neglected in the ordinary approaches are taken into consideration by our
simulations: i) several bubbles are simultaneously present in the system; ii)
there is a dynamical interaction between the bubbles; iii) temperature is a
field, which may fluctuate in time and space due to several reasons, namely
the stochastic forcing itself, and, more significantly, the intrinsic dynamics of

the bubbles, including expansion, compression and latent heat release, all of
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which are comprised in our description.

The paper is structured as follows: in Section II we discuss the mathema-
tical aspects of the two-phase modeling. First, in Section II.1 we address the
Diffuse Interface approach exploited to describe vapor-liquid systems em-
bedded with capillarity effects. A purely thermodynamic analysis allow us
to obtain important informations about the properties of critical nucleii, in
particular the critical bubble radius and the energy barrier required for the
transition from the metastable liquid to the nucleated vapor bubble. The
issue is addressed through the application of the string method [119] illustra-
ted in Section I1.2. In Section I1.3 we introduce Fluctuating Hydrodynamics
in the context of the Diffuse Interface approach. The model consists in a
set of stochastic partial differential equations (SPDE). The specialist aspects
are derived in full details in Appendix A and B, respectively devoted to a
discussion of the equilibrium statistical properties of the fluctuating field and
to the specific form the Fluctuation-Dissipation balance takes in the present
context. Section III deals with the numerical simulations. More specifically,
Subsection III.1 illustrates the properties of the numerical scheme and Sub-
section II1.2 addresses bubble nucleation results, with particular attention to
nucleation rate, bubble volume distribution and bubble-bubble interaction
effects during the process. Finally Section IV is devoted to the conclusions

and to the open problems in the field.
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Mathematical Model

Diffuse Interface approach for vapor—liquid systems

The diffuse interface modeling adopted here has a strict relationship with
more fundamental atomistic approaches, since it is based on a suitable ap-
proximation of the free energy functional derived in DFT [92]. Tt dates back
to the famous Van der Waals square gradient approximation of the Helmholtz

free energy functional

F[p,Q]:/Vde:/V<fb(p,9)+%)\Vp-Vp) v, (7.1)

where f; is the classical bulk free energy density, expressed as a function of
density p and temperature 6. A is the capillarity coefficient that controls
the (equilibrium) surface tension 7 and interface thickness. In particular the

temperature dependent surface tension can be obtained as [98, 92]

sat (g
1(0) = / pl ’ V2 [fi(p,0) — folpit(0).0) — pu(p, 0)p + >t (8) pi(6)]dp,

Pt (6) (72)
with g, = 0f,/0ple the bulk chemical potential and the superscript sat de-
noting saturation conditions. In this work we will compare our numerical si-
mulations with results obtained with Molecular Dynamics of Lennard-Jones
fluids, hence for a fairy comparison we adopted as bulk free energy f,(p, 0) the
modified Benedict-Webb-Rubin equation of states (MBWR EoS) that well
reproduces the thermodynamic properties of an LJ fluid [75]. All quantities
are made dimensionless according to p* = p/p,, 0* = 0/0,., by introducing as
reference quantities the parameters of the LJ potential, 0 = 3.4 x 107%m
as length, € = 1.65 x 1072!J as energy, m = 6.63 x 10726kg as mass and

0, = €¢/kp as temperature. In the left panel of Fig. 7.2 we compared the tem-

162



t2r Diffuse Interface 051
I F (@] LJ Benchmark data C
C 04F
osf r
- 03f p=0.45 6=1.25
o6 N p=0.48 0=1.25
° F C p=0.52 6=1.20
0.4 E 02F
02F C
C 01k
O_IIIIIIIIIIII 1 i N NN N NN N Y N Y Y N Y [ O |
0.8 A 12 0 1 ( 20

Figura 7.2: Left panel: Comparison between the temperature de-
pendence of the surface tension obtained through Eq. (7.2), when
using the Lennard-Jones EoS |[75], and the benchmark data provi-
ded at the url https: //www.nist.gov/mml/csd/chemical-informatics-research-
group /lennard-jones-fluid-properties. The value of the capillary coefficient
is fixed to Am?/(c%) = 5.224. Right panel: Density profiles of the criti-
cal nucleii, evaluated with the string method, at different thermodynamic
conditions of the metastable liquid.

perature dependence of the surface tension obtained through application of
Eq. (7.2) coupled with the MBWR EoS, and some benchmark values obtained
through Monte Carlo simulations. In order to reproduce the benchmark re-
sults we fixed the value of the capillary coefficient to A\* = Am?/(c%¢) = 5.224.
It is worthwhile stressing that a constant coefficient is sufficient to reproduce
the correct temperature dependence of the surface tension. Hereafter the

symbol * will be omitted to simplify notation.

Transition path and the critical bubble

The minimization of the free energy functional (7.1), stating that the gene-

ralized chemical potential y. = u2(p) — AV2p must be constant and equal
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to the external chemical potential ic.;, allows the evaluation of the equili-
brium density profiles at the different thermodynamic conditions. Clearly,
in thermodynamic conditions where either the liquid or the vapor are stable,
constant chemical potential corresponds to a homogeneous phase. When the
liquid or the vapor are metastable instead three solutions at constant che-
mical potential are found: i) the homogeneous vapor; ii) the homogeneous
liquid; iii) a two-phase solution with a spherical (critical) nucleus of a given
radius (vapor/liquid in the case of bubble/droplet, respectively), the critical
nucleus being surrounded by the metastable phase.

Dealing with nucleation, the non-trivial solution of case (iii), p(r) =
perit(r) where the critical bubble is surrounded by the metastable liquid at
p=p7e 0 =0and p.(p7Pe, 0) = W is particularly significant. The solution
p(r) = perie(r) is found by solving the non linear Euler-Lagrange equation of
the functional 7.1 which, in spherical coordinates and at fixed temperature,
reads

00 - o (P) = e (7.3
The critical bubble, p.(r), is an unstable solution of Eq. (7.3) which requires
specialized numerical techniques. In this work we applied the powerful string
method [149] which, as a by-product, identifies the transition path joining the
metastable liquid to the cavitated (stable) vapor. The transition path can
be visualized as the continuous sequence of density configurations, p(r, @),
the system assumes when transitioning from the metastable to the stable
state, where « is a suitably defined parameter along the path. The distance

between two configurations is expressed as

Al = \/ % / Ap?(r)dV (7.4)
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and defines the arclength along the path. The discrete form of the path,
consisting of a finite number of configurations, is called the string. The
string method numerically approximates the transition path starting from
an initial set of N, configurations {p*(r)}, which form the initial guess for
the discretized transition path. The head of the string (k = 1) is initialized
as a uniform density field corresponding to the uniform metastable liquid
p(r) = pet; the tail (k = Ny) is initialized as a guessed tanh-density profile
adjoining the liquid and the vapor density to approximate a vapor bubble. All
the intermediate images on the string are obtained by interpolation of these
two density fields with respect to the above defined arclength. The algorithm
used to relax the string to its final configuration corresponding to the actual
transition path follows two steps. 1) All the images p*(r) are evolved over

one pseudo-timestep A7 following the steepest-descent algorithm

ap __ , met _ b . ié 2@
87_ =K |:Mc(p) TQ 6T <T 87" . (75)

2) The images are redistributed along the string following a reparametriza-
tion procedure by equal arclength. The algorithm is arrested when the string
converges within a prescribed error.

The density profile of the critical nucleus, plotted in the right panel of
Fig. (7.2) at different metastable conditions, allows the evaluation of the

critical radius, by following the relation [13]
/ r(0pe/0r)?r? dr
0
/ (Ope/Or)r*dr
0

and the evaluation of the energy barrier

R, =

: (7.6)

E - /OOO {f(pc(r)) - f(pgnet> - ,Umet [pC(T) - p?et] } 47T7’2dT, (77)
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defined as the difference in grand potential 2 between the critical nucleus
and the metastable liquid.

The results of the string method are compared in Tab. 7.1 with tho-
se obtained by classical nucleation theory (CNT) which yields the estimate

—~CNT
AQ)

= 4/37yR?. The data show that CNT underestimates the energy

barrier at high temperature while overestimates it near the spinodal |

00 pz@et RC RCCNT E/QO ECNT/QO
1.25 0.45 12.04 8.07 2.99 12.89
1.25 0.46 11.16 8.42 11.21 14.05
1.25 0.47 11.85 9.17 22.81 16.67
1.25 0.48 14.18 10.64 43.5 22.41
1.20 0.51 8.28 6.35 19.20 18.13
1.20 0.52 8.79 6.93 33.58 21.60

Tabella 7.1: Comparison between CNT and the string method applied to the
Diffuse Interface model. Critical radii and (Landau) free energy barriers A
for bubble nucleation from the liquid. The discrepancy close to the spinodal
and at higher temperature are well known from the literature.

Fluctuating Hydrodynamics: the Landau—Lifshitz /Navier—
Stokes model embedded with capillarity

The deterministic time evolution of the two—phase, vapor-liquid, system
obeys mass, momentum and energy conservation. The thermodynamic con-
siderations of Section II.1 embed capillary effects in the equilibrium model.
Following the procedure of non-equilibrium thermodynamics, [37], which can
be nowadays considered a standard approach, the description is straightfor-
wardly extended to dynamic conditions. New stress and energy flux contribu-

tions arise from the capillary term in the free energy (Eq. 7.1). In particular
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(see [958, 72] for the detailed derivation) the stress tensor reads

Y= |-p+ %!Vp\z + AV - (AV )| I-AVpV p+p | (Vu + Vul) — ;V cull,
(7.8)

with p = —p?0(fy/p)/0p = fo— pbp the pressure and p the dynamic viscosity.

The energy flux entering the energy equation is augmented with a capillarity

term which adds to the standard Fourier contribution,
q = \pVpV - -u—kV0, (7.9)

with £ the thermal conductivity.

Thermal fluctuations needs to be included in the classical hydrodynamic
equations in order to describe fluid motion at mesoscopic scale. Based on
phenomenological arguments, the theory of fluctuating hydrodynamics has
been originally developed by Landau and Lifshitz (1958, 1959)[34] to be la-
ter framed in the general contest of stochastic processes [01]. Landau and
Lifshitz’s original idea was to treat the thermodynamic fluxes, namely stress
tensor and energy flux, as stochastic processes. As prescribed by the ther-
modynamics of irreversible processes at macroscopic level, thermodynamic
fluxes are the expression of microscopic molecular degrees of freedom of the
thermodynamic system. Under this respect dissipation in fluids can be seen
as the macroscopic manifestation of the energy transfer arising from random
molecular interactions. Thus at mesoscopic scale, thermodynamic fluxes ha-
ve to be modeled as stochastic tensor fields, whose statistical properties can
be inferred by enforcing the fluctuation-dissipation balance (FDB) .

The detailed derivation of the stochastic contributions is postponed to ap-
pendices A-B. Here we summarise the main aspects of the model. The sto-

chastic evolution of the system is described by the conservation laws of mass,
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momentum and energy;,

dp
JE—— . pr— -].
aﬂLV (pu) 0, (7.10)
I LG (pueu) = V-S4V 6%,
ot
E
aa—t+V-(uE) = V- (X-u—-—q)+V-(6X-u-4dq),

where u is the fluid velocity, F is the total energy density, £ = U+1/2p|ul?+
1/2X|V p|?, with U the internal energy density. In the momentum and energy
equations, 2 and q are the classical deterministic stress tensor and energy
flux, respectively, defined in Eqs. (7.8, 7.9) while the terms with the pre-
fix 0 are the stochastic parts, required to satisfy the FDB. Enforcing the

fluctuation-dissipation balance, the covariance of the stochastic fluxes follows

as
(6%(2,1) ® 6%1(2,1)) = Q%6(2 — 2)d(f — 1), (7.11)
and
(6q(#,1) @ 8q'(&,1)) = QI5(i — &)0(f — 1), (7.12)
where Q= 5, = 2kp04t (8au0sn + Sandpy — 2/30a50uy) and Q4,5 = 2kp02kdap,

with kg the Boltzmann constant. Thanks to the Curie-Prigogine principle
[37], the cross-correlation between different tensor rank fluxes vanishes, i.e.
({0q'(#,1) @ 6%(&,1)) = 0).

Even in equilibrium conditions, thermal noise forces the different fields to
fluctuate. The complete (equilibrium) correlation tensor Ca (7, 1) = (A(F) ®
AT(7)), with the field fluctuations organised in a 5-component vector A(r) =
{dp(r),du(r),00(r)}, is found to be, Appendix A,

C(;p(;p 0 0
Cat,i)=| 0 Cswa 0 |, (7.13)
0 0 Csoso
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with

Cispip(F, T) ksbo & — | r (7.14)
e N ooh |
Cupali F) = kifﬁa (G —7), (7.15)
o kel
Cpso(F,T) = choa(r —F) . (7.16)
0Cv

In these equations py and 6y are the equilibrium density and temperature,
respectively, ¢z = dp/0p|r the isothermal speed of sound, and ¢, the specific
heat at constant volume. It is worth noting that the spatial correlation of
density fluctuations arise from the long range capillary interactions and is

not spatially d-correlated as usual in simple fluids [10].

Results and Discussion
Stochastic pde’s and numerical integration

System (7.10) has been discretised in the spirit of the method of lines, which
consists of two stages: spatial discretisation and temporal integration, respec-
tively. Concerning spatial discretisation, the different physical phenomena
described by the LLNS system ask for specialised numerical techniques. A
crucial point is the correct reproduction of the statistical properties at the
discrete level [3], consistency with fluctuation-dissipation balance in particu-
lar. Egs. (7.10) have been discretised on a uniformly spaced staggered grid,
following [54]. Due to staggering, scalar fields, like e.g. density, are located
at the cell center while components of vector fields in a given direction are
located at the center of the perpendicular face.

The numerical scheme has been validated by comparing the numerical

equilibrium static correlations with the theoretical ones in the discretized
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Figura 7.3: Left panel: Static structure factor comparison for a capillary
fluid in a 3D system. We report the relative error e = |S; — S;|/.S; between
the theoretical prediction and numerical calculation for each wavenumbers
kz, ky, k. in the Fourier space. Right panel: Error of the density variance
at different simulation time steps. As expected, the error follows a square
power law e oc At?.

equations. Here we report the comparison of the density static structure
factor, which is the Fourier transform of the static correlation function Cj,s),
in Eq. (7.14). In the discrete limit, the theoretical static structure factor
reads

pok b

kq) = 1
St( d) C%—v"—po)\kd'kd’ (7 7)

where

b An/) (A (B0)

ka-ka= ( Ax/2 Ay/2 Az /2

is the discrete version of the square norm of k, arising from the discrete
Laplacian operator in Fourier space [33]. The numerical estimate of the

density structure factor is calculated, following its definition, as

Sy(ka) = (0p(ka)dp”(Ka)) , (7.19)
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where dependency on the wavenumber implicitly denotes Fourier componen-
ts. As shown in the left panel of Fig. 7.3, numerical results are in very good
agreement with the theoretical prediction. In particular the relative error
e is almost everywhere less than 2 — 3% in the field, except for the small
wavenumbers, due to the slow convergence of low wavelength modes [33].
Nevertheless, even in the latter case, the relative error is less then 10%.

As a second test, we compared the variance of velocity and temperature
fluctuations. In particular, the velocity fluctuations must reproduce the

celebrated equipartition theorem, here reported in the discretes version:

., kB
(ou - du) = 3p0AV , (7.20)
(06°) = kB—e(% (7.21)
PoCL AV '

The values reported in Tab. 7.2 clearly show a perfect matching between

numerical results and theoretical expectation.

Variances | Theoretical prediction | Numerical value | Error %

(6u2) 1.3333- 1071 1.3332- 1071 0.01
(0u2) 1.3333- 1071 1.3331-1071 0.02
(6u?) 1.3333-10~* 1.3335- 104 0.02
(66?) 5.8361-107° 5.8443-107° 0.15

Tabella 7.2: Numerical temperature and velocity variances in comparison
with theoretical values.

As a last test, we validated the accuracy of our time integration method.
We performed the time evolution by means of a second order Runge Kutta
scheme [16]. We compared the numerical error, e, on the variance of density

fluctuations (dp(x)?) at different time steps At with respect to (dp(x)?)p
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obtained with our finest integration step At = 10~*

_ 10069?) = (569 T~

{0p(x)?)opt

where the average is evaluated as 1/(T'V) fOT [i 0p(x)* dVdt with the time
window T fixed as T" = 100 LJ units. The right panel of Fig. 7.3 clearly

shows the expected power law, e oc At2.
All these tests ensure that the numerical scheme correctly reproduces the
statistical properties of the system, i.e. the fluctuation-dissipation balance is

preserved in the discretised equations.

The dynamics of vapor bubble nucleation

Bubble nucleation is investigated in a metastable liquid enclosed in a cubic
box with periodic boundary conditions, with fixed volume, total mass and
energy (NVE). The equation of state (EoS) we use, which can be chosen freely
among available models, e.g. van der Waals or IAPWS [32] EoS for water,
corresponds to a Lennard-Jones (LJ) fluid [75] to allow direct comparison
with MD simulations. The system volume V = 6003 has been discretised on
a uniform grid with 50 cells per direction. After a convergence analysis we
found that the chosen grid size, Az = 12, is sufficient for a reliable simulation
in these thermodynamic conditions. Moreover, thanks to the extension of the
simulated domain ten runs for each condition, with different values of the seed
employed to generate random numbers, provide a well converged statistics.
Among the different conditions we have investigated, we mainly focus he-
re on the initial temperature 6, = 1.25 at changing bulk density to explore
the corresponding metastable range pr € [pspin, Psat] = [0.44,0.51], where

Psat and pspin are the saturation and spinodal densities, respectively. A few
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snapshots of the evolution for two different initial conditions are shown in
the left panels of Fig.s 7.4 and 7.5. Starting from a homogeneous metastable
liquid phase, the fluctuations lead the system to spontaneously nucleate va-
por bubbles. The nucleii start out with a complex, far from spherical, shape,
see, e.g., [19]. Roughly, when they happen to reach a size larger than critical
they typically expand. Eventually, after a long and complex dynamics whe-
re bubbles expand and coalesce, stable equilibrium conditions are reached.
The existence of such equilibrium is due to the constraint on volume and
mass of the system. Note that, most often, nucleation is addressed in the
grand-canonical ensemble, where volume and chemical potential are speci-
fied. The eventual configuration is characterized by several vapor bubbles in
equilibrium with the surrounding liquid. The case at p;, = 0.46, the closest
one to the spinodal we considered here, is the most populated, Fig. 7.4 in
comparison with Fig. 7.5. This system has a barrier lower than those further
from the spinodal (see Tab. 7.1), hence it nucleates faster. The initial (me-

tastable) thermodynamic condition also influences the number and typical

500 03
400
300
200 H!

10 H: |\

Figura 7.4: Left panel: bubble configurations along nucleation (p =
0.46, 6y = 1.25), from left to right ¢ = 400, ¢ = 2000, ¢ = 25000. Anima-
tion available in Supplemental Material [1258|. Right panel: bubble number
evolution (red symbols) and number of coalescence events (blue line).
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Figura 7.5: Same as Figure 7.4 at p = 0.48, 6, = 1.25. Snapshots taken at
t = 2000, t = 11000, t = 230000. The bubble number vs time in the right
panel is fitted by the dotted red line for better readability.

dimension of the bubbles in the final stage, right panels of Fig.s 7.4 and 7.5
providing the bubble number NV, as a function of time. A tracking procedure
has been put forward to follow the evolution of the distinct bubbles. By
monitoring bubble volume, mass, center of mass and its velocity, the trac-
king algorithm allows for detecting coalescence events. The actual number of
collisions between bubbles Ncoll evaluated at each time step is characterized
by a highly discontinuous fingerprint. We smoothed the curve with a Gaus-
sian kernel with standard deviation of order 50 time units to extract more
robust indications. The time evolution of the bubble number N, Fig.s 7.4
and 7.5, presents three main phases: i) the initial nucleating phase — when
N, grows linearly with time (i.e. at a constant nucleation rate); ii) the col-
lapsing phase during the first part of the expansion stage — characterized by
a rapidly decreasing number of bubbles mainly due to collapse; and iii) a
slowly expanding phase characterizing the long-time dynamics of the multi-
bubble system. The smoothed number of collisions N, plotted with the

blue line in the figures, shows a strong correlation with the number of bub-
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Figura 7.6: Left panel: Volume history of the bubbles surviving the entire si-
mulation (p = 0.46 and 6, = 1.25). Intense coalescence events, characterized
by a sudden volume jump, are identified in the red curves. The correspon-
ding volumes are shown by the red dots in the inset providing the V' — V_;
scatter plot, where V,,; is the volume acquired by coalescence. The large-
st bubbles experienced intense coalescence events. Right panel: Probability
distribution function f(V') of the bubble volumes during the nucleation, at
different times (6p = 1.25, p = 0.46, critical volume V, = 4445).

bles throughout the nucleating phase and the collapsing phase. Nucleating
and collapsing phases are characterized by a competing-growth mechanism
[?] due to the constraints of constant mass and volume, explaining the hi-
gh number of supercritical bubble collapses. The coalescence events start
being less and less probable during the slowly-expanding phase. The inset of
the Fig. 7.4 zooms into this phase showing that isolated collision events still
occurr, contributing to important acceleration toward the final equilibrium

condition.

The volume history of the distinct bubbles (in particular those survi-
ved up to the last time investigated) have been plotted in the left panel of
Fig. 7.6. Among the different bubble evolutions, we highlighted in red the
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volume histories of those bubbles that experienced intense coalescence events,
characterized by a sudden increase in volume. It is apparent that the larger
bubbles gained substantial part of their volume by coalescence. To substan-
tiate this impression, for each bubble in the last configuration, the sum of
the volumes acquired by coalescence throughout the whole evolution, V_..;,
was calculated, inset of left Fig. 7.6. The present mesoscale approach allows
to access the statistics of bubble dimensions. The probability distribution
function of bubble volumes f(V') is plotted in the right panel of Fig. 7.6.
During both the nucleating and collapsing phases the pdf is sharply peaked
at small volumes, of the order of 2—4 V.. The successive bubble expansion
phase is substantially slower and calls for a much longer observation time
to detect a significant growth (green dash-dotted curve at ¢ = 34000). The
intense coalescence events explain the presence of the second peak in the pdf
at very large volume (black curve in the inset on the right panel of Fig. 7.6

at t = 163760).

The initial nucleating stage, where the bubble number increases linear-
ly, gives access to the nucleation rate J in terms of bubbles formed per
unit time and volume. It is here calculated as the slope of the linear fit
to the curves of Fig.s 7.4 and 7.5 near the origin. The results are plotted
in Fig. 8.6 which also provides a direct comparison with some MD simu-
lations [19, |]. The values agree comfortably well with molecular dyna-
mic simulations in the NVE ensemble. As common in literature, the pre-
sent results are compared also with CNT prediction for the nucleation ra-
te, Jont = nL\/Wexp(—ECNT/k‘BQ), where ny, is the liquid number
density. The expression of the energy barrier was already explicitly given

in Section I1.2 while the pre-exponential factor is taken in the classical form
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Figura 7.7: Left panel: Comparison of the nucleation rate obtained via FH
simulations (red squares at 6y = 1.25 and blue squares at 6, = 1.20) with
respect to CNT predictions (green circles at 6, = 1.25 and purple circles
at 0y = 1.20). The inset shows the comparison with other authors. Right
panel: Time evolution of the number of supercritical bubbles N, and the
total collapsed supercritical bubble N, up to time instant ¢. The number of
bubbles is rescaled with the maximum number of bubble observed during the
simulation, N,.., which correspond to N, = 458 in the thermodynamic
condition with p;, = 0.46 and N,,,, = 52 in the case with p;, = 0.48. The
time is shifted and rescaled in such a way that all the curves start when the
first bubble appears, at t = t,, and finish when N,,,, is reached, at t = t,,4..

proposed by Blander and Katz [18], and already used in [19] as a reference
for a large number of MD simulations. It is worth noting that the energy
barriers estimated from CNT and from the string method (Table 7.1) are
strongly based on the assumption that only a single bubble can nucleate. As
already discussed when commenting on the coalescence events, in the ther-
modynamic conditions we studied the effects of bubble-bubble interaction are
instead crucial to understand the full dynamics of the bubble evolution. In

particular, the conditions assumed in our present simulations and in the MD
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simulations used for comparison correspond instead to given system volume,
energy and mass — NVE ensemble — and the system is free to simultaneously
nucleate several bubbles. The consequence of fixing the mass of the system
is that the larger is the overall volume of the different bubbles that are si-
multaneously nucleated the more the liquid is compressed. As a result the
nucleation process is discouraged. To further substantiate the importance
of this point we evaluated the number of collapsed bubble after crossing the
critical size. The total number, up to the current time, is plotted in the right
panel of Fig. 7.7 labeled as N.. If no collapse occurred, the total number of
bubbles in the system would have been Ny; = N, + N, and the rate would
have been larger by roughly a factor 15.

Conclusions

In conclusion, the FH approach together with a diffuse interface modeling of
the multiphase system have been exploited to study homogeneous nucleation
of vapor bubbles in metastable liquids. We evaluated the nucleation rate
and compared it favorably with state of the art simulations. Concerning the
comparison with classical approaches, CNT and the string method for the
diffused interface model, we found that the simultaneous nucleation of seve-
ral bubbles has a strong effect on the nucleation rate, that is found to be
altered with respect to the above single-bubble models. The present techni-
que has revealed extremely cheaper with respect to MD simulations, allowing
the analysis of the very long bubble expansion stage where bubble-bubble in-
teraction/coalescence events turn out to determine the eventual bubble size

distribution. The accurate results and the efficiency of the modeling encou-
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rage the exploitation for more complex conditions, like e.g. heterogeneous
nucleation and multi-species systems, and could pave the way for the deve-
lopment of innovative continuum formulation to address thermally activated

processes.
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Capitolo 8

A Mesoscale Model for
Heterogeneous Nucleation

In this work, the mesoscale fluctuating diffuse interface model described in
the previous chapters was extended to wall bounded systems, and subsequen-
tly exploited to address heterogeneous nucleation. We numerically evaluate
the nucleation rates for different thermodynamic conditions and different wall
wetting properties. Dealing with wall wettability, calls for a thermodynamic
consistent model of the solid-wall free energy, to this end its mathematical
form was found, univocally relating the contact angle with the bulk proper-
ties of the fluid. Furthermore, the model foresees depletion or absorption
layering of the liquid in proximity of the solid surfaces, as commonly detec-
ted in MD simulations. These aspects play a crucial role in heterogeneous
nucleation, showing unusual effects. In particular for moderately hydrophilic
walls, homogeneous nucleation seems to be the most probable event, due to
the liquid accumulation to the wall.

As a simple comparison, we compare our numerical results, with classical
nucleation theory, both with Blander and Katz approach and with Kramers

theory. For weakly hydrophilic/hydrophobic surfaces, a good agreement with
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classical theory, is found. In particular with Kramers theory, here formulated
for heterogeneous nucleation.

What follows is the paper in preparation.

Introduction

The effects of thermal fluctuations are relevant in the dynamics of fluid sy-
stems below the micrometer scale. Hence a fluid dynamic model addressed to
capture the phenomena at mesoscopic scales must embed this crucial aspect,
hence calling for a suitable description of stochastic fluctuations. Starting
from the eminent work of Landau and Lifshitz (1958, 1959) [34] several
models have been developed to embed thermal fluctuations in continuum
mechanics equations [61] contributing to the growing field of “Fluctuating
Hydrodynamics”. In the last decades the mathematical modeling has been
followed by an exponential increase of numerical methods for the correct eva-
luation of the stochastic contributions [54, 16, 11, 53]. The comprehension
of the effects of thermal fluctuations in a mesoscale system not only play an
important role in physics of fluids, but a deep understanding of these pheno-
mena is necessary for the progress of some of the latest nanotechnology. For
instance a suitable modeling of stochastic fluctuations is crucial in the desi-
gn of flow-driven micro-devices, or in the study of biological systems, such
as lipid membranes [107], or even in the theory of Brownian engines and in
the development of artificial molecular motors prototypes [1 15, 47]. Another
problem with a huge theoretical and technological impact is the phenomenon
of nucleation, the precursor of the phase change in metastable systems. This
problem is strongly connected to the phenomenon of bubble cavitation [25]

and of freezing rain [32], to cite a few. In fact thermal fluctuations allow
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to overcome the energy barriers for phase transitions [76, 79, 90]. Before di-
scussing the mathematical model, it is worth to remember the main features
of nucleation in liquid system. A liquid held at atmospheric pressure can be
heated up to a temperature far beyond its boiling point. In this condition
the liquid is called superheated, or more generally metastable. Metastability
can be obtained analogously by decreasing isothermally the pressure under
its saturation value. At low enough temperature — at ambient temperature
in the case of water, e.g. — the liquid can be stretched down to negative
pressure, the so called tensile condition. When the liquid is in metastable
conditions a vapor bubble can nucleate with a probability related to the level
or superheating or stretching and we refer to the nucleation event as boiling
or cavitation, respectively |28]. Bubble nucleation is an activated process,
since an amount of energy is needed to overcome the activation barrier. The
presence of impurity or dissolved gas nuclei strongly lowers the energy barrier
and simplifies the bubble formation, as well as the presence of solid boun-
daries. In fact the energy needed to form a vapor bubble on a solid surface
depends on the contact angle, and as explained in the next section it can
be significant lower than its counterpart in a bulk phase. This is the reason
why it is extremely easy to experience a cavitation event in water at non-
extremely negative pressures even if it has been proven [10] that ultra-pure
water can sustain 1 kbar tensions. Moreover recent experimental works have
highlighted how the wettability of ultra-smooth surface can strongly influence

the onset temperature of pool boiling in superheated liquids [26, 25, |.

Several theoretical models have been proposed in order to estimate the
energy barrier and the nucleation rate, both in homogeneous and heteroge-

neous (near boundaries) conditions. The classical nucleation theory (CNT)
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[18], poses the basis for the understanding of the phenomena, and it may
be easily extended to the non-homogeneous case [117], as recalled in Sec.II.
More sophisticated theories like density functional theory (DFT) [113] or
molecular dynamics (MD) simulations can give more precise estimates of the
barriers and can correct some mis—prediction of the CNT. Both the methods
are extremely powerful in stationary conditions and need to be coupled to
specialized techniques, like the string method [118], to study the nucleation
events and the transition path [67]. Another promising approach is to use a
phase field model where the order parameter is the mass density itself. In sta-
tionary conditions it recovers the DF'T description with a squared-gradient
approximation of the excess energy [92]. The phase field model has the ad-
vantage of being easily extended to unsteady situations, enabling the full
description of both the thermodynamic and the fluid dynamics fields [96].
The model, in its original form, is deterministic and cannot capture sponta-
neous nucleation originated by thermal fluctuations, in absence of external
forcing. To this purpose, the theory of fluctuating hydrodynamic [10, 33|
represents the natural framework to embed thermal fluctuations inside the
phase field description. Recently a novel approach in the context of conti-
nuum mechanics, based on a diffuse interface description of the two-phase
vapor-liquid system embedded with thermal fluctuations through a fluctua-
ting hydrodynamics modeling, has been used to address bubble nucleation
process [63, 64| in the homegeneous case. Aim of this work is to extend our
previous works to the study of heterogeneous nucleation, in particular, here
we studied the spontaneous vapor bubble nucleation in a metastable liquid in
presence of solid boundaries. The heterogeneous nucleation has been addres-

sed by the means of diffuse interface fluctuating model, and we numerically
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evaluate the nucleation rates for different wall wetting properties. An analy-
tic form of the solid-wall free energy is derived, relating its expression with
the thermodynamics of the bulk phase and the contact angle with the spatial
derivative of the density.

As a simple comparison, we compare our numerical results, with clas-
sical nucleation theory, both with Blander and Katz approach and with
Kramers theory. For weakly hydrophilic/hydrophobic surfaces, we found
a good agreement with classical theory, in particular with Kramers theory,

here formulated for heterogeneous nucleation.

Classical Nucleation Theory

Classical nucleation theory (CNT) [80, 28, 117] provides the fundamental
understanding of bubble nucleation in a metastable liquid, both for homo-
genous (bubble forming in the bulk liquid)) and heterogenous conditions
(bubble forming in contact with an extraneous phase, typically a solid with
given geometry and chemical properties). The simplest example of heteroge-
nous nucleation is a vapor bubble nucleating on a flat solid surface at fixed
contact angle ¢.

The free energy of a spherical cup laying on a flat solid wall,
Q (Ra Qb) - —APVV (Ru d)) + ’YLVALV (R7 ¢) +
+ ysvAsy (R, ¢) +vrsALs (R, ¢) (8.1)
depends on the vapor-liquid pressure jump Ap = py —py, (the Laplace pressu-
re), the bubble volume Vi, the area of liquid-vapor Ay, solid-vapor Agy and

liquid-solid Apg interfaces and the respective surface energies vpv, vsv, Vrs-

Introducing the equilibrium (or Young) contact angle ¢ = cos™(yrs —
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Figura 8.1: Left panel: bubble sketch illustrating the equilibrium contact
angle ¢ and the bubble radius R. Right panel: CNT prediction of free-energy
profiles for different contact angle ¢, the continuous line corresponds to the
homogeneous case (¢ = 7), the dotted lines represent the heterogeneous case.

vsv)/7vrLv) (see the sketch in fig. 8.1, where, at variance with the stan-
dard convention, the angle is measured from the vapor-solid interface, i.e.
¢ > /2 means hydrophilic) allows for re-expressing the relevant geometric
quantities as Agy = 7R%?sin* ¢, Apy = 2rR%(1 — cos @), Aps = Ay, — Asy,
VW (R, ¢) = Vi (R, m)¥(¢), where is A, the total surface of the solid wall
and U(¢) = 1/4(1 — cos ¢)?(2 + cos ¢). As ¢ — m the free energy reduces
to the homogeneous case. Thus, starting from a homogeneous metastable
liquid and denoting by AQpem = —ApWVi (R, ) + yov Ay (R, m) spent for a
spherical bubble of radius R in the bulk liquid, the energy required to form

a spherical cup at the wall reads

AQ(R, 6) = Ay (R) U () . (8.2)

The free energy consists of two contribution, one associated with volume
terms and decreasing like R® with increasing bubble radius and the other
depending on the surface area which increases with like the square of the

bubble radius. The free-energy attains a maximum, the critical state, at the
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critical radius R*.

2vrv
R = 8.3
Ap ) ( )
The corresponding free energy barrier is
A= AO(R',6) = A}, ¥ () = S50 (9) . (84)

The critical radius is the same both for heterogeneous and homogenous nu-
cleation. On the opposite, the barrier AQ* for heterogenous nucleation is
lower than AQpem (Y(¢) < 1). Clearly, for trivial geometrical reasons, also
the critical volume V* = 4/37 R**¥(¢) is smaller for the heterogeneous case.

The crucial observable in the nucleation process is the nucleation rate,
i.e. the normalized number of super-critical bubbles formed per unit time. In
the heterogeneous context the normalization is per unit surface (as opposed
to unit volume used in homogeneous conditions). The expression for the

nucleation rate[l8, 11] is
_ ng/g (1 — COS ¢) Z’YLV exp [ — AQ*
L 2 T™m kBH ’

where ny, is the liquid number density and m the mass of the liquid molecule.

JBK (8.5)

Kramers theory [43] provides the mean time 7 for the diffusion across a barrier
(mean first passage time) of a random walker trapped in the metastable
basin of a given potential. In the present context the random walker is the
nucleating bubble which is assumed to obey a Langevin equation [101] with

free energy given by eq. (8.4). The resulting expression is

1 kgpo (AQ* )
T(¢) = — ex . 8.6
@) D 4U(G) ey \ kb (8.6)
The diffusion coefficient in correspondence with the critical state[101] is D* =

kp0/16pumR*, where p is the fluid viscosity, providing the estimate

2/3 v AQ*
_nr . 2/3 (¢)’YLV B
Jhet = r dpm R P kg6

(8.7)
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for the nucleation rate[12, 55].

Thermodynamics of non-homogeneous systems
in contact with a solid surface

In order to describe a non-homogeneous liquid-vapor system interacting with
a solid surface, we adopted the Van der Waals square gradient approximation
of the (Helmoholtz) free energy functional,

Flool= [ av (fb<p,9>+§wf)-w)+ | dstion) . 9

\4

where f; is the classical bulk free energy density and A is the capillary
coefficient, controlling both the surface tension and the interface thickness.
The free energy contribution f,, arises from the fluid-wall interactions and
accounts for the wetting properties of the surface.

The entropy functional S is obtained as the functional derivative of the

free energy with respect to temperature

§F
S[p,0] = /V—EdV: (8.9)
afb afw
* dv o ds
= /sb(pﬁ) dV+/ sw(p,0)dS,
|4 oV

where the third equality holds for a temperature-independent A\. The la-
st identity follows from the definition of the bulk entropy density s, after
introducing the surface entropy density s,. For a closed and isolated ther-
modynamic system of given energy E, and mass My, the constrained entropy

functional (S.) reads
1%
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where [y and [y are two Lagrange multipliers and the internal energy U is
U =F+0S :/ u(p,Vp,0)dV + U