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Introduction

In the last few decades several e�orts have been made in the �eld of geotechnical

engineering to develop constitutive models able to reproduce the mechanical be-

haviour of soils. It is well recognised that the behaviour of geomaterials is highly

nonlinear, with both strength and sti�ness depending on stress and strain levels.

Taking into account in constitutive models the dependence of the small strain sti�-

ness on the current stress is crucial to accurately predict the response of many

geotechnical systems for both static and dynamic loading. Furthermore, soils can

be characterised by a signi�cant degree of anisotropy due to an oriented internal

microstructure. Neglecting the anisotropy of soil behaviour may lead to inaccurate

prediction of the response, as pointed out by Zdravkovic et al. (2002) while Lee &

Rowe (1989), Simpson et al. (1996), Ng et al. (2004), Franzius et al. (2005) and

Puzrin et al. (2012) showed that the small strain sti�ness anisotropy can play a

non-negligible role in the prediction of settlements induced by tunnelling and deep

excavations. Finally, an other important feature often ignored in the engineering

practice is the role of the previous stress history experienced by the material, and

the related development of irreversible strains, on the small strain behaviour of soils.

This research concerns the constitutive modelling of soils to capture the fea-

tures of soil behaviour mentioned above. Firstly, the elastic constitutive modelling

of soils is considered to describe the anisotropy of the small strain sti�ness in a

thermodynamically consistent way. Subsequently, within the framework of classical

elastoplasticity a reference model, the single surface hardening model for clays pro-

posed by Dafalias & Taiebat (2013), is adopted and a form of elastoplastic coupling

is introduced by a dependence of the small strain sti�ness anisotropy on the plastic

strain. This permits to reproduce the evolution of the directional properties observed

in clayey soils at small strain levels. Finally, the Dafalias & Taiebat (2013) model is

reformulated in a thermodynamically consistent way to develop more sophisticated

forms of elastoplastic coupling.

In chapter 1 the small strain mechanical behaviour of geomaterials is discussed

from an experimental perspective. The elastic sti�ness dependency on the mean
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Introduction

e�ective pressure and, more generally, on the current state of stress is supported

by experimental results and by some empirical relationships valid for both sandy

and clayey soils. Subsequently, the anisotropic character of the elastic sti�ness

is explored and distinction is made between the inherent anisotropy due to the

material microstructure and that induced by the current stress/strain state based

on experimental data available in the literature and clari�ed by micromechanical

considerations. In addition, the in�uence of the previous stress loading history on

the elastic sti�ness of clays via the preconsolidation pressure and the evolution of

the small strain sti�ness anisotropy with plastic strain are critically analysed based

on experimental evidences.

In chapter 2 a critical review of some signi�cant existing elastic models is pro-

posed. Firstly, linear and nonlinear isotropic formulations are illustrated and later

the elastic anisotropic model are discussed. Particular emphasis is given to the

hyperelastic formulations.

In chapter 3 a nonlinear anisotropic hyperelastic model is proposed. The formu-

lation is based on the de�nition of a free energy potential that ensures the thermody-

namic consistency. The model is able to reproduce the nonlinear dependence of the

elastic sti�ness on the current stress state, the stress/strain induced anisotropy and

the permanent anisotropic characteristics through the introduction of a symmetric

second order fabric tensor. The proposed formulation is compared to the existing

ones reported in chapter 2 highlighting similarities and di�erences. Finally, the

performance of the model is investigated with reference to a series of experimental

results observed on both sands and clays.

In chapter 4 the single surface elastoplastic rotational hardening model for clays

formulated by Dafalias & Taiebat (2013) is �rst illustrated. The aim is to improve

the performance of this latter accounting for the evolution of the elastic sti�ness

anisotropy with plastic strains. Therefore, the model is enriched with the nonlin-

ear anisotropic hyperelastic formulation described in chapter 3 and a relationship

between the internal variables controlling the anisotropy in the plastic regime and

the fabric tensor pertaining to the reversible response of the model is established.

This leads to a form of elastoplastic coupling whose e�ects on the elastic response

are illustrated with reference to the experimental results shown in chapter 1.

Chapter 5 is devoted to the reformulation of the Dafalias & Taiebat (2013) model

in a thermodynamically consistent way. The approach followed here is based on the

thermodynamics with internal variables, denoted as hyperplasticity by Houlsby &

Puzrin (2000, 2006), which is critically discussed in the �rst part of the chapter.

The new formulation is developed for both associated and non-associated �ow rule
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Introduction

and the analogies and di�erences with a family of existing hyperplastic anisotropic

models are illustrated. The performance of the model is presented through the

results of numerical simulations.

Finally, in chapter 6 two thermodynamically consistent forms of elastoplastic

coupling are proposed. After a general introduction of the hyperplastic approach

for coupled materials, the isotropic and anisotropic elastoplastic coupling via the

preconsolidation pressure and the fabric tensor, respectively, are introduced in the

associated version of the hyper-elastoplastic Dafalias & Taiebat (2013) model. In

particular, the second form of coupling represents a new achievement never attemp-

ted before. The implications of elastoplastic coupling on the overall response of the

model are analysed with reference to a series of numerical simulations.
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Chapter 1

Small strain mechanical behaviour of

geomaterials

In this chapter some relevant properties characterising the mechanical behaviour of

geomaterials at small strain levels are discussed from an experimental perspective.

First, the dependence of the elastic sti�ness on the mean e�ective pressure and more

generally on the current state of stress are investigated. Some empirical relationships

useful to determine the shear modulus of both sandy and clayey soils at small strain

levels are reported and few considerations on the variables a�ecting the Poisson's

ratio are developed. Secondly, the anisotropic character of the elastic sti�nesses is

explored, separately highlighting the e�ect of the inherent or structure anisotropy

and that induced by the current stress/strain state. To support the discussion, ex-

perimental data available in the literature for sands and clays are illustrated and

commented based on micromechanical considerations. Finally, the in�uence of the

plastic strains on the small strain behaviour of geomaterials is described, with par-

ticular care to the evolution of the elastic sti�ness anisotropy typically observed in

clays.

1.1 Small strain sti�ness

In the past three decades the small strain sti�ness of soils has received particular

attention because of the crucial role that plays in many geotechnical applications,

such as the prediction of the settlements induced around an engineering structure

and in any dynamic problem. The elastic behaviour of soils is characterised by a

nonlinear dependence of the sti�ness on the level of stress, not to be confused with

the dependence of the secant sti�ness on the strain amplitude. This latter, although

is very important in both static and dynamic problems, is beyond the scope of this
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Chapter 1. Small strain mechanical behaviour of geomaterials

chapter because the attention is herein limited to the very small strain levels. The

improvement of laboratory testing systems equipped with local strain measurements,

the use of high precision sensors and more recently the wide spread of non-destructive

wave propagation measurements permit to perform reliable experiments in the small-

strain domain. The initial shear modulus G0, for which the response is usually

assumed to be reversible, has been investigated by many researchers for both sandy

and clayey soils. The majority of these studies were based on dynamic laboratory

tests carried out on samples of natural or reconstituted soils, under isotropic or

more general triaxial conditions. The experimental data are principally derived

from measurements of the velocity of propagation of the shear waves in the specimen

using bender elements incorporated in a triaxial apparatus, as discussed in detail by

Viggiani (1992) and Jovi£i¢ (1995). The small strain shear modulus is related to the

velocity of the shear waves through the well known relationship G0 = ρV 2
s , where ρ

is the density of soil and Vs the velocity of propagation of the shear waves. Lateral

benders measure the velocities Vhv and Vhh of vertically and horizontally polarised

shear waves, propagating in the horizontal direction, whereas benders installed in

the end platens measured the velocity Vvh of horizontally polarised shear waves

propagating along the vertical direction, as depicted in �gure (1.1).

In few cases this technique is combined with resonant column tests and with the

measurements of small strain sti�ness in the hollow cylinder apparatus. Throughout

this section, the directional character of the shear modulus will not be speci�cally

taken into account, thus the small strain shear modulus will be simply indicated by

G.

In the literature two main approaches are possible to describe the small strain

sti�ness of soils. The �rst one is based on the micromechanical theory, in which the

contact between the particles of the idealised soil are modelled. In this theoretical

framework, Chang et al. (1989, 1991) presented numerical results of the small-

strain shear modulus using the classic Hertz-Mindlin contact model for the case

of an isotropic fabric assembly. Subsequently, Yimsiri & Soga (2000) simulated

the interaction between rough particles, similarly to what discussed by Goddard

(1990) but incorporating a fabric tensor into the micromechanics model to take into

account the particles rearrangements occurring when the stress conditions change.

Clearly, this method can be more e�ciently employed for sandy and gravelly soils

rather than for clays, in which the electro-magnetic forces and the particles shape

are more complex to model. The second approach for studying the small-strain

modulus of soils consists in deriving empirical expressions from experimental results.

In particular, the small strain shear modulus was found to be a power function of
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Chapter 1. Small strain mechanical behaviour of geomaterials

Figure 1.1: Measurement of waves velocity through bender elements (from Callisto
& Rampello (2002))

the mean e�ective stress. If the soil is idealised as an assembly of elastic spheres in

contact, following the micromechanical framework, the shear modulus should depend

on the mean stress raised to the power of 1
3
. These relationships include many factors

that in�uence the elastic shear modulus, as will be shown in the following. This

empirical approach will be discussed in the following and the factors in�uencing the

elastic shear modulus will be shown. However, it is worth noting that the physical

origin of these expressions is not always very clear; in this sense the micromechanics

framework o�ers a way to understand the origin of these empirical equations.

Hardin (1978) observed that the elastic shear modulus of sands depends on the

current stress state, on the current void ratio e, and on the previous stress history

experienced by the soil, simply represented by the overconsolidation ratio. He pro-

posed the following empirical relationship in which G varies as power function of

the mean pressure p:

G

pr
= Sf (e)

(
p

pr

)n
OCRk (1.1)

where f (e) is a decreasing function of the void ratio, pr is a reference pressure
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Chapter 1. Small strain mechanical behaviour of geomaterials

usually assumed as the atmospheric pressure and S, n and k are additional paramet-

ers. The elastic shear modulus increases as the mean e�ective pressure increases and

the void ratio decreases and, at the same mean e�ective stress, it increases as the

overconsolidation ratio increases. Note that because of the introduction of a refer-

ence pressure, these parameters of above are dimensionless and depend on the nature

of the soil. In the past years many e�orts heve been directed to study the in�uence

of the void ratio on the shear modulus. For instance, alternative expressions for the

function f (e) originally proposed by Hardin & Richart (1963) have been introduced

by Hardin & Black (1969) and more recently by Ishihara (1982) and Jamiolkowski

et al. (1994) for soils of various composition and index properties. The parameter

S in eq. (1.1) depends on the choice of the void ratio function and of the refer-

ence pressure. Then other researchers investigated the in�uence of the grain size

and uniformity of sands on their sti�ness. For instance, Iwasaki & Tatsuoka (1977)

explored from an experimental perspective the in�uence of the uniformity and the

shape of the particles and the �nes content on the elastic shear modulus and Hardin

& Kalinski (2005) the e�ect of the grains diameter speci�cally for gravelly soils.

Eq. (1.1) can be modi�ed for clays. In fact, the experiments conducted by

Weiler (1988) and Houlsby & Wroth (1991) demonstrate that under isotropic stress

conditions, the current values of mean e�ective stress and overconsolidation ratio

are su�cient to describe the small strain sti�ness of clays, and that only two of the

three variables e, p and OCR in eq. (1.1) are necessary. In particular, Viggiani

(1992) and then Rampello et al. (1994) proposed the following expression for G :

G

pr
= S∗

(
p

pr

)n∗

Rk∗ (1.2)

where R is the overconsolidation ratio in terms of mean e�ective pressure R = pc
p
,

with pc being the mean preconsolidation pressure. The parameters S∗, n∗ and k∗

have similar meaning to those in eq. (1.1) but the asterisks are added to remember

that the values are di�erent. Their values depend on the clay type, particularly on

the plastic index, with n∗ typically varying in the range 0.5÷0.9 and k∗ in the range

0.2 ÷ 0.3. The in�uence of the overconsolidation ratio on the small strain shear

modulus through the parameter k∗ is relatively small if compared to the e�ect of

the mean pressure and the parameter S∗. About that, Viggiani & Atkinson (1995)

measured the elastic shear modulus through bender element tests on undisturbed

and reconstitued samples of the London clay, highlighting that the experimental

data are well reproduced by a linear law in the bilogarithmic scale
(

G
Gnc

, R
)
, with

Gnc denoting the shear modulus for the normal consolidated clay, as reported in

�gure (1.2).
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Chapter 1. Small strain mechanical behaviour of geomaterials

Figure 1.2: Variation of G with overconsolidation ratio for the London clay (from
Viggiani & Atkinson (1995))

In addition, from �gure (1.2) it can be seen that the e�ect of the overconsolidation

ratio on the sti�ness of soil at very small strain is basically una�ected by whether

the sample is undisturbed or reconstituted.

Fewer observations are available concerning the small strain sti�ness of soil under

anisotropic stress conditions. For sandy soils Ni (1987) and Hardin & Blandford

(1989) proposed the following empirical expression:

G

pr
= Sijf (e)

(σiσj)
n
2

pnr
OCRk (1.3)

where σi and σj are the principal stresses in the plane in which G is measured.

Note that the factor Sij could be in principle a function of the stress ratio, thus

introducing more uncertainty in its evaluation, motivating eq. (1.3) more complex.

For �ne grained soils Viggiani & Atkinson (1995) studied the dependence of G

on the deviatoric stress q in triaxial test for both triaxial compression and exten-

sion. Subsequently, Jovi£i¢ & Coop (1996) carried out triaxial tests on reconstituted

samples of kaolin following a series of constant p paths starting from di�erent mean

e�ective pressures. Then for clays, Rampello et al. (1997) experimentally invest-

igated the e�ect of anisotropic stress states on the small strain shear sti�ness of

the reconstituted Vallericca clay: they compressed the material along radial stress

paths in a triaxial apparatus for di�erent values of the stress ratio η = q
p
while

measuring the shear modulus using bender elements. These latter were embedded

in the top and base of the triaxial cell, thus the direction of propagation of the shear

12



Chapter 1. Small strain mechanical behaviour of geomaterials

waves is vertical and the particle motion is horizontal, so that the component Gvh

is measured. The values of the small strain shear modulus are higher than those

obtained under isotropic stress conditions and, as depicted in �gure (1.3), for �xed

mean pressure, they increase as the stress ratio increases.

Figure 1.3: Elastic shear modulus with the mean e�ective pressure for di�erent stress
ratios (from Rampello et al. (1997))

This could be explained only in part by the fact that for anisotropically com-

pressed samples the void ratio is smaller in comparison with the isotropic condition.

In addition, the data points in the bilogarithmic plane
(
p
pr
, G
pr

)
fall along parallel

lines irrespective of the current stress ratio. Therefore, a modi�cation of eq. (1.2)

was proposed to take into account the in�uence of the current anisotropic stress

state. Rampello et al. (1997) referred to the following expression:

G

pr
= S∗η

(
p

pr

)n∗

Rk∗

η (1.4)

where Rk∗
η is the overconsolidation ratio de�ned with respect to the anisotropic

compression line and S∗η can be empirically related to the corresponding value under

isotropic stress conditions. The experimental results obtained by Rampello et al.

(1997) and synthetised in the empirical expression (1.4) indicate that the small strain

shear modulus is characterised by a nonlinear dependence on the mean e�ective

pressure and in general on the current stress state and, at least for clays, another key

ingredient is the previous stress history experienced by the material. The samples

were loaded and unloaded along radial stress paths in order to highlight the e�ect

13



Chapter 1. Small strain mechanical behaviour of geomaterials

of the overconsolidation ratio on the small strain shear modulus. In �gure (1.4), for

a stess ratio η = 0.3, for the same mean e�ective pressure the shear modulus varies

with the overconsolidation ratio and in particular, according to the results obtained

by Viggiani & Atkinson (1995), G increases as the overconsolidation ratio increases.

The dashed lines represent lines at constant overconsolidation ratio.

Figure 1.4: Elastic shear modulus for di�erent overconsolidation ratios (from
Rampello et al. (1997))

1.1.1 Poisson's ratio

Many studies have been carried out in last few years to experimentally determine

through laboratory tests the value of the Poisson's ratio and its evolution with

the stress level for di�erent stress paths. The evaluation of the Poisson's ratios

is very challenging and from the literature two main experimental procedures for

their determination emerge. A �rst strategy consists in employing well established

empirical correlations, once the velocity of propagation of the body and shear waves

in the specimen are measured. For instance Kumar & Madhusudhan (2010), and

Gu et al. (2013) employed bender elements and extender elements to measure the

velocities of both the shear (S) and primary (P) waves in the same apparatus for

di�erent sand specimens and then computed the magnitude of the Poisson's ratio

through the expression:

ν =
0.5V 2

p − V 2
s

V 2
p − V 2

s

(1.5)
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Chapter 1. Small strain mechanical behaviour of geomaterials

They observed that the Poisson's ratio increases as the void ratio decreases and

as the mean e�ective pressure decreases. However, a drawback of this approach is

that for saturated soils the Vp coincides with the velocity of propagation of P-waves

in water so the resulting Poisson's ratio is systematically overestimated. This is

why a more di�used approach in the literature consists in determining the Poisson's

ratios νhh and νvh, assuming the soil as transverse isotropic, by directly monitoring

the displacements of the sample. In detail, the previous procedure consists in the

execution of static and dynamic tests in triaxial cell or through the hollow cylinder

apparatus, equipped with very high resolution local displacement transducers (LDT

or LVDT) and bender elements for the measurement of velocity of propagation of

shear waves in the solid. The key assumption is that these transducers resolve strains

as small as those measured in waves propagation. This procedure permits to obtain

results much more reliable than those obtained by the use of empirical correlations,

thus in the following solely the experimental studies included in this category will

be considered. The available experimental results mainly involve granular materials

like sands (e.g. Hoque & Tatsuoka (1998), Kuwano & Jardine (2002), Chaudhary

et al. (2004), De Silva (2004), HongNam & Koseki (2005), Ezaoui & Di Benedetto

(2009), Ibraim et al. (2011), Suwal & Kuwano (2013)).

A �rst attempt to investigate the role of the current state of stress on the Pois-

son's ratio was made by Hoque & Tatsuoka (1998). They performed triaxial tests

on di�erent sands and determined the parameter νvh through the measurements of

axial and radial displacements in the specimens and found that the νvh values are not

sensitive to the magnitude of the normal stresses at �xed stress ratio but gradually

increases as the stress ratio increases. HongNam & Koseki (2005) performed triaxial

and torsional tests in hollow cylinder apparatus on Toyoura sand and demonstrated

that the Poisson's ratio νzθ, being z the axial (vertical) direction and θ the radial

(horizontal) one, is almost constant under isotropic loading, as depicted in �gure

(1.5) and increases with the stress ratio as shown in �gure (1.6).
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Figure 1.5: Evolution of Poisson's ratio during isotropic consolidation (from Hong-
Nam & Koseki (2005))

Figure 1.6: Evolution of Poisson's ratio with the stress ratio (from HongNam &
Koseki (2005))

Furthermore, Ezaoui & Di Benedetto (2009) carried out static and dynamic

tests on dry specimens of Hostun sand in a triaxial apparatus equipped with high

resolution local displacements transducers and determined the Poisson's ratios in the

vertical and horizontal plane. Again, despite the dispersion of the experimental data,

the ratios results to be independent of the mean e�ective pressure during isotropic

loading, as reported in �gure (1.7). Nevertheless, their values seem to depend on

the sample preparation methods, with the average values resulting higher for the

case of pluviation and vibration than those obtained for tamping.

16



Chapter 1. Small strain mechanical behaviour of geomaterials

Figure 1.7: Evolution of Poisson's ratio during isotropic consolidation (from Ezaoui
& Di Benedetto (2009))

Apart of the results reported by Suwal & Kuwano (2013), where a very slight

reduction of the Poisson's ratio with the mean e�ective pressure is encountered for

the Toyoura sand and the Hime gravel, the general trend emerging from the literature

is that the Poisson's ratio is almost constant along su�ciently large isotropic stress

paths.

1.2 Anisotropy

The internal structure of natural soils is rarely isotropic, thus leads to a di�erent

mechanical behaviour depending on the considered direction. Anisotropy of soils

can be recognised at di�erent scales, depending on the strain level involved. At very

small strains, soils sti�ness is often characterised by directional properties but, de-

pending on the origin of these latter, anisotropy is usually distinguished in inherent

and induced. Casagrande & Carillo (1944) described the inherent (or structural)

anisotropy as a physical characteristic inherent in the material and entirely inde-

pendent of the applied stresses and strains. Oda et al. (1985) detected three main

sources of structural anisotropy in soils: the distribution of contact normals, the

shape of the particles and the shape of the voids. In fact, the grain characteristics,

the arrangement of particles and the presence of void, �ssures and cracks consti-

tuting the microscopic structure of soils, are the reasons of the manifestation of
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directional properties of the material at the macroscopic level. The speci�c arrange-

ment and orientation of the particles is mainly due to the processes of formation

of the soil deposits in situ and to the samples preparation technique in laboratory.

Very often, reference has been made to a transverse isotropic description of the

small-strain sti�ness, with the plane of isotropy corresponding to the horizontal or

the depositional plane. This is a very good and common assumption, con�rmed by

several experimental data, as will be shown in the following. In fact, the sediment-

ation of particles in situ often occurs along the vertical direction, leading to the

formation of horizontal layers, suggesting that in the horizontal plane the material

is isotropic, with the vertical direction representing the axis of anisotropy. For in-

stance, under these conditions clays, for which the particles are oriented along the

horizontal plane, present higher sti�ness in the horizontal direction than in the ver-

tical one. A transverse isotropic elastic solid is characterised by two shear moduli,

in the horizontal plane Ghh and in the vertical one Ghv = Gvh (see �gure (1.1))

and the Young's moduli Ev and Eh along the vertical and horizontal directions,

respectively. Based on experimental evidences, several Authors have deduced that

the small strain behaviour of soils is anisotropic and quanti�ed the sti�ness through

parameters of a cross-anisotropic elastic model.

There are di�erent ways in which the very small strain sti�nesses can be determ-

ined. The elastic anisotropic behaviour of soils can be investigated experimentally

by in situ and/or laboratory tests. The measurement of the shear waves velocity

propagated along di�erent directions and polarised in three orthogonal planes al-

lows the determination of the corresponding small strain shear moduli. The �eld

seismic tests (e.g. cross-hole, down-hole) are generally employed to measure the

shear modulus in the vertical plane Gvh but, as indicated by Hight et al. (2007) and

illustrated in �gure (1.8) by Clayton (2011), performing a cross hole test equipped

with an horizontally polarised hammer, one can determine the shear modulus Ghh,

too.

In addition to the �eld tests, a series of laboratory tests permit to estimate

the sti�ness anisotropy. In particular, as already described, bender element tests

can be successfully used to determine the shear moduli propagated and polarised

along di�erent directions. Nevertheless, it is worth noting that advanced laboratory

devices, such as the hollow cylinder apparatus are needed to characterise a cross-

anisotropic material. In this sense true triaxial tests equipped with high resolution

displacement sensors are useful to measure the Young's moduli under both drained

and undrained conditions and the Poisson's ratios, whereas torsional shear tests on

hollow cylinder apparatus provide the shear modulus Gzθ and the Poisson's ratio
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Figure 1.8: Cross-hole data for the London clay (from Clayton (2011))

νzθ, being z the axial (vertical) direction and θ the radial one. Therefore, laboratory

testing, although complex, time consuming, and a�ected by sampling disturbance,

can provide data from a range of sti�nesses greater than that obtained through �eld

testing.

1.2.1 Inherent and stress/strain induced anisotropy

The structural anisotropy, depending on the microstructural characteristics and the

history of formation of the deposit, represents an intrinsic property of the soil. As

long as no external perturbations able to modify the internal structure of the ma-

terial occur, the inherent anisotropy character is preserved, independently of the

current state of stress/strain the soil is subjected to. As will be more clear in the

following, unless irrecoverable (plastic) deformations are experienced by the mater-

ial or, in other terms, if the overall soil response involves very small strain levels,

no modi�cation of the internal structure is observed. Nonetheless, in addition to

the inherent anisotropy, the current stress (or strain) state causes the material to

behave anisotropically under anisotropic loading. Therefore, this second form of

anisotropy is commonly called stress/strain induced anisotropy. Several evidences

demonstrate that the dependence of elastic sti�ness on the current state of stress

determines a di�erence in the elastic moduli along di�erent directions due to the

application of an anisotropic state of stress. Even a soil characterised by an isotropic
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internal structure becomes anisotropic if an anisotropic stress state is applied. How-

ever, it is worth noting that switching back to the isotropic stress state, isotropy is

recovered, demonstrating that the induced anisotropy is not an intrinsic property of

the material. Stemming from the latter consideration, the inherent anisotropy can

be directly detected for isotropic stress states whereas for anisotropic stress states

it is more complex to separate the contribution to anisotropy due to the internal

structure and to the current state of stress.

Properties due to structural anisotropy are often encountered in the �eld. For

the case of clays, from the literature it clearly emerges that the elastic sti�nesses

are usually higher in the horizontal direction than in the vertical one due to the

typical sedimentation process and the particles shape. For sands the evidence is

less straightforward because anisotropy is strongly a�ected not only by the shape

of the particles but also, as hightlighted by Ezaoui & Di Benedetto (2009), by the

signi�cant di�erences in the orientation of interparticle contact planes caused by

di�erent sample preparation techniques. They obtained, in agreement with Mulilis

et al. (1977) and Ibrahim & Kagawa (1991), a higher sti�ness in directions close to

the horizontal than the vertical for samples prepared by pluviation and vibration and

an opposite trend in the case of moist tamping. Analogously, Stokoe et al. (1991)

and Bellotti et al. (1996) found that for isotropic stress states, in samples prepared

by pluviation, of Mortar sand and Ticino sand, respectively, the longitudinal and

shear moduli are greater in the horizontal direction than in the vertical one, while

Hoque & Tatsuoka (1998), adopting the same sample preparation procedure on

various sands, obtained higher Young's moduli in the vertical direction than in the

horizontal one.

The stress-induced anisotropy has been experimentally con�rmed by many re-

searchers, focusing on granular materials. Hoque & Tatsuoka (1998) realised that

sands become more anisotropic as the stress state becomes more anisotropic. In par-

ticular, according to Hardin & Blandford (1989) and Yamashita & Suzuki (1999),

the Young's modulus in a generic direction is primary controlled by the normal

stress acting in the same direction. On the other side, Roesler (1979), Yu & Richart

(1984), Stokoe et al. (1991, 1995) and Bellotti et al. (1996) showed that the shear

modulus is controlled by the e�ective stresses acting in the plane of distortion and is

slightly in�uenced by the stress component normal to the same plane. This means

that in a transversely isotropic material, the horizontal shear modulus Ghh is a func-

tion of horizontal e�ective stress alone, whereas the vertical shear modulus Gvh is a

function of both vertical and horizontal e�ective stress.

Some Authors investigated this feature from a micromechanical perspective in

20



Chapter 1. Small strain mechanical behaviour of geomaterials

order to clarify the role of the current stress on the elastic sti�ness anisotropy. A

�rst attempt to clarify the di�erence between the stress-induced anisotropy due to

anisotropic stress states and fabric-induced or inherent anisotropy caused by the

geometry of the soil particles and soil packing was made by Oda et al. (1985) and

Rothenburg & Bathurst (1989, 1992). They proposed analytical descriptions of the

normal forces acting on the particles through an associated probability density dis-

tribution in di�erent directions. In particular, it is opinion of Oda et al. (1985) that

along the direction of maximum principal compression the particles contact forces

increase and column-like load paths appear. As a consequence, from a macroscopical

point of view, the material becomes sti�er in that direction. More recently numer-

ical studies based on micromechanical theory (e.g., Chang et al. (1991), Yimsiri and

Soga (2000, 2002)) and numerical simulations using the discrete element method

(DEM) have been carried out to model the sti�ness anisotropy of soils. Guided

by these studies, Wang & Mok (2008) �rst performed a series of measurements of

shear waves propagation velocities with bender elements on Toyoura sand and rice

grains assembly for both isotropic and anisotropic stress paths to isolate the e�ect

of the stress induced anisotropy. Then they veri�ed the experiments through DEM

simulations of shear tests, adopting random packing of multisized spheres and in-

corporating the Hertz-Mindlin contact law. Note that the use of spheres in DEM

simulation limits the anisotropic character to that induced by the current state of

stress. The shear modulus was found to be relatively independent of the out-of-plane

stress component, which can be revealed by the change in the contact normal distri-

bution and the normal contact forces on that plane in the DEM simulations. These

observations, again, suggest that an increase of the contact normal forces on the

shearing planes can lead to a higher associated shear modulus, whereas an increase

of normal contact forces in the orthogonal direction does not change the shear sti�-

ness in the shear plane. In addition, the fact that Gvh and Ghv increase at the same

rate not only indicates that the out-of-plane stress component contributes equally

to the shear modulus, but it also implies that the horizontal plane of the sample

is the plane of isotropy. Only small inherent sti�ness anisotropy for Toyoura sand

has been observed whereas they measured very pronounced sti�ness anisotropy in

rice. Rice grains, having relatively more anisotropic geometric shapes than Toyoura

sand, exhibit greater inherent sti�ness anisotropy, with Ghh > Ghv = Gvh, which

is comparable to the typical case of clays. Similar results have been subsequently

obtained by Gao & Wang (2013) by bender elements measurements on the Leighton

Buzzard sand. They proposed a micromechanical insight by performing DEM sim-

ulations applying anisotropic loading paths. Accordingly to Wang & Mok (2008),

21



Chapter 1. Small strain mechanical behaviour of geomaterials

the increase normal contact forces in the vertical direction due to an increase of the

vertical normal stress induced an increase of the shear modulus in the vertical plane

rather than in the horizontal one.

In the following some typical experimental results obtained for both sandy and

clayey soils are reported, with special enphasis on the few sets of data in which

both measurements of the shear moduli in the horizontal and vertical planes and

the Young's moduli along the horizontal and vertical directions have been carried

out.

1.2.2 Clays

Several Authors have measured the velocity of propagation of shear waves along

di�erent directions in natural and reconstituted clay samples, by bender elements

with di�erent position and orientation (Jamiolkowski et al. (1994), Hight et al.

(1997), Pennington et al. (1997), Jovi£i¢ & Coop (1998), Ling et al. (2000), Callisto

& Rampello (2002), Gasparre (2005), Gasparre et al. (2007), Ng & Yung (2008),

Teachavorasinskun & Lukkanaprasit (2008), Cho & Finno (2009), Yimsiri & Soga

(2011), Kim & Finno (2014)). For instance, Jovi£i¢ & Coop (1998) obtained the

elastic shear moduli Ghh, Ghv and Gvh for undisturbed samples of London clay for

di�erent mean e�ective pressures, under isotropic stress conditions. As reported in

�gure (1.9), the material is transverse isotropic, with Ghv = Gvh and higher values

of the shear modulus were measured in the horizontal plane.

This is a typical result for clays; in fact, due to the formation processes, the

clay particles tend to acquire an horizontal orientation during deposition, therefore

the material is sti�er in the horizontal plane than in the vertical one. The e�ect

of the soil internal structure on the elastic sti�ness anisotropy was pointed out by

Teachavorasinskun & Lukkanaprasit (2008). They performed bender elements tests

on undisturbed samples of the Bangkok clay in a square oedometer apparatus (thus,

under K0 conditions) while measuring the shear moduli Ghh and Gvh. For samples

trimmed parallel to the bedding direction, as conventionally done, the horizontal

shear modulus is larger than the vertical one; then, for the same stress conditions,

samples were trimmed 90 degrees apart and an opposite trend was observed. In the

�rst case the anisotropy ratio is greater than unity while in the second case is less

than unity, as reported in �gure (1.10). This clearly indicates the in�uence of the

particles orientation on the inherent anisotropy.
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Figure 1.9: Shear moduli for samples of industurbed London clay under isotropic
stress state (from Jovi£i¢ & Coop (1998))

Figure 1.10: E�ect of inherent anisotropy in Bangkok clay samples (from Teachav-
orasinskun & Lukkanaprasit (2008))

Additional interesting results have been obtained by Callisto & Rampello (2002)

on the natural Pietra�tta clay. They compressed the material along radial stress

paths for di�erent stress ratios under drained conditions in true triaxial apparatus

and measured the elastic shear moduli for di�erent mean e�ective pressures. In
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agreement with Jovi£i¢ & Coop (1998) they found that Ghh > Ghv = Gvh and that

the anisotropy ratio Ghh
Ghv

is not signi�cantly a�ected by the mean e�ective pressure;

speci�cally it is almost constant for overconsolidated states. However, as depicted

in �gure (1.11), a dependency of the anisotropy ratio on the current stress ratio was

found, clearly indicating the e�ect of the stress induced anisotropy.

Figure 1.11: Anisotropy ratio against mean e�ective pressure for Pietra�tta clay
(from Callisto & Rampello (2002))

Despite the number of Authors cited above, only few studies have been carried

out in su�cient depth to determine the full set of anisotropic sti�ness parameters.

Few studies of anisotropy in heavily overconsolidated clays are noteworthy: the

works by Ling et al. (2000) and Yimsiri & Soga (2011) for the Gault clay and by

Gasparre (2005) and Gasparre et al. (2007) for the London clay. Both these sources

showed that the shear sti�ness on horizontal planes was about two times greater

than the shear sti�ness on vertical planes. Limiting the attention to the latter two

works, the elastic anisotropic behaviour of intact London clay has been investigated

performing triaxial and hollow cylinder tests with high resolution axial and radial

LVDT transducers and bender elements, under static and dynamic test conditions.

Gasparre (2005) and Gasparre et al. (2007) detected the terms of the instantaneous

elastic sti�ness matrix assuming the hypothesis of cross anisotropy. They obtained

the Young's moduli Ev and Eh along the vertical and horizontal directions through

static and hybrid dynamic triaxial tests and the shear moduli Ghh and Ghv by

bender element probing. In addition, a hollow cylinder apparatus (HCA) was used to

perform measurements of the shear sti�ness component Gvh and the Young's moduli.

They conclude that the results obtained using the two di�erent experimental setups
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generally exhibit good agreement in terms of sti�ness parameters. The samples of

London clay, retrieved at di�erent depths, were reconsolidated at the three di�erent

in situ stress states, illustrated in �gure (1.12) by black dots, based on the geological

history of London clay as reported by Hight et al. (2003).

Figure 1.12: Stress states reconsolidation of London clay samples (from Hight et al.
(2003))

London Clay is a heavily overconsolidated soil, characterised in situ by high

horizontal e�ective stresses (K0 > 1) and a sti�er response in the plane of deposition

(horizontal) than in the vertical direction. This is not only due to the anisotropic in

situ stress state but also to the typical planar shape of the grains and the depositional

processes, which lead to a preferred particles orientation along the horizontal plane.

In the laboratory, the consolidation process consisted of an initial isotropic stress

path, followed by a constant mean e�ective pressure increment until the presumed

in situ stress state was reached, as depicted in �gure (1.13). With B2(c), B2(a) and

A3 are indicated the main London clay stratigraphic units.
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Figure 1.13: Consolidation paths of London clay samples (from Gasparre et al. 2007)

To match the estimated in situ stresses, determined from in situ suction meas-

urements from extruded samples, a single �nal representative average stress point

was adopted for each stratigraphic unit. Common in situ stresses were applied to

units B2(c) and C. The specimens were then subjected to the static and dynamic

probing to detect their sti�ness characteristics and the bulk moduli were directly

measured by constant q triaxial probing tests. The Young's, shear and bulk moduli

pro�les are reported in �gure (1.14) together with the main stratigraphic units.

The obtained elastic moduli show a general good agreement, irrespectively of

the di�erent testing techniques adopted, and this con�rms the strong anisotropic

character of the London clay, with Eh > Ev and Ghh > Gvh and anisotropy ratio
Ghh
Ghv

around 2. Note that despite samples from di�erent depths were tested at the

same stress state, a scatter in the experimental results was found, probably due to

the slightly di�erent initial void ratios of the samples. In addition, Gasparre (2005)

carried out tests on the same intact material compressed along the isotropic axis,

determining the shear moduli at di�erent mean e�ective pressures by bender ele-

ments polarised along perpendicular planes. In this sense, she obtained qualitatively

analogous results to those reported by Jovi£i¢ & Coop (1998).
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Figure 1.14: Pro�les of elastic moduli with depth for London clay (from Gasparre et
al. 2007)

1.2.3 Sands

Similarly to what shown for clays, most of the experimental results available for

sands consist in the evaluation of the elastic shear moduli based on the measurement

of the shear waves velocity by bender element tests (Lo Presti and O'Neill (1991),

Stokoe et al. (1991), Bellotti et al. (1996), Zeng & Ni (1999), Kuwano & Jardine

(2002), Wang & Mok (2008), Gao & Wang (2013), Gu et al. (2013)). In other

cases the Young's moduli Ev and Eh along the vertical and horizontal directions

were determined by local transducers �tted in triaxial testing device under isotropic

stress states (Hoque & Tatsuoka (1998)) while the vertical Young's modulus Ez, the

shear modulus Gzθ and the Poisson's ratio νzθ by both static and dynamic triaxial

and torsional shear tests on hollow cylinder apparatus (HongNam & Koseki (2005),

Chaudhary et al. (2003), Ezaoui & Di Benedetto (2009)). A more complete set of

elastic parameters was proposed by Bellotti et al. (1996) and Kuwano & Jardine

(2002).

Bellotti et al. (1996) performed laboratory seismic tests to investigate the aniso-

tropic nature of the small strain sti�ness of the Ticino river sand for di�erent e�ect-

ive stresses and relative densities. The uniform, coarse to medium-sized Ticino sand

was deposited by pluviation in large specimens at medium density (Dr = 41%) and

then subjected to radial triaxial stress paths characterised by di�erent K0. A series
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of geophones were employed to generate P and S waves in three orthogonal planes

(the horizontal and the two vertical). During the loading process they measured the

shear wave velocities propagating along the vertical and horizontal directions and

polarised in the vertical and horizontal planes; they also carried out measurements

of the compression wave velocities along the same directions. As a consequence, in

addition to the shear moduli Ghh, Ghv and Gvh they obtained, under the hypothesis

of transverse isotropy, the Young's moduli Ev and Eh. In fact, because of the absence

of the liquid phase in the samples, the velocity of the compression waves provides

data on the normal elastic sti�ness components. Furthermore, they found that the

velocity of waves propagated and polarised in the horizontal plane were independent

of the direction of propagation, thus indicating that the horizontal plane is charac-

terised by an isotropic behaviour (i.e. cross anisotropy holds for those experiments).

The elastic parameters are syntethised in table (1.1).

Table 1.1: Elastic parameters of medium dense dry Ticino sand (from Bellotti et al.
(1996))

These results show that the Ticino sand is characterised by a non-negligible de-

gree of anisotropy. It is worth analysing the results obtained in terms of elastic

moduli for di�erent K0 radial stress paths. Under isotropic stress conditions the

inherent anisotropy is measured, with the shear and Young's moduli higher in the

horizontal plane than in the vertical one. The structural anisotropy is then modi�ed

by a subsequent application of an anisotropic loading. For stress states character-

ised by K0 ≥ 1 the anisotropic ratio Ghh
Ghv

, as well as the ratio Eh
Ev
, are greater than

unity whereas for K0 = 0.5 the elastic sti�nesses in the vertical direction become

greater than those in the horizontal one. These results are in full agreement with

other experimental results and with the numerical DEM simulations previously illus-
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trated and clearly show the in�uence of the stress ratio on the small strain sti�ness

anisotropy.

Another interesting investigation was conducted by Kuwano & Jardine (2002) on

the elastic anisotropic behaviour of the Ham River sand, a uniform, medium-sized

and sub-angular-shaped quartz sand. They employed large specimens, of 100mm in

diameter and 200mm height, obtained by air pluviation and then water saturated.

They performed triaxial tests equipped with high-resolution axial and radial LVDT

transducers for the measurement of radial and vertical displacements and bender

elements for the measurement of velocity of propagation of shear waves. Figure

(1.15) illustrates the stress path imposed to each specimen, consisting of an initial

triaxial compression from p = 30 kPa until the state of stress related to K0 = 0.45,

this followed by an anisotropic consolidation path characterised by constant stress

ratio.

Figure 1.15: E�ective anisotropic stress path (from Kuwano & Jardine, 2002)

Under the hypothesis of cross anisotropy, they illustrate the evolution of the in-

stantaneous elastic sti�ness matrix components with the mean e�ective pressure. In

detail, they obtained the Young's moduli Ev and Eh along the vertical and horizontal

directions through static tests and, for the same states, the shear moduli Ghh, Ghv

and Gvh by bender elements probing, as illustrated in �gure (1.16). The material

appears to be characterised by a non-negligible degree of anisotropy, as indicated by

the di�erent Young's and shear sti�ness moduli observed along di�erent directions
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by the very beginning of the probing, carried out once the required anisotropic stress

state had �rst been achieved. The results also highlight a well-de�ned non-linear

dependency of the sti�ness terms on the current stress state.

Figure 1.16: Young's and shear moduli against the mean e�ective pressure (from
Kuwano & Jardine, 2002)

1.3 E�ect of plastic strains on the elastic behaviour

Several experimental data show that plastic deformations may strongly a�ect the

current elastic modulus of many solids like soils, rocks and concrete: this phe-

nomenon is commonly referred to as elastoplastic coupling. For instance in clays

the elastic sti�ness depends, as illustrated above, on the past history of the material

through the preconsolidation pressure, which plays the role of hardening variable

in many constitutive models and usually depends on the volumetric plastic strains.

The elastoplastic coupling can occur in many other forms and for di�erent mater-

ials. The rocks and concrete behaviour can be idealised as elastoplastic and the

elastic sti�ness may drastically change as plastic strains develop. For such materials

the raise of plastic deformations typically leads to a reduction of the elastic sti�-

ness, as depicted in �gure (1.17), where the stress-strain experimental response of a
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sandstone specimen subjected to cyclic uniaxial compression is reported (Bieniawski

(1969)).

Figure 1.17: Stress-strain response of rock specimen under uniaxial compression
(from Bieniawski (1969))

When the material undergoes large strains, the elastic moduli reduce due to

the reopening, the creation and the propagation of new �ssures and cracks and the

breakage of cemented bonds. In other terms, the occurrence of plastic strains within

the specimen induces a degradation of the elastic sti�ness of the material.

Another interesting form of elastoplastic coupling involves the e�ect induced by

the plastic strains on the elastic sti�ness anisotropy of clays.

The small strain anisotropy of soils can be altered by the application of loads

that produce large distortion in the material. In fact, the development of plastic

strains is often characterised by a change in the orientation of the particles and

the arrangement of the internal microstructure. Very few experimental studies have

been conducted in order to investigate the in�uence of irreversible deformations on

the small strain sti�ness anisotropy. In particular, for clays two works are worth

noting.

Jovi£i¢ & Coop (1998) measured the elastic shear moduli Ghh, Ghv and Gvh in a

triaxial apparatus equipped with bender elements for reconstituted samples of the

London clay. The material was reconsolidated in consolidometer at the estimated

in situ preconsolidation pressure of 1500 kPa and then unloaded to p = 400 kPa,

then the samples were subjected to large isotropic stresses in order to observe how

the anisotropy would be a�ected by the increased isotropic straining of the clay.

The material was loaded beyond the preconsolidation pressure experienced in the
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consolidometer and at the same time the shear moduli were measured. As depicted

in �gure (1.18), the material is characterised by an initial degree of anisotropy

that remains constant up to the preconsolidation pressure. As the isotropic loading

increases, the clay tends to become isotropic, even though it is clear that very large

strains would be necessary to obtain the anisotropy ratio Ghh
Ghv

= 1. Therefore,

these processes of change are very slow, requiring the development of very large

plastic strains. The elastic anisotropy due to the previous history experienced by

the material persists as long as the strain increments reach a level appropriate to

the new state.

Figure 1.18: Anisotropy ratio for reconstituted London clay (from Jovi£i¢ & Coop
(1998))

Mitaritonna et al. (2014) experimentally investigated the small strain behaviour

of the reconstituted Lucera clay to observe the evolution of the sti�ness anisotropy

with the state of stress along isotropic and anisotropic stress paths. They employed

a stress path controlled triaxial apparatus equipped with local strain transducers

(LVDT) and bender elements for the measurements of velocity of the shear waves.

In detail, from the horizontally propagated and polarised in the horizontal plane

velocity, Vhh and that propagated in the horizontal direction and polarised in the

vertical plane, Vhv, they determined the elastic shear moduli Ghh and Ghv respect-

ively. The Authors employed a reconstituted clay to directly relate the sti�ness

anisotropy observed during the test to the imposed stress path. Di�erently from

Jovi£i¢ & Coop (1998), the reconstituted clay was �rst compressed in a consolido-

meter up to a nominal vertical e�ective stress of 100 kPa, low enough to allow the

material to experience a wide modi�cation of its initial state during the following

32



Chapter 1. Small strain mechanical behaviour of geomaterials

radial compression paths imposed in the triaxial apparatus. In fact, after the one-

dimensional consolidation the specimens were subjected to a �rst isotropic stress

increment and then either further compressed isotropically or, after a constant p

path, compressed along radial, stress ratio η constant, stress paths, reaching mean

e�ective pressures much higher (up to p = 1350 kPa) than those previously imposed

in the consolidometer, as depicted in �gure (1.19).

Figure 1.19: Stress paths for the reconstituted Lucera clay (from Mitaritonna et al.
(2014))

The results show that the small strain anisotropy sti�ness ratio Ghh
Ghv

, which

denotes the anisotropic character, smoothly adapts to the imposed stress history,

evolving during the imposed radial loading histories until achieving di�erent con-

stant values for di�erent stress ratios. As shown in �gure (1.20), during the test

corresponding to η = 0.6, the anisotropy ratio is always constant at the value 1.12,

corresponding to the initial anisotropy of the clay. This result is consistent with the

hypothesis that the soil in the consolidometer was subjected to the same stress ra-

tio, corresponding to the value of K0 = 0.56 computed through the Jaky's formula.

Compression paths characterised by stress ratio η = 0 and η = 0.3, lower than the

initial η = 0.6, induce a permanent reduction in the degree of anisotropy whereas
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the anisotropy ratio increases up to 1.22 where the soil was compressed along the

highest ratio η = 0.8.

Figure 1.20: Evolution of the anisotropy ratio with the mean e�ective pressure for
the Lucera clay (from Mitaritonna et al. (2014))

The large values of e�ective stresses reached during the tests, as compared to

the initial preconsolidation pressure of the clay as induced in the consolidometer,

trigger large plastic deformations along the virgin radial paths, thus modifying the

internal structure of the soil, which controls the elastic anisotropic response at the

macroscopic level. It is worth noting that constant values of the anisotropy ratio are

reached for mean e�ective pressures p > 350 kPa, which corresponds approximately

to four times the preconsolidation pressure imposed in the consolidometer. This

latter result indicates that the clay has to be compressed well beyond the precon-

solidation pressure in order to observe a signi�cant modi�cation of its directional

properties. In other words, a change in the degree of sti�ness anisotropy is possible

in clays when the stress ratio varies only if large plastic strains occur, as a small

amount of irreversible deformation is not su�cient to modify the previous directional

character of the soil (see Jovi£i¢ & Coop (1998)).

In order to corroborate the above results, the changes in clay fabric have been
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investigated by means of scanning electron microscopy (SEM). At the end of the

tests samples have been fracturated along horizontal and vertical surfaces, then

high resolution pictures have been taken and the fabric orientation has been detected

through a digital image processing. The fabric orientation is described by a series of

vectors determined by a line algorithm and a rose histogram is used to represent their

orientation distribution. Then a statistical analysis of the vector lengths permits to

synthetically describe the degree of orientation with the scalar L. The higher is the

value of L, the more iso-oriented is the internal structure. In �gure (1.21) the SEM

picture and the corresponding direction histogram at the end of consolidation in

consolidometer are reported.

Figure 1.21: SEM picture and direction histogram at the end of consolidation in
consolidometer (from Mitaritonna et al. (2014))

The micro characteristics of the di�erent clay specimens are then compared to

those observed after the application of the triaxial radial stress paths. Figures (1.22)

and (1.23) refer to the �nal stage for η = 0.6 and η = 0.3, respectively. In both

cases the fabric is more densely packed as compared to that prior to the loading

stages. However, in the case η = 0.6 the scalar L varies from 0.28 to 0.27, indicating

that the internal microstructure is almost the same, whereas in the case η = 0.3 the

value 0.13 is attained, demonstrating a rearrangement of the fabric, characterised

by a lower degree of orientation.
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Figure 1.22: SEM picture and direction histogram at the end of the radial stress path
(η = 0.6)(from Mitaritonna et al. (2014))

Figure 1.23: SEM picture and direction histogram at the end of the radial stress path
(η = 0.3)(from Mitaritonna et al. (2014))

The works of Jovi£i¢ & Coop (1998) and Mitaritonna et al. (2014) show that the

inherent anisotropy in clays is a variable factor controlled by the microstructural

modi�cation induced by plastic straining only if large continuous strains along the

same radial path are applied to achieve the corresponding permanent modi�cation

of the soil fabric and, related to this, of the elastic anisotropy.
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Chapter 2

Isotropic and anisotropic elasticity:

state of the art

In the present chapter the reversible mechanical behaviour of soils is discussed from

a constitutive modelling point of view. It is universally accepted that for very small

strain levels the soil exhibites a recoverable and conservative response, which can

be modelled as elastic. However, as supported by the experimental evidences, the

elastic behaviour of most soils does not conform to the linear isotropic elasticity

and two additional important features need to be taken into account: anisotropy

and nonlinearity. Particularly, in the following some signi�cant existing models are

illustrated, �rst with reference to the linear and nonlinear isotropic formulations and

subsequently to the anisotropic ones.

In the present work the soil mechanics sign convention is assumed and all stresses

are e�ective stresses. The notation employed here is mainly that of Chaves (2013),

Holzapfel (2000) and Bigoni (2012). All tensor and vector quantities are written in

boldface form, italic letters are used for the vectors. The fourth order tensors are

represented by the character A. Considering the Cartesian basis e i, ej, ek, e l and

two second order tensors a and b the products are de�ned as a : b = aijbij, ab =

aijbjke iek, a⊗ b = aijbkle iejeke l, a
−
⊗
−

b = 1
2

(aikbjl + ailbjk) e iejeke l, a
−
⊗ b =

aikbjle iejeke l and a ⊗
−

b = ailbjke iejeke l, where repeated indeces indicate a sum-

mation, according to the Einstein convention. The trace of a second order tensor

is tr (a) = aijδji = aii with δji denoting the Kronecker delta and I = δije iej is the

second order identity tensor. The strain tensor ε = 1
3
tr (ε) I + e and the stress one

σ = tr (σ) I + s are symmetric, with e and s denoting their deviatoric parts. The

stress invariants are the mean pressure p = 1
3
tr (σ) = 1

3
σijδji and the deviatoric

stress q =
√

3
2
s : s =

√
3
2
sijsij while their conjugate strain invariants are the volu-
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metric strain εv = tr (ε) = εijδji and the deviatoric strain εs =
√

2
3
e : e =

√
2
3
eijeij

. In the present chapter the strains have to be intended as elastic. Further details

about tensor notation and derivatives can be found in appendix A.

2.1 Generality

The mechanical behaviour of soils at very small strain levels can be successfully

reproduced in the framework of elasticity, which guarantees a reversible (i.e. fully

recoverable) response. From a constitutive point of view, the material is considered

elastic if a one-to-one relationship between the stress σ and the strain ε tensors

exists. In particular the stress tensor can be expressed as a single valued function

of the strain in the form:

σ = f (ε) (2.1)

where f (ε) is a second order tensor valued function of the strain. If this function

is linear in ε eq. (2.1) can be specialised as:

σ = Dε (2.2)

where D is the well-known constant fourth order sti�ness tensor. Eq. (2.1) can

be also expressed in the incremental form. However, if the stress-strain relationship

is originally expressed in incremental form, the model is called hypoelastic (Fung

(1965)):

σ̇ = D (ε,σ) ε̇ (2.3)

with the sti�ness tensor generally function of the stress and/or the strain tensors.

It is worth mentioning that the elasticity represents a particular form of hypoelasti-

city. In fact, all the elastic materials are also hypoelastic but the converse is not true

unless the tensor D (ε,σ) can be expressed as an integrable function of the strain

only. Conversely, as a special case of the elasticity, if the stress is derived from a

strain energy potential, as reported in eq. (2.4), the material is called hyperelastic.

σ (ε) =
∂ϕ (ε)

∂ε
(2.4)

where ϕ is a scalar-valued function, also known as the Helmholtz free energy.

By further di�erentiation of eq. (2.4) one obtains the fourth order elastic sti�ness

tensor:
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D (ε) =
∂2ϕ (ε)

∂ε⊗ ∂ε
(2.5)

If D does not depend on the stress, the material is linear. In the framework of

hyperelasticity, an equivalent statement is that the strains are the di�erential of the

complementary energy ψ, or the Gibbs free energy for isothermal processes, function

of the stress, related to the strain energy through the Legendre transform:

ϕ (ε) + ψ (σ) = σ:ε (2.6)

Di�erentiating once and twice the complementary energy with respect to the

stresses one obtains the strain and the compliance C tensors, respectively:

ε (σ) =
∂ψ (σ)

∂σ
C (σ) =

∂2ψ (σ)

∂σ ⊗ ∂σ
(2.7)

The hyperelasticity is a particular form of elasticity and an elastic model is also

hyperelastic if the function f (ε) in eq. (2.1) is an integrable function of the strains.

Thus, a hierarchical structure can be identi�ed, where the hypoelasticity is the most

general form, followed by elasticity and hyperelasticity. Elasticity theories should

be consistent with the laws of thermodynamics, and it is widely accepted that this

can only be guaranteed if the material can be described as hyperelastic. Another

advantage of the hyperelastic approach is that it solely requires the de�nition of a

scalar-valued function from which one can derive the whole stress-strain relationship.

Contrary, in general in elasticity and hypoelasticity a second order and a fourth order

tensors need to be de�ned, respectively.

2.2 Linear isotropic elasticity

Within the hyperelastic framework, linear isotropic elasticity is described by the

classical quadratic free energy:

ϕ (ε) =
λ

2
[tr (ε)]2 + µtr (ε)2 =

1

2

[(
K − 2

3
G

)
[tr (ε)]2 + 2Gtr

(
ε2
)]

(2.8)

where K and G are the bulk and the shear moduli, λ = K − 2
3
G and µ = G the

two Lamé constants and ε2 = εikεkj. K and G are related to the Poisson's ratio ν

through the ratio G
K

= 3(1−2ν)
2(1+ν)

. Di�erentiating eq. (2.8) with respect to the strains,

one obtains the stress tensor
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σ = λtr (ε) I + 2µε =

(
K − 2

3
G

)
tr (ε) I + 2Gε (2.9)

and the constant fourth order sti�ness tensor:

D = λI⊗ I + 2µI
−
⊗
−

I =

(
K − 2

3
G

)
I⊗ I + 2GI

−
⊗
−

I (2.10)

In a dual way, the complementary energy can be de�ned:

ψ = − λ

4µ (3λ+ 2µ)
[tr (σ)]2 +

1

4µ
tr
(
σ2
)

=

=
1

2K

[(
1

9
− K

6G

)
[tr (σ)]2 +

K

2G
tr
(
σ2
)] (2.11)

Because of the rather complex form of eq. (2.11) in terms of the Lamé constants,

it is more convenient to express the strain and the compliance tensors in terms of

the bulk and shear moduli:

ε =

(
1

9
− K

6G

)
tr (σ) I +

1

2G
σ (2.12)

C =

(
1

9
− K

6G

)
I⊗ I +

1

2G
I
−
⊗
−

I (2.13)

2.3 Nonlinear isotropic elasticity

Nonlinearity of geomaterials at small strains usually arises from the dependence of

both the bulk and shear moduli on the mean e�ective pressure and on the current

stress state, as widely con�rmed by experimental evidences. This feature is most

usually modelled by expressing the moduli as power functions of the pressure ac-

cording to many well-known empirical relationships, like those recalled in chapter 1.

In this section the nonlinear hyperelastic model proposed by Houlsby et al. (2005)

is brie�y summarised, referring where necessary to the recent work by Houlsby,

Amorosi and Rollo (2019) for further details.

2.3.1 The Houlsby et al. model (2005)

The strain energy can be written as:

ϕ (ε) =
pr

k (2− n)

[
r
(2−n)/(1−n)
0 −N

]
(2.14)

with
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r20 = k (1− n)

{[
k (1− n)− 2

3
g

]
(trε)2 + 2gtr

(
ε2
)}

+N [N − 2k (1− n) trε]

(2.15)

where k, g and n are dimensionless parameters and pr is a reference stress,

typically corresponding to the atmospheric pressure, while the switch parameter N

allows to shift the reference point for zero elastic strain on the isotropic axis from

0 (N = 0) to the mean e�ective stress equal to pr (N = 1). From hereinafter,

for the sake of simplicity the discussion will be limited to the case N = 0, thus

assuming the reference point for zero strain at zero stress, as conventionally done

in most elastic models. The parameter n controls the nonlinearity of the model

producing a non-quadratic free energy. Eq. (2.14) holds for 0 ≤ n < 1, thus

encompasses all the possible cases except for the one characterised by the sti�ness

being linearly dependent on stress (n = 1). For the limiting case n = 1 eq. (2.14)

assumes a di�erent expression, as discussed in more detail in Houlsby, Amorosi and

Rollo (2019). The existence of a strain energy potential and a complementary one

allows to derive the whole elastic response in a thermodynamically acceptable way.

Di�erentiating eq. (2.14) with respect to the strains one obtains the stress tensor:

σ = prr
n

1−n
0

{[
k (1− n)− 2

3
g

]
(trε) I + 2gε

}
(2.16)

and by further di�erentiation the sti�ness tensor:

D = pr

[
k (1− n)− 2

3
g

]{
kr

3n−2
1−n
0 n

[
k (1− n)− 2

3
g

]
(trε)2 + r

n
1−n
0

}
I⊗ I+

+ 4prkr
3n−2
1−n
0 ng2 (ε⊗ ε) + 2prkr

3n−2
1−n
0 ng

[
k (1− n)− 2

3
g

]
trε (ε⊗ I + I⊗ ε) +

+ 2prr
n

1−n
0 g

(
I
−
⊗
−

I

)
(2.17)

This latter under triaxial (i.e. axisymmetric) conditions simpli�es into:

{
δp

δq

}
=

[
∂2ϕ
∂ε2v

∂2ϕ
∂εs∂εv

∂2ϕ
∂εs∂εv

∂2ϕ
∂ε2s

]{
δεv

δεs

}
=

[
D11 D12

D21 D22

]{
δεv

δεs

}
(2.18)

with
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D11 = prk
2−n
2−2n

(
kε2v +

3g

1− n
ε2s

) 3n−2
2−2n

(1− n)
1

1−n

(
k

1− n
ε2v +

3g

1− n
ε2s

)
D12 = D21 = prk

2−n
2−2n

(
kε2v +

3g

1− n
ε2s

) 3n−2
2−2n

3gnεvεs (1− n)
2n−1
1−n

D22 = prk
2−n
2−2n

(
kε2v +

3g

1− n
ε2s

) 3n−2
2−2n

3
g

k
(1− n)

n
1−n

(
kε2v +

3g

(1− n)2
ε2s

) (2.19)

Once calibrated, usually under triaxial states, the model can be used to explore

the reversible response for general loading conditions (non-isotropic, non-triaxial

states). For n = 0 the classical linear isotropic model is recovered and the two

parameters k e g are directly related to the bulk and shear moduli K and G and

the two Lamé constants:

λ =

(
K − 2

3
G

)
= pr

(
k − 2

3
g

)
; µ = G = prg (2.20)

The complementary energy assumes the form:

ψ (σ) =
1

p1−nr k (1− n) (2− n)
p2−n0 (2.21)

where the scalar term p0 is the dual expression of r0 and takes the form:

p20 =

[(
1

9
− k (1− n)

6g

)
[tr (σ)]2 +

k (1− n)

2g
tr
(
σ2
)]

(2.22)

As a consequence the strain tensor reads:

ε =
1

2p1−nr k (1− n)
pn0

[
2

(
1

9
− k (1− n)

6g

)
tr (σ) I +

k (1− n)

g
σ

]
(2.23)

and the compliance fourth order tensor is:

C =
1

p1−nr k (1− n)

{(
−n

2

)
p
−(n+2)
0 2

(
1

9
− k (1− n)

6g

)
[tr (σ)]2 +

+p−n0

(
1

9
− k (1− n)

6g

)}
I⊗ I− n

4p1−nr

p
−(n+2)
0

k (1− n)

g2
(σ ⊗ σ) +

− n

2p1−nr g
p
−(n+2)
0

(
1

9
− k (1− n)

6g

)
tr (σ) (σ ⊗ I + I⊗ σ) +

+
1

2p1−nr g
p−n0

(
I
−
⊗
−

I

)
(2.24)
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Under the hypothesis of isotropic stress/strain state, the elastic bulk and shear

moduli K and G depend on the mean e�ective pressure following the expressions:

K = prk

(
p

pr

)n
G = prg

(
p

pr

)n (2.25)

Therefore, the model can reproduce the typical nonlinear dependence of the

elastic sti�ness with the mean pressure, as suggested by many empirical relationships

for both sandy and clayey soils (Hardin (1978), Rampello et al. (1994)).

2.3.1.1 Stress/strain induced anisotropy

The key feature of eq. (2.14) is that of reproducing the experimentally observed

dependence of soil sti�ness on the current stress state by a nonlinear hyperelastic

formulation. An interesting side e�ect is the resulting volumetric-deviatoric coup-

ling, which naturally stems from the energy-based formulation when the material

is subjected to non-isotropic stress/strain states. This can be easily veri�ed, under

simpli�ed triaxial conditions, by the activation of the o�-diagonal terms D12 = D21

in eq. (2.19) for εs > 0. To highlight this feature, Houlsby et al. (2005) performed

ideal tests under either constant volumetric (i.e. undrained) or constant deviatoric

strain conditions. Figure (2.1) illustrates the results in terms of volumetric and de-

viatoric strain contours plotted on a p-q space for di�erent values of n. It con�rms

that when the nonlinearity is taken into account, a purely volumetric strain path

does not correspond to a constant deviatoric stress path and, vice versa, a purely

distortional strain path does not lead to a constant p stress path. In particular,

the greater is the exponent n (i.e. the model becomes more nonlinear), the more

pronounced is the the volumetric-deviatoric coupling and for n = 0 the classical

uncoupled response of the linear model is recovered . In granular materials di�erent

possible sources of volumetric-deviatoric coupling exist, the most obvious one being

related to irreversible behaviour (i.e. plasticity): it is thus worth remarking that in

this kind of coupling, by de�nition, no plastic deformations occur. The volumetric-

deviatoric coupling has often been related in the literature to the so called �stress

induced anisotropy�. This latter should not be confused with the inherent aniso-

tropy. In fact, the �rst essentially accounts for the directional properties induced by

the current anisotropic stress/strain state, while the second is independent of it, as

being related to pre-existing features of the soil possibly stemming from its internal

structure, as those due to the prevailing orientation of the particles. The model

by Houlsby et al. (2005) is formulated in terms of invariants of the strain tensor,
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Figure 2.1: Constant volumetric (countinous lines) and constant deviatoric (dashed
lines) strain contours for di�erent n - (a) n=0, (b) n=0.1, (c) n=0.5, (d) n=0.95
(from Houlsby et al. (2005))

i.e. no fabric-related directional information is included: as such, the stress-induced

anisotropy reproduced by the model is not related to a proper anisotropic structural

character, but rather to the current orientation of the principal directions and the

relative intensity of the corresponding stress/strain tensor components. This can

easily be detected by unloading the material from any initial anisotropic state back

to an isotropic stress/strain condition: the hyperelastic formulation will obviously

return an isotropic response.

Remark In order to clarify the e�ect of stress induced anisotropy, ideal tests under

more general stress/strain conditions were performed in the present work, based on

eq. (2.17), illustrating the modi�cation of the matrix associated to the sti�ness

tensor for di�erent states of strain. Here the parameters of the model are those
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reported in table (2.1).

Parameter Value

pr 100

n 0.47

k 1250

g 1050

Table 2.1: Model parameters for ideal tests

Under isotropic strain state, the terms D1111, D2222 and D3333 are equal each

other's and could be expressed by a combination of the current unique Young mod-

ulus and Poisson's ratio (stress and sti�ness are in expressed kPa):

ε11 0.001 σ11 365 487284 101134 101134 0 0 0
ε22 0.001 σ22 365 101134 487284 101134 0 0 0
ε33 0.001 σ33 365 101134 101134 487284 0 0 0
ε12 0 σ12 0 0 0 0 193075 0 0
ε13 0 σ13 0 0 0 0 0 193075 0
ε23 0 σ23 0 0 0 0 0 0 193075

Table 2.2: Sti�ness matrix for isotropic strain/stress state

Increasing the strain component ε11 leads to both an overall modi�cation of

the sti�ness matrix, because of non-linearity, and to a sti�er component D1111, as

compared to D2222 and D3333:

ε11 0.0015 σ11 648 648072 101134 125671 0 0 0
ε22 0.001 σ22 423 125671 530238 125671 0 0 0
ε33 0.001 σ33 423 125671 125671 530238 0 0 0
ε12 0 σ12 0 0 0 0 225540 0 0
ε13 0 σ13 0 0 0 0 0 225540 0
ε23 0 σ23 0 0 0 0 0 0 225540

Table 2.3: Sti�ness matrix for anisotropic strain/stress state

When a shear strain component ε12 is added to a isotropic state, the o�-diagonal

terms D1112 = D1211 are activated and the corresponding shear sti�ness term D1212

is larger than those on the other planes (D1313 = D2323).
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ε11 0.001 σ11 463 560694 71553 71553 84832 0 0
ε22 0.001 σ22 463 71553 560694 71553 84832 0 0
ε33 0.001 σ33 463 71553 71553 560694 84832 0 0
ε12 0.001 σ12 489 84832 84832 848320 334205 0 0
ε13 0 σ13 0 0 0 0 0 244570 0
ε23 0 σ23 0 0 0 0 0 0 244570

Table 2.4: Sti�ness matrix in presence of shear strain

2.4 Linear anisotropic elasticity

In this section some signi�cant existing linear anisotropic models are brie�y de-

scribed. From a mathematical point of view, a possible strategy to take into ac-

count the anisotropic character of soils is to introduce a symmetric second order

fabric tensor that can condense all scalar and directional information pertaining to

the anisotropy of the material. This tensorial entity permits to link the microstruc-

tural characteristics to the macroscopic mechanical behaviour of soils. The use of

a second order tensor restricts the material symmetry to orthotropy if its three ei-

genvalues are distinct and, as special cases, transverse isotropy if two of them are

identical and isotropy if the tensor is proportional to the identity one. The descrip-

tion of other material symmetries would require the introduction of higher order

fabric tensors, but this is beyond the scope of this work. In spite of these limit-

ations, however, this approach is probably su�cient to describe the anisotropy of

most soils and geomaterials. There are di�erent ways to introduce anisotropy in the

reversible behaviour of soils and the majority of the models proposed in the follow-

ing are developed within the hyperelastic framework. In particular, the approach

is based on the formulation of a free energy potential which does no longer solely

depend on the strain tensor, as in the previous section, but is enriched by the fabric

tensor. The two tensors are combined consistently with the representation theorems

for scalar valued isotropic functions (Truesdell & Noll (1965), Wang (1970), Boehler

(1987)). This approach leads to the most general form for the strain energy poten-

tial, in terms of a set of irreducible invariants of the strain and fabric tensors. It is

worth mentioning that the fabric tensor adopted here and in the following chapter

is constant, i.e. no evolution of the elastic sti�ness anisotropy with plastic strains is

considered here. Therefore, within the hyperelastic framework, denoting with A a

generic fabric tensor and de�ning with ϕ and ψ the two free energy forms, the stress

and the sti�ness tensors read:
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σ (ε,A) =
∂ϕ (ε,A)

∂ε
D (ε,A) =

∂2ϕ (ε,A)

∂ε⊗ ∂ε
(2.26)

and the strain and the compliance tensors as:

ε (σ,A) =
∂ψ (σ,A)

∂σ
C (σ,A) =

∂2ψ (σ,A)

∂σ ⊗ ∂σ
(2.27)

2.4.1 The Lodge model (1955)

In 1955 Lodge suggested a pioneering procedure to take into account the elastic

anisotropy of solids in the framework of hyperelasticity. In particular he suggested

that a linear transformation exists, such that an equivalent strain tensor ε̄ = aεa

can be de�ned, where a is a symmetric second order fabric tensor. In such a way the

free energy potential is formally identical to the well-known simple quadratic form

for the isotropic case but is able to describe the anisotropic behaviour of an elastic

material:

ϕ (ε̄) =
λ

2
[tr (ε̄)]2 + µtr (ε̄)2 =

λ

2
[tr (aεa)]2 + µtr

[
(aεa)2

]
(2.28)

For a = I the isotropic model is recovered.

2.4.2 The Graham & Houlsby model (1983)

The Graham & Houlsby (1983) model represents a pioneering attempt to take into

account the elastic anisotropy of soils from a constitutive modelling point of view.

They proposed a linear anisotropic elastic model formulated in the triaxial space

to describe transverse isotropy. They introduced the anisotropic character in the

elastic sti�ness tensor multiplying the sti�ness coe�cients in the horizontal direction

(supposing the horizontal plane as that of isotropy) by a scalar factor α, often

indicated as anisotropy coe�cient. Expressing the elastic sti�ness tensor in terms

of the bulk modulus K and the shear modulus G, choosing the vertical direction as

1 it results:


σ1

σ2

σ3

 =

 α−
4
3

(
K + 4

3
G
)

α−
1
3

(
K − 2

3
G
)

α−
1
3

(
K − 2

3
G
)

α−
1
3

(
K − 2

3
G
)

α
2
3

(
K + 4

3
G
)

α
2
3

(
K − 2

3
G
)

α−
1
3

(
K − 2

3
G
)

α
2
3

(
K − 2

3
G
)

α
2
3

(
K + 4

3
G
)



ε1

ε2

ε3

 (2.29)

For α > 1 the material is sti�er horizontally than vertically and the ratio of

the sti�nesses in the horizontal and vertical directions is α2, namely the ratio of the
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second and the �rst diagonal terms of the matrix in eq. (2.29). α is a direct measure

of the anisotropy of the material and for α = 1 isotropic elasticity is recovered.

2.4.3 The Zysset & Curnier model (1995)

The �rst attempt to model the anisotropic character of porous media following the

representation theorems for scalar valued isotropic functions was made by Cowin

(1985), introducing a traceless second order symmetric fabric tensor in the elastic

sti�ness tensor. In the most general case of orthotropy nine independent constants

have to be de�ned, which reduce to �ve and two for transverse isotropy and isotropy,

respectively.

Inspired by the results obtained by Cowin, Zysset & Curnier (1995) derived

a general expression for the elastic strain energy potential. They considered the

directional properties of materials as characterised by an orientation distribution

function:

f (n) = f + nFn (2.30)

where f is a scalar value, the vector n speci�es the internal structural orientation

and f (n) denotes a distribution function characterising the directional properties

of the material. The microstructural properties of the material are described by

a scalar f, which is the average of the function, thus representing intensity of the

anisotropy, and a traceless second order tensor F, pertaining speci�cally to the

directional anisotropic character. Eq. (2.30) can be thought as an expansion of the

function f (n) where the terms higher than second order are neglected. For F = 0

isotropy is recovered.

Representation theorems provide the most general form of isotropic scalar func-

tion; particularly, stemming from the work by Boehler (1987), for the scalar f and

the strain tensor ε and the fabric tensor F the Authors specify a list of corresponding

irreducible invariants:

trε, tr
(
ε2
)
, tr

(
ε3
)
,

f, tr
(
F2
)
, tr

(
F3
)
,

tr (εF) , tr
(
ε2F

)
, tr

(
εF2

)
, tr

(
(εF)2

) (2.31)

Retaining only the quadratic terms in the strain tensor ε to come up with linear

elasticity, the Authors de�ned the following free energy function:
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ϕ (ε, f,F) =
c1
2

(trε)2 +
c2
2
tr
(
ε2
)

+
c3
2

(tr (εF))2 +

+ c4tr
(
ε2F

)
+
c5
2

(
tr
(
εF2

))2
+
c6
2
tr (εF)2 +

+ c7 (trε) tr (εF) + c8tr (εF) tr
(
εF2

)
+ c9 (trε) tr

(
εF2

) (2.32)

where the nine constants ci are function of f and the two invariants of F. The

corresponding fourth order elastic sti�ness tensor is obtained di�erentiating twice

the free energy with respect to the strain tensor ε.

D = c1I⊗ I + c2I
−
⊗
−

I + c3F⊗ F + c4

(
F
−
⊗
−

I + I
−
⊗
−

F

)
+ c5F

2 ⊗ F2+

+ c6F
−
⊗
−

F + c7 (I⊗ F + F⊗ I) + c8
(
F⊗ F2 + F2 ⊗ F

)
+ c9

(
I⊗ F2 + F2 ⊗ I

)
(2.33)

that is the same expression reported by Cowin. Eq. (2.33) represents the most

general form of the elastic sti�ness tensor for the linear anisotropic case.

Zysset & Curnier (1995) also proposed a more heuristic way to characterise

linear anisotropic elasticity, starting from the classical linear isotropic elastic sti�ness

tensor:

D = λI⊗ I + 2µI
−
⊗
−

I (2.34)

where λ and µ are the two Lamé constants, and substituting the identity tensor

with the tensor fI + F they obtained a new expression for the anisotropic elastic

sti�ness:

D = λ (fI + F)⊗ (fI + F) + 2µ (fI + F)
−
⊗
−

(fI + F) (2.35)

In fact, this simpli�cation corresponds to assume a particular case of the nine

constants of eq. (2.32), here dependent on f and the Lamé-like constants:

c1 = λf 2, c2 = 2µf 2, c3 = λ,

c4 = 2µf, c5 = 0, c6 = 2µ,

c7 = λf, c8 = 0, c9 = 0

(2.36)

Specialising eq. (2.32) with the coe�cients in eq. (2.36) one can write the free

energy in the form: (2.37).
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ϕ (ε, f,F) =
λf 2

2
(trε)2 + µf 2tr

(
ε2
)

+
λ

2
(tr (εF))2 +

+ 2µftr
(
ε2F

)
+ µtr (εF)2 + λf (trε) tr (εF)

(2.37)

It is worth noting that despite the fact that eq. (2.37) represents a special case

of the more general eq. (2.32), with the constants reduced by three, it is still able

to reproduce at most an orthotropic material. Clearly, for F = 0 isotropic elasticity

is recovered. For further details, see appendix A for the spectral decomposition of

a second order tensor.

2.4.4 The Bigoni & Loret model (1999)

Bigoni & Loret (1999), following a similar approach of that adopted by Zysset &

Curnier (1995), replaced the identity tensor in the isotropic elastic sti�ness tensor of

eq. (2.34) with the symmetric second order fabric tensor B, to be positive de�nite.

The fabric tensor B can be decomposed in the isotropic and deviatoric parts as

follow:

B = fI + F (2.38)

where f and F assume the same scalar and fabric tensor introduced by Zysset &

Curnier. The substitution leads to the free energy potential:

ϕ (ε,B) =
λ

2
[tr (Bε)]2 + µtr (Bε)2 (2.39)

and, by di�erentiating with respect to strain, the stress and sti�ness tensors take

the form:

σ = λtr (Bε) B + 2µBεB (2.40)

and

D = λB⊗B + 2µB
−
⊗
−

B (2.41)

Isotropic elasticity is recovered when B = I. In particular, in order to facilitate

the comparison with the isotropic case, Bigoni & Loret proposed that the fabric

tensor should be normalised imposing the constraint tr(B2)=3 . A detailed discus-

sion about the possible constraints on the fabric tensor can be found in chapter

3.

Furthermore, Bigoni & Loret rewrite the free energy in eq. (2.39) adopting the
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spectral decomposition of the fabric tensor:

B =
3∑
i=1

bib i ⊗ b i =
3∑
i=1

biMi (2.42)

where bi are the eigenvalues of B, being positive because of the positive de�n-

iteness of the tensor, b i are unit normal vectors representing the eigenvectors of the

fabric tensor and Mi represents the eigenprojections of B. The alternative repres-

entation in eq. (2.42) is very useful because permits to demonstrate that despite

the number of invariants appearing in the free energy function, introducing in the

formulation a second order fabric tensor, the most general case of orthotropy can

be described. In fact, being the eigenvalues of B distinct, the strain energy depends

on nine coe�cients, as reported in eq. (2.43).

ϕ (ε,Mi) =
c1
2

[tr (M1ε)]
2 +

c2
2

[tr (M2ε)]
2 +

c3
2

[tr (M3ε)]
2 +

+ c4tr (M1ε) tr (M2ε) + c5tr (M1ε) tr (M3ε) + c6tr (M2ε) tr (M3ε) +

+ c7tr
(
M1ε

2
)

+ c8tr
(
M2ε

2
)

+ c9tr
(
M3ε

2
)

(2.43)

Under the hypothesis of transverse isotropy b is the axis of material symmetry

and only one of the three eigenvalues is retained. Therefore, the free energy can be

expressed as a function of a single eigenprojection M and involves �ve coe�cients:

ϕ (ε,M) =
c1
2

[tr (ε)]2 +
c2
2
tr
(
ε2
)

+ c3tr (ε) tr (Mε) +
c4
2

[tr (Mε)]2 + c5tr
(
Mε2

)
(2.44)

For further analytical details on the spectral decomposition see appendix A.

2.4.5 The Lashkari model (2010)

In 2010 Lashkari proposed an extension of a bounding surface plasticity model (Da-

falias & Manzari (2004)) to account for the anisotropic elastic behaviour of sands.

This feature was added by introducing a deviatoric, symmetric second order fabric

tensor F, which has the same character described above. Following the expression

of the elastic sti�ness tensor developed by Cowin (1985), and incorporating only the

�rst order terms in F, Lashkari obtained:
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D =

(
K − 2

3
G

)
[I⊗ I + ω1 (I⊗ F + F⊗ I)] + 2GI

−
⊗
−

I+

+ 2Gω2

(
I
−
⊗
−

F + F
−
⊗
−

I

) (2.45)

where ω1 and ω2 are scalar material constants and K and G are the elastic

bulk modulus and the elastic shear modulus. Since these moduli are assumed as

non-linearly dependent on stress, the elastic formulation is hypoelastic.

Remark Although the formulation is strictly speaking hypoelastic, for its linear

case it is possible to demonstrate that the free energy function leading to eq. (2.45)

would take the form:

ϕ (ε,F) =
1

2

(
K − 2

3
G

){
(trε)2 + 2ω1trεtr (Fε)

}
+

+Gtr
(
ε2
)

+ 2Gω2tr
(
Fε2

) (2.46)

In such a way it will be possible to compare the Laskari model with other for-

mulations not only in terms of sti�ness tensor but also in terms of free energy,

identifying the mixed invariants.

2.4.6 The Ma²ín & Rott model (2014)

Ma²ín & Rott (2014) formulated a linear anisotropic elastic model using the repres-

entation theorems for transversely isotropic tensor functions. De�ning the second

order fabric tensor as p = n ⊗ n , where n is a unit normal vector to the plane of

symmetry, their fourth order elastic sti�ness assumes the form:

D = a1I
−
⊗
−

I + a2I⊗ I + a3 (I⊗ p + p⊗ I) +

+ a4

(
I
−
⊗
−

p + p
−
⊗
−

I

)
+ a5p⊗ p

(2.47)

where ai, i = 1, 5 are material constants, possibly expressed in terms of the

Young and shear moduli and the Poisson ratios in the plane of symmetry and along

the orthogonal direction. The elastic moduli along the plane of symmetry and the

orthogonal direction can be related each other employing anisotropic coe�cients,

following an approach similar to that adopted by Graham & Houlsby (1983).

Remark Ma²ín & Rott did not express the model in terms of a free energy po-

tential. However, the strain energy function leading to the elastic sti�ness tensor in
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eq. (2.47) can be evaluated and takes the form:

ϕ (ε,p) =
a1
2
tr
(
ε2
)

+
a2
2

(trε)2 + a3 (trε) tr (εp) +

+ a4tr
(
ε2p
)

+
a5
2

(tr (εp))2
(2.48)

2.4.7 The Zhao & Gao model (2015)

Zhao & Gao (2015) proposed, in the framework of hypoelasticity, an anisotropic

elastic sti�ness tensor expressed in terms of a deviatoric, symmetric second order

fabric tensor F. This latter is employed to describe the fabric anisotropy in sand and

characterises the isotropic, transverse isotropic and orthotropic reversible response

of the model. Starting from the work by Cowin (1985), and neglecting the second

and higher order terms of F, Zhao & Gao (2015) obtained an expression similar to

eq. (2.45) proposed by Lashkari (2010):

D =

(
K − 2

3
G

)[
I⊗ I +

1

2
(I⊗ F + F⊗ I)

]
+

+ 2GI
−
⊗
−

I +G

(
I
−
⊗
−

F + F
−
⊗
−

I

) (2.49)

where K and G denote the elastic bulk modulus and the elastic shear modulus.

Remark Similarly to what done for the model by Lashkari, the free energy po-

tential leading to the elastic sti�ness tensor in eq. (2.49) for the linear case is easily

de�ned as:

ϕ (ε,F) =
1

2

(
K − 2

3
G

){
(trε)2 + trεtr (Fε)

}
+

+Gtr
(
ε2
)

+Gtr
(
Fε2

) (2.50)

2.5 Nonlinear hyperelastic anisotropic models

2.5.1 The Gajo & Bigoni model (2008)

Gajo & Bigoni (2008) proposed a nonlinear anisotropic hyperelastic model developed

in the framework of elastoplasticity. The model can describe the nonlinear stress

dependency of the elastic sti�ness and, at the same time, includes a tensor-based

description of the structural anisotropy (by the second order symmetric tensor B),

which in their formulation evolves with the plastic strains. Limiting the attention to
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the pure reversible behaviour (namely, in absence of plastic deformation), the fabric

tensor is constant and their free energy potential assumes the form:

ϕ (ε,B) = α [tr (Bε)]n + β
[
tr (Bε)2

]l
(2.51)

where α, β, n and l are model parameters. The nonlinear response is governed

by the two independent exponents n and l, acting through a nonlinearisation of the

mixed invariants tr (Bε) and tr (Bε)2, respectively. For n = 2 and l = 1 the linear

anisotropic behaviour obtained by the Bigoni & Loret (1999) model is recovered

and when B = I the elastic behaviour becomes isotropic. Following the hyperelastic

framework, di�erentiating with respect to the strains, Gajo & Bigoni obtain the

stress tensor:

σ = αn [tr (Bε)]n−1 B + 2lβ
[
tr (Bε)2

]l−1
BεB (2.52)

and, by further di�erentiation, the elastic sti�ness tensor:

D = αn (n− 1) [tr (Bε)]n−2 B⊗B + 4lβ (l − 1)
[
tr (Bε)2

]l−2
BεB⊗BεB + 2lβ

[
tr (Bε)2

]l−1
B
−
⊗
−

B
(2.53)

2.5.2 The Cudny & Partyka model (2017)

Cudny & Partyka (2017) proposed an extension of the nonlinear isotropic hypere-

lastic model developed by Vermeer (1982) to describe the transverse isotropic be-

haviour of soils. Following an approach similar to that of Ma²ín & Rott (2014),

they introduced in the original isotropic formulation a second order fabric tensor

N, de�ned as the dyadic product of a unit vector v ( N = v ⊗ v ). In detail,

they modify the original complementary energy function by Vermeer introducing

the mixed invariant tr (Nσ2) as follows:

ψ (σ) =
3p1−βref

2Gref
0 (1 + β)

[c1
3
tr
(
σ2
)

+
c2
3
tr
(
Nσ2

)] 1+β
2

(2.54)

where Gref
0 is the reference shear modulus at the reference mean pressure pref

and β is the material constant controlling the nonlinear dependence of the elastic

sti�ness with the state of stress. If c1 = 1 and c2 = 0 or c1 = 1 and N = 0

the structural anisotropy is deactivated and the Vermeer isotropic formulation is

recovered.
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The proposed hyperelastic

anisotropic model

In this chapter a nonlinear anisotropic hyperelastic model is proposed. After the

formulation is introduced and discussed, the model is compared to the existing ones

reported in the previous chapter for the cases of nonlinear isotropic, linear aniso-

tropic and the nonlinear anisotropic one, highlighting similarities and di�erences.

Finally, the model is critically analysed and validated against experimental data

proposed in the literature. It results that the proposed formulation encompasses

most of the existing anisotropic hyperelastic models and nicely back-predicts labor-

atory experimental data observed on both sands and clays.

3.1 Formulation of the model

Stemming from the work by Lodge (1955), the equivalent strain tensor ε̄ is de�ned

as ε̄ = aεa where a is the symmetric second order fabric tensor. Employing this

linear transformation, an extension of the isotropic nonlinear hyperelastic model by

Houlsby et al. (2005) is proposed, in order to take into account the inherent elastic

anisotropy of soils. In particular the strain energy in eq. (2.14), for the case N = 0,

can be generalised as:

ϕ (ε, a) =
pr

k (2− n)
r

2−n
1−n
0 =

pr
k (2− n)

k
2−n
2−2n (1− n)

2−n
2−2n

{[
k (1− n)− 2

3
g

]
[tr (aεa)]2 + 2gtr

[
(aεa)2

]} 2−n
2−2n

(3.1)

In the framework of hyperelasticity, di�erentiating eq. (3.1) with respect to the

strains one obtains the stress tensor:
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σ = prr
n

1−n
0

{[
k (1− n)− 2

3
g

]
tr (aεa) a2 + 2ga2εa2

}
(3.2)

and by further di�erentiating, the fourth order sti�ness tensor:

D = pr

[
k (1− n)− 2

3
g

]{
kr

3n−2
1−n
0 n

[
k (1− n)− 2

3
g

]
[tr (aεa)]2 + r

n
1−n
0

}
a2 ⊗ a2+

+ 2prkr
3n−2
1−n
0 ng

[
k (1− n)− 2

3
g

]
tr (aεa)

(
a2εa2 ⊗ a2 + a2 ⊗ a2εa2

)
+

+ 4prkr
3n−2
1−n
0 ng2

(
a2εa2 ⊗ a2εa2

)
+ 2prr

n
1−n
0 g

(
a2
−
⊗
−

a2

)
(3.3)

Following the same philosophy as above, an equivalent stress tensor σ̄ = a−1σa−1

can be de�ned, in order to express the formulation in the stress form, too. Taking

into account the symmetry of the fabric tensor a, it is worth noting that the tensors

ε̄ and σ̄ are work-conjugate in the same way as σ and ε:

σ̄ : ε̄ = tr (σ̄ε̄) = tr
(
a−1σa−1aεa

)
= tr

(
aa−1σε

)
= σ : ε (3.4)

The result in eq. (3.4) proves that the strain and complementary energies are

Legendre transforms of each other not only for the isotropic case but also for the

anisotropic one. As a consequence, the complementary energy in eq. (2.21) can be

generalised to the anisotropic case in the form:

ψ (σ, a) =
1

p1−nr k (1− n) (2− n)
p2−n0 =

1

p1−nr k (1− n) (2− n){(
1

9
− k (1− n)

6g

)[
tr
(
a−1σa−1

)]2
+
k (1− n)

2g
tr
[(

a−1σa−1
)2]} 2−n

2
(3.5)

In fact, it is possible to verify that the previous equation, combined with the

strain energy in eq. (3.1), satis�es the Legendre transform (eq. (2.6)). Di�erenti-

ation of eq. (3.5) with respect to the stresses leads to the strain tensor:

ε =
1

2p1−nr k (1− n)
pn0

[
2

(
1

9
− k (1− n)

6g

)
tr
(
a−1σa−1

)
a−2 +

k (1− n)

g
a−2σa−2

]
(3.6)

and further di�erentiating, the compliance tensor:
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C =
1

p1−nr k (1− n)

{(
−n

2

)
p
−(n+2)
0 2

(
1

9
− k (1− n)

6g

)[
tr
(
a−1σa−1

)]2
+

+p−n0

(
1

9
− k (1− n)

6g

)}
a−2 ⊗ a−2+

− n

4p1−nr

p
−(n+2)
0

k (1− n)

g2
(
a−2σa−2 ⊗ a−2σa−2

)
+

− n

2p1−nr g
p
−(n+2)
0

(
1

9
− k (1− n)

6g

)
tr
(
a−1σa−1

)
(
a−2σa−2 ⊗ a−2 + a−2 ⊗ a−2σa−2

)
+

1

2p1−nr g
p−n0

(
a−2

−
⊗
−

a−2
)

(3.7)

Again, it is worth remarking that these latter equations imply that a = constant,

such that inherent anisotropy (i.e. not evolving) is only accounted for. Nonethe-

less, it is worth mentioning that in such a circumstance, following Maier & Hueckel

(1979) and Collins & Houlsby (1997), eq. (3.3) would describe the instantaneous

reversible sti�ness of the soil. The proposed formulation accounts for both inher-

ent and stress-induced anisotropy. In fact, it not only reproduces the non-linearly

stress-dependent sti�ness and the related evolving directional elastic properties with

the current stress/strain state, but also allows to model the permanent anisotropic

characteristics via the a tensor. All the above features are enriched by the energy-

based derivation of the formulation, which ensures its thermodynamic consistency.

Clearly, for a = I the nonlinear isotropic formulation is recovered.

An alternative representation of the model, useful for the comparison with many

existing formulations, can be achieved using B = a2 in the expression of the fabric

tensor. As a consequence, the equivalent strain and stress tensors are de�ned as

ε̃ = Bε and σ̃ = B−1σ, respectively. These are still work-conjugate terms, in fact:

σ̃ : ε̃ = tr
(
B−1σBε

)
= σ : ε (3.8)

Eqs. (3.1) � (3.7) are clearly inspired by the concept that the strain ε and the

stress σ in the strain and stress energy expressions for an isotropic material can

simply be replaced by an equivalent strain and stress in order to de�ne the energy

functions for an anisotropic material. However, this analogy should be approached

with caution. It is worth noting that ε̃ and σ̃ are di�erent from ε̄ and σ̄ and in

particular, whilst the �rst two are in general not symmetric, the second ones are.

To treat the unsymmetric tensor Bε (or B−1σ) as if it were directly analogous to

the symmetric tensor ε (or σ) is open to question. Here the concern relates solely

to the implicit interpretation that the symmetric ε (or σ) can be generalised to a
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non-symmetric one. In this sense, the choice of the fabric tensor a appears more

consistent with the requirement of the symmetries of the strain and stress tensors.

Nevertheless, this concern does not invalidate the use of the tensor B. In fact, the

mixed invariants tr (Bε) and tr
[
(Bε)2

]
are equal to tr (aεa) and tr

[
(aεa)2

]
, as can

be demonstrated:

tr (ε̄) = tr (aεa) = tr
(
a2ε
)

= tr (Bε) = tr (ε̃) (3.9)

and

tr
(
ε̄2
)

= tr
[
(aεa)2

]
= tr (aaεaaε) = tr

[
(Bε)2

]
= tr

(
ε̃2
)

(3.10)

Therefore, eqs. (3.1) � (3.7) can be equivalently expressed in terms of the B

tensor. For the sake of conciseness, the resulting equations are reported in appendix

A. Furthermore, considering the spectral decomposition of the two fabric tensors,

it follows that a and B have the same eigenvectors, which give the direction of the

orthotropic axes, and the eigenvalues of a are simply the squares of those of B (see

appendix A for details).

3.2 The role of the constraint on the fabric tensor

The fabric tensor is aimed at condensate the relative directional characteristics of

the soil, as such it is worth normalising it. In the literature di�erent normalisa-

tion rules are proposed, however no clear indication emerges on which of them is

more appropriate: in this section all the proposed constraints are adopted and ex-

amined, aiming at highlighting their e�ects on the fabric tensor, thus providing

further information to guide the user in the choice. From a historical perspective,

the �rst attempt of introducing a normalising constraint was that of Lodge (1955),

who proposed to assign a �xed value to the determinant of the fabric tensor a. A

convenient choice is det (a) = 1, such that for the isotropic case (a = I) one recovers

det (I) = 1. Bigoni & Loret (1999) perform a more systematic discussion on the

character and constraints of their fabric tensor B. Firstly, for the elastic tensor to

be positive de�nite, B should as well be positive de�nite, such that the necessary

and su�cient conditions for the positive de�niteness of the elastic sti�ness tensor

are the Lamé constants λ and µ being strictly positive. In addition, they impose

for the fabric tensor the constraint tr (B2) = 3. By virtue of the decomposition

of eq. (2.38), the tensor B is the sum of an isotropic part, that controls the in-

tensity of anisotropy through the scalar f , and a deviatoric one, governing the
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directional character of anisotropy. The normalisation should only a�ect the scalar

value, such that 0 < f ≤ 1. It results that the constraint tr (B2) = 3 corresponds

to F : F = 3 − 3f 2. Here the alternative normalisation rule tr (B) = 3 is proposed

that, by the decomposition of B, leads to f = 1. The above constraints on B can

be straightforwardly rewritten in terms of the anisotropy tensor a. In fact, recalling

the relation B = a2, the rules tr (B2) = 3 and tr (B) = 3 take the form tr (a4) = 3

and tr (a2) = 3, respectively. There is no reason to prefer a priori one or another

of the above mentioned constraints, hence the user can indistinctly choose the most

convenient among them.

3.3 Comparison with existing formulations

The proposed model is characterised by a hierarchical form: nonlinearity and aniso-

tropy can be activated separately or in combination. Simpler cases are incorporated

in the formulation and are recovered simply by appropriate parameter settings. For

instance, for n = 0 the nonlinearity is deactivared and for the fabric tensor coin-

ciding with the identity tensor the model reproduces the isotropic elastic behaviour

of soils. Therefore, in this section both the linear and the nonlinear anisotropic

model reported in the previous chapter are critically discussed and compared with

the proposed one.

3.3.1 Linear models

Specialising eqs. (3.1) - (3.3) to the linear anisotropic case (n = 0 and a 6= I) one

obtains:

ϕ (ε, a) =
pr
2

{[
k − 2

3
g

]
[tr (aεa)]2 + 2gtr

[
(aεa)2

]}
(3.11)

σ = pr

[(
k − 2

3
g

)
tr (aεa) a2 + 2ga2εa2

]
(3.12)

D = pr

(
k − 2

3
g

)
a2 ⊗ a2 + 2prg

(
a2
−
⊗
−

a2

)
(3.13)

In order to compare the Graham & Houlsby (1983) model to the proposed one

for the linear anisotropic case, eq. (3.12) can be specialised for triaxial conditions.

Furthermore, in the principal direction reference system, the tensor a is assumed

diagonal and coaxial with the principal stresses and strains and characterised by its

eigenvalues a1, a2 and a3. It results:

59



Chapter 3. The proposed hyperelastic anisotropic model


σ1

σ2

σ3

 = pr


(
k + 4

3
g
)
a41

(
k − 2

3
g
)
a22a

2
1

(
k − 2

3
g
)
a23a

2
1(

k − 2
3
g
)
a21a

2
2

(
k + 4

3
g
)
a42

(
k − 2

3
g
)
a23a

2
2(

k − 2
3
g
)
a21a

2
3

(
k − 2

3
g
)
a22a

2
3

(
k + 4

3
g
)
a43




ε1

ε2

ε3

 (3.14)

Assuming for the matrix associated to the anisotropy tensor the following form

(a1 6= a2 = a3 because of the transverse isotropy), de�ning a1 = a and selecting for

the matrix representing a the so called multiplicative form, one obtains: a 0 0

0 ya 0

0 0 ya

 (3.15)

where the parameter y is the ratio of the sti�ness along the two relevant principal

directions. Depending on the choice, this parameter assumes di�erent forms for the

following three di�erent normalisations:
y = a−

3
2 for det (a) = 1

y =
√

3−a2
2a2

for tr (a2) = 3

y =
(

3−a4
2a4

) 1
4

for tr (a4) = 3

(3.16)

Specialising eq. (3.14) to the case of transverse isotropy and comparing with eq.

(2.29), it results y = α2, irrespectively of the adopted normalisation for a, indicating

that the proposed formulation encompasses that of Graham & Houlsby.

Comparing the strain energy in eq. (3.11) to that by Bigoni & Loret (1999)

in eq. (2.39) it emerges that the two expressions are equivalent: in fact B = a2,

tr (Bε) = tr (aεa) and tr
[
(Bε)2

]
= tr

[
(aεa)2

]
with λ and µ related to k and g

as reported in eq. (2.20). Alternatively, recalling that the fabric tensor B can be

expressed as the sum of its isotropic and deviatoric parts, as in eq. (2.38), eqs.

(3.11) - (3.13) now specialise as follow:

ϕ (ε, f,F) =
pr
2

(
k − 2

3
g

){
f 2 (trε) + 2f (trε) tr (εF) + [tr (εF)]2

}
+

+ prgf
2tr
(
ε2
)

+ 2prgf tr
(
ε2F

)
+ prgtr

[
(εF)2

] (3.17)

σ = pr

[(
k − 2

3
g

)
tr (fIε+ Fε) (fI + F) + 2gf 2ε+ 2gfεF + 2gfFε+ 2gFεF

]
(3.18)
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D = pr

(
k − 2

3
g

)[
f 2I⊗ I + f (I⊗ F + F⊗ I) + F⊗ F

]
+

+ 2prgf
2I
−
⊗
−

I + 2prgf

(
F
−
⊗
−

I + I
−
⊗
−

F

)
+ 2prgF

−
⊗
−

F

(3.19)

that correspond to the simpli�ed version of the model proposed by Zysset &

Curnier (1995) (eq. (2.37)), in which the coe�cients c5 = c8 = c9 = 0 in the more

general free energy in eq. (2.32).

Comparing the structure of the free energy pertaining to the Lashkari (2010)

model in eq. (2.46) to eq. (3.17) it results that the latter represents a more general

formulation, as that by Lashkari neglects the two invariants [tr (εF)]2 and tr
[
(εF)2

]
.

In fact, referring to the general free energy expression of eq. (2.32) proposed by

Cowin (1985), this corresponds to consider the constants c3 and c6 equal to zero,

too. As a consequence, contrary to the sti�ness tensor in eq. (3.19), that obtained

by Lashkari in eq. (2.45) does not include the terms F⊗ F and F
−
⊗
−

F.

Analogous considerations can be done for the Zhao & Gao (2015) model, which

results as a simpli�ed version of the proposed formulation in the same way of the

Lashkari one.

Finally, to compare the proposed linear anisotropic formulation to that of Ma²ín

& Rott (2014), the fabric tensor a can be expressed by its spectral decomposition,

as reported in appendix A. In particular, for the case of transverse isotropy, the free

energy of eq. (3.11) reads:

ϕ (ε,M) =
c1
2
tr
(
ε2
)

+
c2
2

(trε)2 + c3 (trε) tr (Mε) +

+ c4tr
(
Mε2

)
+
c5
2

[tr (Mε)]2
(3.20)

For the transverse isotropy, the strain energy involves �ve coe�cients ci, which

can be expressed as a function of the material constants k and g and the eigenvalues

a1 and a2 of the fabric tensor a as follows:

c1 = 2prga
4
2, c2 = pr

(
k − 2

3
g

)
a42, c3 = pr

(
k − 2

3
g

)
a22
(
a21 − a22

)
c4 = 2prga

2
2

(
a21 − a22

)
, c5 =

(
k +

4

3
g

)(
a21 − a22

)2 (3.21)

Comparing eq. (3.20) and (2.48) it follows that the formulations are equivalent

since bothM and p are de�ned as a dyadic product of a unit normal vector and the

strain energy functions are expressed in terms of the same invariants of the fabric and
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strain tensors. Nonetheless, it is worth recalling that the Ma²ín & Rott formulation

is only valid for linear transverse isotropy, therefore it represents a particular case

of the proposed one in its linear version. For M = 0 (or equivalently p = 0) the

linear isotropic formulation is recovered.

3.3.2 Nonlinear models

The proposed nonlinear formulation employes for the strain energy the same mixed

invariants tr (Bε) and tr
[
(Bε)2

]
adopted by Gajo & Bigoni (2008). The main

di�erence between the free energy potential of eq. (2.51) and that proposed in

this work (eq. (3.1)) is in the adopted non-linearisation procedure: in the Gajo &

Bigoni case it is characterised by the adoption of two di�erent exponents, n and l,

acting separately on the two mixed invariants, thus making the free energy a non-

homogeneous function of ε, while in the proposed case it is introduced as an overall

modi�cation of the linear quadratic expression. Therefore, apart from the trivial

linear case, there is no way to handle the model parameters in order to attain the

same constitutive response. Performing a comparison between the two formulations

is not straightforward in the general anisotropic case. Nonetheless, as the main

di�erences are in the nonlinear features, without loss of generality in the following

the comparison is illustrated in the simpli�ed isotropic case (B = I) under triaxial

conditions. Eq. (2.51) can thus be rewritten as:

ϕ (εv, εs) = αεnv + β

(
3

2
ε2s +

1

3
ε2v

)l
(3.22)

and the components of the sti�ness matrix are:

D11 = βl (l − 1)

(
3

2
ε2s +

1

3
ε2v

)l−2 [
4

9
ε2v +

2

3

1

l − 1

(
3

2
ε2s +

1

3
ε2v

)]
+ αn (n− 1) εn−2v

D12 = D21 = βl (l − 1)

(
3

2
ε2s +

1

3
ε2v

)l−2
2εvεs

D22 = βl (l − 1)

(
3

2
ε2s +

1

3
ε2v

)l−2 [
9ε2s +

3

l − 1

(
3

2
ε2s +

1

3
ε2v

)]
(3.23)

Comparing the isotropic elastic sti�ness obtained using the proposed model (eq.

(2.19)) and the Gajo & Bigoni one, it can easily be noted that the major di�erence

lies in the term D11. It is then worth evaluating the ratio between the two diagonal

terms of the sti�ness matrix under isotropic state of strain/stress (εs = 0), which in

the case of the Gajo & Bigoni model is:
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D11

D22

=
αn (n− 1) εn−2v

3βl
(
1
3
ε2v
)l−1 + (l − 1)

4

27

(
1

3

)l−2
+

2

9
(3.24)

while for the proposed model it assumes the expression:

D11

D22

=
k

3g
=

2 (1 + ν)

9 (1− 2ν)
(3.25)

Under the above hypotheses, this ratio can be interpreted as the ratio between

the bulk modulus K and the shear one G, thus it can be thought as a function of the

Poisson's ratio. The di�erence between the formulations is substantial, as in the new

proposed model the above ratio is constant, while in the model by Gajo & Bigoni

it depends on the volumetric strain (except for the special case of l = n/2, in which

the free energy becomes a homogeneous function of degree proporsional to n). This

would obviously imply a constant Poisson's ratio for the proposed formulation under

isotropic compression, while in that of Gajo & Bigoni it should evolve during the

same stress path. In order to assess which response is more realistic, it is convenient

to refer to some experimental evidences collected in the literature.

In recent years the improvement of the laboratory testing devices allowed to

investigate the small strain behaviour of soils with relatively high accuracy. In

particular, the set up of triaxial or hollow cylinder apparatus �tted with high resol-

ution local transducers and bender elements has provided a wide and consistent set

of experimental data on the reversible response of di�erent materials as observed

in the small strain range (i.e. in the reversible regime). As discussed with more

detail in chapter 1, many attempts have been made to evaluate the Poisson's ra-

tio under di�erent loading conditions. Speci�cally, the experimental data indicate

that the Poisson's ratio attains an approximately constant value along an isotropic

stress path, as for example illustrated in �gure (1.7) for the Hostun sand (Ezaoui &

Di Benedetto (2009)). This result is consistent with what predicted by the elastic

formulation discussed in this work.

Another possible drawback of the model formulated by Gajo & Bigoni (2008) is

in the absence of a rigorous de�nition of the complementary energy function: in fact

they propose an approximated expression, whose consistency with their free energy

function is only veri�ed for a speci�c set of material parameters. Conversely, in

the proposed model the complementary energy function is always valid as it stems

from a Legendre transform. The de�nition of a complementary energy function is

very appealing as it allows to de�ne the constitutive equations in both sti�ness and

compliance form. This aspect can be very attractive in the context of the implicit

numerical integration of elasto-plastic constitutive models, as discussed by many
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Authors (e.g.: Borja et al. (1997); Tamagnini et al., (2002); Amorosi et al. (2008)).

Finally, in order to compare the Cudny & Partyka (2017) model to the proposed

one, the complementary energy of eq. (3.5) has to be rewritten adopting the spectral

decomposition, as explained in detail in appendix A. In particular, denoting asN the

eigenprojection of the fabric tensor a−1 under the hypothesis of transverse isotropy,

the energy reads:

ψ (σ,N) =
1

p1−nr k (1− n) (2− n)

[
c1 (trσ)2 + c2tr

(
σ2
)

+ c3trσtr (Nσ) +

+c4 [tr (Nσ)]2 + c5tr
(
Nσ2

)] 2−n
2

(3.26)

with the �ve coe�cients ci function of material constants k, g and n and the

eigenvalues a−11 and a−12 of the tensor a−1.

c1 =

(
1

9
− k (1− n)

6g

)
a−42 , c2 =

k (1− n)

2g
a−42

c3 = 2

(
1

9
− k (1− n)

6g

)
a−22

(
a−21 − a−22

)
, c4 =

(
1

9
+
k (1− n)

3g

)(
a−21 − a−22

)2
c5 =

k (1− n)

g
a−22

(
a−21 − a−22

)
(3.27)

Comparing the complementary energy functions of eqs. (2.54) and (3.26) it

results that the way in which the non-linearisation is introduced is similar, though

the model by Cudny & Partyka is simpler than the one proposed here. In fact, in

the former the three additional invariants trσ, trσtr (Nσ) and tr (Nσ) appear. It is

also worth recalling that the Cudny & Partyka model only holds for the transverse

isotropy case.

3.4 Calibration and model performance

In this section, the parameters calibration strategy and the predictive capability

of the model are discussed with reference to both clays and sands. The isotropic

model parameters consist in three scalar quantities g, k, and n directly a�ecting the

magnitude of the components of the elastic sti�ness tensor and their dependence on

the current state of stress, while the fabric tensor a controls the structural charac-

ter of anisotropy. The �rst three constants can be calibrated with reference to the

evolution of the elastic modulus G and the volumetric modulus K (or equivalently
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the Young's modulus E ) with the state of stress for an isotropic material or along a

speci�c direction for an anisotropic one. The inherent anisotropic behaviour is con-

trolled by the tensor a, which leads, in the most general case, to six extra parameters

to be calibrated. Nevertheless, it is often the case that the principal directions of

anisotropy are coaxial with those of the stress (or strain) thus leading to only three

extra parameters. Under the further restrictive hypothesis of transverse isotropy,

only two terms of the fabric tensor have to be de�ned. In the following the constraint

tr (a2) = 3 is adopted for the fabric tensor but any of the three possible normal-

isation of a discussed in section 3.2 is in principle applicable. All the constraints

allow to further reduce the independent anisotropy-related parameters by one (they

then become �ve in the general orthotropic case, two in the coaxial and only one

in the coaxial transverse isotropic formulation). It is worth remembering that for a

transverse isotropic material, the matrix associated to the compliance tensor takes

the general form:

C =



1
Ev

−νhv
Eh
−νhv

Eh
0 0 0

−νvh
Ev

1
Eh

−νhh
Eh

0 0 0

−νvh
Ev
−νhh

Eh

1
Eh

0 0 0

0 0 0 1
Gvh

0 0

0 0 0 0 1
Ghv

0

0 0 0 0 0 1
Ghh


(3.28)

where, considering the direction 1 vertical coinciding with the axis of anisotropy,

Ev and Eh are the Young's moduli along the vertical and horizontal directions, Ghh,

Ghv and Gvh the shear moduli and νhh, νhv and νvh the Poisson's ratios.

The elastic anisotropic behaviour of soils can be experimentally investigated

by in situ and/or laboratory tests. The measurement of the shear wave velocities

propagated along di�erent directions and polarised in three orthogonal planes allows

to determine the corresponding small strain shear moduli. This can be achieved

through dynamic �eld techniques like cross-hole tests (Hight et al. 2007, Clayton

2011) and laboratory bender elements probing. Combining these latter with small

strain triaxial static and dynamic tests and assuming the soil as being an elastic

transverse isotropic material, it is possible to detect all the terms of the elastic

sti�ness tensor. More sophisticated laboratory devices, such as the hollow cylinder

apparatus, allow to directly estimate the �ve independent parameters of a cross-

anisotropic material.
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Sands In the context of sands, Kuwano & Jardine (2002) investigated the elastic

anisotropic behaviour of the Ham River sand. As described with more detail in

chapter 1, they performed triaxial tests with high-resolution axial and radial LVDT

transducers and bender elements on samples prepared by pluviation and then sat-

urated. As reported in �gure (1.15) they compressed the material following an

anisotropic stress path characterised by constant shear ratio corresponding to to

K0 = 0.45.

Under the hypothesis of cross anisotropy, they obtained the Young's moduli Ev

and Eh along the vertical and horizontal directions through static tests and, for the

same states, the shear moduli Ghh, Ghv and Gvh by bender elements probing. In

�gure (3.1) the experimental data are shown with dots together with the simulations

of the model. The material appears to be characterised by a non-negligible degree

of structural anisotropy, as indicated by the di�erent Young's and shear sti�ness

moduli observed along di�erent directions by the very beginning of the probing,

carried out once the required anisotropic stress state had been �rst achieved. The

results also highlight a well-de�ned nonlinear dependency of the sti�ness terms on

the current stress state. The parameters of the proposed hyperelastic model have

been calibrated with reference to the above experimental data under the hypothesis

of cross anisotropy. Namely, in a principal direction system assumed as coaxial

with the triaxial principal stress and strain reference, the tensor a is diagonal with

a11 6= a22 = a33, with the principal direction 1 corresponding to the vertical one.

Furthermore, stemming from the ratio D2323/D1212 between the terms of the elastic

sti�ness matrix one can straightforwardly demonstrate that the ratio (a22/a11)
2 is

equal to the shear moduli ratio Ghh/Gvh. The parameters are reported in table

(3.1).

Parameter Ham River sand Ticino sand London clay

pr (kPa) 100 100 100

n 0.47 0.5 0.8

k 1250 1300 350

g 1050 940 340

a22/a11 0.922 0.98÷1.118 1.378

Table 3.1: Parameters for various soils
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Figure 3.1: Ham River sand: evolution of Young's moduli (a) and shear moduli (b)
during anisotropic stress path

Bellotti et al. (1996) performed laboratory dynamic tests on the Italian Ticino

River sand to investigate the anisotropic nature of the small strain sti�ness response

for di�erent e�ective stresses and void ratios. As illustrated in table (1.1), they

evaluated the shear moduli Ghh, Ghv and Gvh and the Young's moduli Ev and Eh for

di�erent mean e�ective pressures following radial triaxial stress paths characterised

by di�erent K0.

Figures (3.2) - (3.4) show the experimental results in terms of shear and Young's

moduli against the mean e�ective pressure for a medium dense sand (Dr = 41%)

compressed along three di�erent radial paths, characterised by K0 equal to 0.5, 1
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and 1.5 respectively. The �gures also show the simulations of the model carried out

for the set of parameters reported in table (3.1) and ratios a22/a11 equal to 0.98,

1.086 and 1.118 for the corresponding increasing values of K0.

The results obtained under isotropic stress conditions (�gure (3.3)) reveal the

presence of an inherent anisotropy re�ecting the internal structure of the material,

possibly stemming from the grain shape and sample preparation technique.

Figure 3.2: Ticino River sand: evolution of Young's moduli (a) and shear moduli
(b) during anisotropic consolidation (K0 = 0.5)

It is worth noting that di�erent K0 anisotropic compression lead to di�erent

ways in which anisotropy shows up leading, for example, to Ev > Eh for K0 < 1 and

Ev < Eh for K0 > 1. The model simulations nicely reproduce the observed response

for a unique set of parameters g, k, and n and an ad hoc selection of the ratio
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a22/a11 for each investigated K0 value to account for the corresponding structural

modi�cation of the internal microstructure.

Figure 3.3: Ticino River sand: evolution of Young's moduli (a) and shear moduli
(b) during isotropic consolidation (K0 = 1)
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Figure 3.4: Ticino River sand: evolution of Young's moduli (a) and shear moduli
(b) during anisotropic consolidation (K0 = 1.5)

It is worth recalling that the sets of data obtained by Bellotti et al. (1996) are

characterised by three degrees of anisotropy because di�erent radial stress paths are

applied during the tests. In fact, as discussed in chapter 1, the elastic shear moduli

essentially depend on the normal stress components acting in the plane of shearing.

In other words, the di�erences in the measured anisotropy ratios are uniquely pro-

duced by the current state of stress. This kind of stress induced anisotropy cannot

be reproduced by the model because only a change in the shear stress compon-

ents can induce a modi�cation of the corresponding shear moduli. In other words,

under di�erent test conditions the material undergoes modi�cations of its internal
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microstructure that cannot be considered with the present formulation. This is why

the only way to nicely reproduce the experimental results of above is to assume

three di�erent ratios a22/a11. Conversely, in this case the model is able to take into

account the e�ect of the stress-induced anisotropy on the Young's moduli.

Clays The elastic anisotropic behaviour of intact London clay has been exper-

imentally investigated by Gasparre (2005) and Gasparre et al. (2007), who per-

formed triaxial and hollow cylinder tests with high-resolution axial and radial LVDT

transducers and bender elements, under static and dynamic test conditions. They

detected the terms of the instantaneous elastic sti�ness matrix assuming the hy-

pothesis of cross anisotropy. In a similar way to Kuwano & Jardine (2002), they

obtained the Young's moduli Ev and Eh along the vertical and horizontal directions

through static and hybrid dynamic triaxial tests and the shear moduli Ghh and Ghv

by bender element probing. In addition, a hollow cylinder apparatus (HCA) was

used to perform measurements of the shear sti�ness component Gvh and the Young's

moduli. As discussed in chapter 1, the samples of the London clay were reconsolid-

ated at the three di�erent in situ stress states following the history of the material

(�gure (1.12)).

The model parameters are reported in table (3.1) for an experimentally observed

constant shear sti�ness ratio Ghh/Gvh = 1.9, which corresponds to the anisotropy

ratio a22/a11 = 1.378.

The results are illustrated in �gure (3.5) in terms of the evolution of Young's and

shear moduli with the mean e�ective pressure. While the experimental data only

refer to the three stress states of �gure (1.13), the model simulations are extended to

higher p values following the shifted curve reported in �gure (1.12). The scatter in

the experimental results is probably due to the slightly di�erent initial void ratios of

the samples. It is worth recalling that the proposed model does not take into account

the dependence of the sti�ness on voids ratio or preconsolidation pressure, thus a

single back-prediction is available for each stress state. The overall performance of

the model reproduces the laboratory results in a satisfactory way.
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Figure 3.5: London Clay: evolution of Young's moduli (a) and shear moduli (b)
with mean e�ective pressure

In addition, Gasparre (2005) carried out tests on the same intact material com-

pressed along the isotropic axis and determined the shear moduli at di�erent mean

e�ective pressures by bender elements polarised along the vertical and horizontal

planes. In this case a larger number of experimental data are available and illus-

trated in �gure (3.6), together with the corresponding model �tting. These show

that the model is capable of capturing the observed trend in the evolution of the

two components of the sti�ness investigated in the experiments.
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Figure 3.6: London Clay: evolution of shear moduli during isotropic consolidation

73



Chapter 4

Weak form of coupling in the

framework of elastoplasticity

The work illustrated in the present chapter is the result of a research activity carried

out under the supervision of prof. Yannis F. Dafalias in occasion of his visit to the

Department of Structural and Geotechnical Engineering of the Sapienza University

of Rome in the period of September-October 2017.

The experimental evidences described in chapter 1 show that the elastic prop-

erties of soils are a�ected by their plastic response. In particular, many solids like

soils, rocks and concrete show a strong dependence of the elastic sti�ness on the

plastic deformations; a well-known result is the typical degradation of the elastic

modulus observed in rocks under cyclic loading (�gure (1.17)). These phenomena

are what Hueckel (1976), Hueckel & Maier (1977) and Maier & Hueckel (1979) de-

note as elastoplastic coupling. Within the framework of classical elastoplasticity,

Hueckel & Maier investigated these aspects in their pioneering works, highlighting

the e�ect of the elastoplastic coupling on the elastic response and its implications

on the �ow rule. Considering a hyperelastic formulation, in which the free energy

potential ϕ = ϕ (σ, εp) is a function of the stress and the plastic strains εp, the total

strain rate results:

ε̇ =
∂2ϕ

∂σ ⊗ ∂σ
σ̇ +

∂2ϕ

∂σ ⊗ ∂εp
ε̇p + ε̇p = ε̇r + ε̇c + ε̇p = ε̇r + ε̇i (4.1)

where ε̇c is the coupling strain increment, ε̇r is the reversible component such

that the elastic strain rate is ε̇e = ε̇r + ε̇c and ε̇i is the irreversible one, sum of the

coupled and the plastic strain rates. Because of the elastoplastic coupling, whenever

plastic deformations occur during the loading process, the elastic response changes

and, considering an associated �ow rule with respect to the plastic strain rate, the

74



Chapter 4. Weak form of coupling in the framework of elastoplasticity

irreversible strain increment will not result normal to the yield surface in the stress

space. By now, the above features will be de�ned as a �weak� form of coupling or

�one way coupling�, in which plasticity a�ects elasticity, while the formulation of

the �rst is not in�uenced by the coupling. As will be clear in chapter 6, this form

of coupling is incomplete and the consequent formulation is not thermodynamically

consistent. Nevertheless, in the framework of classical elastoplasticity, it represents

a useful tool to take into account phenomena which otherwise would be impossible

to characterise.

In this chapter a form of weak coupling is proposed, in order to reproduce the

evolution of the elastic sti�ness anisotropy with the plastic strains experimentally

observed by Mitaritonna et al. (2014) on the Lucera clay. In fact, they proved that

the change of the internal structure of the soil related to the development of irrevers-

ible deformation leads to a di�erent anisotropic elastic response as compared to the

initial con�guration of the material. An attempt to model the elastoplastic coupling

of the small strain sti�ness anisotropy was made by Gajo & Bigoni (2008), who

introduced in their anisotropic hyperelastic formulation a dependence of the fabric

tensor on the plastic strains. Here a di�erent approach is proposed, as discussed in

the following.

In the framework of elastoplasticity, a possible strategy to take into account

the anisotropy of soils within the plastic regime is to adopt an asymmetric yield

surface in the stress space. In particular, the inherent and induced anisotropy can be

e�ciently described by the introduction of a distorted yield surface, able to rotate

around the origin of the stress space according to a speci�c rotational hardening

rule, as originally proposed by Hashiguchi (1977) and Sekiguchi & Ohta (1977). As

a matter of fact, the yield surface is distorted and the result is an apparent rotation.

This is why in the following to the terms rotation and distorsion will be simplistically

attributed the same meaning. The initial anisotropy of soils, re�ecting the internal

microstructure due to the formation processes of the material, can be modelled by

a rotated yield surface and the induced anisotropy due to plastic deformation is

described by its further rotation. This represents a way to reproduce the change of

the internal structure as induced by plastic strains in terms of rearrangement of the

particles orientation.

The identi�cation of the initial (in situ) rotation of the yield surface is very

challenging from an experimental perspective. In fact, limiting the attention to the

triaxial space, several probes in the p-q plane at di�erent stress ratios are necessary

to identify the initial shape and the size of the yield surface. It is worth mentioning

that such an experimental activity can only be carried on clayey soils, for which
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undisturbed samples can be retrieved from the ground. Furthermore, the detection

of the yield surface is based on the assumption that the probing itself is not inducing

any evolution of the anisotropy of the material. One of the most comprehensive

databases on the shapes of the yield surfaces of natural clays was presented by

Diaz-Rodriguez et al. (1992), who collected data on yield surfaces for 17 di�erent

natural clays characterised by di�erent angles of internal friction. Later, Wheeler et

al. (2003) performed a series of drained triaxial tests on the Finnish Otaniemi clay

to investigate the validity of their model. In particular the objective was not only

that of �nding the yield point de�ning the initial size and orientation of the yield

surface, but also to identify the rotation and the expansion of the yield surface after

a second loading stage was applied. In �gure (4.1) the initial yield curves predicted

by the model by Wheeler et al. (2003) are depicted for four soft clays, demonstrating

that the experimental evidences support the introduction of a rotated yield surface

within elastoplastic constitutive models for clays.

Note that plastic strains induce a permanent modi�cation of the internal struc-

ture that should not to be confused with the stress/strain induced anisotropy arising

within nonlinear hyperelastic formulations, which by de�nition is lost whenever an

isotropic stress/strain state is recovered.

Within this class of elastoplastic rotational hardening models, the one formulated

by Dafalias & Taiebat (2013) is adopted herein. They describe the plastic anisotropic

character of clays introducing a rotational hardening rule that allows both the yield

and plastic potential surfaces to rotate. The advantages of this model with respect

to others available in the literature are the following: its relative simple formulation

and the attention devoted by the Authors to the control of the excessive rotation of

the surfaces and to the proper attainment of the critical state conditions.

The aim of the present work is to improve the performance of the model to

account for the evolution of the elastic sti�ness anisotropy of soils with plastic strains

along the line tracked by the pioneering work of Hueckel & Tutumluer (1994) on

clays. From a mathematical point of view, this feature can be achieved linking

the rotational hardening internal variables pertaining to the plastic response with

the second order fabric tensor controlling the anisotropic response in the elastic

domain. The original isotropic hypoelastic formulation of the model is substituted

by the proposed nonlinear anisotropic hyperelastic one, in which the former constant

fabric tensor, controlling the elastic directional properties of the clay, is allowed to

evolve as linked to the rotational hardening variables of the model. The following

developments refer to the hyperelastic formulation expressed in the fabric tensor

B-form, preferred to that in a-form, as it leads to a more elegant and analytically
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Figure 4.1: Initial yield surfaces for di�erent natural clays (from Wheeler et al.
(2003))

convenient formulation. The rotation of the yield and plastic potential surfaces are

governed by a rotational hardening rule through an internal variable represented

in the multiaxial formulation by a stress ratio-type second order deviatoric tensor.

Dafalias & Taiebat (2013) proposed di�erent alternatives for the hardening rule and

particular attention is addressed to the evolution of the rotational internal variable

in order to guarantee the uniqueness of the critical state condition and to avoid

excessive and unrealistic rotations of the surfaces. The model is mainly presented

in the triaxial formulation, though it can be easily extended to the most general

multiaxial one. The performance of the model is �nally illustrated with reference

to the experimental results carried out by Mitaritonna et al. (2014) described in

chapter 1.
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4.1 The Dafalias & Taiebat (2013) model

The constitutive law by Dafalias & Taiebat (2013) is a single surface plasticity model,

in which both the yield surface f = 0 and the plastic potential surface g = 0 are

represented in the p-q plane by two distorted ellipses with equations:

g = f = (q − pβ)2 −
(
M2 − β2

)
p (p0 − p) = 0 (4.2)

where the parameter M denotes the slope of the critical state line in the p-q

plane, assuming the value of Mc and Me in compression and extension, for η ≥ β

and η ≤ β, respectively. p0, de�ning the size of the surfaces, is the value of the

mean e�ective pressure where the line characterised by the slope β intersects the

yield surface, as reported in �gure (4.2). This internal variable assumes the meaning

of a preconsolidation pressure and identi�es the normal consolidation line (NCL) in

the e-lnp plane. The slope α is a nondimensional scalar value internal variable

expressed by a stress ratio, controlling the rotation of the surfaces (note that the

symbol β is adopted herein instead of α in order to avoid confusion with the notation

used in the following chapters). The use of the factor (M2 − β2) in eq. (4.2) means

that the yield curve has horizontal tangents at the points of intersection with the

critical state lines in triaxial compression and extension. For p = 0 and p = p0 the

curve has vertical tangents.

Figure 4.2: Yield and plastic potential surfaces in the p-q plane

For non-associative �ow rule the additional parameter N is introduced, typically
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lower than M and assuming the values Nc and Ne in compression and extension,

respectively. In this case the direction of the plastic strain increment at a generic

point A on the yield surface is speci�ed by the normal to the plastic potential surface

at a point A' de�ned by the same stress ratio. Although they are characterised

by the same equation, in the most general case the two surfaces are two ellipses

characterised by di�erent eccentricity. It is worth noting that in order to guarantee

that eq. (4.2) has real roots for q, the external constraint |β| < M is required. For

the special case of β = 0 the modi�ed Cam Clay model is recovered.

The response of the model within the yield surface is characterised by hypoelastic

isotropic strain-rate relations. In detail, the elastic volumetric and deviatoric strain

increments are given by:

ε̇ev =
ṗ

K

ε̇es =
q̇

3G

(4.3)

where K and G are the elastic bulk and shear moduli, related each other through

the Poisson ratio ν. The elastic muduli depend linearly on the mean e�ective pres-

sure, in particular for the bulk modulus is:

K =
p

κ
(1 + ein) (4.4)

where κ is a material constant representing the slope of the swelling line in the

e-lnp plane and ein is the initial void ratio. The �ow rule, in conjunction with the

plastic potential surface in eq. (4.2) yields to the volumetric and deviatoric plastic

strain increments reported below:

ε̇pv = 〈L〉 p
(
M2 − η2

)
ε̇ps = 〈L〉 2p (η − β)

(4.5)

where L inside the Macauley brackets denotes the plastic multiplier, obtained by

imposing the consistency condition ḟ = 0.

The model is characterised by a volumetric isotropic hardening governing the

contraction and the expansion of the yield and the plastic potential surfaces and is

expressed through the rate of the internal variable p0, controlled by the volumetric

plastic strain increment following the typical and well known relation:

ṗ0 =
1 + ein
λ− κ

p0ε̇
p
v (4.6)

where λ is the slope of the normal consolidation line in the e-lnp plane and the
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plastic volumetric strain increment ε̇pv = 〈L〉 ∂g
∂p

is reported in eq. (4.5).

4.1.1 Rotational hardening

The yield and the plastic potential surfaces can rotate by virtue of a rotational

hardening law controlling the rate of the internal variable β: once plastic loading

occurs, the two surfaces start rotating according to:

β̇ = 〈L〉 cpat
p

p0
(βb − β) (4.7)

where pat is the atmospheric pressure and c is a model parameter controlling the

pace of the evolution. The fundamental aspect characterising this law is that the

evolution of β depends on the distance between a bounding value βb, or equilibrium

value, representing the constant value attained by β for a given stress ratio and

function of the current η, and the current rotational internal variable. For a constant

η stress path the surface will rotate from the initial con�guration until reaching and

then maintaining the equilibrium position. In this con�guration the yield and the

plastic potential surfaces continue to harden isotropically, homothetically evolving

at �xed orientation. This means that if one projects the current values of p and

p0 in the e-lnp plane, a line parallel to the normal consolidation line and the line

itself are followed, respectively, similarly to what happens for the Cam Clay model.

In comparison with other existing rotational hardening rules, that reported herein

guarantees the uniqueness of the critical state line whatever are the initial state

and the followed loading path, as demonstrated and widely discussed in the original

paper. Another important aspect concerns the control of excessive rotations of the

yield and the plastic potential surfaces. In fact, without introducing some constraints

on the possible values assumed by the internal variable β, the model would lead to

unrealistic rotations, not consistent with the typical experimental evidence on clays.

As will be shown in the following, these conditions limit the range of the possible

values of the model parameters related to the rotational hardening rules. Three

possible expressions for the equilibrium value of the internal variable are reported

in this section, the latter introduced in a subsequent work by the same Authors

(Dafalias & Taiebat (2014)).

4.1.1.1 Linear rule

The �rst law reported here was proposed by Dafalias (1986) and represents the

simplest expression to evaluate the equilibrium value for the rotational hardening

internal variable β. It evolves linearly with the stress ratio η according to the
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following expression:

βb (η) =
η

x
(4.8)

where x denotes an additional positive parameter of the model de�ning the

bounding value of β for constant η stress paths.

4.1.1.2 Exponential rule

Dafalias & Taiebat (2013) propose an exponential dependence of the bounding value

βb with the stress ratio η according to the law:

βb (η) = ±M
z

[
1− exp

(
−s |η|

M

)]
(4.9)

where z and s are two positive model parameters and for η ≥ 0 and η ≤ 0, M

assumes the values Mc and Me with the sign ±, respectively.
The reason for the increasing analytical complexity of eq. (4.9) with respect to

eq. (4.8) and the presence of an additional parameter can be justi�ed by a more

satisfactory capability of the model to reproduce the experimental results considered

by the Authors. The equilibrium value in terms of ratio βb/M monotonically in-

creases with the ratio η/M and reaches asymptotically the value M/z. This feature

guarantees the rotation not to exceed this latter value, irrespectively of the current

stress ratio. Conversely, employing the linear equation, the value of the internal

variable inde�nitely increases with η, causing excessive rotations of the surfaces,

thus leading to an unrealistic response of the model, this being more evident for

increasing values of the current stress ratio η.

4.1.1.3 Dafalias & Taiebat (2014) rule

An additional evolution law for the bounding value βb was proposed by Dafalias &

Taiebat (2014) to improve the predictive capability of the model for high values of η

and in correspondence of the critical state conditions. In particular, a still debatable

issue is whether the inherent anisotropy should persist or not in the soil once the

critical state conditions are reached, namely whether the fabric anisotropy should

be zero or non-zero. From an experimental point of view reaching and maintaining

the critical state condition in clays for a su�cient long time to monitor and measure

the evolution of the fabric anisotropy represents a very challenging issue and, at the

present time, no experimental evidences are available to fully clarify the problem.

The geotechnical community is divided between those who argue that for critical

state failure conditions there must be no anisotropic fabric due to the looseness of
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the original internal structure, and those who suggest that the classical critical state

theory is incomplete and should be revisited to include the e�ects of fabric. This

is why Dafalias & Taiebat (2014) proposed a new law able to take into account

both the zero and non-zero fabric anisotropy at critical state. Therefore, from an

analytical perspective, the question is whether for η = M the internal variable β

should attain a constant value or should be zero.

The proposed law is characterised by two independent equations, the �rst one

valid for|η| ≤M and the second one for|η| ≥M , as follow:

βb (η) = η

(
βc
M

+m

[
1−

(
|η|
M

)n])
for |η| ≤M

βb (η) = η
βc
M

exp

(
−µ
[
|η|
M
− 1

])
for |η| ≥M

(4.10)

where m, n and µ are positive model constants and βc is the value of β in

correspondence of the critical state condition. The �rst expression in eq. (4.10) leads

to βb (0) = 0 and βb (M) = βc and the second one βb (M) = βc and βb (∞) = 0, thus

the continuity of the function for η = M is guaranteed. According to eq. (4.10), the

value of β increases as the stress ratio increases until reaching the maximun value and

then decreases till attaining asymptotically the zero value following an exponential

rule. The critical state value βc becomes and additional parameter to be calibrated

by the user and will be always less than the maximum one; in particular, according

to eq. (4.10), βb (η) = 0 for |η| ≥ 0 when βc = 0.

4.1.2 Multiaxial generalisation

The extension of the previous formulation to the general strain/stress space is

straightforward. The crucial aspect is that the scalar-valued rotational internal

variable β generalises into a stress ratio-type second order symmetric deviatoric

tensor β, with β =
√

(3/2)β : β. The structure of the rotational hardening rules

is analogous to that presented above, with the bounding value βb replaced with its

tensor-valued counterpart βb, the stress ratio η is substituted by the second order

deviatoric stress ratio tensor r = s/p, with s denoting the deviatoric stress tensor

and |η| =
√

(3/2) r : r.

4.2 A modi�ed rotational hardening rule

In this section a di�erent rotational hardening rule is proposed instead of the original

one in eq. (4.7) proposed by Dafalias & Taiebat (2013). In fact, the original equation
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does not automatically guarantees that the current rotational variable β attains

the equilibrium value βb for a speci�c stress ratio η. In other words, for constant

stress ratio paths, a bounding value for β di�erent from βb is reached. In order to

demonstrate this assessment, consider the response of eq. (4.7) for a �xed η stress

path.

Recalling the expression for the volumetric plastic strain rate of Dafalias &

Taiebat (2013) in eq. (4.5), the plastic multiplier takes the form:

L =
1

p (M2 − η2)
ε̇pv (4.11)

Then, knowing the relation between the plastic void ratio change and the plastic

volumetric strain change and introducing the isotropic hardening variable p0 one

obtains:

ėp = − (λ− κ)
ṗ0
p0

= − (1 + ein) ε̇pv (4.12)

Substituting the volumetric plastic strain rate of eq. (4.12) in eq. (4.11), the

plastic multiplier becomes:

L =
λ− κ
1 + ein

1

p (M2 − η2)
ṗ0
p0

(4.13)

Then substituting eq. (4.13) in eq. (4.7), the evolution equation for β reads:

β̇ =
λ− κ
1 + ein

1

M2 − η2
cpat (βb (η)− β)

ṗ0
p20

(4.14)

that, de�ning C = c λ−κ
1+ein

1
M2−η2 , can be more e�ciently rewritten as:

β̇

βb (η)− β
= Cpat

ṗ0
p20

(4.15)

Generally, eq. (4.15) cannot be solved analytically for β but, in the very special

case of a radial stress path, being the stress ratio �xed throughout the loading

process, it can be integrated in a closed form by separation of variables with respect

to β and p0. Denoting with βin and p0,in the initial values, one obtains:

β = βb − (βb − βin) exp

[
patC

(
1

p0
− 1

p0,in

)]
(4.16)

It is worth noting that according to eq. (4.16) β = βin for p0 = p0,in and

β = βb − (βb − βin) exp
[
−pat C

p0,in

]
for p0 →∞, thus never attaining the limit value

βb. This result is due to the square of p0 in eq. (4.15). Consider now a more
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generalised form of the same equation, with n a real number:

β̇ = 〈L〉 cpnat
p

pn0
(βb − β) (4.17)

that, similarly as above, can be rewritten as:

β̇

βb (η)− β
= Cpnat

ṗ0

pn+1
0

(4.18)

The former, integrated following the same technique as above, leads to:

β = βb − (βb − βin) exp

[
−pnat

C

n

(
p−n0,in − p−n0

)]
(4.19)

Eq. (4.19) automatically satis�es the initial condition β = βin at p0 = p0,in, but

the condition β = βb for p0 →∞ is veri�ed only if n ≤ 0. Stemming from this latter

result, a proposed modi�cation of the rotational hardening law consists in choosing

n = 0, leading to:

β̇ = 〈L〉 cp (βb − β) (4.20)

Remark Notice that during the transition of β when loading changes from one

value of η to another, the analogy ṗ0
p0

= ṗ
p
does not hold, because the corresponding

consolidation lines in the e-lnp plane are not parallel till the rotational internal

variable reaches its equilibrium value βb. Recalling the expression proposed by

Dafalias (1986), the value of the mean e�ective pressure p corresponding to p0 can

be determined as follow:

p

p0
=

M2 − β2

η2 − 2βη +M2
(4.21)

It is worth remembering that eq. (4.21) is valid for associative �ow rule; in case

of yield surface di�erent from plastic potential, N substitutes for M.

Di�erentiating eq. (4.21) under constant η loading, after some algebra one can

write:

ṗ

p
− ṗ0
p0

= 2

(
η

η2 − 2βη +M2
− β

M2 − β2

)
β̇ (4.22)

Hence, this proves that ṗ0
p0
6= ṗ

p
unless the rotational variable saturates its evol-

ution, i.e. the projection of p and p0 in the e-lnp plane are identi�ed by parallel

lines.
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4.3 Constraints on β and parameters calibration

The internal variable β must satisfy certain conditions in order to avoid excessive

rotation of the yield and the plastic potential surfaces. Although the equation of the

yield surface requires the analytical restriction |β| < M , from an experimental point

of view it appears that a further control of the entity of the rotation is necessary.

In particular, since M and N are smaller in extension than in compression, the

condition on the maximum value of the rotational variable is βmax < min (Me, Ne).

However, this condition still might not be su�cient to limit the excessive rotations

for high values of η. In fact, under this condition, for the linear case the ratio η/x

can exceed the value of M. For the exponential law, the requirement βmax = Mc

z

combined with the former constraint on βmax leads to the restriction z >
Mc

min(Me,Ne)
,

but Ne can be much smaller than Mc, then the condition on z can be violated. A

remedy to limit the excessive rotation of β is to introduce an upper bound of this

latter for stress ratios greater than ξM , where ξ is a positive constant. A detailed

analytical discussion of this issue is beyond the scope of this work, but again it is

worth remembering that a check of the values adopted by the rotational variable

is always necessary to avoid unrealistic responses of the model. Conversely, it is

useful to analyse with attention the parameters calibration procedure. The list of

the constitutive parameters is reported in table (4.1).

Parameter Meaning

Mc, Me slope of the critical state line in the p-q plane

Nc, Ne yield surface parameters

λ slope of the NCL in the e-lnp plane

κ slope of the rebound line in the e-lnp plane

ν Poisson's ratio

c rate of evolution of rotational variable

x parameter for the linear rule

z, s parameters for the exponential rule

m, n, µ parameters for the Dafalias & Taiebat (2014) rule

Table 4.1: Model parameters

Parameters M, N, λ, κ and the Poisson's ratio can be calibrated following the

standard procedures. The calibration of the parameters related to the rotational

hardening is less trivial because of the uncertainty and the di�culties of determining

the initial position of the yield surface in the stress space and, as a consequence,
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the initial value of the rotational variable β. From an experimental perspective,

the position of the yield surface for a given stress state can be determined probing

the material along di�erent stress paths in the p-q plane until plastic strains occur.

Although through this probing one can desume the initial value of the rotational

variable, the procedure requires great experimental e�orts and can only provide

information for one speci�c state of the material. Whenever the initial stress ratio

changes, a new probing should be carried out. Therefore this procedure is barely

adopted in standard geotechnical applications. In order to overcome this problem,

Dafalias & Taiebat (2013) proposed a procedure to determine the rotational internal

variable β under K0 conditions.

Considering the unloading-reloading line in the e-lnp plane the rate of volumetric

strain leads to an in�nitesimal variation of the void ratio according to:

ėe = −κṗ
p

= − (1 + ein) ε̇ev (4.23)

and analogously, considering the NCL one can write:

ėp = ė− ėe = − (λ− κ)
ṗ

p
= − (1 + ein) ε̇pv (4.24)

Combining eqs. (4.23) and (4.24) one obtains the well-known relation:

ε̇v =
λ

λ− κ
ε̇pv (4.25)

De�ning ε = ε̇v/ε̇s and adopting the approximation of neglecting the elastic shear

strain rate and recalling the eq. (4.5), the dilatancy Ψ takes the form:

Ψ =
ε̇pv
ε̇ps

=
(

1− κ

λ

)
ε =

M2 − η2

2 (η − β)
(4.26)

Solving eq. (4.26) for β, under K0 consolidation
(
ε = 2

3

)
it follows β = βK0 and

η = ηK0 = 3(1−K0)
1+2K0

:

βK0 =
η2K0

+ 3 [1− (κ/λ)] ηK0 −M2

3 [1− (κ/λ)]
(4.27)

Given the values of parameters M, κ and λ and knowing the stress ratio from

the K0 condition, one can determine the corresponding rotational internal variable.

This condition often represents the in situ initial state of the soil, thus eq. (4.27) can

be employed to determine the initial rotation of the yield and the plastic potential

surfaces. In such a way the rotational variable can be easily initialised and the value

obtained can be used within any of the rotational hardening rules described above,
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since the process leading to eq. (4.27) does not depend on any of them. The basic

idea is that the parameters of the di�erent rules described above can be determined

imposing that the K0 loading represents the equilibrium value of β, such that β̇ = 0.

In other words, the bounding value of β is known, being βb = βK0 and η = ηK0 . In

particular, for the �rst law in eq. (4.8), it follows that

x =
ηK0

βK0

(4.28)

Along the same philosophy, zeroing the rate of the internal variable in eq. (4.9),

one obtains:

βb = βK0 = ±M
z

[
1− exp

(
−s |ηK0|

M

)]
(4.29)

This latter equation is in principle not su�cient to determine both the paramet-

ers z and s. However, as shown in detail in the original paper by Dafalias & Taiebat

(2013), one must have s ≤ z and a good assumption, in absence of additional inform-

ation, is to assume s = z. An alternative approach would be that of calculating the

equilibrium value βb for various constant stress ratios and, if experimental results

are available in this sense, calibrating the parameters z and s in order to properly

�t the data.

For what concernes the rule proposed Dafalias & Taiebat (2014), imposing the

K0 condition on the �rst of eq. (4.10), one can express the parameterm as a function

of n and βc:

m =

(
βK0

ηK0

− βc
M

)[
1−

(
|ηK0 |
M

)n]−1
(4.30)

There is no way to calibrate the critical state value of the rotational variable by

direct measurements, thus it can be chosen as a percentage of
βK0

M
. The parameter

m can be calculated for di�erent n, with n > 1. Then the condition imposed by the

continuity of the �rst derivative of both the expressions in eq. (4.10) yields

βc
M

=
mn

µ
(4.31)

that can be employed to calculate µ as a function of n, which is the remaining

parameter to be calibrated. In addition, the requirements βb (η) < η, for preventing

the excessive rotation, and βc < βb,max, as discussed with more detail in Dafalias &

Taiebat (2014), represent three constraints for the independent parameter n. The

calibration procedure of the previous law is more complex and would require a set

of experimental data showing the initial rotation of the yield surface for di�erent
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stress ratios.

Finally, the parameter c, controlling the pace of the rotation, is calibrated by a

trial and error procedure.

4.4 Relationship between B and β

In order to reproduce the evolution of the elastic sti�ness anisotropy experimentally

observed in clays, in this section a link between the fabric tensorB and the rotational

hardening internal variable β is proposed. In doing that, the original isotropic

hypoelastic formulation of the Dafalias & Taiebat (2013) model is substituted by the

proposed nonlinear anisotropic hyperelastic one. The tensor B can be conveniently

decomposed in its isotropic and deviatoric parts, as reported in eq. (2.38), as the

tensor β is traceless. Furthermore, recalling the constraint trB = 3, it results the

scalar f = 1. The basic idea is that β can be included in the deviatoric part of the

tensor B. The starting point to develop this relationship are the experimental data

carried out by Mitaritonna et al. (2014) on the Lucera clay illustrated in chapter 1.

In fact, inspired by the elastic sti�ness anisotropy evolution observed in laboratory

along radial stress paths, the following empirical relationship between B and β was

found:

B = I− ωββ (4.32)

where ω is a new model parameter. Note that eq. (4.32) automatically respect

the constraint trB = 3 by virtue of the tracelessness character of β. For β = 0,

namely when no rotation of the yield surface is considered, isotropic elasticity is

recovered. For the speci�c case of a transverse isotropic material characterised by the

principal directions of B coinciding with those of the strain/stress tensors, recalling

that β =
√

(3/2)β : β, eq. (4.32) reads in matrix form: B11 0 0

0 B22 0

0 0 B33

 =

 1 0 0

0 1 0

0 0 1

− ωβ2


2
3

0 0

0 −1
3

0

0 0 −1
3

 (4.33)

In particular, assuming the maximum principal direction 1 to be vertical and

coinciding with the axis of anisotropy and B22 = B33, the anisotropy ratio can be

written as:

B22

B11

=
Ghh

Ghv

=
1 + 1

3
ωβ2

1− 2
3
ωβ2

(4.34)
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Eq. (4.34) clari�es the choice of the negative sign in eq. (4.32): taking into

account that typically Ghh > Ghv for clays, to obtain ω > 0 the minus sign is

necessary. Nonetheless, in order to guarantee the fabric tensor to be positive de�nite,

namely the eigenvalues of B being positive, the condition 1 − 2
3
ωβ2 > 0 must also

be respected. At the equilibrium values of β along constant stress ratio paths, eq.

(4.34) takes the form: (
B22

B11

)
b

=

(
Ghh

Ghv

)
b

=
1 + 1

3
ωβ2

b

1− 2
3
ωβ2

b

(4.35)

Eq. (4.35) proves to be very useful for the calibration of the parameter ω.

Before discussing the implication of this form of elastoplastic coupling on the

response of the model and the suggested calibration procedure with reference to

the experimental data carried out by Mitaritonna et al. (2014) on Lucera clay, fur-

ther considerations about the introduction of the nonlinear anisotropic hyperelastic

model are necessary.

4.4.1 Some considerations on the use of the hyperelastic for-

mulation

When the standard hypoelasticity is taken into account, the Poisson's ratio and the

parameter κ, identifying the slope of the unloading-reloading line in the e-lnp plane,

control the elastic bulk and shear moduli of clays (eq. (4.4)); conversely, when the

proposed hyperelastic formulation is adopted, the parameters g, k, n are considered.

Nonetheless, the parameter κ still enters in eq. (4.27), a�ecting the initial value

of β under K0 conditions. Therefore, an investigation on the relation between the

hyperelastic constitutive parameters and the slope κ is necessary. In particular,

the introduction of the nonlinear hyperelastic formulation leads to an equivalent

constant κ variable with the stress.

In the following the equivalent κ is �rst obtained based on the proposed hypere-

lastic formulation and then examined to quantitatively evaluate the role of the stress

dependency mentioned above. In order to express this latter parameter as a result of

the hyperelastic formulation, the following procedure is presented. Consider, under

triaxial conditions, the general relation between the increments of the volumetric

and deviatoric elastic strains ε̇ev and ε̇
e
s and the increments of mean pressure ṗ and

deviatoric stress q̇: {
ε̇ev

ε̇es

}
=

[
C11 C12

C21 C22

]{
ṗ

q̇

}
(4.36)
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where Cij are the terms of the matrix associated to the compliance tensor. Noting

that for constant stress ratio loading η = q̇
ṗ

= q
p
, the elastic volumetric strain

increment rewrites into:

ε̇ev = C11ṗ+ C12q̇ = (C11 + C12η) ṗ (4.37)

Then substituting eq. (4.37) in eq. (4.23) one obtains the slope κ of the

unloading-reloading line expressed as a function of the elastic formulation:

κ = (1 + ein) (C11 + C12η) p (4.38)

Considering now the new hyperelastic formulation for the isotropic case, i.e. the

fabric tensor coinciding with the identity tensor, eq. (4.38) can be specialised as:

κ = (1 + ein)

(
1 +

k (1− n)

3g
η2
)−n

2 1

k

(
p

pr

)1−n

(4.39)

From eq. (4.39) it follows that κ is not constant as it depends on the mean

e�ective pressure. Note that for the linear case (n = 0), κ evolves linearly with p,

whereas for n = 1, namely the case in which the elastic sti�ness depends linearly on

the state of stress, κ is constant and the formulation by Dafalias & Taiebat (2013)

is recovered. It is worth noting that when the hyperelastic parameters g, k, n are

calibrated with reference to the very small strain response, the resulting values of

κ are lower than those typically adopted in the Dafalias & Taiebat (2013) model.

This is consistent with the fact that in the latter model κ is evaluated as the slope

of a swelling line, in a range of mean e�ective pressure characterised by higher levels

of strain. In fact, strictly speaking κ is not an elastic constant, as opposed to the

parameters of the hyperelastic model that are calibrated on the very small strain

soil response but represents the slope of the swelling line in the e-lnp plane, varying

with the current stress state.

In the following eq. (4.39) will be generalised to the anisotropic case. For the

most general anisotropic hyperelastic formulation (see chapter 3), an expression for

κ similar to that of eq. (4.39) cannot be straightforwardly obtained because the

model is formulated in the general stress/strain space in terms of mixed invariants

of the stress/strain tensors and the fabric one. It is more convenient to employ

the de�nitions of the stress and strain invariants in order to express the compliance

matrix in eq. (4.36) in terms of the components of the 6x6 one. In particular,

specialising the general constitutive relationship ε̇ = Cσ̇ to the triaxial formulation,

being ε11 6= ε22 = ε33 and σ11 6= σ22 = σ33, one can write:
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ε̇11 = C1111σ̇11 + 2C1122σ̇22

ε̇22 = C2211σ̇11 + (C2222 + C2233) σ̇22
(4.40)

Then, by de�nition of the strain invariants εv and εs, the constitutive relationship

becomes:

ε̇v = (C1111 + 2C2211) σ̇11 + 2 (C1122 + C2222 + C2233) σ̇22

ε̇s =
2

3
[(C1111 − C2211) σ̇11 + (2C1122 − C2222 − C2233) σ̇22]

(4.41)

Furthermore, the stress components are expressed in terms of the stress invariants

p and q :

ε̇v = (C1111 + 4C2211 + C2222 + C2233) ṗ+
2

3
(C1111 + C2211 − C2222 − C2233) q̇

ε̇s =
2

3
(C1111 + C2211 − C2222 − C2233) ṗ+

2

9
(2C1111 − 4C2211 + C2222 + C2233) q̇

(4.42)

Once the terms of the compliance matrix in the general stress-strain space are

known stemming from the anisotropic nonlinear hyperelastic formulation, the terms

of the compliance matrix of the triaxial formulation in eq. (4.36) can be determined:

C11 = C1111 + 4C2211 + C2222 + C2233

C12 = C21 =
2

3
(C1111 + C2211 − C2222 − C2233)

C22 =
2

9
(2C1111 − 4C2211 + C2222 + C2233)

(4.43)

Of course, even for the anisotropic case, the equivalent value of κ is not constant

but depends on the current state of stress. As a consequence, in order to evaluate the

rotational internal variable under K0 condition, one should determine the value of κ

for the range of mean e�ective pressure of interests for the speci�c problem and then

assume a representative value to be used in eq. (4.27). For the set of parameters

reported in table (4.2) for Lucera clay, �gure (4.3) depicts the evolution of κ with the

mean e�ective pressure for the proposed nonlinear anisotropic hyperelastic model

along a constant η = 0.6 loading path corresponding to the K0 condition, combining

eqs. (4.38) and (4.43). Under the hypothesis of transverse isotropy, with the tensor

B coaxial with the stress and strain tensors and the direction 1 coinciding with the

axis of anisotropy, for the initial state ηin = ηK0 = 0.6 it results B11 = 0.937 and

B22 = B33 = 1.031, corresponding to the anisotropic ratio Ghh/Gvh = B22/B11 =

1.1.
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Parameter Value

pr 100

n 0.78

k 888.3

g 533

M 1.08

λ 0.143

ηK0 0.6

ein 0.8

Table 4.2: Model parameters for Lucera clay

Figure 4.3: Evolution of κ with the mean e�ective pressure

Figure (4.3) shows that, despite the unquestionable evolution of κ, the range

of values attained in a wide range of mean pressure (10ö1000 kPa) is not large.

Even more, when using eq. (4.27) it emerges that βK0 does not show any relevant

sensitivity to κ (�gure (4.4)), when this latter is varied in its range. This should

be related to its relatively small value as compared to that of λ. As a consequence,

instead of specifying the rotational variable for di�erent mean e�ective pressures, for

practical purposes a good assumption is to consider a constant value for βK0 . For the

speci�c problem, correspondingly to the initial mean e�ective pressure p = 175 kPa,

it results βK0 = 0.327.
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Figure 4.4: Evolution of βK0 with the mean e�ective pressure

4.5 Model performance and calibration

As discussed above, eq. (4.32) represents a weak form of elastoplastic coupling,

in which the plasticity, through the rotation of the yield and the plastic poten-

tial surfaces, a�ects the elastic response of the model. The �rst advantage of this

relationship is in its analytical simplicity, requiring solely the parameter ω to be cal-

ibrated and, more important, in the fact that it introduces an evolution character

to the fabric tensor as a consequence of the evolution of the tensor-valued rotational

variable β. In other words, a rotation of the surfaces from an initial con�gura-

tion produces an evolution of the elastic sti�ness anisotropy. In addition, note that

whenever β reaches its bounding value βb for �xed η, the anisotropy ratio attains a

constant value.

The parameter ω can be easily calibrated with reference to the K0 condition,

which often represents the in situ stress state of the soil. In correspondence of ηK0 ,

the equilibrium value of the rotational variable β is βb = βK0 , calculated through

eq. (4.27). For the case of transverse isotropy, which represents a reasonable hy-

pothesis in many geotechnical applications due to the typical geological processes

leading to the formation of the soil deposit, if the anisotropy ratio is known from

the measurements of the elastic shear moduli corresponding to the K0 condition,

eq. (4.35) can be employed to determine ω. In other words, once the equilibrium

value βb is calibrated for a �xed stress ratio η according to the speci�c rotational

hardening rule, one can select the constant ω in order to obtain the desired ratio

Ghh/Gvh experimentally observed in laboratory or in situ tests. Note that because
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of eq. (4.32), a single measurement of the elastic shear moduli for a speci�c stress

ratio is required to calibrate the new parameter. In case more than one experimental

results are available for di�erent stress ratios, like for the data by Mitaritonna et al.,

one can select the value of ω that better �ts the data. Once this latter is determined,

the evolution of the elastic sti�ness anisotropy can be monitored by virtue of the

value attained by the rotational variable for the current stress state. In particular,

following the same philosophy described above, eq. (4.20) can be more conveniently

rewritten as:

β̇

βb (η)− β
= C

ṗ0
p0

(4.44)

with C = c λ−κ
1+ein

1
M2−η2 . For constant stress ratios loading paths, eq. (4.44) can

be analytically integrated, leading to:

β = βb − (βb − βin)

(
p0,in
p0

)C
(4.45)

In addition, considering an associative �ow rule, one can determine the evolution

of the rotational variable with the mean pressure p recalling eq. (4.21) originally

proposed by Dafalias (1986). Combining this latter with the relationship between

β and B of eq. (4.32), eq. (4.45) provides the evolution of the fabric tensor and

the elastic sti�ness anisotropy with the mean e�ective pressure for constant η stress

paths. Finally, parameter c, controlling the evolution of β, can be calibrated in

order to mimic the variation of the anisotropic ratio with the mean e�ective pressure

experimentally observed for the Lucera clay. Similarly to what happens for ω, as

the assumed law for βb changes, di�erent c are necessary to better reproduce the

laboratory results.

In the following the evolution of the elastic anisotropy ratio for the values of η

experimentally obtained by Mitaritonna et al. (2014) and discussed in chapter 1 are

reproduced through the proposed coupled formulation. In particular, the response

of the model is explored for the three possible laws of the equilibrium value of the

rotational internal variable. The basic parameters of the model are reported in table

(4.2), with κ = 0.002 and βK0 = 0.327, evaluated for ηK0 = 0.6 in correspondence of

the initial mean e�ective pressure for the test on the Lucera clay (p = 175 kPa) and

maintained constant throughout the simulation. Then the parameters concerning

the laws for βb and ω and c will be introduced for the speci�c case.
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4.5.1 Linear law

As introduced above, in case of measurements of the elastic moduli along di�erent

directions are available for di�erent stress ratios, the parameter ω should be determ-

ined aiming at better catching the whole experimental database. Here, a calibration

procedure is proposed. As a �rst step, adopting the linear law for βb, the parameter

x is determined on the K0 condition, using eq. (4.27). Then the equilibrium values

of β are calculated for di�erent stress ratios and, since the anisotropy ratios Ghh/Gvh

are known for the corresponding η, di�erent ω would result from eq. (4.35). These

results can be represented in the plane βb−ωβb, as shown in �gure (4.5). The value

of ω can be obtained by a linear least squares regression of the data. Note that from

the latter results ω ' 1. In such a way one can determine the anisotropy ratio for

any η. Figure (4.6) compares the steady values of Ghh/Gvh experimentally measured

for di�erent stress ratio to the back predictions of the model.

Figure 4.5: Calibration of ω
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Figure 4.6: Anisotropy ratio for di�erent stress ratios

Parameter Value

x 1.833

ω 1.03

c 13

Table 4.3: Model parameters

Once the values of the rotational internal variable, or analogously, the elastic

shear moduli are determined for the initial state (p = 175 kPa, ηin = ηK0 = 0.6) and

in correspondence of the bounding values for η = 0, 0.3, 0.8, as described above the

evolution equation for β provides the evolution of Ghh/Gvh with the mean e�ect-

ive pressure when the stress ratio changes from an initial value to another. The

parameter c, governing the rate of this evolution, is calibrated in order to �t the

experimental results. The evolution of the anisotropy ratio measured in laboratory

tests on the reconstituted Lucera clay with the mean e�ective pressure is depicted

in �gure (4.7) with dots and the lines are the results of the model simulation. The

model parameters are reported in table (4.3).
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Figure 4.7: Evolution of anisotropy ratio with the mean e�ective pressure

4.5.2 Exponential law

A similar procedure to calibrate the parameter ω is followed in the case of an ex-

ponential dependence of the bounding value of β (eq. (4.9)). In this case two

parameters, s and z have to be determined in order to evaluate the limit value βb

for a speci�c stress ratio η. In case of only one experimental result, for instance re-

lated to the K0 condition, a reasonable assumption is s = z, but whenever a reacher

set of data is available one can choose di�erent values, respecting the constraint

s ≤ z.

Figure 4.8: Calibration of ω
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In particular, since the choice of ω depends on βb, s and z can be calibrated

taking into account eq. (4.27) and minimising the standard deviation of the linear

regression in �gure (4.8). In detail, one can �rst assume s = z and calculate the

value for the K0 condition and then, keeping �xed one of them and changing the

other so that the dots in �gure (4.8) accomodate, as far as possible, on a linear

trend. In other words, the parameter ω controls the slope of the linear regression,

while s and z adjust the deviation of the values of βb corresponding to di�erent η of

the experimental results from the linear law. The resulting parameters for the case

of exponential law are reported in table (4.4).

Parameter Value

s 1.500

z 1.866

ω 1.100

c 20

Table 4.4: Model parameters

Then, similarly to what done for the linear law, the resulting anisotropy ratio

Ghh/Gvh for the equilibrium condition along di�erent stress ratios is shown in �gure

(4.9), the dots indicating the experimental data and the line denoting the prediction

of the model.

Figure 4.9: Anisotropy ratio for di�erent stress ratios

Finally, the evolution of the elastic anisotropy with the mean e�ective pressure

from the initial K0 condition is reported in �gure (4.10).

98



Chapter 4. Weak form of coupling in the framework of elastoplasticity

Figure 4.10: Evolution of anisotropy ratio with the mean e�ective pressure

4.5.3 Dafalias & Taiebat (2014) law

Finally, for the sake of completeness, an analogous procedure is carried out for the

law reported in eq. (4.10) for the bounding value of the rotational internal variable.

In this case the value of β of the critical state condition is assumed as βc = 0.5βK0and

the calibration of m, n and µ follows a procedure similar to the previous one.

Figure 4.11: Calibration of ω

Adopting the same philosophy described for the case of the exponential law, the

parameter n can be chosen to minimise the standar deviation of the dots in �gure
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(4.11) with respect to the linear regression. Clearly, the requirements of limiting the

excessive rotation of the surfaces and the value of β at critical state act as additional

constraints on the parameter n. The model parameters resulting for this law are

reported in table (4.5).

Parameter Value

αc 0.164

n 20

m 0.394

µ 52

ω 1.03

c 16

Table 4.5: Model parameters

Figure (4.12) shows the asymptotic anisotropy ratio Ghh/Gvh in correspondence

of di�erent stress ratios, while �gure (4.13) plots its evolution with the mean e�ective

pressure when the stress ratio changes from an initial value to another.

Figure 4.12: Anisotropy ratio for di�erent stress ratios
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Figure 4.13: Evolution of anisotropy ratio with the mean e�ective pressure

The relationship between the internal variable β and the fabric tensor B pro-

posed herein enables the model to satisfactorily reproduce the evolution of the elastic

sti�ness anisotropy along η constant stress paths, otherwise impossible to mimic

without the introduction of a form of elastoplastic coupling. In particular, with

reference to the speci�c set of experimental data employed above, the linear law for

the evaluation of the equilibrium value βb represents the best compromise between

a good performance of the model and the number of parameters to be calibrated.

In this sense, it is worth noting that solely the extra parameter ω has to be de�ned

in order to reproduce the observed elastoplastic coupling: the remaining parameters

are the standard ones of the Dafalias & Taiebat (2013) model and those related to

the anisotropic hyperelastic formulation. Furthermore, a relevant consequence of

the proposed elastoplastic coupling is that the initial value of β and the paramet-

ers necessary to calculate the equilibrium value βb can be inferred by the elastic

properties of clays, measured in laboratory or in situ tests.

Clearly, a possible limitation of the proposed formulation is that it was empir-

ically determined on the base of just one set of data because of the lack of other

similar experimental investigations in the literature. Finally, despite the speci�c

analytical expression, the main result achieved in this section is the introduction

of a weak elastoplastic coupling a�ecting the elastic anisotropy of clays, in a form

never pursued before.
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Chapter 5

Thermodynamic constitutive

modelling of geomaterials

In this chapter a theoretical framework is described to model the behaviour of geo-

materials in a thermodynamically consistent way. Many thermodynamic approaches

for elastoplastic materials have been developed in the past few decades. A possible

classi�cation of the thermodynamic-based approaches can be done depending on

how the history of the material is taken into account. Within the approach com-

monly termed �rational thermodynamics�, the behaviour of the material is expressed

through general functionals of the history of the state and the thermodynamics prin-

ciples are applied to ensure that the evolution of the state during a generic process

is thermodynamically consistent. This approach is mainly due to Coleman (1964),

Green and Naghdi (1965), Coleman and Gurtin (1967), who generalised the formu-

lations based on classical elastoplasticity within a thermodynamic framework. The

second approach, adopted in this work, is based on what is often termed �general-

ised thermodynamics� and it makes large use of internal variables to describe the

past history of the material; thus it is also called thermodynamics with internal

variables. The origins of this approach can be found in the work by Moreau (1970),

Halphen & Nguyen (1975) and Ziegler (1983). More recently, relevant contributions

in the same �eld have been achieved by Lemaitre & Chaboche (1990), Maugin (1992,

1999), Coussy (1995) and in the works by Houlsby (1981) and Collins & Houlsby

(1997). In particular, this theory was termed �hyperplasticity� by Houlsby & Puzrin

(2000) and has much in common with the work of Lubliner (1972), Halphen and

Nguyen (1975), Ziegler (1977), and Maugin (1992). Initially, the term was coined

for elastoplastic models derivable from potentials, or pseudo-potentials (Wu and

Kolymbas (1990)). Later, Houlsby & Puzrin (2006) adopted the use of this term

for elastoplastic models that satisfy the laws of thermodynamics and identi�ed a
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group of standard procedures for obtaining any constitutive model starting from the

de�nition of these potentials. The �rst and second laws of thermodynamics are en-

forced directly in this approach, so that any constitutive model formulated following

this procedure automatically satis�es the laws of thermodynamics. In the following,

the constitutive relationships formulated within this theoretical framework will be

denoted as hyper-elastoplastic models. When modelling the whole aspects of soil

behaviour, for instance including cyclic response, an in�nite number of internal vari-

ables would be needed. This is achieved in continuous hyperplasticity (Houlsby &

Puzrin (2006)), where functionals are accounted for but is beyond the scope of this

work. In the following, however, a fairly small number of internal variables can be

used to construct close approximations of the more general models.

In this theoretical framework, one can describe in a thermodynamically con-

sistent way a wide range of engineering materials including geotechnical materials,

even those exhibiting non-associated plastic �ow rules. The principal advantage of

formulating such models in a thermodynamic framework is that they cannot pro-

duce thermodynamically unreasonable results. This is not automatically veri�ed

using di�erent approaches in constitutive modelling, such as classical elastoplasti-

city. Models that violate the thermodynamics principles might lead to unrealistic

phenomena, one of which is the absence of dissipation or, even worse, the creation

of energy under cyclic loading. A second advantage is that the framework makes

considerable use of potential functions, from which it is possible to derive the en-

tire constitutive response. In such a way, a large number of elastoplastic models

can be formulated within a single rigorous framework. In addition, the hyperplastic

approach can be adopted to derive continuum damage models, as demonstrated by

Einav et al. (2007) and enables to take into account forms of elastoplastic coupling

more complex than those obtained within the framework of classical elastoplasticity.

This latter aspect will be treated in detail in chapter 6.

In this study the procedure proposed by Collins & Houlsby (1997), Houlsby &

Puzrin (2000) and Houlsby & Puzrin (2006) are followed and the hypotheses of rate

independent materials and isothermal processes will be assumed. Then the Ziegler

orthogonality principle will be considered valid and its implications will be brie�y

discussed. Special emphasis will be given to the fact that the entire constitutive

response of a material can be derived from the de�nition of only two scalar functions.

The use of the Legendre transform allows to switch from one to another form of

these functions to formulate the constitutive model in the most suitable way for the

speci�c application.

After an introduction on the general principles of hyperplasticity, some consid-

103



Chapter 5. Thermodynamic constitutive modelling of geomaterials

erations about the role of the key ingredients of this approach and the relationship

with classical elastoplasticity will be discussed in detail. Then the rotational harden-

ing model by Dafalias & Taiebat (2013) described in chapter 4 will be reformulated

within the framework of hyperplasticity, highlighting analogies and di�erences with

a general family of hyperplastic anisotropic models proposed by Collins & Hilder

(2002). Finally some numerical results will be presented to show the performance

of the model and to clarify the di�erences with the original elastoplastic version.

5.1 Laws of thermodynamics. Free energy

In thermodynamics a closed system is a body separated from its surrounding and

characterised by a state described by a certain number of internal variables, which is

believed to be in thermodynamic equilibrium with the surrounding during any pro-

cess. In classical thermodynamics only in�nitesimally slow processes are considered

but in practice the concepts of classical thermodynamics can be successfully adop-

ted also for non-quasi-static processes. Given the above, the fundamental starting

points for the development of a thermodynamically consistent constitutive model

are the �rst and second laws of thermodynamics. The �rst law of thermodynamics

is essentially the principle of conservation of energy, which in the local rate form can

be expressed as:

u̇ = Ẇ + Q̇ = σij ε̇ij − qk,k (5.1)

where u is the internal energy, W is the mechanical work per unit volume, Q

is the heat �ux vector per unit volume and the term qk,k denotes the divergence of

the heat �ux vector. Eq. (5.1) expresses a power balance, in which the sum of the

sources of power to the system is equal to the rate of the internal energy of the body.

Note that this equation represents a particular form of the �rst law, in which the

local heat source is assumed to be zero and other input powers, due for instance to

a gravitational �eld, are neglected.

The second law of thermodynamics controls the form of a transformation intro-

ducing some restrictions to the processes that can occur. There are di�erent ways

in which the second law can be expressed and here the Clausius-Duhem inequality

form is adopted. Particularly, in the local form it reads:

θṡ ≥ −qk,k +
qkθ,k
θ

(5.2)

where s is the entropy per unit volume and θ is the temperature and again the
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local heat source is not considered. The entropy is a crucial property of a body and

represents a measure of the disorder of a system. Eq. (5.2) can be rewritten as:

D = θṡ+ qk,k −
qkθ,k
θ
≥ 0 (5.3)

where the total dissipation D is the sum of the thermal dissipation − qkθ,k
θ

,

which is always non-negative because the heat �ux vector is opposite to the thermal

gradient, and the mechanical dissipation d expressed as:

d = θṡ+ qk,k (5.4)

The second law states that the total dissipation in a closed system during any

process must be always non-negative. For a purely elastic material the dissipation

is zero and the process is fully reversible. Whether the process is su�ciently slow

and the thermal dissipation is small in comparison with the other two terms, one

can believe the two phenomena to be independent, thus requiring that d ≥ 0 and

− qkθ,k
θ
≥ 0. This is a more stringent condition of eq. (5.3) but is widely accepted,

thus in the following solely the mechanical dissipation will be considered. In addi-

tion, denoting with θṡr = −qk,k + qkθ,k
θ

, where the apex r indicates the reversible

contribute of the speci�c entropy, eq. (5.3) can be reformulated as:

D = θṡi = θ (ṡ− ṡr) ≥ 0 (5.5)

where ṡi is the irreversible part of the rate of entropy. In the form of eq. (5.5),

the second law is often referred to as Planck's inequality. In order to account for

the irreversible character of the materials, the second law of thermodynamics has to

be considered in the formulation, more conveniently in the form of eq. (5.3) or eq.

(5.5).

The internal energy is a function of the current state of the body; in particular

it depends on the strain tensor, on the entropy and on the tensor-type internal

variable αij. Herein, because this variable can be conveniently identi�ed with the

plastic strain, a single tensor variable is considered, though the generalisation to

more variables is straightforward. Depending on the independent variables employed

to describe the state, one can adopt three additional forms for free energy: the

Helmholtz free energy ϕ, the enthalpy h and the Gibbs free energy ψ. Note that

they are speci�c energy because considered per unit volume. In detail, one can write:
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u = u (εij, αij, s)

ϕ = ϕ (εij, αij, θ)

h = h (σij, αij, s)

ψ = ψ (σij, αij, θ)

(5.6)

For isothermal processes it is more convenient to use the Helmholtz and the

Gibbs energies because the temperature is an independent variable, whereas the in-

ternal energy and the enthalpy can be e�ciently employed for adiabatic or isentropic

processes. The four energies in eq. (5.6) are related to each other by a series of Le-

gendre transforms. A generic function X (xi, αi), with i = 1, ..., n, can be replaced

by the dual function Y (yi, αi), where xi and yi are the interchanged variables, such

that yi = ∂X
∂xi

. In particular the Legendre transform reads:

Y = ± (X − xiyi) (5.7)

where the sign depends on the speci�c application. The independent variables αi

are not changed by the transformation, thus are called passive variables. From a geo-

metrical perspective, X (xi) can be interpreted as a surface in the (n+1)-dimensional

space (xi, X) and the function Y (yi) de�nes a family of tangent hyperplanes, thus

a geometrical duality exists.

For instance, the Helmholtz free energy is a Legendre transform of the internal

energy (ϕ = u− θs), in which the entropy and temperature are interchanged, with

θ = ∂u
∂s
, whereas the strain tensor and the internal variable αij are passive variables.

The enthalpy and the Gibbs free energy are obtained by further Legendre transform-

ations in which stresses and strains are interchanged. Once one function is speci�ed,

the other can be found through the Legendre transform, though in certain cases is

not straightforward to �nd it analytically.

Enforcing in the �rst law of eq. (5.1) the mechanical dissipation, one obtains:

u̇ = σij ε̇ij − qk,k = σij ε̇ij + θṡ− d (5.8)

which, under the hypothesis of isothermal process, by virtue of the Legendre

transform can be rewritten as:

ϕ̇+ d = σij ε̇ij (5.9)

Eq. (5.9) is known as free energy balance equation. Furthermore, the rate of the

internal free energy can also expressed as:
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u̇ =
∂u

∂εij
ε̇ij +

∂u

∂αij
α̇ij +

∂u

∂s
ṡ (5.10)

Comparing eqs. (5.8) and (5.10) it results σij = ∂u
∂εij

and θ = ∂u
∂s
, in agreement

with the Legendre transform. In addition, a new quantity called generalised stress

χ̄ij = − ∂u
∂αij

is de�ned, such that the dissipation function results:

d = χ̄ijα̇ij ≥ 0 (5.11)

From eq. (5.6), recalling that αij is a passive variable, the generalised stress is

also:

χ̄ij = − ∂ϕ

∂αij
= − ∂ψ

∂αij
= − ∂h

∂αij
(5.12)

Therefore, the dissipation function can be expressed in di�erent forms according

to which energy form is speci�ed:

d = du (εij, αij, s, α̇ij)

d = dϕ (εij, αij, θ, α̇ij)

d = dh (σij, αij, s, α̇ij)

d = dψ (σij, αij, θ, α̇ij)

(5.13)

where the apex indicates the form of the speci�c energy.

5.2 Dissipative generalised stresses. Ziegler ortho-

gonality principle

In addition to the generalised stress, a dissipative generalised stress is de�ned:

χij =
∂d

∂α̇ij
(5.14)

For a rate independent material the dissipation function is an omogeneous �rst

order function in the rate of internal variable α̇ij because the magnitude of the

dissipation is proportional to the magnitude of deformation. In such a way the

material does not possess a characteristic time. This is a crucial hypothesis because

the dissipation function can be consequently rewritten using the Euler's theorem,

leading to:
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d =
∂d

∂α̇ij
α̇ij = χijα̇ij ≥ 0 (5.15)

Comparing eqs. (5.11) and (5.15) one can straightforwardly write:

(χ̄ij − χij) α̇ij = 0 (5.16)

Because the generalised dissipative stresses may be function of α̇ij, from eq.

(5.16) one can solely conclude that the di�erence between the generalised stresses

and the generalised dissipative stresses is orthogonal to the rate of the internal vari-

able. A more restrictive hypothesis is that the di�erence (χ̄ij − χij) = 0, commonly

known as Ziegler's orthogonality principle (1983). The orthogonality principle is

analogous to a maximum dissipation principle and despite it represents a stronger

assumption as compared to eq. (5.16) it is widely accepted by the scienti�c com-

munity. In fact, the principle encompasses a very wide class of rate independent

materials, even for instance frictional dissipative materials, characterised by non-

associated �ow rule. Along this line it is worth noting that the Ziegler's principle

encompasses the Drucker's stability postulate. Whilst proof exists that the Drucker's

postulate is not always true because admits only stable materials with associated

�ow rules, no proof exists that the Ziegler's principle is false. In addition, from the

stability postulate it results that the yield surface must be convex in the stress space,

whereas this does not hold necessarily true according to Ziegler, as will be discussed

in detail in the following. The orhogonality principle provides realistic description

of many materials, that Lemaitre & Chaboche (1999), Maugin (1992, 1999), Coussy

(1995) called �standard� materials. From an analytical perspective, the fundamental

consequence of the Ziegler's principle is that the generalised dissipative stresses and

the generalised stresses coincide.

5.3 Dissipation and yield function

It is possible to establish a relationship between the dissipation function and the yield

function, which represents a fundamental ingredient in classical elastoplasticity. The

rate of the internal variable α̇ij and the dissipative generalised stresses χij can be

thought as interchanged variables of a Legendre transform with the form:

d (εij, αij, s, α̇ij) + w (εij, αij, s, χij) = χijα̇ij (5.17)

where in the dissipation function and in the new function w the passive variables

strain tensor and entropy can be substituted by the stress tensor and the temperat-
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ure, depending on which form of energy is adopted. For a rate independent material,

being the dissipation a �rst order omogeneous function in α̇ij, the Legendre trans-

form in eq. (5.17) is singular and usually denoted as a degenerate transform. The

paramount consequence of this assumption is that the function w must be zero, as

clearly evident when substituting eq. (5.15) in eq. (5.17). Since w = 0, the function

w can always be decomposed in the product of a positive multiplier and a function

f such that:

w = 〈L〉 f = χijα̇ij − d = 0 (5.18)

The function f represents the yield function expressed in terms of the dissipative

generalised stresses. It can be written, analogously to the dissipation function, in

one of the following forms:

f = fu (εij, αij, s, χij)

f = fϕ (εij, αij, θ, χij)

f = fh (σij, αij, s, χij)

f = fψ (σij, αij, θ, χij)

(5.19)

It is worth noting that if the hypothesis of rate independent material were not

introduced, it would be impossible to obtain the yield function. In other words,

within the framework of hyperplasticity, the rate independence of the material is

a necessary condition for the yield function to exist. This fundamental result was

already known in the literature, for instance by Moreau (1970) and Halphen &

Nguyen (1975). Furthermore, in this framework the yield function is not an input

equation, as commonly assumed in classical elastoplasticity, but directly stems from

the dissipation function. Finally, the obtained yield function is expressed as a func-

tion of the dissipative generalised stresses and not in terms of the true stresses. In

order to express the function in a more conventional way, the Ziegler orthogonality

principle plays a crucial role, as will appear clear in the following.

The degenerate Legendre transform in eq. (5.17) provides other important in-

formation; in fact, although for the variable χij the de�nition in eq. (5.14) is trivially

recovered, for α̇ij it results:

α̇ij = 〈L〉 ∂f
∂χij

(5.20)

Eq. (5.20) is nothing but a �ow rule in the dissipative generalised stress space.

If the internal variable αij is regarded as the plastic strain tensor, the scalar L

takes the meaning of plastic multiplier, being positive or zero in case of absence
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of plastic deformations. Note that in contrast with classical plasticity, the rate

of plastic strain is related to the gradient of the yield function with respect to the

dissipative generalised stresses and not to the di�erential of the plastic potential with

respect to the stress σij. The �ow rule is by de�nition associated in the generalised

stress space but it can be either associated or non-associated in the stress space. Eq.

(5.20) represents a crucial result of the hyperplastic theory as, conversely to classical

elastoplasticity, it does not require the de�nition of a plastic potential function to

determine the plastic strain rate.

Furthermore, by virtue of eq. (5.20), the dissipation function in eq. (5.15) can

be rewritten as:

d = χijα̇ij = χij 〈L〉
∂f

∂χij
≥ 0 (5.21)

The geometric interpretation of eq. (5.21) is that the yield function is convex

in the dissipative generalised stress space. In fact, being L non-negative, the scalar

product of the generalised stress and the gradient of f must be non-negative, thus

indicating that the yield surface must be convex. As will be shown in the following,

this does not necessarily imply that the yield surface is convex in the stress space,

contrary to what occurs for a stable material according to the Drucker's postulate.

Furthermore, di�erentiating eq. (5.17) with respect to the passive variables one

obtains:

∂d

∂x(ij)
= −〈L〉 ∂f

∂x(ij)
(5.22)

where x(ij) = εij, σij, αij, s, θ, thus a close relationship between the dissipation

and the yield function is established. Note that because of the presence of L, the

yield function is not uniquely determined. The product Lf has the dimension of a

stress times a strain rate, thus the yield surface can be a homogeneous �rst order

function of stress if the multiplier has the dimension of a strain rate, or can be

dimensionless if L is assumed to have the dimension of stress times strain rate. A

priori, no particular requirement on the dimension of the yield function is necessary

and can conveniently be selected depending on the speci�c application.

Within the framework of hyperplasticity, two potentials are necessary to de�ne

the constitutive behaviour; the �rst one is the free energy function expressed in

one of the four possible forms in eq. (5.6) depending on the speci�c application

while the second is the dissipation or the yield function, as related each other by

a singular Legendre transform. However, the transformation from the dissipation

function to the yield function and vice versa are not trivial from an analytical point
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of view because they involve a singular transformation. Suppose �rst to know the

dissipation function, which is expressed in terms of the internal variables αij and

in the rate α̇ij. The eq. (5.14) is homogeneous of degree zero in α̇ij, thus dividing

by the latter, supposed to be in the number of n variables (even though generally

will be 6 because αij is a symmetric second order tensor), one obtains a system of

n equations in n-1 variables. Therefore, if the determinant of the Hessian matrix

is equal to zero
(∣∣∣ ∂2d

∂α̇⊗∂α̇

∣∣∣ = 0
)
one of the n equations is linearly dependent on the

remaining n-1, it is possible to isolate one equation which does not contain the

rate of the internal variables, representing exactly the yield function. Conversely, in

case the yield function is known, one can divide the expression of the �ow rule in eq.

(5.20) by L in order to determine the dissipation function. The resulting system of n

equations in the n variables
α̇ij
L
can be solved for χij if the determinant of the Hessian

matrix is not zero
(∣∣∣ ∂2f

∂χ⊗∂χ

∣∣∣ 6= 0
)
. The multiplier can be determined substituting the

solution for χij in the yield function in order to express the dissipative generalised

stresses in terms of α̇ij. Finally, the dissipation function will be found recalling that

d = χijα̇ij. An example of this procedure is shown in appendix B with reference to

the hyperplastic version of the Dafalias & Taiebat (2013) model.

Once the two scalar functions are de�ned, the entire constitutive model can be

derived. Since in this work isothermal problems are considered, the Helmholtz and

the Gibbs free energies will be taken into account. In particular, in the following

a stress-based formulation will be adopted, thus the Gibbs free energy will be the

starting point. For the sake of conciseness the bold face notation is employed, thus

the Gibbs free energy reads:

ψ = ψ (σ,α) (5.23)

In principle, an energy function depending on both the stress and the internal

variable α would result in a model characterised by a form of coupling, for instance

elastoplastic, as will be discussed in detail in chapter 6. Consider now a special

form of eq. (5.23), in which the Gibbs free energy is a linear combination of three

functions:

ψ = ψ1 (σ) + ψ2 (α) + ψ3 (σ)α (5.24)

In particular, if ψ3 is linear in the stress, no coupling is considered and eq. (5.24)

further simpli�es as:

ψ = ψ1 (σ) + ψ2 (α)− σ : α (5.25)
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Note that the negative sign in ψ3 is introduced for consistency with the sign

convention in eq. (5.12). Di�erentiating eq. (5.25) with respect to the stress one

obtains the strain:

ε = −∂ψ1

∂σ
+α = εe + εp (5.26)

where the derivative of the �rst component of the free energy with respect to the

stress represents the elastic strain, depending solely on the stress, analogously to

what happens for hyperelasticity, whereas α plays exactly the role of plastic strain.

Di�erentiating the free energy with respect to the tensor α, recalling the de�nition

of the generalised stress (eq. (5.12)) one obtains:

χ̄ = σ − ∂ψ2

∂α
(5.27)

Eq. (5.27) provides the relationship between the stress and the generalised stress,

which is a function of the stress and the internal variable α. The term ∂ψ2

∂α
is called

�back stress� and is the key feature to link any representations in the generalised

stress space to the stress space. By virtue of the Ziegler's orthogonality principle

(χ = χ̄) and the eq. (5.27), the yield surface, originally formulated in the generalised

space, can be also expressed in the stress space by eliminating the dependence on

χ. In particular the surface in the stress space is �shifted� with respect to the same

surface in the χ space by the term ∂ψ2

∂α
. Denoting with f the yield function in the

generalised stress space and with f̂ that in the stress space one can establish the

equivalence:

f (σ, α, χ (σ, α)) = f̂ (σ, α) (5.28)

In general not only the shape of yield surfaces in the generalised stress and in the

stress spaces does not coincide, but also the �ow rules are di�erent. To demonstrate

this statement, from eq. (5.28) the rate of the yield function is evaluated:

ḟ =
∂f

∂σ
: σ̇ +

∂f

∂α
: α̇+

∂f

∂χ
: χ̇ =

=
∂f

∂σ
: σ̇ +

∂f

∂α
: α̇+

∂f

∂χ
:

(
∂χ

∂σ
σ̇ +

∂χ

∂α
α̇

)
=

=
∂f

∂σ
: σ̇ +

∂f

∂α
: α̇+

∂f

∂χ
:

(
− ∂2ψ

∂α⊗ ∂σ
σ̇ − ∂2ψ

∂α⊗ ∂α
α̇

)
=

=
∂f̂

∂σ
: σ̇ +

∂f̂

∂α
: α̇ =

˙̂
f

(5.29)
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Noting that for the Gibbs free energy of eq. (5.25) (uncoupled material) it results

(see also appendix A):

∂χ

∂σ
= − ∂2ψ

∂α⊗ ∂σ
= − ∂2ψ

∂αij∂σkl
= δikδjl = I

−
⊗ I (5.30)

equating the terms in σ̇ in eq. (5.29) one can write:

∂f

∂σ
+
∂f

∂χ
=
∂f̂

∂σ
(5.31)

Recalling the �ow rule in eq. (5.20), the term ∂f
∂χ

denotes the direction of the

plastic strain increments. The �ow rule is by de�nition associated in the generalised

stress space but, unless ∂f
∂σ

= 0, the plastic strain increment vector is not normal

to the yield surface in the stress space. Therefore, in the most general condition

this leads to a non-associated �ow rule in the conventional way. The �ow rule is

associated in the stress space only for the special case in which the yield surface in

the generalised stress does not depend on the stresses. In order to clarify this point,

multiplying all the terms in eq. (5.31) for the plastic multiplier L and recalling eqs.

(5.20) and (5.22) one obtains:

− ∂d
∂σ

+ α̇ = 〈L〉 ∂f̂
∂σ

(5.32)

From eq. (5.32) it follows that for an uncoupled material, in order to guarantee

the �ow rule to be associated in the stress space, the dissipation function (or equi-

valently the yield surface in the generalised space) must be independent of σ. Note

that in general this condition is necessary but not su�cient to ensure the associat-

iveness of the �ow rule in the σ space. In fact, as will be widely explored in the

following, in case of a form of coupling is considered, eq. (5.30) does not hold true

and the �ow rule becomes non-associated in the conventional way.

Once the formulation is derived, for nonlinear materials the incremental form of

the constitutive relationship is required to perform numerical analyses. In particular

the standard procedures of classical plasticity theory are still valid. A state lying

within the yield surface is elastic and no dissipation occurs while if the state lies on

the yield surface plastic deformation can occur and the plastic multiplier is positive.

The incremental response is commonly obtained imposing the consistency condition:

ḟ =
∂f

∂σ
: σ̇ +

∂f

∂α
: α̇+

∂f

∂χ
: χ̇ = 0 (5.33)

Stemming from eq. (5.27), the rate of the generalised stress is:
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χ̇ = σ̇ − ∂2ψ2

∂α⊗ ∂α
α̇ = σ̇ − ∂2ψ2

∂α⊗ ∂α
〈L〉 ∂f

∂χ
(5.34)

Substituting eq. (5.34) in eq. (5.33) and recalling the de�nition of the �ow rule

in eq. (5.20) one obtains:

∂f

∂σ
: σ̇ + 〈L〉 ∂f

∂α
:
∂f

∂χ
+
∂f

∂χ
:

(
σ̇ − ∂2ψ2

∂α⊗ ∂α
〈L〉 ∂f

∂χ

)
= 0 (5.35)

from which the plastic multiplier can be determined:

L =

(
∂f
∂σ

+ ∂f
∂χ

)
: σ̇

∂f
∂χ

∂2ψ
∂α⊗∂α

∂f
∂χ
− ∂f

∂α
: ∂f
∂χ

(5.36)

To conclude, the entire constitutive response of an elastoplastic model can be

derived within the framework of hyper-elastoplasticity from the speci�cation of two

scalar potential functions, the energy potential function and the dissipation function

or, analogously, the free energy and the yield function in the dissipative generalised

stresses. The described procedure, despite some relevant hypothesis adoted, such

as rate independent materials, the Ziegler's orthogonality condition and isothermal

processes is able to reproduce a wide class of materials, included those characterised

by a non-associated �ow rule, consistently with the �rst and the second laws of

thermodynamics.

The following section is devoted to a wider discussion on the characteristics of

the free energy and the dissipation functions.

5.4 Role of the free energy and the dissipation func-

tions

In order to clarify the role of the dissipation function, an analogy with the plastic

power input Ẇ p = σ : ε̇p can be found. Recalling that d = χ : α̇ and that the

internal variable α coincides with the plastic strain, one can straighforwardly write:

Ẇ p − d = (σ − χ) : α̇ (5.37)

from which it derives that the relationship between the plastic power input and

the dissipation depends uniquely on the form of the energy function. In particular,

in the special case of ψ2 = 0, the plastic power and the dissipation coincide.

Furthermore, it is worth noting that the dissipation function must depend solely

on the plastic strain because otherwise even an elastic material would dissipate
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energy.

The free energy and the dissipation functions play an important role in hardening

plasticity: this can be illustrated with reference to two one-dimensional examples

for a decoupled material. In the �rst case in the Gibbs free energy function of eq.

(5.25) the term ψ2 is neglected, thus leading to:

ψ (σ, α) = ψ1 (σ)− σα (5.38)

where σ is a generic component of the stress tensor and the internal variable

α represents the conjugate component of the plastic strain tensor. The dissipation

function is chosen to be independent of the stress, so that the resulting multidimen-

sional �ow rule is associated even in the stress space and, according to the hypothesis

of rate independent material, is a linear function of the rate of internal variables.

Speci�cally, the simple function is adopted:

d (α, α̇) = k (α) |α̇| (5.39)

where k (α) is a generic function of the plastic strains to be positive in order

to guarantee the posiveness of the dissipation function. From eq. (5.39) the yield

function in the dissipative generalised stress can be straightforwardly determined:

f = χ2 − [k (α)]2 = 0 (5.40)

Furthermore, noting that the generalised stress is χ̄ = −∂ψ
∂α

= σ and recalling

the Ziegler orthogonality condition, the yield function in terms of stress becomes:

f̂ = σ2 − [k (α)]2 = 0 (5.41)

The above formulation describes a one-dimensional elastoplastic model charac-

terised by isotropic hardening. In fact, the yield function is symmetric with respect

to the stress axis σ and the elastic locus can expand or shrink depending on the

plastic strain α. Note that if the function k (α) is constant one obtains a perfect

plasticity model.

Consider now the case in which the term ψ2 in the Gibbs free energy is taken

into account:

ψ (σ, α) = ψ1 (σ)− σα + ψ2 (α) (5.42)

Contrary to the previous case, one considers that the dissipation function solely

depends on the plastic strain increment:
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d (α̇) = k |α̇| (5.43)

where k is a positive constant. Similarly as above, the yield function in the

dissipative generalised stress is:

f = χ2 − k2 = 0 (5.44)

Because of the term ψ2 in the Gibbs free energy, the back stress ρ appears in the

generalised stress χ̄ = −∂ψ
∂α

= σ− ρ (α) and the yield function in terms of the stress

σ takes the form:

f̂ = (σ − ρ (α))2 − k2 = 0 (5.45)

In this case no expansion of the yield locus occurs because k is constant but

a translation along the stress axis is observed. In fact, because the back stress is

in general a function of the plastic strain, this simple model is characterised by a

kinematic hardening.

In order to synthetise the results described so far, a hierchical structure, based

on the increasing complexity of these functions, can be identi�ed. Recall that in

the case of a uncoupled material the Gibbs free energy function can be expressed

as the sum of a term ψ1 depending on stress only, a term ψ2 depending on the

internal variables (plastic strains) and a mixed term due to the product of the stress

and the internal variable tensors. The term ψ2 determines a kinematic hardening

because the resulting back stress controls the evolution of the centre of the yield

surface without any change in its shape and size, whereas the function ψ1 controls

the elastic response. Even for uncoupled materials, the dissipation function controls

the associativeness of the �ow rule; whenever this function does depend on stress, as

typically happens for frictional materials, the �ow rule will be non-associated in the

stress space. The dependence of the dissipation function on the internal variables

leads to an isotropic hardening, thus characterised by expansion or contraction of the

yield surface. Therefore, mixed hardening is obtained in hyperplastic formulation by

employng the complete form of the Gibbs free energy and introducing a dependence

of the dissipation function on the plastic strains. On the other side, if this latter

dependence of d and the term ψ2 are neclected, perfect plasticity is described.

However, it is worth noting that despite the general rules discussed above to de-

velop an elastoplastic hardening model, in some cases di�erent combinations of free

energy and dissipation functions can lead to the same constitutive model. Consider

�rst a hyperplastic model based on the following Gibbs free energy and dissipation
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functions:

ψ = ψ1 (σ,α)

d = d1 (σ,α, α̇) ≥ 0
(5.46)

Employing the de�nitions of the generalised stress (eq. (5.12)) and the dissipative

generalised stress (eq. (5.14)) one obtains:

χ̄ = −∂ψ1

∂α

χ =
∂d1
∂α̇

(5.47)

from which, taking into account the Ziegler's principle, one can write the condi-

tion:

∂ψ1

∂α
+
∂d1
∂α̇

= 0 (5.48)

Now, let's assume the following two functions instead of those in eq. (5.46):

ψ = ψ1 (σ,α) + ψ2 (α)

d = d1 (σ,α, α̇)− ∂ψ2

∂α
α̇ ≥ 0

(5.49)

Analogously as above, the generalised stress and the dissipative generalised stress

become:

χ̄ = −∂ψ1

∂α
− ∂ψ2

∂α

χ =
∂d1
∂α̇
− ∂ψ2

∂α

(5.50)

that lead to the same result of eq. (5.48). This result demonstrates that the

same constitutive behaviour can be reproduced by two di�erent pairs of Gibbs free

energy and dissipation functions. In particular it is worth highlighting that the

same response is obtained whether the term ψ2, related to the kinematic hardening,

is considered or not. This somehow surprising result was �rst achieved by Collins &

Houlsby (1997) with reference to the modi�ed Cam Clay model. In the following it

is brie�y discussed to further clarify this issue.

A �rst possibility is to employ a Gibbs free energy in the following triaxial form:

ψ = −κ̃p
[
ln

(
p

pin

)
− 1

]
− q2

6G
− (pαp + qαq) +

(
λ̃− κ̃

) p0,in
2

exp

(
αp

λ̃− κ̃

)
(5.51)

117



Chapter 5. Thermodynamic constitutive modelling of geomaterials

where p and q are the mean e�ective pressure and the deviatoric stress, αp

and αq are the internal variables associated with the stress invariants, p0 is the

preconsolidation pressure, with the subscript in denoting its initial value, λ̃ and κ̃

are the slopes of the virgin and the swelling lines in the (ln p, ln v) plane and G is the

shear modulus. The �rst two terms of eq. (5.51) constitute the term ψ1 and represent

the elastic regime, the third term in parenthesis guarantees that the two internal

variable coincide with the volumetric and deviatoric plastic strains, respectively and

the last term is the ψ2. In addition, the following dissipation function is provided:

d =
p0,in

2
exp

(
αp

λ̃− κ̃

)√
α̇2
p +M2α̇2

q (5.52)

that, according to a rate independent material, is a �rst order homogeneous

function in the rates of plastic strains and is always positive if plastic deformations

occur. As expected from the Cam Clay model, the preconsolidation pressure rep-

resents the isotropic hardening variable, depending on the volumetric plastic strains

through the expression p0 =
p0,in
2

exp
(

αp

λ̃−κ̃

)
. According to what established above,

the isotropic hardening enters in the dissipation function, as reported in eq. (5.52).

However, it is worth noting that a similar term also constitutes the ψ2 in eq. (5.51).

In fact, despite the Cam Clay model is not characterised by a proper kinematic

hardening, the centre of the yield surface in the p-q plane translates along the p

axis according to its expansion or contraction. The immediate consequence of this

choice is that a back stress appears, equal to the p-coordinate of the centre of the

yield surface p0
2
, as con�rmed by the generalised stresses:

χ̄p = − ∂ψ

∂αp
= p− p0,in

2
exp

(
αp

λ̃− κ̃

)
χ̄q = − ∂ψ

∂αq
= q

(5.53)

From the dissipation function in eq. (5.52) the yield surface in the dissipative

generalised stress (χp, χq) plane is:

f = χ2
p +

χ2
q

M2
− p20

4
= 0 (5.54)

and, assuming the Ziegler's principle, the yield surface in the p-q plane becomes:

f̂ = p2 +
q2

M2
− pp0 = 0 (5.55)

The yield surface in the generalised stress plane is an ellypse centered in the

origin and able to expand or contract keeping �xed its shape whereas the yield
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Figure 5.1: Yield surface in generalised stress and stress plane for the modi�ed Cam
Clay (from Collins & Kelly (2002))

surface in the stress plane intersects the origin and its centre moves along the p

axis, as expected and reported in �gure (5.1).

Alternatively, in the Gibbs free energy of eq. (5.51) the term ψ2 can be neglected

leading to:

ψ = −κ̃p
[
ln

(
p

pin

)
− 1

]
− q2

6G
− (pαp + qαq) (5.56)

In order to obtain the same constitutive response, the dissipation function is

modi�ed to the form:

d =
p0,in

2
exp

(
αp

λ̃− κ̃

)(
α̇p +

√
α̇2
p +M2α̇2

q

)
(5.57)

In fact, an additional term equal to ∂ψ2

∂αp
α̇p, with ψ2 of eq. (5.51) was introduced,

according to the general rules discussed above. Furthermore, note that eq. (5.57)

still respects the requirement to be non-negative with respect to the second law of

thermodynamics. The generalised stresses can be straightforwardly calculated:

χ̄p = − ∂ψ

∂αp
= p

χ̄q = − ∂ψ
∂αq

= q

(5.58)

Finally, following the same philosophy, the yield surface in the dissipative gen-

eralised space is determined:

f = χ2
p +

χ2
q

M2
− p0χp = 0 (5.59)

Note that because in this case the generalised stresses can be confused with

the stress invariants p and q, the yield surfaces are the same in the generalised
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stress plane and in the p-q plane and in particular eqs. (5.55) and (5.59) coincide,

demonstrating that the two formulations lead to the same constitutive behaviour.

The interesting conclusion is that the same constitutive response can be obtained

starting form di�erent energy and dissipation functions, thus the energy functions

are not objectively observable quantities as not uniquely determined by the con-

stitutive behaviour.

5.5 Lagrangian multipliers. Constraints

In some cases the formulation of constitutive models can be enriched by introducing

additional constraints. They are useful to take into account e�ects otherwise not

included in the original constitutive behaviour; for instance in case of undrained

conditions the constraint on the volumetric strains to be zero throughout the loading

process is introduced. The constraints can be enforced in the formulation through

the standard method of lagrangian multipliers. In case of a constraint on the strains,

generally indicated with c (ε) = 0, it results much more useful to employ the free

energy in terms of strains (Helmholtz free energy). In particular the new free energy

ϕ′ can be de�ned as:

ϕ′ = ϕ+ Λc (5.60)

where Λ is an arbitrary constant. Note that being c = 0, ϕ′ is numerically equal

to ϕ but the resulting stress will be:

σ =
∂ϕ′

∂ε
=
∂ϕ

∂ε
+ Λ

∂c

∂ε
(5.61)

Then one obtains the Gibbs free energy performing a Legendre transformation

on the new Helmholtz free energy.

In other cases it can be useful to introduce constraints on the rates of the internal

variables; for instance Houlsby (1992) employed a constraint to take into account the

e�ect of dilation into a plasticity model. In these cases the constraints are enforced

in the dissipation function and, following the same philosophy of above and being

c (α̇) = 0, the modi�ed dissipation function d' is de�ned as:

d′ = d+ Λc (5.62)

from which the yield surface can be determined through the degenerate Legendre

transformation. Clearly, the constraint c must be a homogeneous �rst order equation

in the rates of the internal variables for consistency with the dissipation function.
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The resulting dissipative generalised stresses assume the form:

χ =
∂d′

∂α̇
=
∂d

∂α̇
+ Λ

∂c

∂α̇
(5.63)

Remark As described in the previous section, the dissipation and the free energy

functions control, within a hierchical structure, the isotropic and the kinematic

hardening of the model. However, it is worth noting that the hardening rules are

not directly encapsulated in the dissipation function. For instance, in the Cam

Clay model the isotropic hardening variable enters through the current value of the

preconsolidation pressure but its rate is not included in the dissipation function nor

in the Gibbs free energy. One can conclude that no matter what is the choice of

the evolution law for the hardening variable as long as the dissipation function is

positive de�nite. In other words, the hardening laws represent external information,

thus not necessarily subjected to the requirements of the laws of thermodynamics.

Conversely, in a thermodynamically based constitutive framework, by de�nition the

whole formulation should result as a direct application of the �rst and second laws

and thus the hardening laws should be a priori thermodynamically consistent. In

light of this, the hardening rules of the model should be more correctly incorporated

in the dissipation function. A new procedure is proposed here. In particular, the

technique of the Lagrangian multipliers allows to take directly into account the rates

of the internal variables through additional kinematic constraints. In detail, de�ning

with q the general tensor valued hardening variable such that q̇ = k (σ,q) α̇, with

k (σ,q) a generic hardening function, the dissipation function can be modi�ed as

follow:

d′ = d+ Λ : (q̇− k (σ,q) α̇) (5.64)

where the second term in the brackets in the right side represents the kinematic

constraint, analogous, though with a tensorial character, to the constraint c de-

scribed above (eq. (5.62)). Note that this term is by de�nition q̇ − k (σ,q) α̇ = 0

and, consistently with the dissipation function under the hypothesis of rate inde-

pendent materials, the rate of hardening variable is a �rst order homogeneous func-

tion in the rate of the internal variables. From the new dissipation function of eq.

(5.64) the following dissipative generalised stresses can be determined:

χ =
∂d′

∂α̇
=
∂d

∂α̇
−Λk (σ,q) (5.65)

but an additional dissipative generalised stress has to be considered, as the de-

rivative of the dissipation function with respect to the rate of the internal variable
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q̇ is:

χq =
∂d′

∂q̇
= Λ (5.66)

Obviously, it is still possible to evaluate the generalised stresses stemming from

the Gibbs free energy. Consider �rst a more general case in which the material

is coupled but, for simplicity, the ψ2 term is neglected, leading to the free energy

ψ = ψ1 (σ,α,q)−σ : α. Di�erentiating the free energy with respect to the internal

variables, the generalised stresses take the form:

χ̄ = −∂ψ
∂α

= −∂ψ1

∂α
+ σ

χ̄q = −∂ψ
∂q

(5.67)

Then, assuming the Ziegler's orthogonality principle, the lagrangian multipliers

can be calculated as Λ = −∂ψ
∂q
. This latter represents a new and fundamental result;

in fact, as will be widely discussed in chapter 6, entirely devoted to the elastoplastic

coupling, the kinematic constraint introduces an additional elastoplastic coupling

via the new dissipative generalised stress χq, leading to a stronger and richer form

of coupling than that originally described by Collins & Houlsby (1997).

While in the case of a coupled material the introduction of the hardening rules

in the dissipation function modi�es the formulation, in the case of an uncoupled

material the results are numerically identical to the case in which the kinematic

constraints are not considered. In fact, in this case the Gibbs free energy results

ψ = ψ1 (σ)−σ : α, with the elastic component ψ1 solely function of the stress, thus

the generalised stress χ̄q = 0 and, by virtue of the Ziegler's principle, the lagrangian

multipliers are zero. In other words it results:

χ =
∂d′

∂α̇
=
∂d

∂α̇

χ̄ = −∂ψ
∂α

= σ

(5.68)

as indicated by the hyperplasticity theory for uncoupled materials.

Nonetheless, including the hardening laws in the dissipation function as con-

straints using the method of lagrangian multipliers not only strongly a�ects the

response of the model in case of elastoplastic coupling but represents a more rigor-

ous approach to take into account the hardening rules in a consistent thermodynamic

way.
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5.6 A family of hyperplastic anisotropic models

Collins & Hilder (2002) proposed a family of single surface elastoplastic anisotropic

models within the framework of hyperplasticity for uncoupled materials. These

models can describe, in triaxial formulation, a wide range of yield conditions and

�ow rules in the stress space and reproduce the anisotropic behaviour of soils through

a rotation of the yield surface, as usually done in classical elastoplasticity. First they

introduced a dissipation function in which the term tan θn, representing the slope of

the projection of the normal consolidation line (NCL) in the p-q plane in the current

state of anisotropy, produces a coupling between the rate of plastic volumetric and

deviatoric strain. For constant values of θn the normal consolidation lines in the

e-lnp plane are parallel straight lines.

d =
√
A2 (α̇p + tan θnα̇q)

2 +B2α̇2
q (5.69)

A and B have the dimensions of stress and hence are homogeneous �rst order

functions of the variables p, q and p0. In particular, Collins & Hilder assume for

simplicity that A and B are in fact linear functions of these three variables:

A = a1p+ a2q + a3p0

B = b1p+ b2q + b3p0
(5.70)

Accordingly to what discussed above, the dependence of the dissipation function

on the stress leads to a non-associated �ow rule in the stress space; in detail the

dependence on the deviatoric stress q is required to model di�erent responses in

compression and extension. Neglecting the dependence on q, they specialised the

above functions in the form:

A = (1− γ) p+
γp0
2

B = (1− δ) p+
γδp0

2

(5.71)

where γ and δ are two additional parameters. For γ = δ = 1 the case of associated

�ow rule in the stress space is recovered.

The model is �rst formulated in terms of dissipative generalised stresses, where

the �ow rule is by de�nition associated. From the dissipation function in eq. (5.69),

they obtained a family of anisotropic yield surfaces in the dissipative generalised

stress χp-χq plane:

χ2
p

A2
+

(χq − tan θnχp)
2

B2
= 1 (5.72)
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Figure 5.2: Yield surface in dissipative stress space (Collins & Hilder (2002))

that represents an inclined ellipse with the centre in the origin of the axes.

The yield surface and the geometrical interpretation of the functions A and B are

depicted in �gure (5.2). In particular, A and B control, for �xed inclination tan θn,

the shape and the size of the ellipse.

The yield locus in the p-q plane should intersect the origin and its centre should

lie on the line with slope tan θn. Therefore, in order to transform the yield surface

in the p-q plane, shift stresses have to be introduced along both p and q axes, so

that the equation of the yield function takes the form:(
p− γp0

2

)2
A2

+
(q − tan θnp)

2

B2
= 1 (5.73)

Note that because in general A and B depend on the stress, the yield function

in the p-q plane is no longer an ellipse and, as expected, the �ow rule becomes

non-associated. Comparing eqs. (5.72) and (5.73) the relationships between the

stresses and the generalised stresses can be easily identi�ed; in particular, recalling

the de�nition of the generalised stresses for an uncoupled material (eq. (5.27)) and

assuming the orthogonality principle, one can write:

χ̄p = − ∂ψ

∂αp
= p− ∂ψ2

∂αp
= p− γp0

2

χ̄q = − ∂ψ
∂αq

= q − ∂ψ2

∂αq
= q − tan θn

γp0
2

(5.74)

from which it follows that the term ψ2 of the Gibbs free energy is:

ψ2 =
(
λ̃− k̃

) γp0
2

=
(
λ̃− k̃

) γp0,in
2

exp

(
αp + tan θnαq

λ̃− k̃

)
(5.75)
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where λ̃ and κ̃ are the slopes of the virgin and the swelling lines in the (ln p, ln v)

plane. Note that in order to obtain the desired shift stresses, the term ψ2, and

consequently the preconsolidation pressure p0, must be functions of both the volu-

metric and the deviatoric plastic strains. Therefore, the model is characterised by

an isotropic hardening that is not only volumetric but also deviatoric, according to

eq. (5.76). In fact, Collins & Hilder assert that in order to keep the thermomechan-

ical models internally consistent, the introduction of shear hardening implies that

the yield surfaces must necessarily rotate in stress space, leading to an anisotropic

response.

ṗ0 =
p0

λ̃− k̃
(α̇p + tan θnα̇q) (5.76)

As will be demonstrated in the following section, this condition is not always

true. Conversely, it is possible to formulate, within the framework of hyperplasticity,

anisotropic models in which the yield surface can rotate in order to reproduce the

anisotropic behaviour of soils without necessarily introducing an isotropic shear

hardening.

5.7 Thermodynamic reformulation of the Dafalias

& Taiebat (2013) model

In this section the elastoplastic model originally proposed by Dafalias & Taiebat

(2013) and illustrated in chapter 4 is reformulated within the framework of hyper-

elastoplasticity. The reasons for this operation are manifold. First of all, a thermo-

dynamically consistent version of this single surface rotational hardening model will

be obtained for both the elastic and plastic regime. Secondly, the implications of a

non-associative �ow rule will be investigated in comparison with the non-associated

version of the original elastoplastic model. Finally, as will be discussed in detail

in the following chapter, the hyperplasticity permits to take into account stronger

forms of elastoplastic coupling than that described in chapter 4.

The model is derived in the triaxial formulation, by de�ning of the Gibbs free

energy and the dissipation function. In the free energy the term ψ2 is neglected and

for the elastic part the nonlinear isotropic hyperelastic formulation by Houlsby et

al. (2005) is adopted. In particular, specialising the free energy of eq. (2.21) to the

triaxial form (see appendix A), the Gibbs free energy function reads:
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ψ = − 1

p1−nr k (1− n) (2− n)

[
p2 +

k (1− n)

3g
q2
] 2−n

2

− (pαp + qαq) (5.77)

Di�erentiating the latter equation with respect to the stress one can calculate

the volumetric and deviatoric strains, with the internal variables representing the

plastic components:

εv = −∂ψ
∂p

= εev + εpv =
1

p1−nr k (1− n)

[
p2 +

k (1− n)

3g
q2
]−n

2

p+ αp

εs = −∂ψ
∂q

= εes + εps =
1

p1−nr

[
p2 +

k (1− n)

3g
q2
]−n

2 q

3g
+ αq

(5.78)

Because the term ψ2 is not considered, the generalised stresses χ̄p and χ̄q coincide

with the mean pressure p and the deviatoric stress q, respectively:

χ̄p = − ∂ψ

∂αp
= p

χ̄q = − ∂ψ
∂αq

= q

(5.79)

5.7.1 Associated �ow rule

For the associated version of the Dafalias & Taiebat (2013) model the yield function

is:

f̂ (p, q, β, p0) = (q − βp)2 −
(
M2 − β2

)
p (p0 − p) = 0 (5.80)

where, as usual, β represents the rotational hardening internal variable and p0

the preconsolidation pressure. The yield function in the stress space represents the

starting point in order to maintain, if possible, exactly the same properties of the

model in the hyperplastic formulation. Recalling that the Ziegler's orthogonality

principle holds and considering eq. (5.79) the yield surface in the dissipative gener-

alised stresses becomes:

f (χp, χq, β, p0) = (χq − βχp)2 −
(
M2 − β2

)
χp (p0 − χp) = 0 (5.81)

At this point few considerations on the hyperplastic formulation of the Dafalias

& Taiebat (2013) model in comparison to the results obtained by Collins & Hilder

(2002) for a general class of anisotropic models are necessary. Apart from the slighty
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di�erent form of the equations of the yield surface, the crucial di�erence between

the two approaches is whether employ or not the term ψ2 in the Gibbs free energy

function. In the present section, the model is formulated neglecting the former

term; in this way the stresses and the generalised stresses coincide and even the

yield function in the χp-χq plane is represented by a distorted ellipse intersecting

the origin of the axes and with the centre lying on the straight line with slope β.

Conversely, according to Collins & Hilder (2002), the yield surface in the generalised

stress plane is an ellipse centred in the origin, thus the term ψ2 must be non-zero

in order to properly shift the yield surface in the p-q plane. In particular, because

even a shift component along the q axis has to be introduced, ψ2 is a function

of both volumetric and deviatoric plastic strains. The direct consequence of this

choice is that the preconsolidation pressure, representing the isotropic hardening

variable, is a function of both volumetric and deviatoric plastic strains. In other

words, whilst in the work by Collins & Hilder (2002) the evolution law for p0 follows

necessarily eq. (5.76) in order to guarantee the correct form of the yield locus

in the p-q plane, in the model proposed herein the desired yield function in the

stress plane is obtained regardless of the adopted isotropic hardening rule. In this

sense the present formulation is less restrictive and permits to employ any isotropic

hardening law, including those that solely depend on the volumetric plastic strains,

as often assumed when modelling clayey soils. As discussed before, in some special

circumstances, as for the modi�ed Cam Clay model, equivalent formulations can

be developed accounting or not for the function ψ2, but for the sake of clarity it

is preferred here to consider this latter term of the Gibbs free energy only when

kinematic hardening has to be taken into account. Therefore in this case the choice

of ψ2 = 0 seems more appropriate, with the isotropic and rotational hardening rules

incorporated in the dissipation function.

From the yield surface in eq. (5.81) expressed in terms of generalised stresses, it

is possible to obtain the dissipation function. The analytical procedure to obtain the

dual function is not straightforward as such, for the sake of brevity, it is reported

in detail in appendix B. The same appendix also reports the reverse procedure

to reobtain the yield function from the dissipation one, to verify that the whole

calculation is correct. Hence, the dissipation function is:

d (α̇p, α̇q, β, p0) =
p0
2

[√
(α̇p + βα̇q)

2 + (M2 − β2) α̇2
q + α̇p + βα̇q

]
(5.82)

According to what discussed above, the dissipation function should also include

two additional kinematic constraints due to the isotropic hardening via the precon-
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solidation pressure p0 (eq. (4.6)) and the rotational hardening via the rotational

internal variable β (eq. (4.20)). The modi�ed dissipation function becomes:

d′
(
α̇p, α̇q, β, β̇, p0, ṗ0

)
= d (α̇p, α̇q, β, p0) + Λ1c1 + Λ2c2 =

=
p0
2

[√
(α̇p + βα̇q)

2 + (M2 − β2) α̇2
q + α̇p + βα̇q

]
+

+ Λ1

[
β̇ − (βb − β) cp 〈L〉

]
+ Λ2

(
ṗ0 − p0

1 + ein
λ− κ

α̇p

) (5.83)

However, because the function ψ1 does not depend on p0 nor on β, the generalised

stresses χ̄p0 = χ̄β = 0 and, by virtue of the Ziegler's orthogonality principle, Λ1 =

Λ2 = 0. Therefore, the introduction of the two kinematic constraints in eq. (5.83)

does not a�ect the results, while correctly accounting for the hardening processes in

the dissipation function.

As expected for a rate independent material, the dissipation function is a homo-

geneous �rst order function of the rates of the internal variables and, according to

the hypothesis of associated �ow rule, is independent on the stress. The dependence

on the internal variables αp and αq or, analogously, the volumeric and deviatoric

plastic strains, is encapsulated in the hardening variables β and p0. Note that the

dissipation function in eq. (5.82) is always non-negative if |β| < M ; this is the same

requirement necessary in the original Dafalias & Taiebat (2013) model to guaran-

tee a real solution of the yield function. However, in this case the same condition

stems from a thermodynamic requirement. Furthermore, the only way for which eq.

(5.82) is zero, besides the obvious case in which the behaviour is purely elastic, is

for α̇q = 0 and α̇p negative, which is phisically unrealistic because it would imply

p = 0.

Stemming from the above results, one can assert that the original Dafalias &

Taiebat (2013) model with associated �ow rule, apart from the elastic regime that

is hypoelastic, is consistent with the laws of thermodynamics.

As for classical elastoplasticity, the consistency condition can be imposed to

obtain the plastic multiplier and express the constitutive relationship in the incre-

mental form. For the speci�c case one can write:

ḟ =
∂f

∂χp
χ̇p +

∂f

∂χq
χ̇q +

∂f

∂β
β̇ +

∂f

∂p0
ṗ0 =

=
∂f

∂χp
χ̇p +

∂f

∂χq
χ̇q +

∂f

∂β
〈L〉 cp (βb − β) +

∂f

∂p0

∂p0
∂αp
〈L〉 ∂f

∂χp
= 0

(5.84)

where the rate of the internal variables β and p0 are consistent with the rotational
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and isotropic hardening rules of the Dafalias & Taiebat (2013) model, reported in

eqs. (4.20) and (4.6), respectively. From eq. (5.84) the plastic multiplier can be

speci�ed:

L = −
∂f
∂χp

χ̇p + ∂f
∂χq

χ̇q
∂f
∂β
cp (βb − β) + ∂f

∂p0

∂p0
∂αp

∂f
∂χp

(5.85)

The derivatives appearing in eq. (5.85) are reported below.

∂f

∂χp
= −2βχq −M2p0 + 2M2χp + β2p0 (5.86)

∂f

∂χq
= 2χq − 2βχp (5.87)

∂f

∂β
= −2χpχq + 2βp0χp (5.88)

∂f

∂p0
= −M2χp + β2χp (5.89)

∂p0
∂αp

=
1 + ein
λ− κ

p0 (5.90)

5.7.2 Non-associated �ow rule

As emerges from eq. (5.32), the only way to develop a constitutive model with

a non-associated �ow rule for an uncoupled material within the framework of hy-

perplasticity is to introduce a direct dependency of the dissipation function on the

stress or, that is the same, of the yield function in the generalised stress space. In

principle there are several ways in which the current stress can be enforced in the

dissipation function. In this work the approach proposed by Collins & Hilder (2002)

is followed. In particular, the dissipation function is assumed as:

d (α̇p, α̇q, β, p0, p) =
√
A2 (α̇p + βα̇q)

2 +B2 (M2 − β2) α̇2
q +

γp0
2

(α̇p + βα̇q) (5.91)

where the quantities A and B, stemming from the work by Collins & Hilder

(2002), are de�ned as:

A = (1− γ) p+
γp0
2

B = (1− δ) p+
γδp0

2

(5.92)
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Two additional parameters, γ and δ, varying from zero to one, are introduced in

the formulation. The �rst one, as will be more clear in the following, controls the

ratio p
p0

at critical state and the second one controls the slope of the tangent to the

yield surface at the critical state condition. For γ = δ = 1 the associated version of

the model is recovered. Because A and B do not depend on the deviatoric stress q,

the shape of the yield surface is symmetric in compression and extension.

In addition, analogously to the case of associated �ow rule, the two kinematic

constraints should be added in eq. (5.91), despite they do not modify the constitutive

behaviour. From eq. (5.91), as illustrated in detail in appendix B, one obtains the

yield function in the dissipative generalised stresses χp and χq:

f (χp, χq, β, p0, p) = A2 (χq − βχp)2 +B2
(
M2 − β2

) (
χp −

γ

2
p0

)2
+

− A2B2
(
M2 − β2

)
= 0

(5.93)

and recalling the orthogonality condition and the form of the generalised stresses

in eq. (5.79), one can write the new yield function in the p-q plane:

f̂ (p, q, β, p0) = A2 (q − βp)2 +B2
(
M2 − β2

) (
p− γ

2
p0

)2
− A2B2

(
M2 − β2

)
= 0

(5.94)

It is worth mentioning at this point that it is not possible to reproduce the ori-

ginal non-associated �ow rule proposed by Dafalias & Taiebat (2013), in which both

the yield and the plastic potential surfaces are ellipses in the stress space character-

ised by di�erent shape, as a function of the parameters N and M, respectively. First

of all, within the framework of hyperplasticity, the modi�cation of the dissipation

function by the introduction of a dependence on the mean e�ective pressure leads

to a yield surface in the stress space that is no longer an ellipse. Similarly, if the

�ow rule is non-associated, the yield and the plastic potential surfaces in the stress

space can not be characterised by the same shape. Although not necessary in the

hyperplastic procedure, the plastic potential function could be determined analyt-

ically as the derivatives of this function with respect to p and q are known and

represent the direction of plastic �ow. In other words, the problem reduces to the

determination of the family of two variables primitive functions stemming from the

knowledge of their derivatives. Clearly, if the yield surface were an ellipse and the

direction of the plastic �ow did not coincide with the normal to the yield surface,

in general the plastic potential would be not an ellipse. Therefore, it is not possible

to reproduce the original non-associated version of the Dafalias & Taiebat (2013)
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model employing the present thermodynamic approach.

In order to express the constitutive relationship in the incremental form, the

consistency condition can be imposed to obtain the plastic multiplier. Note that

for the speci�c case of non-associated �ow rule, the additional derivative of yield

function with respect to the mean e�ective pressure must be considered:

ḟ =
∂f

∂χp
χ̇p +

∂f

∂χq
χ̇q +

∂f

∂p
ṗ+

∂f

∂β
β̇ +

∂f

∂p0
ṗ0 =

=
∂f

∂χp
χ̇p +

∂f

∂χq
χ̇q +

∂f

∂p
ṗ+

∂f

∂β
〈L〉 cp (βb − β) +

∂f

∂p0

∂p0
∂αp
〈L〉 ∂f

∂χp
= 0

(5.95)

where, as above, the hardening rules are those reported in eqs. (4.20) and (4.6).

From eq. (5.95) the plastic multiplier can be speci�ed as:

L = −
∂f
∂χp

χ̇p + ∂f
∂χq

χ̇q + ∂f
∂p
ṗ

∂f
∂β
cp (βb − β) + ∂f

∂p0

∂p0
∂αp

∂f
∂χp

(5.96)

To guarantee that all the derivatives useful to calculate the plastic multiplier are

dimensionally consistent, the yield function in eq. (5.93) is divided by the term A2.

The directions of plastic �ow are:

∂f

∂χp
= −2β (χq − βχp) + 2

(
M2 − β2

) B2

A2

(
χp −

γp0
2

)
(5.97)

∂f

∂χq
= 2χq − 2βχp (5.98)

It is worth noting that in this case the direction of plastic strain rates depends

on the parameters γ and δ and on the mean e�ective pressure via the quantities A

and B. The other useful derivatives are:

∂f

∂β
= −2χp (χq − βχp)− 2β

B2

A2

(
χp −

γp0
2

)2
+ 2βB2 (5.99)

∂f

∂p0
= −

(
M2 − β2

) B2

A2
γ
(
χp −

γp0
2

)
− 2B

(
M2 − β2

) ∂B
∂p0

+

+
(
M2 − β2

) (
χp −

γp0
2

)2 2BA2 ∂B
∂p0
− 2AB2 ∂A

∂p0

A4

(5.100)

with
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∂A

∂p0
=
γ

2
∂B

∂p0
=
γδ

2

(5.101)

∂f

∂p
=
(
M2 − β2

) (
χp −

γp0
2

)2 2BA2 ∂B
∂p
− 2AB2 ∂A

∂p

A4
−

+ 2B
(
M2 − β2

) ∂B
∂p

(5.102)

with

∂A

∂p
= 1− γ

∂B

∂p
= 1− δ

(5.103)

∂p0
∂αp

=
1 + ein
λ− κ

p0 (5.104)

5.8 Response of the model

In this section the response of the Dafalias & Taiebat (2013) model reformulated

within the framework of hyper-elastoplasticity is illustrated. First of all some con-

siderations about the in�uence of the parameters γ and δ on the shape of the yield

surface in the stress space and on the �ow rule are presented and subsequently the

results of simulations of stress-controlled drained triaxial test for both associated

and non-associated �ow rule are shown. In this latter case particular care is de-

voted to the identi�cation of critical state conditions and compared with the results

predicted by Collins & Hilder (2002) and Coomb (2017).

The yield surface in the generalised stress space is the distorted ellipse proposed

by Dafalias & Taiebat (2013) whereas, unless γ = 1 and δ = 1, the shape of the

yield surface is di�erent in the stress space. In order to highlight the role of the

parameters γ and δ entering in the terms A and B (eq. (5.92)) on the shape of the

yield surface it is convenient to specialise the formulation to the modi�ed Cam clay

model (β = 0). The �rst parameter controls the ratio pcs
p0
, namely the intersection

of the surface with the line of slope M, with respect to the preconsolidation pressure

by the relationship pcs = γp0
2
. For instance, as depicted in �gure (5.3), for γ = 1 the

yield surface intersects the critical state line (CSL) in correspondence of pcs = p0
2
and

for γ = 0.5 at pcs = p0
4
. The parameter δ controls the slope of the yield surface in

correspondence of the critical state: for δ = 1 the tangent to the curve at (pcs,Mpcs)
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is horizontal whereas for the limit case δ = 0 its slope is M. Clearly, when γ = 1

and δ = 1 the classical Cam Clay ellipse is recovered.

Figure 5.3: Modi�ed Cam clay yield surface in the stress space for (a) δ = 0, γ = 1
and (b) δ = 1, γ = 0.5

A similar role of the parameters γ and δ can be identi�ed for the rotational

hardening model. In �gure (5.4) the yield surfaces are reported for four couples of

these parameters for the case β = 0.3.

Figure 5.4: Yield surface in the stress space for (a) δ = 1, γ = 1, (b) δ = 0, γ = 1,
(c) δ = 1, γ = 0.5 and (d) δ = 0.4, γ = 0.6

Di�erent shapes of the yield surface in the stress space can be generated depend-

ing on the values of the parameters and, as expected, only for γ = 1 and δ = 1 the

original distorted ellipse is retrieved. In particular, the case (a) in �gure (5.3) and

(b) in �gure (5.4) show that for δ = 0 (but in general for small values of δ) the yield

locus has concave segments. This striking result is thermodinamically consistent as

the hyperplastic theory requires the yield surface to be convex in the generalised
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space but in principle there are no limits in the shape of the yield locus in the stress

space. In classical elastoplasticity is common practice to adopt convex yield surfaces,

as prescribed by the Drucker's postulate. However, as discussed in section (5.2), the

Ziegler's orthogonality principle describes a wider class of material, including the

frictional ones, characterised by non-associated �ow rule.

The parameters γ and δ also control the non-associativeness of the �ow rule in

the stress space as they introduce a stress dependence in the dissipation function.

Therefore, a change of shape of the yield surface in the stress space is directly related

to a non-associated �ow rule in the same space. The only case in which the �ow

rule is associated in the p-q plane is when γ = 1 and δ = 1 whereas the �ow rule is

by de�nition associated in the generalised stress space. Figure (5.5) shows the yield

surface in the p-q plane and, under the hypothesis of coaxiality between the stress

and strain principal directions, the plastic strain rate vectors. Note that when the

�ow rule is not associated, as will be clear in the following, the slope M does not

identify the critical state condition any more.

Figure 5.5: Direction of plastic strain rates for δ = 0.4, γ = 0.6

The direction of the plastic strain rate is de�ned as the normal to the yield

surface in the generalised stress space and, by virtue of eq. (5.79), is known for

any couple of (p, q). This represents an advantage from a numerical perspective

as the de�nition of a plastic potential surface is not required. In fact, in classical

elastoplasticity, to evaluate the plastic strain rate vector in the current stress state a

computational e�ort is needed to determine the intersection between the yield and

the plastic potential surfaces. Conversely, in the present case the direction of the

�ow for the current stress state is directly provided by the derivatives of the yield

function in the generalised stresses. An alternative way to prove this statement is to
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represent the dissipative yield surface in the stress space, �xing A and B for a given

p and using eq. (5.79), as suggested by Collins (2005). In correspondence of the

same p the �ow rule vector is normal to the dissipative distorted ellipse, as depicted

in �gure (5.6).

Figure 5.6: Direction of plastic strain rate (δ = 0.4, γ = 0.6)

In the following the results of simulations of stress-controlled drained triaxial

tests are illustrated. The hyper-elastoplastic Dafalias & Taiebat (2013) model has

been implemented in the incremental form derived in section (5.7) to reproduce the

response of the model for drained conditions along prescribed stress paths. The res-

ults of three drained triaxial tests in which the material is characterised by di�erent

�ow rules and shapes of the yield surface via the parameters γ and δ are shown. The

model constants are reported in table (5.1) and refer to the reconstituted Lucera

clay. In addition, the parameter controlling the pace of the rotation of the yield

surface is c = 50 and for the asymptotic value of the rotational variable βb the linear

law in eq. (4.8) is adopted, with x = 2.

The simulations start from an isotropic stress state of pin = 70 kPa and are char-

acterised by an initial preconsolidation pressure of p0,in = 100 kPa and an initial

rotation of the yield surface of βin = 0.3. Figure (5.7) shows the response of the

model for the case of associated �ow rule. The yield surface in the initial con�gur-

ation is plotted in black line and, as depicted in grey lines, it expands and rotates

during the triaxial test by virtue of the isotropic and rotational hardening laws.

The material is characterised by a contractive and ductile response and, as expec-

ted, for η → M the critical state condition is approached, as clearly indicated by

the direction of the plastic strain rate vector.
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Parameter Value

pr 100

n 0.78

k 888.3

g 533

M 1.08

λ 0.143

κ 0.025

ein 0.8

Table 5.1: Model parameters for Lucera clay

Figure 5.7: Drained triaxial test for associated �ow rule (δ = 1, γ = 1)

Figure (5.8) shows the results of the same simulation for γ = 0.6 and δ = 0.4.

The introduction of a non-associated �ow rule does not modify the general trend of

the response in comparison with the associated case (�gure (5.7)) but the results

are di�erent from a numerical perspective not only for the plastic strain rate but

also for the change of the �rst yielding stress state due to the di�erent shape of the

yield surface. Furthermore, it is worth noting that the critical state condition is no
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longer attained for the stress ratio M ; in fact the condition ε̇pv = 0 is approached for

a higher value of the stress ratio.

Figure 5.8: Drained triaxial test for non-associated �ow rule (δ = 0.4, γ = 0.6)

Finally, in �gure (5.9) the response of the same drained triaxial test for γ = 0.5

and δ = 0.7 is plotted. The relevant result is that not only the critical state is

approached for a stress ratio η 6= M but its value is di�erent from that observed in

the previous case. In particular the critical state condition is attained for a stress

ratio lower than M.
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Figure 5.9: Drained triaxial test for non-associated �ow rule (δ = 0.7, γ = 0.5)

The above results suggest that the critical state condition depends on the para-

meters γ and δ and on the current value of β. This represents a drawback of this

class of hyperplastic anisotropic models, even though already known in the liter-

ature. Collins & Hilder (2002) illustrated, as shown in �gure (5.10), the yield loci

for associated and non-associated �ow rules for a generic instant together with the

current positions of the normal consolidation line (NCL), critical state line (CSL)

and drained failure line (DFL). One can recognise that in the stress space the critical

state line rotates but the other two lines are �xed.

More recently, Coombs (2017) made an e�ort to guarantee the uniqueness of

critical state for this class of rotational hardening models in the framework of hy-

perplasticity. He modi�ed the original formulation by Collins & Hilder (2002) by

introducing a dependence of the parameters γ and δ on the rotational variable β.

In such a way when the yield surface rotates the parameters adapt their values such

that the critical state condition keeps being constant. Although through this modi-

�cation Coombs (2017) ensures a constant critical state, the analytical complexity

of the model increases and, as in general γ and δ evolve with the stress path as a

function of β, even the shape of the yield surface and the �ow rule change. Fur-

thermore, the dependence of γ and δ on the rotational variable is introduced as

an external condition, thus in principle it might not result in a thermodynamically
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Figure 5.10: Yield surface in the stress space for (a) δ = 1, γ = 1 and (b) δ = 0,
γ = 1 (from Collins & Hilder (2002))

consistent assumption.

In summary, in this chapter the hyperplastic theory has been illustrated based

on the fundamental works by Collins, Houlsby and Puzrin. According to this the-

ory, under the hypothesis of rate independent material and adopting the Ziegler's

orthogonality principle, any constitutive relationship can be formulated in a ther-

modynamically consistent way from the de�nition of two scalar function: the free

energy potential and the dissipation or the yield function. In this chapter a more

general form of dissipation function has been proposed to take into account the

hardening rules of the model through the technique of the lagrangian multipliers.

Subsequently the Dafalias & Taiebat (2013) model has been reformulated within this

framework for triaxial conditions and under the hypothesis of uncoupled material.

By introducing a dependence of the dissipation function on the mean e�ective pres-

sure a non-associated version of the model is obtained, di�erent from that originally

proposed by Dafalias & Taiebat (2013). In comparison with the works achieved

by Collins & Hilder (2002) and Coombs (2017), the formulation developed here is

characterised by a volumetric isotropic hardening, which is consistent with the ori-

ginal assumption of Dafalias & Taiebat (2013) for clays. In the stress space the
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non-associated �ow rule entails di�erent shapes of the yield locus whereas in the

generalised space the yield surface is always a distorted ellipse with associated �ow

rule. The numerical simulations of drained triaxial tests show that the uniqueness

of critical state is not guaranteed for the non-associated case as this asymptotic

condition depends on the current value of β. Further studies should be devoted to

this issue to improve the predictive capability of this class of anisotropic models for

clays.
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Thermodynamic based elastoplastic

coupling

In this chapter two thermodynamically consistent forms of elastoplastic coupling are

developed. As discussed in chapter 1, the small strain behaviour of soils, pertaining

to the elastic regime, is a�ected by the plastic response. In fact, experimental results

show that, at least in clays, the elastic sti�ness depends on the plastic strains through

the preconsolidation pressure and the small strain sti�ness anisotropy evolves dur-

ing the loading process by virtue of the modi�cation of the internal structure driven

by the occurrence of plastic strains. In chapter 4 the evolution of the small strain

sti�ness anisotropy of clays has been modelled by linking the fabric tensor intro-

duced in the elastic formulation to the hardening internal variable controlling the

rotation of the yield and plastic potential surfaces of the Dafalias & Taiebat (2013)

model within the framework of classical elastoplasticity. After a general discussion

on the implications of a coupled material on the overall response of a thermodynam-

ically consistent model, the elastoplastic coupling via the preconsolidation pressure

and anisotropy will be formulated within the framework of hyperplasticity in the

triaxial case. In such a way both elastic and plastic responses will be modi�ed

by the coupling, thus leading to stronger forms of coupling as compared to those

derived in classical elastoplasticity. In detail, the associated version of the hyper-

elastoplastic Dafalias & Taiebat (2013) model illustrated chapter 5 will be adopted,

with the Gibbs free energy appropriately modi�ed to take into account separately

the two forms of coupling. In particular, for each case, two formulations are pro-

posed, di�ering for the presence or not of the kinematic constraints in the dissipation

function through the technique of lagrangian multipliers. In fact, as will be clear

in the following, the adoption of the kinematic constraints represents an alternative

strategy leading to di�erent results than those obtained for instance by Houlsby
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(1981), Collins and Houlsby (1997) and Houlsby & Puzrin (2006).

6.1 Generality

As discussed in chapter 5, the Gibbs free energy for isothermal processes is a func-

tion of the stress tensor σ and the internal variable tensor α that, for uncoupled

elastoplastic models corresponds to the plastic strain tensor. If one now assumes

that elasticity depends on the plastic strains, considering the free energy in eq.

(5.25) and neglecting for the sake of clarity the term ψ2, in order to introduce a

dependency of the elasticity on the plastic strains the elastic term ψ1 of the free

energy can be modi�ed into:

ψ = ψ1 (σ,α)− σ : α (6.1)

In such a way, being the term ψ1 function of both the stress and the plastic

strains, the elastic strain will be consequently a function of both σ and α:

ε = −∂ψ
∂σ

= −∂ψ1 (σ,α)

∂σ
+α = εe + εp (6.2)

Note that the de�nition of plastic strains is consistent with that used for un-

coupled materials and is independent of the current stress. When from eq. (6.2)

the total strain rate is calculated, great care is required to make distinction between

the plastic and the irreversible components of strain. Hueckel (1976), Hueckel &

Maier (1977) and Maier & Hueckel (1979), in the context of classical elastoplasti-

city, highlighted that additional terms arise as a consequence of the elastoplastic

coupling:

ε̇ = − ∂2ψ1

∂σ ⊗ ∂σ
σ̇ − ∂2ψ1

∂σ ⊗ ∂α
α̇+ α̇ = ε̇r + ε̇c + ε̇p = ε̇r + ε̇i = ε̇e + ε̇p (6.3)

where ε̇r is the reversible component of the strain increment, ε̇c is the coupling

strain rate such that the elastic strain rate is ε̇e = ε̇r + ε̇c and ε̇i is the irreversible

one, sum of the coupled and the plastic strain rates. ε̇r represents the elastic re-

sponse at �xed plastic strain whereas ε̇c accounts for the change of elastic behaviour

as the plastic strains occur. In particular, Hueckel and Maier realised that whenever

an associated �ow rule in the conventional sense, namely with respect to the plastic

strain rate, is considered, the irreversible strain increment will not be normal to

the yield surface in the stress space. However, they did not fully explore the con-

sequences of the elastoplastic coupling on the plastic response. In fact, within the
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Table 6.1: Decomposition of strains for coupled materials (from Collins & Houlsby
(1997))

framework of classical elastoplasticity the coupling solely a�ects the elastic response

and is impossible to explore its e�ects on the plastic regime. Therefore, this lat-

ter form of coupling is commonly referred to as �weak� or �one way� coupling. A

�rst attempt to model the elastoplastic coupling in a thermodynamically consistent

way was achieved by Houlsby (1981), considering the case of an isotropic material

in which the elastic shear modulus depends on plastic strains. Later, Collins &

Houlsby (1997) discussed the elastoplastic coupling within the hyperplastic frame-

work and analysed its consequences on the overall behaviour of soils. Obviously, the

decomposition of the elastic strain rate originally shown by Hueckel and Maier in

their pioneering works is still valid and can be synthetised in table (6.1).

The hyperplastic formulation allows to highlight important implications of the

coupling on the plastic response. Recalling the de�nition of the generalised stresses

in eq. (5.12) one can write:

χ̄ = −∂ψ
∂α

= −∂ψ1 (σ,α)

∂α
+ σ (6.4)

where, conversely to an uncoupled material, the additional derivative of the term

ψ1 appears. Note that this term acts as a shift between χ̄ and σ but must not be

confused with the e�ect due to the ψ2 term as ψ1 not only depends on the plastic

strain but also on the current stress. This represents a key result leading to two

relevant consequences. Suppose that, stemming from the dissipation function, the

yield function in terms of dissipative generalised stresses is known and the Zieg-

ler's orthogonality principle is true. The �rst direct outcome is that the shape of

yield function in the stress space changes whether the coupling is considered or not.

Secondly, the �ow rule in the stress space results as non-associated with respect to

the plastic strain rate. To demonstrate this statement, di�erentiating the generalised
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stress in eq. (6.4) with respect to the stress one obtains (with χ = χ̄):

∂χ

∂σ
= − ∂2ψ

∂α⊗ ∂σ
= − ∂2ψ1

∂α⊗ ∂σ
+ I

−
⊗ I (6.5)

Then, analogously to what done in chapter 5, equating the terms in σ̇ in the

consistency condition in eq. (5.29) one can write:

∂f

∂σ
+
∂f

∂χ

(
− ∂2ψ1

∂α⊗ ∂σ
+ I

−
⊗ I

)
=
∂f̂

∂σ
(6.6)

with f denoting the yield function in the dissipative generalised stress space

and with f̂ that in the stress space. The �ow rule is by de�nition associated in

the dissipative generalised stress space (eq. (5.20)), thus the term ∂f
∂χ

denotes the

direction of the plastic strain rates. Multiplying all the terms in eq. (6.6) for the

plastic multiplier L and recalling eqs. (5.20) and (5.22) one obtains:

− ∂d
∂σ

+ α̇

(
− ∂2ψ1

∂α⊗ ∂σ
+ I

−
⊗ I

)
= 〈L〉 ∂f̂

∂σ
(6.7)

From eqs. (6.5) and (6.6) follow that for a coupled material the �ow rule is non-

associated even in the case in which the dissipation function (or the yield function

in the dissipative generalised stresses) does not depend directly on the stress. In

other words, in general the direction of the plastic strain rate is not normal to the

yield surface in the stress space, unless the dissipation function does not depend on

σ and no elastoplastic coupling is considered. Therefore, the two sources of non-

associativeness of the �ow rule are the elastoplastic coupling and the dissipation

function. If this latter contribution is neglected, namely the dissipation is not a

function of the stress, the normal to the yield surface in the stress space coincide

with the direction of the irreversible strain rate. In fact, by virtue of eq. (6.3), eq.

(6.7) can be specialised as:

ε̇i = ε̇c + ε̇p = 〈L〉 ∂f̂
∂σ

(6.8)

Therefore, from the considerations of above, the hyperplastic approach permits

to reproduce a �stronger� form of coupling, in which plasticity is a�ected by the

elastic behaviour and vice versa, thus commonly referred to as �two ways coupling�.

If the e�ect on the plastic regime is ignored, like in classical elastoplasticity, the

laws of thermodynamics will be violated. In other words, even when the strain rates

are evaluated correctly using eq. (6.3), employing associated plasticity to derive

the plastic strains will lead to thermodynamically inconsistent results. In addition,

the derivation of a thermodynamic-based elastoplastic model for coupled materials
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modi�es the shape of the yield surface in the stress space and inevitably leads to a

non-associated �ow rule with respect to the plastic strain rates in the same space.

6.2 Isotropic elastoplastic coupling via the precon-

solidation pressure

In this section a thermodynamically consistent isotropic elastoplastic coupling via

the preconsolidation pressure is proposed. The elastic sti�ness of clays can be ex-

pressed, according to the empirical relationships reported in chapter 1, as a power

function of the preconsolidation pressure as well as the mean e�ective pressure. In

order to reproduce the dependence of the elastic sti�ness on the preconsolidation

pressure, the elastic part of the Gibbs free energy in triaxial formulation in eq. (5.77)

was modi�ed by Houlsby et al. (2005) leading to the following function, which is

adopted here:

ψ = −
(
pr
p0

)r
1

p1−nr k (1− n) (2− n)

[
p2 +

k (1− n)

3g
q2
] 2−n

2

− (pαp + qαq) (6.9)

where p0 is the preconsolidation pressure and r is an additional parameter to

be considered like the exponent k∗ in the empirical relationships by Viggiani (1992)

and Rampello et al. (1997) reported in eqs. (1.2) and (1.4), respectively. This

parameter depends on the plasticity index and according to Viggiani & Atkinson

(1995) generally varies from 0.2 to 0.3 for plasticity index between 0 and 60. Clearly,

for r = 0 the uncoupled material is recovered.

Di�erentiating the above equation with respect to the stress one can calculate

the volumetric and deviatoric strains, with the internal variables representing the

plastic ones:

εv = −∂ψ
∂p

= εev + εpv =

(
pr
p0

)r
1

p1−nr k (1− n)

[
p2 +

k (1− n)

3g
q2
]−n

2

p+ αp

εs = −∂ψ
∂q

= εes + εps =

(
pr
p0

)r
1

p1−nr

[
p2 +

k (1− n)

3g
q2
]−n

2 q

3g
+ αq

(6.10)

where the preconsolidation pressure, according to the classical Cam Clay harden-

ing law also adopted by Dafalias & Taiebat (2013) in eq. (4.6), depends on the

volumetric plastic strains by the form:
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p0 = p0,in exp

(
1 + ein
λ− κ

αp

)
(6.11)

From the Gibbs free energy (6.9) the generalised stresses can be calculated as

follow:

χ̄p = − ∂ψ

∂αp
= −∂ψ1

∂p0

∂p0
∂αp

+ p =

= −r
(
pr
p0

)r
1

p1−nr k (1− n) (2− n)

[
p2 +

k (1− n)

3g
q2
] 2−n

2 1 + ein
λ− κ

+ p

χ̄q = − ∂ψ
∂αq

= −∂ψ1

∂p0

∂p0
∂αq

+ q = q

χ̄p0 = − ∂ψ
∂p0

= −r
(
pr
p0

)r
1

p0

1

p1−nr k (1− n) (2− n)

[
p2 +

k (1− n)

3g
q2
] 2−n

2

(6.12)

It is worth noting that, contrary to the case of uncoupled material (eq. (5.79)),

the generalised stress χ̄p does not coincide with the stress invariant p and, due to

the dependence of the free energy on p0, the additional component χ̄p0 appears.

At this point two alternative formulations are proposed, depending on the choice

of the dissipation function, both based on the associated version of the hyper-

elastoplastic Dafalias & Taiebat (2013) model developed in chapter 5: the �rst

one follows the traditional approach illustrated in the works by Collins, Houlsby

and Puzrin, in which no additional constraints appear in the dissipation functions,

whereas in the second case the hardening laws of the model are included as kin-

ematic constraints in the dissipation function through the technique of lagrangian

multipliers. As will be shown, these approaches lead to di�erent results, even in

terms of �ow rule and shape of the yield surface in the stress space. For the sake

of conciseness these two forms of thermodynamic (strong) elastoplastic coupling are

denoted hereinafter with the acronyms SEPC1 and SEPC2, respectively.

6.2.1 Traditional hyperplastic approach (SEPC1)

Here the employed dissipation function is that discussed in chapter 5 for the devel-

opment of the hyper-elastoplastic version of the Dafalias & Taiebat (2013) model:

d (α̇p, α̇q, β, p0) =
p0
2

[√
(α̇p + βα̇q)

2 + (M2 − β2) α̇2
q + α̇p + βα̇q

]
(6.13)

The corresponding yield surface in the dissipative generalised stress χp-χq plane
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is:

f (χp, χq, β, p0) = (χq − βχp)2 −
(
M2 − β2

)
χp (p0 − χp) = 0 (6.14)

Recalling the de�nition in eq. (5.14), the dissipative generalised stresses result:

χp =
∂d

∂α̇p

χq =
∂d

∂α̇q

χp0 =
∂d

∂ṗ0
= 0

(6.15)

Assuming the Ziegler's orthogonality principle, the dissipative generalised and

the generalised stresses coincide and since the dissipation function does not depend

explicitly on ṗ0, only the components χp and χq are retained. By simple substitution

of the generalised stresses of eq. (6.12) in eq. (6.14), the yield function f̂ in the

p-q plane is obtained, albeit not reported herein due to the inelegant and complex

expression. As expected, for an uncoupled material the �ow rule is no longer associ-

ated. To clarify this issue the following procedure is followed. Specialising eq. (6.6)

to the present formulation one can write:

∂f̂

∂p
=

∂f

∂χp

∂χp
∂p

+
∂f

∂χq

∂χq
∂p

=
∂f

∂χp

(
− ∂2ψ1

∂αp∂p
+ 1

)
∂f̂

∂q
=

∂f

∂χp

∂χp
∂q

+
∂f

∂χq

∂χq
∂q

=
∂f

∂χp

(
− ∂2ψ1

∂αp∂q

)
+

∂f

∂χq

(6.16)

where ∂χq
∂p

= 0, ∂χq
∂q

= 1 and the remaining derivatives assume the form:

∂χp
∂p

= 1− ∂2ψ1

∂αp∂p
= 1− r

(
pr
p0

)r
1

p1−nr k (1− n)

[
p2 +

k (1− n)

3g
q2
]−n

2 1 + ein
λ− κ

p

(6.17)

∂χp
∂q

= − ∂2ψ1

∂αp∂q
= −r

(
pr
p0

)r
1

p1−nr

[
p2 +

k (1− n)

3g
q2
]−n

2 1 + ein
λ− κ

q

3g
(6.18)

∂f

∂χp
= −2βχq −M2p0 + 2M2χp + β2p0 (6.19)

∂f

∂χq
= 2χq − 2βχp (6.20)
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The total volumetric and deviatoric strain rates can be calculated as:

ε̇v =

(
−∂

2ψ1

∂p2
ṗ− ∂2ψ1

∂p∂q
q̇

)
− ∂2ψ1

∂p∂αp
α̇p + α̇p = ε̇rv + ε̇cv + ε̇pv

ε̇s =

(
−∂

2ψ1

∂q∂p
ṗ− ∂2ψ1

∂q2
q̇

)
− ∂2ψ1

∂q∂αp
α̇p + α̇q = ε̇rs + ε̇cs + ε̇ps

(6.21)

where the terms in the brackets are the reversible components. Then, multiplying

for 〈L〉 all the members of eq. (6.16) and recalling that by virtue of eq. (5.20) is

α̇p = 〈L〉 ∂f
∂χp

and α̇q = 〈L〉 ∂f
∂χq

, one can write:

〈L〉 ∂f̂
∂p

= − ∂2ψ1

∂αp∂p
α̇p + α̇p = ε̇cv + ε̇pv = ε̇iv

〈L〉 ∂f̂
∂q

= − ∂2ψ1

∂αp∂q
α̇p + α̇q = ε̇cs + ε̇ps = ε̇is

(6.22)

Therefore, as expected, the �ow rule is non-associated in the p-q plane but, in

the same representation, the irreversible strain rate is directed along the normal

to the yield surface, as pointed out by Collins & Houlsby (1997). In other words,

in the stress space the �ow rule can be thought as associated with respect to the

irreversible strain rates.

In order to express the constitutive relationship in the incremental form the

consistency condition can be imposed to obtain the plastic multiplier, analogously

to what done in classical elastoplasticity. For the speci�c case one has:

ḟ =
∂f

∂χp
χ̇p +

∂f

∂χq
χ̇q +

∂f

∂β
β̇ +

∂f

∂p0
ṗ0 =

=
∂f

∂χp

(
∂χp
∂p

ṗ+
∂χp
∂q

q̇ +
∂χp
∂p0

ṗ0

)
+

∂f

∂χq
q̇ +

∂f

∂β
β̇ +

∂f

∂p0
ṗ0 =

=
∂f

∂χp

∂χp
∂p

ṗ+

(
∂f

∂χp

∂χp
∂q

+
∂f

∂χq

)
q̇ +

∂f

∂β
β̇ +

(
∂f

∂χp

∂χp
∂p0

+
∂f

∂p0

)
ṗ0 =

=
∂f

∂χp

∂χp
∂p

ṗ+

(
∂f

∂χp

∂χp
∂q

+
∂f

∂χq

)
q̇ +

∂f

∂β
〈L〉 cp (βb − β) +

+

(
∂f

∂χp

∂χp
∂p0

+
∂f

∂p0

)
∂p0
∂αp
〈L〉 ∂f

∂χp
= 0

(6.23)

where the rate of the hardening variables β and p0 are those reported in eqs.

(4.20) and (4.6), respectively. The plastic multiplier can be speci�ed from eq. (6.23)

as follow:
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L = −
∂f
∂χp

∂χp
∂p
ṗ+

(
∂f
∂χp

∂χp
∂q

+ ∂f
∂χq

)
q̇

∂f
∂β
cp (βb − β) +

(
∂f
∂χp

∂χp
∂p0

+ ∂f
∂p0

)
∂p0
∂αp

∂f
∂χp

(6.24)

where the derivative of χp with respect to p0 is:

∂χp
∂p0

= r2
(
pr
p0

)r
1

p0

1

p1−nr k (1− n) (2− n)

[
p2 +

k (1− n)

3g
q2
] 2−n

2 1 + ein
λ− κ

(6.25)

and the derivatives of the yield function with respect to the hardening variables

and the derivative of p0 with respect to the plastic strain are the same as those

calculated in section (5.7.1) and reported herein for completeness:

∂f

∂β
= −2χpχq + 2βp0χp (6.26)

∂f

∂p0
= −M2χp + β2χp (6.27)

∂p0
∂αp

=
1 + ein
λ− κ

p0 (6.28)

6.2.2 Use of kinematic constraints (SEPC2)

In this section the model is developed following the original alternative procedure

based on the inclusion of the kinematic constraints in the dissipation function. The

technique of lagrangian multipliers permits to modify this function adding two con-

straints due to the isotropic and the rotational hardening via the preconsolidation

pressure p0 and the rotational internal variable β, respectively:

d′
(
α̇p, α̇q, β, β̇, p0, ṗ0

)
= d (α̇p, α̇q, β, p0) + Λ1c1 + Λ2c2 =

=
p0
2

[√
(α̇p + βα̇q)

2 + (M2 − β2) α̇2
q + α̇p + βα̇q

]
+

+ Λ1

[
β̇ − (βb − β) cp 〈L〉

]
+ Λ2

(
ṗ0 − p0

1 + ein
λ− κ

α̇p

) (6.29)

with d denoting the dissipation function of eq. (6.13). From eq. (6.29) the

dissipative generalised stresses can be calculated as:
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χp =
∂d′

∂α̇p
=

∂d

∂α̇p
− Λ2

1 + ein
λ− κ

p0

χq =
∂d′

∂α̇q
=

∂d

∂α̇q

χp0 =
∂d′

∂ṗ0
= Λ2

χβ =
∂d′

∂β̇
= Λ1

(6.30)

Note that the Ziegler's orthogonality principle entails that the lagrangian mul-

tiplier Λ1 is equal to zero because the term ψ1 of the Gibbs free energy does not

depend on the rotational variable β (χ̄β = 0). However, the elastoplastic coupling

on the preconsolidation pressure implies that χ̄p0 = χp0 = Λ2 6= 0. Therefore, unlike

in the case SEPC1, an additional component of the generalised stresses has to be

considered and, even more relevant, the expression of the yield function in the gener-

alised stresses modi�es, becoming a surface in the tridimensional space (χp, χq, χp0).

In fact, the function in eq. (6.14) derives from the dissipation function d, thus a

di�erent expression will be obtained stemming from the new dissipation function

d'. To avoid complex and unnecessary analytical calculations, employing the �rst

de�nition in eq. (6.30) and recalling the de�nition of χ̄p and χ̄p0 in eq. (6.12) and

the derivative in eq. (6.28), one can de�ne the generalised stress χ̂p such that

χ̂p =
∂d

∂α̇p
= χp + χp0

1 + ein
λ− κ

p0 = χp + χp0
∂p0
∂αp

= −2
∂ψ1

∂p0

∂p0
∂αp

+ p =

= −2r

(
pr
p0

)r
1

p1−nr k (1− n) (2− n)

[
p2 +

k (1− n)

3g
q2
] 2−n

2 1 + ein
λ− κ

+ p

(6.31)

This position allows for the derivation of the same expression of the yield surface

employed till now, where the term χ̂p substitutes for χp in eq. (6.14):

f (χ̂p, χq, β, p0) = (χq − βχ̂p)2 −
(
M2 − β2

)
χ̂p (p0 − χ̂p) = 0 (6.32)

Subsequently, by substitution of eq. (6.31) in eq. (6.32), one obtains the equation

of the yield surface in the generalised space (χp, χq, χp0) as follow:

f (χp, χq, χp0 , β, p0) =

[
χq − β

(
χp + χp0

1 + ein
λ− κ

p0

)]2
+

−
(
M2 − β2

)(
χp + χp0

1 + ein
λ− κ

p0

)(
p0 − χp − χp0

1 + ein
λ− κ

p0

)
= 0

(6.33)
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The yield function in terms of generalised stresses is no longer the original dis-

torted ellipse proposed by Dafalias & Taiebat (2013) and a more complicated 3D

surface in the generalised space (χp, χq, χp0) arises. Consequently, even the resulting

yield function in the p-q plane modi�es with respect to the SEPC1 case. In fact,

it is su�cient to substitute eq. (6.31) and the second of eq. (6.12) in eq. (6.32) to

express the yield function in terms of stresses.

According to eq. (5.20), the rates of the internal variables can be written as:

α̇p = 〈L〉 ∂f
∂χp

α̇q = 〈L〉 ∂f
∂χq

ṗ0 = 〈L〉 ∂f
∂χp0

(6.34)

and consequently, as expected, the �ow rule will be associated in the generalised

stress space. It is worth analysing more carefully the third expression in eq. (6.34),

which speci�cally stems from the adoption of the lagrangian multipliers in the dis-

sipation function. Consider �rst the derivative of the yield surface with respect to

the generalised stress χp:

∂f

∂χp
= −2βχq + 2M2χp + 2M2χp0

1 + ein
λ− κ

p0 −M2p0 + β2p0 =

= −2βχq + 2M2χ̂p −M2p0 + β2p0 =
∂f

∂χ̂p

(6.35)

Then, employing this latter equation one can express the rate of the internal

variable p0 as follow:

ṗ0 = 〈L〉 ∂f
∂χp0

= 〈L〉 1 + ein
λ− κ

p0
(
−2βχq + 2M2χp+

+2M2χp0
1 + ein
λ− κ

p0 −M2p0 + β2p0

)
=

= 〈L〉 1 + ein
λ− κ

p0
∂f

∂χp
=

1 + ein
λ− κ

p0α̇p

(6.36)

which is exactly the isotropic hardening rule adopted by Dafalias & Taiebat

(2013) and reported in eq. (4.6). This result is what expected but it is worth re-

marking that here the hardening rule is an outcome of the formulation and is no

longer an external ingredient as commonly assumed in the hyperplastic approach.

This is due to the fact that the hardening rule is directly encapsulated in the dis-
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sipation function. Another interesting result stemming from eq. (6.35) is that the

derivatives of the yield surface f with respect to χ̂p and χp coincide (alternatively,

for chain rule one can write ∂f
∂χp

= ∂f
∂χ̂p

∂χ̂p
∂χp

where ∂χ̂p
∂χp

= 1), thus the normal to the

yield surface in the plane (χ̂p, χq) represents the direction of the plastic strain rate.

The yield surface in the stress space modi�es from the original distorted ellipse,

thus the �ow rule is no longer associated. Furthermore, following the same procedure

described for the case SEPC1, it is possible to link the direction of the normal to

the yield surface f̂ in the p-q plane to the strain rates. In particular, specialising eq.

(6.6) to the current case, the components of the normal vector to the yield surface

f̂ can be evaluated as:

∂f̂

∂p
=

∂f

∂χp

∂χp
∂p

+
∂f

∂χq

∂χq
∂p

+
∂f

∂χp0

∂χp0
∂p

∂f̂

∂q
=

∂f

∂χp

∂χp
∂q

+
∂f

∂χq

∂χq
∂q

+
∂f

∂χp0

∂χp0
∂q

(6.37)

Now multiply the �rst of eq. (6.37) by the plastic multiplier 〈L〉, recalling eq.

(6.17) and the �ow rule in eq. (6.34). Then, noting that ∂χq
∂p

= 0 and that from eq.

(6.12) is χp = χp0
∂p0
∂αp

+ p, one can write:

〈L〉 ∂f̂
∂p

=
∂χp
∂p

α̇p + ṗ0
∂χp0
∂p

=
∂χp
∂p

α̇p +
∂p0
∂αp

α̇p
∂

∂p

[(
∂p0
∂αp

)−1
(χp − p)

]
=

=
∂χp
∂p

α̇p + α̇p

(
∂χp
∂p
− 1

)
=

(
1− 2

∂2ψ1

∂αp∂p

)
α̇p = ε̇pv + 2ε̇cv

(6.38)

Analogously, multiplying the second of eq. (6.37) for the plastic multiplier 〈L〉,
recalling eq. (6.18) and noting that ∂χq

∂q
= 1 the equation becomes:

〈L〉 ∂f̂
∂q

=
∂χp
∂q

α̇p + α̇q + ṗ0
∂χp0
∂q

=
∂χp
∂q

α̇p + α̇q +
∂p0
∂αp

α̇p
∂

∂q

[(
∂p0
∂αp

)−1
(χp − p)

]
=

=
∂χp
∂q

α̇p + α̇q + α̇p
∂χp
∂q

= α̇q − 2
∂2ψ1

∂αp∂q
α̇p = ε̇ps + 2ε̇cs

(6.39)

From the above emerges that the technique of lagrangian multipliers modi�es

signi�cantly the �ow rule in the stress space; in fact, not only this latter becomes

even more non-associated in comparison with the well-established procedure adopted

in section (6.2.1) (SEPC1) but in addition eqs. (6.38) and (6.39) suggest that the

�ow rule is not associated with respect to the irreversible strain rates. Therefore,
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the fundamental result pointed out by Collins & Houlsby (1997) holds true solely

for the SEPC1 approach, in which the hardening rules of the model are not directly

enforced in the formulation.

Finally, for numerical purposes, the formulation can be expressed in the in-

cremental form. The consistency condition is conveniently imposed on the yield

function in eq. (6.32) leading to:

ḟ =
∂f

∂χ̂p
˙̂χp +

∂f

∂χq
χ̇q +

∂f

∂β
β̇ +

∂f

∂p0
ṗ0 =

=
∂f

∂χ̂p

(
∂χ̂p
∂p

ṗ+
∂χ̂p
∂q

q̇ +
∂χ̂p
∂p0

ṗ0

)
+

∂f

∂χq
q̇ +

∂f

∂β
β̇ +

∂f

∂p0
ṗ0 =

=
∂f

∂χ̂p

∂χ̂p
∂p

ṗ+

(
∂f

∂χ̂p

∂χ̂p
∂q

+
∂f

∂χq

)
q̇ +

∂f

∂β
β̇ +

(
∂f

∂χ̂p

∂χ̂p
∂p0

+
∂f

∂p0

)
ṗ0 =

=
∂f

∂χ̂p

∂χ̂p
∂p

ṗ+

(
∂f

∂χ̂p

∂χ̂p
∂q

+
∂f

∂χq

)
q̇ +

∂f

∂β
〈L〉 cp (βb − β) +

+

(
∂f

∂χ̂p

∂χ̂p
∂p0

+
∂f

∂p0

)
∂p0
∂αp
〈L〉 ∂f

∂χp
= 0

(6.40)

from which the plastic multiplier can be evaluated as:

L = −
∂f
∂χ̂p

∂χ̂p
∂p
ṗ+

(
∂f
∂χ̂p

∂χ̂p
∂q

+ ∂f
∂χq

)
q̇

∂f
∂β
cp (βb − β) +

(
∂f
∂χ̂p

∂χ̂p
∂p0

+ ∂f
∂p0

)
∂p0
∂αp

∂f
∂χp

(6.41)

with the derivatives assuming the expressions:

∂χ̂p
∂p

= 1− 2r

(
pr
p0

)r
1

p1−nr k (1− n)

[
p2 +

k (1− n)

3g
q2
]−n

2 1 + ein
λ− κ

p (6.42)

∂χ̂p
∂q

= −2r

(
pr
p0

)r
1

p1−nr

[
p2 +

k (1− n)

3g
q2
]−n

2 1 + ein
λ− κ

q

3g
(6.43)

∂χ̂p
∂p0

= 2r2
(
pr
p0

)r
1

p0

1

p1−nr k (1− n) (2− n)

[
p2 +

k (1− n)

3g
q2
] 2−n

2 1 + ein
λ− κ

(6.44)

∂f

∂χq
= 2χq − 2βχ̂p (6.45)

∂f

∂β
= −2χ̂pχq + 2βp0χ̂p (6.46)
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∂f

∂p0
= −M2χ̂p + β2χ̂p (6.47)

6.3 Anisotropic elastoplastic coupling via the fabric

tensor

In chapter 4 an empirical based relationship linking the fabric tensor B of the pro-

posed nonlinear anisotropic hyperelastic model with the tensor value rotational vari-

able β was illustrated and the evolution of the elastic sti�ness anisotropy with the

plastic strains was reproduced. In this section the same relationship is employed to

develop a thermodynamically consistent form of elastoplastic coupling via the an-

isotropy character of soils. Analogously to what done in the previous section for the

preconsolidation pressure, to introduce the dependence of the elastic stri�ness on

the rotational internal variable of the Dafalias & Taiebat (2013) model, the elastic

part of Gibbs free energy, namely the term ψ1, has to be properly modi�ed. Spe-

cialising eq. (A.30) to the triaxial formulation and, for simplicity, in the case of

linear elasticity, under the hypothesis of transverse isotropy, enforcing the correla-

tion between B and β in eq. (4.32) with ω = 1, the free energy can be expressed in

terms of stress invariants p and q and of the scalar-valued rotational variable β in

the following form:

ψ = − 1

2kpr

[(
1

9
− k

6g

) (
3p− β2p+ 2

3
β2q
)2(

1− 1
3
β2 − 2

9
β4
)2 +

k

2g

(
p+ 2

3
q
)2(

1− 2
3
β2
)2 +

k

g

(
p− 1

3
q
)2(

1 + 1
3
β2
)2
]

+

− (pαp + qαq)

(6.48)

where k and g are the parameters of the hyperelastic model and pr is the refer-

ence pressure and, as usual, αp and αq denote the volumetric and deviatoric plastic

strains, respectively.

Di�erentiating the Gibbs free energy with respect to the stress one can calculate

the total volumetric and deviatoric strains as follow:
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εv = −∂ψ
∂p

= εev + εpv =
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2kpr
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2
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+ αp

εs = −∂ψ
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= εes + εps =
1

2kpr

[(
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3
q
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1 + 1
3
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]

+ αq

(6.49)

It is worth noting at this point that the rotational hardening law in the form of

eq. (4.20) is not adequate to determine the generalised stresses because cannot be

integrated in a closed form unless for constant stress ratio loading paths. In other

words, the rotational variable β should be directly expressed in terms of plastic strain

to determine the derivatives ∂β
∂αp

and ∂β
∂αq

. Therefore, a modi�ed rotational hardening

rule is proposed herein. From a physical perspective a reasonable assumption is that

the rotation and the consequent distorsion of the yield surface is manly governed

by the shear strains rather than the volumetric one. Hence, according to the works

by Collins & Hilder (2002) and Coombs (2017), a rate of the rotational variable

function of the deviatoric plastic strain rate is adopted. In detail, in lieu of eq.

(4.20) the following form is considered:

β̇ = c (βb − β) α̇q (6.50)

where c is still a dimensionless parameter controlling the pace of the evolution.

Integrating eq. (6.50) by separation of the variables from an initial value βin corres-

ponding to αq = 0, the rotational internal variable reads:

β = βb − (βb − βin) exp (−cαq) (6.51)

Taking into account the Gibbs free energy in eq. (6.48) and noting that from eq.

(6.50) it follows ∂β
∂αq

= c (βb − β), the generalised stresses can be calculated as:
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χ̄p = − ∂ψ

∂αp
= −∂ψ1

∂β
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(6.52)

Even for the above anisotropic elastoplastic coupling, the generalised stresses do

not coincide with the stress invariants. Speci�cally, an additional term arises in χ̄q

and as the free energy depends directly on β, the new component χ̄β appears.

In the following, similarly to what done for the isotropic coupling via the pre-

consolidation pressure, two possible formulations are proposed; in the �rst one the

hyper-elastoplastic Dafalias & Taiebat (2013) model developed in chapter 5 is adop-

ted with the traditional form of the dissipation functions (SEPC1), whereas in the

second one the dissipation function takes into account the isotropic and rotational

hardening rules through two kinematic constraints (SEPC2).

6.3.1 Traditional hyperplastic approach (SEPC1)

Following the approach SEPC1 the dissipation and the yield functions are those

reported in eqs. (6.13) and (6.14). Recalling the de�nition in eq. (5.14), the

dissipative generalised stresses result:

χp =
∂d

∂α̇p

χq =
∂d

∂α̇q

χβ =
∂d

∂β̇
= 0

(6.53)
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As the dissipation function does not depend explicitly on β̇, only the components

χp and χq are retained, coinciding with the generalised stresses in eq. (6.52) for the

orthogonality principle. By substitution of the generalised stresses in eq. (6.14) one

determines the yield function f̂ in the p-q plane that, as expected, it is no longer

an ellipse and is characterised by a non-associated �ow rule. In fact, specialising eq.

(6.6) to the present case it follows:

∂f̂

∂p
=

∂f

∂χp
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∂p
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∂χq

∂χq
∂p

=
∂f

∂χp
+

∂f

∂χq

(
− ∂2ψ1

∂αq∂p

)
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) (6.54)

where ∂χp
∂p

= 1, ∂χp
∂q

= 0, ∂f
∂χp

and ∂f
∂χq

are reported in eqs. (6.19) and (6.20),

respectively and the remaining derivatives take the form:
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(6.56)

Analogously to what shown for the coupling with respect to the preconsolidation

pressure, one can demonstrate that the irreversible strain rate is directed along the

normal to the yield surface in the p-q plane. The total strain rate are by de�nition:

ε̇v =

(
−∂

2ψ1

∂p2
ṗ− ∂2ψ1

∂p∂q
q̇

)
− ∂2ψ1

∂p∂αq
α̇q + α̇p = ε̇rv + ε̇cv + ε̇pv

ε̇s =

(
−∂

2ψ1

∂q∂p
ṗ− ∂2ψ1

∂q2
q̇

)
− ∂2ψ1

∂q∂αq
α̇q + α̇q = ε̇rs + ε̇cs + ε̇ps

(6.57)
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Then, multiplying for 〈L〉 all the members of eq. (6.54) and recalling that, by

virtue of eq. (5.20), is α̇p = 〈L〉 ∂f
∂χp

and α̇q = 〈L〉 ∂f
∂χq

, one can write:

〈L〉 ∂f̂
∂p

= − ∂2ψ1

∂αq∂p
α̇q + α̇p = ε̇cv + ε̇pv = ε̇iv

〈L〉 ∂f̂
∂q

= − ∂2ψ1

∂αq∂q
α̇q + α̇q = ε̇cs + ε̇ps = ε̇is

(6.58)

Hence, the �ow rule is non-associated with respect to the plastic strain rates but

can be considered associated with reference to the irreversible strain rates.

The consistency condition allows to express the consitituve relationship in the

incremental form and to obtain the plastic multiplier. In detail it is:
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ṗ+
∂χq
∂q

q̇ +
∂χq
∂β

β̇

)
+
∂f

∂β
β̇ +

∂f

∂p0
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(6.59)

where the rate of the hardening variables β and p0 are those reported in eqs.

(6.50) and (4.6), respectively. The plastic multiplier follows as:
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(6.60)

where the derivative of χq with respect to β is:
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and the other derivatives ∂f
∂β
, ∂f
∂p0

and ∂p0
∂αp

are the same reported in eqs. (6.26),

(6.27) and (6.28), respectively.

6.3.2 Use of kinematic constraints (SEPC2)

In this section the isotropic and the rotational hardening laws are included in the

dissipation function as kinematic constraints in the form:

d′
(
α̇p, α̇q, β, β̇, p0, ṗ0

)
= d (α̇p, α̇q, β, p0) + Λ1c1 + Λ2c2 =

=
p0
2

[√
(α̇p + βα̇q)

2 + (M2 − β2) α̇2
q + α̇p + βα̇q

]
+

+ Λ1

[
β̇ − c (βb − β) α̇q

]
+ Λ2

(
ṗ0 − p0

1 + ein
λ− κ

α̇p

) (6.62)

with d denoting the dissipation function of eq. (6.13) and Λ1 and Λ2 being the

lagrangian multipliers. From eq. (6.62) the dissipative generalised stresses can be

calculated as:

χp =
∂d′

∂α̇p
=

∂d

∂α̇p
− Λ2

1 + ein
λ− κ

p0

χq =
∂d′

∂α̇q
=

∂d

∂α̇q
− Λ1c (βb − β)

χp0 =
∂d′

∂ṗ0
= Λ2

χβ =
∂d′

∂β̇
= Λ1

(6.63)

The Ziegler's orthogonality principle and the dependence of the term ψ1 of the

159



Chapter 6. Thermodynamic based elastoplastic coupling

Gibbs free energy on the rotational variable β imply χ̄p0 = χp0 = Λ2 = 0 and

χ̄β = χβ = Λ1 6= 0. The introduction of the kinematic constraints in the dissipa-

tion function produces the additional component of the generalised stresses χβ and

modi�es the expression of the yield function in the generalised stresses, this latter

becoming a surface in the tridimensional space (χp, χq, χβ). Similarly to what done

in the case of isotropic coupling, taking into account eq. (6.63) and recalling the

de�nition of χ̄q and χ̄β in eq. (6.52) and the derivative of β with respect to the

deviatoric plastic strain, it is convenient to de�ne the generalised stress χ̂q such that

χ̂q =
∂d

∂α̇q
= χq + χβc (βb − β) = χq + χβ

∂β

∂αq
=

= −2
∂ψ1

∂β

∂β

∂αq
+ q = 2χq − q

(6.64)

This position allows for the derivation of the same elliptical yield surface em-

ployed till now, where the term χ̂q substitutes for χq in eq. (6.14). In the χp − χ̂q
plane the yield surface reads:

f (χp, χ̂q, β, p0) = (χ̂q − βχp)2 −
(
M2 − β2

)
χp (p0 − χp) = 0 (6.65)

Subsequently, by substitution of eq. (6.64) in eq. (6.65), one obtains the equation

of the yield surface in the generalised space (χp, χq, χβ) as follow:

f (χp, χq, χβ, β, p0) = [χq + χβc (βb − β)− βχp]2 +

−
(
M2 − β2

)
χp (p0 − χp) = 0

(6.66)

Analogously to the case of isotropic coupling, the yield function in terms of

generalised stresses is no longer the original distorted ellipse proposed by Dafalias &

Taiebat (2013) but becomes a more complicated 3D surface in the generalised space

(χp, χq, χβ). As a consequence, even the resulting yield function in the p-q plane

modi�es in comparison with the previous case SEPC1. The yield function in terms

of stresses is derived by substitution of eq. (6.64) and the second of eq. (6.52) in

eq. (6.65), though not reported here for the sake of conciseness.

Once the yield function in the dissipative generalised stresses is de�ned, according

to eq. (5.20), its normal vector components times 〈L〉 de�ne the direction of the

rates of the internal variables, leading to an associated �ow rule in the generalised

space (χp, χq, χβ):
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α̇p = 〈L〉 ∂f
∂χp

α̇q = 〈L〉 ∂f
∂χq

β̇ = 〈L〉 ∂f
∂χβ

(6.67)

Once again, the third equation emerging from the �ow rule in eq. (6.67) demon-

strates that the rotational hardening rule is a direct result of the formulation when

the technique of the lagrangian multipliers is adopted in the dissipation function. In

fact, consider �rst the derivative of the yield surface with respect to the generalised

stress χq:

∂f

∂χq
= 2 [χq + χβc (βb − β)− βχp] = 2 (χ̂q − βχp) =

∂f

∂χ̂q
(6.68)

Then, employing eq. (6.68) one can explicit the rate of the internal variable β

as follow:

β̇ = 〈L〉 ∂f
∂χβ

= 2 〈L〉 c (βb − β) [χq + χβc (βb − β)− βχp] =

= 〈L〉 c (βb − β)
∂f

∂χq
= c (βb − β) α̇p

(6.69)

that is exactly the rotational hardening rule of eq. (6.50). As expected, the �ow

rule in the stress space is neither associated with respect to the plastic strain rates,

nor with respect to the irreversible ones. In fact, as already shown for the isotropic

coupling, when the hardening rules are encapsulated in the dissipation function, the

relationship between the normal direction to the yield surface in the p-q plane and

the irreversible strain rates pointed out by Collins & Houlsby (1997) is no longer

true. In order to assess this statement, specialising eq. (6.6) to the present case one

can write:

∂f̂

∂p
=

∂f

∂χp

∂χp
∂p

+
∂f

∂χq

∂χq
∂p

+
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∂q
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∂f

∂χq
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∂q

+
∂f

∂χβ

∂χβ
∂q

(6.70)

Multiplying the �rst of eq. (6.70) for the plastic multiplier 〈L〉 and recalling eq.

(6.55), the �ow rule in eq. (6.67) and noting that ∂χp
∂p

= 1 and that from eq. (6.52)

it results χq = χβ
∂β
∂αq

+ q one can write:
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〈L〉 ∂f̂
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= α̇p +
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α̇q = ε̇pv + 2ε̇cv

(6.71)

Analogously, multiplying the second of eq. (6.70) for the plastic multiplier 〈L〉,
recalling eq. (6.56) and noting that ∂χp

∂q
= 0 the equation becomes:

〈L〉 ∂f̂
∂q

=
∂χq
∂q

α̇q + β̇
∂χβ
∂q

=
∂χq
∂q

α̇q +
∂β

∂αq
α̇q

∂

∂q

[(
∂β

∂αq

)−1
(χq − q)

]
=

=
∂χq
∂q

α̇q + α̇q

(
∂χp
∂q
− 1

)
= α̇q

(
1− 2

∂2ψ1

∂αq∂q

)
= ε̇ps + 2ε̇cs

(6.72)

Therefore, the normal direction to the yield surface in the stress space does not

coincide neither with the direction of the plastic strain rates nor with the direction

of the irreversible ones.

Finally, imposing the consistency on the yield surface in eq. (6.65) one obtains:

ḟ =
∂f

∂χp
χ̇p +

∂f

∂χ̂q
˙̂χq +

∂f

∂β
β̇ +

∂f

∂p0
ṗ0 =

=
∂f

∂χp
ṗ+

∂f

∂χ̂q

(
∂χ̂q
∂p

ṗ+
∂χ̂q
∂q

q̇ +
∂χ̂q
∂β

β̇

)
+
∂f

∂β
β̇ +

∂f

∂p0
ṗ0 =

=

(
∂f

∂χp
+

∂f

∂χ̂q

∂χ̂q
∂p

)
ṗ+

∂f

∂χ̂q

∂χ̂q
∂q

q̇ +

(
∂f

∂χ̂q

∂χ̂q
∂β

+
∂f

∂β

)
β̇ +

∂f

∂p0
ṗ0 =

=

(
∂f

∂χp
+

∂f

∂χ̂q

∂χ̂q
∂p

)
ṗ+

∂f

∂χ̂q

∂χ̂q
∂q

q̇ +

(
∂f

∂χ̂q

∂χ̂q
∂β

+
∂f

∂β

)
〈L〉 c (βb − β)

∂f

∂χq
+

+
∂f

∂p0

∂p0
∂αp
〈L〉 ∂f

∂χp
= 0

(6.73)

where, again, the rate of the hardening variables β and p0 are reported in eqs.

(6.50) and (4.6), respectively. The plastic multiplier can be speci�ed from eq. (6.73)

as follow:

L = −

(
∂f
∂χp

+ ∂f
∂χ̂q

∂χ̂q
∂p

)
ṗ+ ∂f

∂χ̂q

∂χ̂q
∂q
q̇(

∂f
∂χ̂q

∂χ̂q
∂β

+ ∂f
∂β

)
c (βb − β) ∂f

∂χq
+ ∂f

∂p0

∂p0
∂αp

∂f
∂χp

(6.74)

with the derivatives assuming the expressions:
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∂χ̂q
∂p

= 2
∂χq
∂p

∂χ̂q
∂q

= 2
∂χq
∂q
− 1

∂χ̂q
∂β

= 2
∂χq
∂β

(6.75)

∂f

∂χp
= −2βχ̂q −M2p0 + 2M2χp + β2p0 (6.76)

∂f

∂χ̂q
=

∂f

∂χq
= 2χ̂q − 2βχp (6.77)

∂f

∂β
= −2χpχ̂q + 2βp0χp (6.78)

∂f

∂p0
= −M2χp + β2χp (6.79)

6.4 Response of the model

In this section the e�ects of the elastoplastic coupling within the hyper-elastoplastic

formulation of the Dafalias & Taiebat (2013) model are illustrated by a series of

numerical simulations. First, the response of the model with the isotropic coupling

via the preconsolidation pressure is presented followed by the anisotropic coupling

via the rotational variable β. For both forms of coupling the response of the model

is shown with reference to the case in which the dissipation function does not in-

clude the kinematic constraints (SEPC1) and the case in which the new proposed

dissipation function d' is considered (SEPC2). In addition, aiming at comparing

the results to those that would be obtained for the elastoplastic coupling within the

framework of classical elastoplasticity, the terms ∂ψ1

∂αp
and ∂ψ1

∂αq
, naturally arising in

hyperplasticity, and the generalised stresses χp0 and χβ are neglected, thus lead-

ing to a form of coupling in which this latter solely a�ects the elastic response of

the model. The consequent formulation corresponds to what originally proposed by

Hueckel and Maier in their works. It represents a weak form of coupling that is not

thermodynamically consistent, thus indicated in the following as �weak elastoplastic

coupling� (WEPC). In the case of the anisotropic elastoplastic coupling, the weak

form coincides, except for the rotational hardening rule, to the model developed in

chapter 4.

In order to highlight the consequences of the elastoplastic coupling on the �ow
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rule and on the shape of the yield surface, the yield loci in the generalised stress space

and in the stress space and the plastic strain rate vectors are plotted. Furthermore,

the e�ect of the parameters and the internal variables on the response of the model

are investigated. In addition, simulations of drained triaxial tests are performed to

identify the e�ect of coupling on the plastic regime and �nally the evolution of the

elastic sti�ness and the sti�ness anisotropy due to the development of plastic strains

are explored.

6.4.1 Isotropic elastoplastic coupling via the preconsolidation

pressure

The dependence of the Gibbs free energy on the preconsolidation pressure is intro-

duced by the term
(
pr
p0

)r
as reported in eq. (6.9). This term clearly shows that

the e�ect of coupling depends both on the parameter r and on the current value

of the preconsolidation pressure. The in�uence of the exponent r is limited since,

according to Viggiani & Atkinson (1995), generally varies from 0.2 to 0.3 for plasti-

city index between 0 and 60 and for r = 0 the elastoplastic coupling vanishes. The

parameters of the model are shown in table (6.2).

Parameter Value

pr 100

n 0.78

k 296.1

g 177.7

M 1.08

λ 0.143

κ 0.025

ein 0.8

r 0.3

Table 6.2: Model parameters

In the case of weak coupling it is only the elastic regime to be modi�ed by the

plastic bahaviour, thus the �ow rule is associated in the stress space and the yield

surface is the original distorted ellipse of the Dafalias & Taiebat (2013) model. When

a thermodynamically based elastoplastic coupling is introduced, the �ow rule is no

longer associated in the stress space as the shape of the yield surface modi�es by
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virtue of the additional term ∂ψ1

∂αp
in the generalised stress χp in eq. (6.12). Figure

(6.1) shows the yield surface in the generalised space and in the stress space for

p0 = 80 kPa and, under the hypothesis of coaxiality of the principal strain and stress

directions, the plastic strain rates vectors for the formulation developed in section

6.2.1 (SEPC1). As the component χp does not coicide with the mean pressure p

while χq = q, in the stress space the yield surface is stretched along the p-axis.

Figure 6.1: Yield surfaces for the case SEPC1 (p0 = 80 kPa, β = 0.3)

The di�erence in shape between the yield surfaces in the generalised stress space

and in the stress space increases if the kinematic constraints are accounted for in the

dissipation function (SEPC2), as the additional generalised stresses χp0 appears. For

the same preconsolidation pressure p0 = 80 kPa the yield loci are depicted in �gure

(6.2). Note that the yield surface is the original distorted ellipse of the Dafalias &

Taiebat (2013) model in the generalised stress plane (χ̂p, χq) and in the same plane

the �ow rule is by de�nition associated, while it is non-associated in the p-q plane.

Figure 6.2: Yield surfaces for the case SEPC2 (p0 = 80 kPa, β = 0.3)

Furthermore, eq. (6.12) suggests that χp and χp0 depend on the hyperelastic

parameters k, g and n. In detail, for increasing values of k and g, χp tends towards

165



Chapter 6. Thermodynamic based elastoplastic coupling

the value of p and χp0 tends to zero. In other words, for the same test conditions,

the e�ects of elastoplastic coupling becomes more evident when the elastic sti�ness

decreases. To demonstrate this statement, �gure (6.3) depicts the yield surfaces in

the χ̂p − χq plane and in the p-q plane for the case of SEPC2, p0 = 50 kPa and for

k = 100 and g = 70. A remarkable di�erence is evident when the graphs (a) and (b)

of �gure (6.3) are compared, highlighting that the smaller the values of the elastic

parameters the larger is the modi�cation of the shape of the yield surface. Therefore,

the elastoplastic coupling involves a non-associated �ow rule and a change in shape

of the yield surface in the stress space, even though the direction of plastic strain

rates is not dramatically di�erent from the direction of the normal vector to the

surface.

Figure 6.3: Yield surfaces for the case SEPC2 (p0 = 50 kPa, β = 0.3, k = 100,
g = 70)

In the case of weak coupling the plastic response corresponds to that of the un-

coupled version of the model as the elastoplastic coupling a�ects solely the elastic

behaviour. Conversely, the strong coupling modi�es the plastic regime, as depicted

in �gure (6.4) for the simulation of a stress controlled drained triaxial test. The

model parameters are reported in table (6.2), with the asymptotic value of the ro-

tational variable β calculated using the linear law in eq. (4.8), with c = 50 and

x = 2. From the numerical analysis clearly emerges that by taking into account

the hardening rules in the dissipation function through the technique of lagrangian

multipliers (SEPC2) results in a stronger form of coupling. Again, the thermody-

namically based coupling is characterised by a di�erent shape of the yield surface, as

shown in �gure (6.4), and a non-associated �ow rule in the stress space. These two

aspects are the main responsible for the di�erent stress-strain responses observed in

the numerical tests.
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Figure 6.4: Drained triaxial test (pin = 50 kPa, p0,in = 80 kPa, βin = 0.3)

Finally, the e�ect of elastoplastic coupling on the elastic response is investigated.

The presence of the preconsolidation pressure in the term ψ1 of the Gibbs free energy

modi�es the values of the elastic sti�nesses and introduces a dependence of these

latter on the volumetric plastic strain by virtue of the isotropic hardening rule of

eq. (4.6). An isotropic stress path has been performed till reaching values of the

mean e�ective pressure signi�cantly high such that volumetric plastic strains are

developed. During the simulation the elastic shear and bulk moduli G and K are

calculated and the evolution of the current moduli normalised with respect to the

initial values at the beginning of the test is plotted with p in �gure (6.5). To isolate

the e�ect of the preconsolidation pressure on the elastic sti�ness, the hyperelastic

formulation is specialised to the linear case (n = 0); in such a way the e�ect of the

nonlinear dependence of the sti�ness with the stress state is not considered and the

variation of the moduli is uniquely due to the elastoplastic coupling. The parameters

are those summarised in table (6.2), eccept for k = 100, g = 70 and n = 0.
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Figure 6.5: Evolution of elastic sti�ness along isotropic stress path (pin = 50 kPa,
p0,in = 80 kPa, βin = 0.3)

It is worth noting that as the term
(
pr
p0

)r
multiplies the whole elastic Gibbs free

energy, the e�ect of the preconsolidation pressure acts in the same way on each

component of the elastic sti�ness tensor, thus the curves for K
Kin

and G
Gin

coincide.

As expected with reference to the typical experimental results shown in chapter 1

for clays, the elastic sti�ness increases as the preconsolidation pressure increases.

Furthermore, when the preconsolidation pressure signi�cantly increases the elastic

sti�nesses tend to stabilise as the term
(
pr
p0

)r
reaches an asymptotic value. From

�gure (6.5) also emerges a di�erent elastic response whether a weak or a strong form

of coupling is considered. In fact, within the framework of hyper-elastoplasticity the

coupling alters the response in the plastic regime, which in turn modi�es the elastic

behaviour. This e�ect of coupling is more evident if the approach based on the

kinematic constraints is adopted within the dissipation function.

Finally, to show how the proposed formulation is able to take into account the

dependence of the elastic sti�ness of clays on the preconsolidation pressure, a com-

parison is made between the predictions of the model for the case of SEPC2 and the

observed behaviour of the reconstituted Vallericca clay (Rampello et al. (1997)). As

described in chapter 1, the samples were loaded and unloaded along radial stress

paths and during the compression stages bender element measurements were per-

formed. In particular, �gure (1.4) depicts the elastic shear modulus for the radial

stress path characterised by η = 0.3 starting from an initial mean e�ective pressure

pin = 50 kPa. The simulations are conducted considering the Cam Clay ellipse with

a preconsolidation pressure p0 = 100 kPa, neglecting the rotational hardening of
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the model (β = 0, β̇ = 0) . The material is characterised by an initial void ratio

ein = 1.05 and by the set of parameters reported in table (6.3).

Parameter Value

pr 100

n 0.56

k 700

g 430

M 0.8

λ 0.148

κ 0.03

r 0.35

Table 6.3: Model parameters for the reconstituted Vallericca clay

The values of the constants λ and κ are those reported by Rampello et al. (1997).

The graph (a) of �gure (6.6) depicts the sequence of the compression states followed

in the numerical simulations and the graph (b) the evolution of the elastic shear

modulus together with the experimental data. This latter shows that the model is

able to satisfactorily mimic the dependence of the elastic sti�ness on the previous

stress history experienced by the material.

Figure 6.6: Sequence of compression states (a) and elastic shear modulus (b) for
radial stress path η = 0.3 for the reconstituted Vallericca clay
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6.4.2 Anisotropic elastoplastic coupling via the fabric tensor

The elastoplastic coupling on the directional properties of clays is introduced by

a dependence of the term ψ1 of the Gibbs free energy on the rotational hardening

variable β for a transverse isotropic material. From eq. (6.52) follows that, similarly

to the case of the preconsolidation pressure, the elastoplastic coupling depends on

the elastic sti�ness. In fact, as k and g increase, χq tends to the value of q and

χβ decreases. Furthermore, it clearly emerges that the e�ect of coupling on the

plastic response depends on the current value of the rotational variable β and on

the di�erence between its bounding value βb and β. The higher are these entities the

more intense is the coupling, while for β = 0 or whenever βb−β = 0 the generalised

stress χq = q and the weak form of coupling is recovered. In order to clarify these

results, the e�ects of these internal variables on the shape of the yield surface in the

stress space are illustrated. The parameters of the model are listed in table (6.4).

Parameter Value

pr 100

k 296.1

g 177.7

M 1.08

λ 0.143

κ 0.025

ein 0.8

Table 6.4: Model parameters

In �gure (6.7) the yield loci in the generalised stress χp − χ̂q plane and in the

p-q plane for the three possible forms of coupling are plotted for β = 0.4, βb = 0.2,

c = 100 and p0 = 80 kPa. As expected, the weak form does not modify neither

the shape of the surface with respect to the distorted ellipse by Dafalias & Taiebat

(2013), nor the �ow rule in the stress space. Conversely, the coupling within the

framework of hyperplasticity produces a change of shape of the yield surface in the

stress space, as the generalised stress χq (and even more χ̂q) does no longer coincide

with the deviatoric stress q. Therefore, the yield locus in the stress space is distorted

along the q-axis and consequently the �ow rule will be non-associated with respect

to the plastic strain rates, while will be associated in the generalised stress space.

These e�ects are more evident whenever the dissipation function is modi�ed by

adding of the hardening rules via the lagrangian multipliers (SEPC2).
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Figure 6.7: Yield surfaces in the generalised stress and stress spaces for β = 0.4 and
βb = 0.2

To highlight the e�ect of the current rotation of the yield surface on the coupling,

the yield loci are represented in �gure (6.8) for β = 0.6 and βb = 0.4, for the same

parameters and preconsolidation pressure of above. Note that both β and βb are

increased, such that the di�erence βb − β = 0.2 is identical to the case of �gure

(6.7). Nevertheless, the shape of the yield surfaces in the stress space shows bigger

modi�cations as compared to that of the previous case, as the yield surface in the

generalised stress space is characterised by a higher rotation.

Figure 6.8: Yield surfaces in the generalised stress and stress spaces for β = 0.6 and
βb = 0.4

Subsequently the bounding value is set to βb = 0.3 with the same β = 0.6, such

that the di�erence βb − β = 0.3. Figure (6.9) shows that this produces a further

change of the yield surface in the p-q plane as compared to �gure (6.8).
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Figure 6.9: Yield surfaces in the generalised stress and stress spaces for β = 0.6 and
βb = 0.3

Limiting the attention to the case of strong coupling with the dissipation function

enriched by the kinematic constraints (SEPC2), �gure (6.10) depicts the plastic

strain rate vectors under the hypothesis of coaxiality on the yield surfaces in the

generalised space and in the stress space. It clearly emerges that the �ow rule is no

longer associated in the p-q plane but is, by de�nition, associated in the χp − χ̂q

one.

Figure 6.10: Yield surfaces in the generalised stress and stress spaces for β = 0.6
and βb = 0.3 for SEPC2

To illustrate the e�ect of elastoplastic coupling on the plastic response of the

model, a radial stress path characterised by η = 0.8 and an initial mean e�ective

pressure pin = 20 kPa is performed. The weak coupling does not modify the be-

haviour in the plastic regime while the response changes if the thermodynamically

consistent forms of coupling are considered. The results of the simulations are shown

in �gure (6.11) for the three forms of coupling, while the initial yield surfaces are
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depicted in the p-q plane. The model parameters are listed in table (6.4) and the

bounding value βb is determined using the linear law in eq. (4.8) with c = 100 and

x = 2.

Figure 6.11: Simulation for radial stress path (η = 0.8, pin = 20 kPa, p0,in = 80 kPa,
βin = 0.6)

The e�ect of the elastoplastic coupling on the elastic response is now discussed.

Unlike the case of preconsolidation pressure, this coupling involves a tensorial en-

tity controlling not only the intensity of the elastic sti�ness but also its directional

properties. In order to illustrate the evolution of the elastic sti�ness anisotropy

once plastic strains occur, a numerical simulation has been performed following the

stress path shown in �gure (6.12) with c = 100 and x = 1.35. First a radial path

characterised by η = 0.8 starting from pin = 50 kPa is followed until β attains the

asymptotic value βb; this is followed by a p constant path until reaching η = 0 and

at that point an isotropic stress path is prescribed. In such a way β increases from

the initial value of 0.3 during the �rst phase and subsequently decreases till reaching

zero. The same �gure depicts the evolution of the yield surface during the test for

the cases of WEPC and SEPC2.
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Figure 6.12: Stress path and evolution of the yield surface for (a) WEPC and (b)
SEPC2

Since the elastic anisotropy depends on the rotational internal variable via eq.

(4.32), a change in β determines a modi�cation of the sti�ness anisotropy. Special-

ising eq. (A.32) for n = 0 and for a transverse isotropic material, with 1 denoting

the vertical direction and the other two de�ning the horizontal plane of isotropy

and using eq. (4.33), the Young's moduli along the vertical and horizontal direction

Ev and Eh and the shear moduli Ghh and Gvh can be determined. In �gure (6.13)

the evolution of the ratios Ghh/Gvh and Eh/Ev with the mean e�ective pressure

is illustrated for both cases of weak (WEPC) and strong coupling (SEPC2). The

material is initially anisotropic, then the anisotropy ratio evolves according to the

rotational hardening law as plastic deviatoric strains occur and at the end of the

test, when β ' 0, the soil becomes approximately isotropic. Furthermore, as ex-

pected, a slightly di�erent response is obtained if the weaker or the stronger form

of coupling are adopted. In particular, it is worth noting that when the anisotropy

ratio becomes approximately constant, i.e. β attains its bounding value βb, the two

forms of coupling lead to the same results.

Figure 6.13: Evolution of elastic sti�ness anisotropy

Finally, the hyper-elastoplastic model characterised by the SEPC2 form is em-
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ployed in a back analysis of the experimental data carried out by Mitaritonna et

al. (2014) on the Lucera clay. In particular, the evolution of the anisotropy ratio

Ghh/Gvh observed along di�erent radial stress paths (�gure (1.20)) can be repro-

duced with the present formulation, as depicted in �gure (6.14). The model para-

meters are those reported in table (6.4), except for the elastic constants k = 888.3

and g = 533, while for the rotational hardening rule the values c = 250 and x = 1.86

are assumed. It is worth noting that the parameter c controlling the pace of the

rotation of the surface is signi�cantly higher than the value employed for the cal-

ibration of the same experimental data in chapter 4; this is due to the fact that

the rotational hardening law employed here (eq. (6.51)) is di�erent from that of eq.

(4.20). Nonetheless, even the present model is capable to satisfactorily predict the

evolution of the elastic sti�ness anisotropy.

Figure 6.14: Evolution of elastic sti�ness anisotropy for Lucera clay

In this chapter two forms of elastoplastic coupling have been proposed to repro-

duce, within a thermodynamically consistent framework, the evolution of the elastic

sti�ness and the small strain anisotropy with the plastic strains typically observed in

clays . The �rst one has been achieved by a dependence of the elastic formulation on

the preconsolidation pressure and the second one by a dependence on the rotational

internal variable. The use of hyperplasticity theory allows to take into account a

stronger form of coupling in which this latter not only a�ect the elastic response but

also the plastic regime. In particular the elastoplastic coupling produces a change

of shape of the yield surface in the stress space as compared to an uncoupled ma-

terial and as a consequence the �ow rule is no longer associated. These features are
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impossible to be reproduced within the framework of classical elastoplasticity. The

two couplings of above have been explored for both cases in which the dissipation

function is enriched or not by the hardening rules of the hyper-elastoplastic version

of the Dafalias & Taiebat (2013) model using the technique of lagrangian multipli-

ers. If the kinematic constraints are included in the dissipation a stronger form of

coupling is obtained, di�erent from that examined by Collins, Houlsby and Puzrin

in their works. Finally the derived formulations have been explored by numerical

simulations to highlight the e�ects of elastoplastic coupling on both the elastic and

plastic responses.
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The thesis deals with the constitutive modelling of geomaterials from a thermody-

namic perspective. As discussed in chapter 1, the mechanical behaviour of soils is

characterised, even for small strain levels, by a remarkable nonlinearity and aniso-

tropy due to the current strain/stress state and to the microstructural properties

of the material. Furthermore, at least for clays, the small strain behaviour, usually

modelled as elastic, depends on the past stress history experienced by the material,

thus on its plastic response. These features are commonly referred to as elastoplastic

coupling. Some experimental data from the literature show that the small strain

sti�ness depends on the plastic strains through the preconsolidation pressure and

the elastic sti�ness anisotropy evolves as plastic strains occur in the material. New

formulations have been developed in this study to reproduce the above mentioned

mechanical features of soils.

Firstly, a nonlinear hyperelastic anisotropic model has been formulated. The an-

isotropic character of soils is introduced by a symmetric second order fabric tensor

that condenses all scalar and directional information pertaining to the anisotropy of

the material. According to the representation theorems for isotropic scalar functions,

the de�nition of a free energy potential as function of a series of mixed invariants

of the stress/strain and fabric tensors permits to model the permanent anisotropic

characteristics of soils in a thermodynamically consistent way. The proposed formu-

lation can reproduce the nonlinear dependence of the elastic sti�ness on the current

stress, including both the inherent and stress/strain induced anisotropy. The second

order fabric tensor restricts the material symmetry to orthotropy and depending on

its eingenvalues the formulation can be specialised to a transverse isotropic or iso-

tropic material. Also, by a proper choice of the parameters, the linear case can be

recovered. Therefore, the model encompasses most of the existing elastic formula-

tions and since both the stress and strain energy are de�ned it allows to derive the

constitutive equations in both sti�ness and compliance forms. The model is able to

nicely reproduce the small strain response as observed in laboratory tests for both

sandy and clayey soils.
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Subsequently, the above hyperelastic formulation has been introduced in the

single surface elastoplastic model for clays proposed by Dafalias & Taiebat (2013),

characterised by isotropic and rotational hardening rules. In order to reproduce the

evolution of the elastic sti�ness anisotropy with plastic strains observed in clays,

a relationship between the rotational internal variable, governing the anisotropy

within the plastic regime and the fabric tensor de�ned with reference to the elastic

response has been identi�ed. In such a way the fabric tensor is no longer constant

but evolves by virtue of the rotational hardening law of the model. This leads to a

form of elastoplastic coupling in which the plastic regime a�ects the elastic response

of the model. The consequent formulation is able to mimic, with solely one extra

parameter to be calibrated, the evolution of the elastic sti�ness anisotropy along

radial stress paths observed in laboratory tests for the reconstituted Lucera clay.

Clearly, a possible drawback of the proposed formulation is that the above relation-

ship was empirically determined on the base of a speci�c set of experimental data.

Nonetheless, this part of the thesis results in an original weak form of elastoplastic

coupling for clays.

The main limitation in developing elastoplastic coupling within the framework

of classical elastoplasticity is that, besides not guaranteeing the respect of the laws

of thermodynamics, solely the elastic response of the model is in�uenced by the

coupling, therefore leading to a �one way� form of coupling. In the last two chapters

of the thesis a thermodynamically based constitutive framework has been adopted

to model the mechanical behaviour of clays. According to the hyperplastic theory

for rate independent materials, mainly based on the works by Collins, Houlsby and

Puzrin, for isothermal processes and under the fundamental assumption of ortho-

gonality condition, any constitutive model can be formulated by the de�nition of

two scalar functions: the free energy potential and the dissipation function or al-

ternatively the yield one. Within this theoretical framework the Dafalias & Taiebat

(2013) model has �rst been reformulated for triaxial conditions for an uncoupled

material, for both associated and non-associated �ow rule. For the �rst case, apart

from the elastic regime, the original formulation proposed by Dafalias & Taiebat

(2013) is recovered. The non-associated �ow rule is introduced by imposing a de-

pendence of the dissipation function on the stress, similarly to what done by Collins

& Hilder (2002) and Coombs (2017) for a wider class of single surface anisotropic

models. This leads to a modi�cation of the shape of the yield surface in the stress

space with respect to the distorted ellipse of the original elastoplastic model. The

main di�erence between the proposed formulation and the existing ones is that the

isotropic hardening law adopted here is characterised by the dependence of the pre-
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consolidation pressure on the volumetric plastic strains only, consistently with the

assumption made by Dafalias & Taiebat (2013). Furthermore, a more general form

of dissipation function has been proposed to take into account the hardening rules

of the model through the technique of the lagrangian multipliers. The perform-

ance of the model has been investigated through a series of numerical simulations

of stress controlled drained triaxial test and the e�ect of the parameters and of the

non-associated �ow rule on the response has been highlighted.

In the last part of the research the hyper-elastoplastic formulation of the Da-

falias & Taiebat (2013) model has been enriched to reproduce the evolution of the

elastic sti�ness with the plastic strains via the preconsolidation pressure and the

evolution of the small strain sti�ness anisotropy through the relationship intro-

duced above between the rotational internal variable and the fabric tensor. The

hyperplasticity theory allows to take into account a new stronger (two ways) form

of coupling in which this latter not only a�ects the elastic response but also the

plastic regime. The derived formulation allows to take into account the dependence

of the elastic sti�ness on the previous stress history experienced by the soil and

to back-predict the evolution of the anisotropy ratio observed on the samples of

Lucera clay. Furthermore, the thermodynamically consistent elastoplastic coupling

determines a change of shape of the yield surface in the stress space with respect

to the distorted ellipse and consequently a non-associated �ow rule arises. Finally,

the approach based on the kinematic constraints has been employed to develop an

alternative form of coupling never pursued before, in which the dissipation function

takes directly into account the hardening rules of the model. This technique leads

to signi�cantly di�erent results than those obtained following the more traditional

hyperplastic approach. Numerical simulations have been performed to clarify the

e�ects of elastoplastic coupling on the overall response of the model.

After being implemented in FEM codes, the proposed formulations could be

employed to analyse geotechnical boundary value problems, such as those related

to tunnelling and deep excavations, in which the anisotropy of soils plays a relevant

role. As an alternative, the model could be used to examine strain localisation

related problems, for which the non-associativeness of the �ow rule represents a

crucial factor. At this scope, the hyper-elastoplastic formulation presented in this

thesis should be extended to the generalised stress/strain space taking into account

the tensorial character of the anisotropy and the rotational hardening variable.
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Appendix A

In common with most works in continuum mechanics, in this thesis extensive use of

tensors is made. The bold face (component-free) notation is preferred because more

compact but in this section also the index notation is employed in order to clarify

the tensor operations and in particular the derivatives. The notations set out by

Chaves (2013), Holzapfel (2000) and Bigoni (2012) are principally followed.

In order to express the free energy in terms of the two strain invariants εv, εs

or in terms of the stress invariants p and q starting from the multiaxial formulation

and vice versa, the following identities are useful. Particulalry, in terms of strains,

denoting with e the deviatoric part of the strain tensor, one can write:

tr (ε) = εv

tr
(
ε2
)

= tr
(
e2
)

+
1

3
(trε)2 =

3

2
ε2s +

1

3
ε2v

(A.1)

Analogously, for the stress tensor, denoting with s its deviatoric part, one obtains:

tr (σ) = 3p

tr
(
σ2
)

= tr
(
s2
)

+
1

3
(trσ)2 =

3

2
q2 + 3p2

(A.2)

The details of the derivatives of a second order tensor are shown with reference

to the strain tensor ε, but the procedure is obviously valid for any second order

tensor. The derivative of the strain tensor with respect to itself is:

∂ε

∂ε
=
∂εij
∂εkl

= δikδjl = I
−
⊗ I (A.3)

The derivatives of two recursive invariants of the strain tensor are:

∂tr (ε)

∂ε
=
∂εkk
∂εij

= δij = I (A.4)

and

∂tr (ε2)

∂ε
=
∂εklεlk
∂εij

= 2εij = 2ε (A.5)
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Denoting with εT = εji the transpose of ε = εij, the following derivative reads:

∂εT

∂ε
=
∂εji
∂εkl

= δjkδil = I ⊗
−

I (A.6)

The symmetric part of the strain tensor is:

εsym =
1

2

(
ε+ εT

)
=

1

2
(εij + εji) (A.7)

As will be clear below, a relevant operation is the derivative of the symmetric

part of the strain tensor with respect to ε:

∂εsym

∂ε
=
∂εsymij

∂εkl
=

1

2
(δikδjl + δjkδil) = I

−
⊗
−

I (A.8)

Then, considering the deviatoric part of the strain tensor, the derivative with

respect to ε assumes the form:

∂e

∂ε
=
∂
(
ε− 1

3
tr (ε) I

)
∂ε

=
∂
(
εij − 1

3
εmmδij

)
∂εkl

=

= δikδjl −
1

3
δijδkl = I

−
⊗ I− 1

3
I⊗ I

(A.9)

For the anisotropic formulation, the following derivatives of the mixed invariants

with respect to the strain are useful:

∂tr (aεa)

∂ε
=
∂ (aklεlmamk)

∂εij
=

1

2
(akiajk + akjaik) =

1

2

[
a2 +

(
a2
)T]

(A.10)

with a denoting the second order symmetric fabric tensor.

∂tr
[
(aεa)2

]
∂ε

=
∂ (aklεlmamnanpεpqaqk)

∂εij
=

=
1

2
(akiajnanpεpqaqk + akjainanpεpqaqk + aklεlmamnaniajk + aklεlmamnanjaik) =

=
1

2
(aikakqεqpapnanj + ainanpεpqaqkakj + ainanmεmlalkakj + aikaklεlmamnanj) =

= 2aikaklεlmamnanj = 2aaεaa = 2a2εa2

(A.11)

The strain and stress tensors are symmetric, namely εij = εji and σij = σji,

thus each of them has just 6 independent components. The sti�ness (or compliance)

matrix associated to the fourth order tensor has 81 components but, because of

above symmetries, the stress-strain incremental relationship can be written in the
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form of a 6x6 matrix with just 36 components. Therefore, there is an ambiguity

in the way the sti�ness matrix can be expressed: multiple choices of the form of

D (Dijkl) can result in the same incremental stress-strain response. This ambiguity

is almost universally resolved by requiring that the sti�ness (or compliance) tensor

possesses the �minor symmetries�, such that Dijkl = Dijlk and Dijkl = Djikl and as

well as the �major symmetry� Dijkl = Dklij which arises from the existence of a strain

energy potential. When all the symmetries are applied the number of independent

components reduces to 21.

The symmetries of the sti�ness tensor are discussed herein with reference to the

linear isotropic case. Let start with the following well-known strain energy function,

where no information about the symmetry of the strain tensor is introduced:

ϕ (ε) =
λ

2
[tr (ε)]2 + µtr

(
ε2
)

(A.12)

When di�erentiated with respect to the strain following the rules reported above,

the stress tensor reads:

σij =
∂ϕ

∂εij
= λεmmδij + 2µεji (A.13)

and the sti�ness tensor:

Dijkl =
∂σij
∂εkl

= λδijδkl + 2µδilδjk (A.14)

In the incremental form the constitutive law can be rewritten as:



σ̇11

σ̇22

σ̇33

σ̇12

σ̇13

σ̇23

σ̇21

σ̇31

σ̇32



=



λ+ 2µ λ λ 0 0 0 0 0 0

λ λ+ 2µ λ 0 0 0 0 0 0

λ λ λ+ 2µ 0 0 0 0 0 0

0 0 0 0 0 0 2µ 0 0

0 0 0 0 0 0 0 2µ 0

0 0 0 0 0 0 0 0 2µ

0 0 0 2µ 0 0 0 0 0

0 0 0 0 2µ 0 0 0 0

0 0 0 0 0 2µ 0 0 0





ε̇11

ε̇22

ε̇33

ε̇12

ε̇13

ε̇23

ε̇21

ε̇31

ε̇32


(A.15)

It is worth noting that the sti�ness tensor in eq. (A.14) violates the minor

symmetries. In fact, in general Dijkl −Dijlk 6= 0 . Note for instance that the terms

corresponding to D1212 and D1221 do not coincide in eq. (A.15). The de�ciency of
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the previous procedure consists in not taking into account explicitly the symmetry

of the strain and stress tensors. This is the reason why the minor symmetries of the

sti�ness tensor are not automatically satis�ed. Therefore, it is necessary to take care

in di�erentiating the stress tensor with respect to the strain in order to guarantee

the minor symmetries. Here the approach proposed by Malvern (1969) within a

hyperelastic framework is adopted, to maintain the di�erentiation rules described

above while taking into account the symmetries of the strain and stress tensors. In

detail, the free energy function in eq. (A.12) can therefore rewritten as:

ϕ (ε) =
λ

2
[tr (εsym)]2 + µtr

[
(εsym)2

]
(A.16)

The above rewriting may seem to be unnecessary pedantry as the symmetry of

the strain tensor means that it rewriting does not change the numerical value of

the strain energy. However, when twice di�erentiated with respect to strain, the

alternative form results in di�erent entries in the sti�ness matrix. The strain energy

in eq. (A.16) is rewritten in this form for purely formal purposes so that when twice

di�erentiated it gives the required canonical form of the sti�ness matrix, respecting

the minor symmetries. Particularly, the stress tensor assumes the form:

σij =
∂ϕ

∂εij
= λεmmδij + µ (εji + εij) (A.17)

and by further di�erentiation, the sti�ness tensor is obtained:

Dijkl =
∂σij
∂εkl

= λδijδkl + 2µ (δilδjk + δikδjl) (A.18)

Similarly as above, the incremental form now is:



σ̇11

σ̇22

σ̇33

σ̇12

σ̇13

σ̇23

σ̇21

σ̇31

σ̇32



=



λ+ 2µ λ λ 0 0 0 0 0 0

λ λ+ 2µ λ 0 0 0 0 0 0

λ λ λ+ 2µ 0 0 0 0 0 0

0 0 0 µ 0 0 µ 0 0

0 0 0 0 µ 0 0 µ 0

0 0 0 0 0 µ 0 0 µ

0 0 0 µ 0 0 µ 0 0

0 0 0 0 µ 0 0 µ 0

0 0 0 0 0 µ 0 0 µ





ε̇11

ε̇22

ε̇33

ε̇12

ε̇13

ε̇23

ε̇21

ε̇31

ε̇32



(A.19)

In this case the minor symmetries are automatically respected.

In other words, in order to guarantee the respect of the minor symmetries of
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the sti�ness and compliance tensors, the symmetries of the stress and strain tensors

must be explicitly considered in the di�entiation procedure. It is worth noting that,

for the anisotropic models, the symmetry of the fabric tensor could be enforced just

at the end of the di�erentiation. However, this is possible solely whenever the fabric

tensor is constant, i.e. no evolution or dependence with the stresses or strains is

considered. Conversely, even the symmetry of the fabric tensor must be analytically

taken into account.

Spectral decomposition of the fabric tensor

A generic second order tensor can be always expressed using the spectral decom-

position. In particular, for the fabric tensor a denoting with a i its orthonormal

eigenvectors de�ning the direction of orthotropy and with ai its eigenvalues, to be

positive because of the positive de�niteness of the fabric tensor, one can write:

a =
3∑
i=1

aia i ⊗ a i =
3∑
i=1

aiMi (A.20)

where the Mi = a i⊗a i represents the dyadic product of the eigenvectors a i and
are called eigenprojections of a. The tensors Mi are characterised by the relevant

properties Mk
i = Mi, with k positive integer and M1 + M2 + M3 = I. Particularly,

recalling that B = a2, the spectral decomposition of the fabric tensor B is:

B =
3∑
i=1

bib i ⊗ b i =
3∑
i=1

biMi (A.21)

where bi are the eigenvalues of B, such that bi = a2i . Therefore, a and B have the

same eigenvectors (i.e. the same principal directions), the eigenvalues of B being

the square of those of a.

Another important property of the generic eigenprojection M is that M⊗M =

M
−
⊗
−

M. In fact, recalling that the generic eigenvector b is a unit vector, such that

only two of its three components are independent (b21 = 1− b22 − b23), the matrix

associated to the second order tensor M results:

M =

 1− b22 − b23 b2
√

1− b22 − b23 b3
√

1− b22 − b23
b2
√

1− b22 − b23 b22 b2b3

b3
√

1− b22 − b23 b2b3 b23

 (A.22)

From eq. (A.22) descends thatMijMkl = 1
2

(MikMjl +MilMjk), thus proving the

previous property.

184



Appendix A

As pointed out by Bigoni & Loret (1999), adopting the spectral decomposition

in eq. (A.21), the free energy in eq. (2.38) valid for the linear anisotropic case

can be rewritten in terms of a series of mixed invariants of the strain and the

Mi tensors. At this point it is worth mentioning that the very special property

[tr (Miε)]
2 = tr

[
(Miε)

2] holds. In order to demonstrate this feature the procedure

proposed by Itskov (2007) is followed. In detail:

tr (Miε) = Mi : ε = (b i ⊗ b i) : ε = b iεb i (A.23)

Furthermore, by virtue of eq. (A.23), it results:

tr
[
(Miε)

2] = tr (εb i ⊗ b iεb i ⊗ b i) = tr (Miε) tr (εb i ⊗ b i) = [tr (Miε)]
2 (A.24)

Taking into account the previous properties, free energy for the linear anisotropic

model for an orthotropic material takes the form:

ϕ (ε,Mi) =
c1
2

[tr (M1ε)]
2 +

c2
2

[tr (M2ε)]
2 +

c3
2

[tr (M3ε)]
2 +

+ c4tr (M1ε) tr (M2ε) + c5tr (M1ε) tr (M3ε) +

+ c6tr (M2ε) tr (M3ε) + +c7tr
(
M1ε

2
)

+ c8tr
(
M2ε

2
)

+ c9tr
(
M3ε

2
)

(A.25)

Specialising eq. (A.25) to the case of transverse isotropy, with b1 6= b2 = b3 and

recalling that M1 + M2 + M3 = I, one can retain only one of the three eigenprojec-

tions Mi, simply denoted with M, thus leading to

ϕ (ε,M) =
c1
2

[tr (ε)]2 +
c2
2
tr
(
ε2
)

+ c3tr (ε) tr (Mε) +

+
c4
2

[tr (Mε)]2 + c5tr
(
Mε2

) (A.26)

Alternative representation of the fabric tensor

Recalling that B = a2, employing the two mixed invariants tr (Bε) and tr
[
(Bε)2

]
,

one can equivalently rewrite the strain energy of eq. (3.1) as follows:

ϕ (ε,B) =
pr

k (2− n)
k

2−n
2−2n (1− n)

2−n
2−2n

{[
k (1− n)− 2

3
g

]
[tr (Bε)]2 + 2gtr

[
(Bε)2

]} 2−n
2−2n

(A.27)
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The stress tensor is thus obtained di�erentiating the strain energy function with

respect to the strain:

σ = prr
n

1−n
0

{[
k (1− n)− 2

3
g

]
tr (Bε) B + 2gBεB

}
(A.28)

and, with further di�erentiation, the sti�ness tensor results:

D = pr

[
k (1− n)− 2

3
g

]{
kr

3n−2
1−n
0 n

[
k (1− n)− 2

3
g

]
[tr (Bε)]2 + r

n
1−n
0

}
B⊗B+

+ 2prkr
3n−2
1−n
0 ng

[
k (1− n)− 2

3
g

]
tr (Bε) (BεB⊗B + B⊗BεB) +

+ 4prkr
3n−2
1−n
0 ng2 (BεB⊗BεB) + 2prr

n
1−n
0 g

(
B
−
⊗
−

B

)
(A.29)

Analogously, the complementary energy expressed via the tensor B is:

ψ (σ,B) =
1

p1−nr k (1− n) (2− n)
p2−n0 =

1

p1−nr k (1− n) (2− n){(
1

9
− k (1− n)

6g

)[
tr
(
B−1σ

)]2
+
k (1− n)

2g
tr
[(

B−1σ
)2]} 2−n

2
(A.30)

The strain tensor is obtained di�erentiating the complementary energy with re-

spect to the stress:

ε =
1

2p1−nr k (1− n)
pn0

[
2

(
1

9
− k (1− n)

6g

)
tr
(
B−1σ

)
B−1 +

k (1− n)

g
B−1σB−1

]
(A.31)

and, with further di�erentiation, the compliance tensor results:

C =
1

p1−nr k (1− n)

{(
−n

2

)
p
−(n+2)
0 2

(
1

9
− k (1− n)

6g

)[
tr
(
B−1σ

)]2
+

+p−n0

(
1

9
− k (1− n)

6g

)}
B−1 ⊗B−1 +

1

2p1−nr g
p−n0

(
B−1

−
⊗
−

B−1
)

− n

4p1−nr

p
−(n+2)
0

k (1− n)

g2
(
B−1σB−1 ⊗B−1σB−1

)
+

− n

2p1−nr g
p
−(n+2)
0

(
1

9
− k (1− n)

6g

)
tr
(
B−1σ

)
(
B−1σB−1 ⊗B−1 + B−1 ⊗B−1σB−1

)

(A.32)
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The strain energy function of the proposed nonlinear anisotropic hyperelastic

model expressed in terms of the isotropic and deviatoric parts of B assumes the

form:

ϕ (ε, f,F) =
pr

k (2− n)
k

2−n
2−2n (1− n)

2−n
2−2n

{[
k (1− n)− 2

3
g

]
[tr (ε) f + tr (Fε)]2 + 2gtr

[
(fε+ Fε)2

]} 2−n
2−2n

(A.33)

Di�erentiating eq. (A.33) with respect to the strains, one obtains the stress

tensor:

σ = prr
n

1−n
0

{[
k (1− n)− 2

3
g

]
tr (fε+ Fε) (fI + F) +

+2g
(
f 2ε+ fεF + fFε+ FεF

)} (A.34)

and, with a further di�erentiation, the sti�ness tensor:

D = pr

[
k (1− n)− 2

3
g

]{
kr

3n−2
1−n
0 n

[
k (1− n)− 2

3
g

]
[tr (fε+ Fε)]2 + r

n
1−n
0

}
[
f 2I⊗ I + f (I⊗ F + F⊗ I) + F⊗ F

]
+

+ 2prkr
3n−2
1−n
0 ng

[
k (1− n)− 2

3
g

]
tr (fε+ Fε)

(
f 3I⊗ ε+ f 2I⊗ εF+

+ fI⊗ FεF + f 2I⊗ Fε+ f 2F⊗ ε+ fF⊗ εF + F⊗ FεF+

+ fF⊗ Fε+ f 3ε⊗ I + f 2εF⊗ I + fFεF⊗ I + f 2Fε⊗ I+

+f 2ε⊗ F + fεF⊗ F + FεF⊗ FεF + fFε⊗ F
)

+

+ 4prkr
3n−2
1−n
0 ng2

(
f 4ε⊗ ε+ f 3ε⊗ εF + f 2ε⊗ FεF+

+ f 3ε⊗ Fε+ f 3εF⊗ ε+ f 2εF⊗ εF + fεF⊗ FεF+

+ f 2εF⊗ Fε+ f 2FεF⊗ ε+ fFεF⊗ εF + FεF⊗ FεF+

+ fFεF⊗ Fε+ f 3Fε⊗ ε+ f 2Fε⊗ εF + fFε⊗ FεF+

+f 2Fε⊗ Fε
)

+

+ 2prr
n

1−n
0 g

(
f 2I

−
⊗
−

I + fF
−
⊗
−

I + fI
−
⊗
−

F + F
−
⊗
−

F

)
(A.35)

Finally, employing the spectral decomposition technique, the free energy of the

proposed nonlinear anisotropic model can be analogously expressed, under the hy-

pothesis of transverse isotropy, as:
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ϕ (ε,M) =
pr

k (2− n)
k

2−n
2−2n (1− n)

2−n
2−2n

{
c1 [tr (ε)]2 + c2tr

(
ε2
)

+

+c3tr (ε) tr (Mε) + c4 [tr (Mε)]2 + c5tr
(
Mε2

)} 2−n
2−2n

(A.36)

with the �ve coe�cients ci function of material constants k, g and n and the

eigenvalues a1 and a2 of the tensor a.

c1 =

(
k − 2

3

g

1− n

)
a42, c2 =

2g

1− n
a42, c3 = 2

(
k − 2

3

g

1− n

)
a22
(
a21 − a22

)
c4 =

(
k +

4

3

g

1− n

)(
a21 − a22

)2
, c5 =

4g

1− n
a22
(
a21 − a22

) (A.37)

In a dual way, the complementary free energy reads:

ψ (σ,N) =
1

p1−nr k (1− n) (2− n)

[
c1 (trσ)2 + c2tr

(
σ2
)

+ c3trσtr (Nσ) +

+c4 [tr (Nσ)]2 + c5tr
(
Nσ2

)] 2−n
2

(A.38)

with again the �ve coe�cients ci function of material constants k, g and n and

the eigenvalues a−11 and a−12 of the tensor a−1.

c1 =

(
1

9
− k (1− n)

6g

)
a−42 , c2 =

k (1− n)

2g
a−42

c3 = 2

(
1

9
− k (1− n)

6g

)
a−22

(
a−21 − a−22

)
c4 =

(
1

9
+
k (1− n)

3g

)(
a−21 − a−22

)2
, c5 =

k (1− n)

g
a−22

(
a−21 − a−22

)
(A.39)
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In this appendix the analytical details of the hyperplastic formulation of the Dafalias

& Taiebat (2013) model are reported. In particular, the procedure to determine

the dissipation function stemming from the original yield function of the model

is illustrated and subsequently, in order to verify the result is correct, the inverse

procedure is carried out. The results are illustrated in the triaxial formulation, �rst

in the case of associative �ow rule and then for the non-associated version of the

model.

As described in chapter 5, being the generalised stresses χp and χq equal to

the stress invariants p and q, respectively, the yield surface in terms of generalised

stresses under the hypothesis of associative �ow rule can be written as:

f (χp, χq, β, p0) = (χq − βχp)2 −
(
M2 − β2

)
χp (p0 − χp) = 0 (B.1)

The dissipation function has to be expressed as a function of the rate of internal

variables. Therefore, recalling the de�nition in eq. (5.20), one can determine these

latter as:

α̇p
L

=
∂f

∂χp
= −2βχq −M2p0 + 2M2χp + β2p0

α̇q
L

=
∂f

∂χq
= 2χq − 2βχp

(B.2)

First, the plastic multiplier has to be determined. To do that, from the two eqs.

(B.2) one expresses the dissipative generalised stresses as a function of L:

χp =
α̇p + βα̇q

2L (M2 − β2)
+
p0
2

χq =
α̇q
2L

+ β
α̇p + βα̇q

2L (M2 − β2)
+ β

p0
2

(B.3)

Then the dissipative generalised stress just calculated can be substituted in the

yield function in eq. (B.1) in order to obtain the plastic multiplier. In particular

one has:
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α̇2
q

4L2
+ β2 (α̇p + βα̇q)

2

4L2 (M2 − β2)2
+ β2p

2
0

4
+
βα̇q (α̇p + βα̇q)

2L2 (M2 − β2)
+
βp0α̇q

2L
+

+
β2p0 (α̇p + βα̇q)

2L (M2 − β2)
− βα̇q (α̇p + βα̇q)

2L2 (M2 − β2)
− β2 (α̇p + βα̇q)

2

2L2 (M2 − β2)2
+

− β2p0 (α̇p + βα̇q)

2L (M2 − β2)
− βp0α̇q

2L
− β2p0 (α̇p + βα̇q)

2L (M2 − β2)
− β2p

2
0

2
+

− M2p0 (α̇p + βα̇q)

2L (M2 − β2)
− M2p20

2
+M2 (α̇p + βα̇q)

2

4L2 (M2 − β2)2
+
M2p0 (α̇p + βα̇q)

2L (M2 − β2)
+

+
M2p20

4
+
β2p0 (α̇p + βα̇q)

2L (M2 − β2)
+ β2p

2
0

2
= 0

(B.4)

that, after some simpli�cations and multiplying for L2 reads:

α̇2
q − β2 (α̇p + βα̇q)

2

(M2 − β2)2
+M2 (α̇p + βα̇q)

2

(M2 − β2)2
−
(
M2 − β2

)
p20L

2 = 0 (B.5)

from which the plastic multiplier reads:

L =
1

p0 (M2 − β2)

√
(α̇p + βα̇q)

2 + (M2 − β2) α̇2
q (B.6)

Once the plastic multiplier is known, eq. (B.6) can be resubstituted in eq. (B.3)

in order to express the dissipative generalised stresses as uniquely function of the

rate of the internal variables, leading, after few manipulations, to:

χp =
p0
2

 α̇p + βα̇q√
(α̇p + βα̇q)

2 + (M2 − β2) α̇2
q

+ 1


χq =

p0
2

 (M2 − β2) α̇q + β (α̇p + βα̇q)√
(α̇p + βα̇q)

2 + (M2 − β2) α̇2
q

+ β

 (B.7)

Finally, employing the de�nition of the dissipation of eq. (5.15) one can write:
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d = χpα̇p + χqα̇q =

=
p0
2

(α̇p + βα̇q) α̇p + (M2 − β2) α̇2
q + β (α̇p + βα̇q) α̇q√

(α̇p + βα̇q)
2 + (M2 − β2) α̇2

q

+ α̇p + βα̇q

 =

=
p0
2

 (α̇p + βα̇q)
2 + (M2 − β2) α̇2

q√
(α̇p + βα̇q)

2 + (M2 − β2) α̇2
q

+ α̇p + βα̇q

 =

=
p0
2

[√
(α̇p + βα̇q)

2 + (M2 − β2) α̇2
q + α̇p + βα̇q

]
(B.8)

To prove the dissipation function in eq. (B.8) is correct, the yield function is

now deduced from this latter. For this scope, the dissipative generalised stresses are

calculated stemming from eq. (5.14):

χp =
∂d

∂α̇p
=
p0
2

 α̇p + βα̇q√
(α̇p + βα̇q)

2 + (M2 − β2) α̇2
q

+ 1


χq =

∂d

∂α̇q
=
p0
2

 (M2 − β2) α̇q + β (α̇p + βα̇q)√
(α̇p + βα̇q)

2 + (M2 − β2) α̇2
q

+ β

 (B.9)

The next step consists in eliminating the dependence on the rate of internal

variables, thus α̇p and α̇q can be recalculated from eq. (B.9). Particulalry, for

the sake of conciseness the position d̄ =
√

(α̇p + βα̇q)
2 + (M2 − β2) α̇2

q is adopted,

leading to:

2χp
p0
− 1 =

α̇p + βα̇q
d̄

2χq
p0
− β =

βα̇p +M2α̇q
d̄

(B.10)

from which, after few calculations, the rate of the internal variables can be ex-

pressed as functions of the dissipative generalised stresses as follow:

α̇p =

(
2χp
p0
− 1

)
d̄− β

M2 − β2

[
2χq
p0
− β −

(
2χp
p0
− 1

)
β

]
d̄

α̇q =
1

M2 − β2

[
2χq
p0
− β −

(
2χp
p0
− 1

)
β

]
d̄

(B.11)

Finally, an equation expressed in terms of the dissipative generalised stresses

only has to be found. This can be achieved substituting the rate of the internal

variables in eq. (B.11) in the expression of d̄ and raising to the square:
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d̄2 = (α̇p + βα̇q)
2 +

(
M2 − β2

)
α̇2
q =

=

(
2χp
p0
− 1

)2

d̄2 +
1

M2 − β2

[
2χq
p0
− 2χp

p0
β

]2
d̄2

(B.12)

Therefore d̄2 can be eliminated from eq. (B.12) and consequently it results:

1 =
4χ2

p

p20
+ 1− 4χp

p0
+

1

M2 − β2

4

p20
(χq − βχp)2 (B.13)

that can be nicely rewritten leading exactly to the starting yield function in eq.

(B.1).

In the case of non-associated �ow rule, the dissipation function depends on the

mean e�ective pressure p and takes the form:

d =
√
A2 (α̇p + βα̇q)

2 +B2 (M2 − β2) α̇2
q +

γp0
2

(α̇p + βα̇q) (B.14)

with the quantities A and B de�ned as:

A = (1− γ) p+
γp0
2

B = (1− δ) p+
γδp0

2

(B.15)

being γ and δ positive constants. In order to obtain the corresponding yield sur-

face the dissipative generalised stresses are calculated stemming from their de�nition

in eq. (5.14):

χp =
∂d

∂α̇p
=

A2 (α̇p + βα̇q)√
A2 (α̇p + βα̇q)

2 +B2 (M2 − β2) α̇2
q

+
γp0
2

χq =
∂d

∂α̇q
=

B2 (M2 − β2) α̇q + A2β (α̇p + βα̇q)√
A2 (α̇p + βα̇q)

2 +B2 (M2 − β2) α̇2
q

+ β
γp0
2

(B.16)

Then the rates of internal variables α̇p and α̇q are deduced from eq. (B.16).

Similarly as above, the position d̄ =
√
A2 (α̇p + βα̇q)

2 +B2 (M2 − β2) α̇2
q is made,

leading to:

χp −
γp0
2

=
A2 (α̇p + βα̇q)

d̄

χq − β
γp0
2

=
B2 (M2 − β2) α̇q + A2β (α̇p + βα̇q)

d̄

(B.17)

from which the rate of the internal variables can be expressed as functions of the

dissipative generalised stresses as follow:
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α̇p =
(
χp −

γp0
2

) d̄

A2
− β

B2 (M2 − β2)
(χq − βχp) d̄

α̇q =
χq − βχp

B2 (M2 − β2)
d̄

(B.18)

Subsequently, substituting the rate of the internal variables of eq. (B.18) in the

expression of d̄ and raising to the square one can write:

d̄2 = A2 (α̇p + βα̇q)
2 +B2

(
M2 − β2

)
α̇2
q =

=
(
χp −

γp0
2

)2 d̄2
A2

+
(χq − βχp)2

B2 (M2 − β2)
d̄2

(B.19)

Therefore d̄2 can be eliminated from eq. (B.19) and multiplying all the members

for A2B2 (M2 − β2)one obtains:

A2 (χq − βχp)2 +B2
(
M2 − β2

) (
χp −

γ

2
p0

)2
− A2B2

(
M2 − β2

)
= 0 (B.20)

representing the equation of the yield function in the dissipative generalised stress

plane.

In order to verify that eq. (B.20) is correct, the dissipation function is derived

from the yield function. As usual, recalling the de�nition in eq. (5.20), one can de-

termine the rate of internal variables necessary to determine the dissipation function

as follow:

α̇p
L

=
∂f

∂χp
= −2βA2χq + 2β2A2χp +B2

(
M2 − β2

)
(2χp − γp0)

α̇q
L

=
∂f

∂χq
= 2A2χq − 2A2βχp

(B.21)

The plastic multiplier L can be determined once the dissipative generalised

stresses χp and χq are expressed as functions of the rate of internal variables and L:

χp =
α̇p + βα̇q

2B2L (M2 − β2)
+
γp0
2

χq =
α̇q

2A2L
+ β

α̇p + βα̇q
2B2L (M2 − β2)

+ β
γp0
2

(B.22)

Then one substitutes the dissipative generalised stresses of eq. (B.22) in the yield

function in eq. (B.20) and obtains the plastic multiplier. In particular one has:
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A2

(
α̇q

2A2L
+ β

α̇p + βα̇q
2B2L (M2 − β2)

+ β
γp0
2
− β α̇p + βα̇q

2B2L (M2 − β2)
− βγp0

2

)2

+

+B2
(
M2 − β2

)( α̇p + βα̇q
2B2L (M2 − β2)

+
γp0
2
− γp0

2

)2

− A2B2
(
M2 − β2

)
= 0

(B.23)

that, after few manipulations becomes:

α̇2
q

4L2A2
+

B2 (α̇p + βα̇q)
2

4B4L2 (M2 − β2)
− A2B2

(
M2 − β2

)
= 0 (B.24)

Solving this latter for L one obtains:

L =

√
A2 (α̇p + βα̇q)

2 + (M2 − β2)B2α̇2
q

2A2B2 (M2 − β2)
(B.25)

Now the plastic multiplier can be resubstituted in eq. (B.22) such that the

dissipative generalised stresses after few manipulations read:

χp =
A2 (α̇p + βα̇q)√

A2 (α̇p + βα̇q)
2 +B2 (M2 − β2) α̇2

q

+
γp0
2

χq =
B2 (M2 − β2) α̇q + A2β (α̇p + βα̇q)√
A2 (α̇p + βα̇q)

2 +B2 (M2 − β2) α̇2
q

+ β
γp0
2

(B.26)

Finally, recalling the de�nition in eq. (5.15), the dissipation function assumes

the form:

d = χpα̇p + χqα̇q =

=
A2 (α̇p + βα̇q) α̇p +B2 (M2 − β2) α̇2

q + A2β (α̇p + βα̇q) α̇q√
A2 (α̇p + βα̇q)

2 +B2 (M2 − β2) α̇2
q

+
γp0
2

(α̇p + βα̇q) =

=
A2 (α̇p + βα̇q)

2 +B2 (M2 − β2) α̇2
q√

A2 (α̇p + βα̇q)
2 +B2 (M2 − β2) α̇2

q

+
γp0
2

(α̇p + βα̇q) =

=
√
A2 (α̇p + βα̇q)

2 +B2 (M2 − β2) α̇2
q +

γp0
2

(α̇p + βα̇q)

(B.27)
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