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1. INTRODUCTION 

Microscopic filamentous fungi, commonly known as molds, can develop on food 

commodities of plant origin (maize, wheat, etc.) and in some cases on commodities 

of animal origin (meat products, sausages). These molds can, in suitable 

environmental conditions, produce via secondary metabolism, chemical toxic 

compounds, known as mycotoxins. Mycotoxins can occur at pre-harvest, harvest 

and post-harvest stage. 

Molecular structures of mycotoxins vary widely, so their effects on human and 

animal health also vary widely. Mycotoxins may be classified according to the 

target organ as hepatotoxins, nephrotoxins, neurotoxins, immunotoxins, or 

according to their toxicological effects as carcinogenic, genotoxic, mutagen, 

teratogen. 

To date, more than 500 mycotoxins are known, even if researchers are focusing 

their scientific interest only to approximately 10 compounds, including aflatoxins 

and ochratoxin A due to their toxicity and widespread. 

The most common route of exposure to mycotoxins is the ingestion through the diet 

by direct exposure, due to the consumption of contaminated food, or by indirect 

exposure through the consumption of food derived from animals fed with 

contaminated feedstuffs. 

In addition to food diet, humans and animals can also be exposed to mycotoxins by 

inhalation of contaminated dusts. This phenomenon is particularly observed in 

certain working places such as harbors and warehouses. Several studies report a 

higher prevalence of lung carcinogenesis and bronchus and trachea tumors in 
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workers exposed to aflatoxins contaminated dusts. Exposure by inhalation and/or 

dermal contact is well known in different branches of industry, especially where a 

significant handling of dusty commodities such as grains, spices, coffee, etc., is 

performed. 

Due to their severe toxicological implications, exposure to mycotoxins must be 

characterized by an accurate evaluation. Commonly, two different approaches can 

be followed for targeting this issue: via dietary exposure assessment and/or via 

biological monitoring. In both cases, a considerable number of uncertainties is 

present because of the lack of representativity in assessing the intake via food and 

the peculiar characteristics of toxicokinetics and toxicodynamics associated to the 

intake of the parent mycotoxins and the formation in vivo of the corresponding 

biomarker of exposure in the case of biomonitoring studies. 

The present study aims to explore the validity of the biomonitoring studies as a tool 

to investigate the intake of mycotoxins in population groups such as workers 

operating in risky workplaces, being potentially exposed to mycotoxins through the 

inhalation of contaminated dust and/or by dermal contact. The objective is to 

produce accurate exposure data and perform exposure assessment of these 

population groups, by considering the fraction derived from the workplace 

environment by inhalation of dusts and/or by dermal contact. 

In particular, this study was conducted on two groups of population, the exposed 

workers group that includes staffs working in an Italian feed plant, and a control 

group composed by administrative employees (non-exposed) working on the same 

feed plant. 
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Urine and serum samples were collected for the determination of mycotoxins, 

namely aflatoxin B1, aflatoxin M1 and AFB1-N
7-Guanine adduct were analyzed in 

urine samples, while aflatoxin B1, AFB1-Lysine adduct and ochratoxin A were 

analyzed in serum samples. 

The analytical determination of mycotoxins and their metabolites should be based 

on validated method with performance characteristics fitting for the purpose of 

biomonitoring. Therefore, the study also includes the set up and validation of 

suitable methods for the determination of the selected analytes in specimens (LC-

HRMS). In particular, for urine analysis two methods were optimized and validated, 

a dilute&shoot method and an immunoaffinity clean-up method; for serum analysis 

a method based on liquid-liquid extraction and QuEChERS purification was 

developed and fully validated. 

Moreover, due to the unavailability of commercial standard of AFB1-N
7-Gaunine 

and AFB1-Lysisne, the adducts were synthetized. Unfortunately, it was not possible 

to purify the synthesis products and to determine their concentrations; however, the 

obtained adducts were used for methods set up and for qualitative analysis 

(presence/absence) in the collected samples. 
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2. GENERAL ASPECTS 

2.1. Mycotoxins 

Microscopic filamentous fungi, commonly known as molds, can develop on food 

commodities of plant origin (maize, wheat, etc.) and in some cases also on 

commodities of animal origin (meat products, sausages). These molds can in 

suitable environmental conditions, produce chemical toxic compounds known as 

mycotoxins. The word mycotoxin stems from the Greek word µυκης, meaning 

mold, and τοξικόν meaning poison. Mycotoxins are naturally occurring secondary 

metabolites of some fungal species mainly belonging to the genera Aspergillus, 

Penicillium and Fusarium. 

Essential factors for fungi proliferation and mycotoxin production are both the 

stress of the plant, as derived by the extreme soil dryness or the lack of a balanced 

nutrient absorption, and environmental factors such as climatic conditions 

(temperature, humidity and water activity) or mechanical damage of kernels as well 

as insects and pest attack (CAST, 2003). Mycotoxins can occur at pre-harvest, 

harvest and post-harvest stage. 

Molecular structures of mycotoxins vary widely, so their effects on human and 

animal health also vary widely. Mycotoxins may be classified according to the 

target organ, as hepatotoxins, nephrotoxins, neurotoxins, immunotoxins, or 

according to their toxicological effects, as cancerogenic, genotoxic, mutagen, 

teratogen. 
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To date, more than 500 mycotoxins are known, even if researchers are focusing 

their scientific interest only to approximately 10 compounds, including aflatoxins 

and ochratoxin A due to their toxicity and widespread (Hajslova, 2011). 

The presence of mycotoxins in a food commodity can occur even in the absence of 

a visible mold infestation due to a ceased vital cycle of the microorganism or by the 

effect of a removal of the mold due to technological processing of the food 

commodity. Nevertheless, the presence of a visible mold on the surface of a food 

product does not represent a clear indication of the presence of a mycotoxin. 

Generally, plant-origin commodities directly contaminated by mycotoxins are 

cereals, with maize as the riskiest crop being a staple food in many parts of the 

world, dried fruit, spices, grape, coffee, cocoa, fruit juices especially apple-based 

and, at minor extent, meat products and licorice. During the storage cycle, 

mycotoxins can directly contaminate also cheeses and sausages. 

In addition, food products can become contaminated as a consequence of a carry-

over from contaminated feeds and be present in food of animal origin such as milk, 

eggs and, at a minor extent, meat. It has to be noted that mycotoxins resist high 

temperatures and the common domestic cooking procedures are not able to destroy 

them. 
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2.1.1. Human exposure to mycotoxins 

The most common route of exposure to mycotoxins is the ingestion through the diet 

by direct exposure due to the consumption of contaminated food, or by indirect 

exposure through the consumption of food derived from animals fed with 

contaminated feedstuffs. 

In addition to food diet, humans and animals can also be exposed to mycotoxins by 

inhalation of contaminated dusts (Flannigan, 1996). This phenomenon is 

particularly observed in certain working places such as harbors and warehouses. 

Several studies report a higher prevalence of lung carcinogenesis and bronchus and 

trachea tumors in workers exposed to aflatoxins contaminated dusts (Lai, 2014; 

Liao, 2005; Van Vleet, 2001). Exposure by inhalation and/or dermal contact is well 

known in different branches of industry especially where a significant handling of 

dusty commodities such as grains, spices, coffee, etc., is performed, (Viegas, 2017; 

Viegas, 2015; Viegas, 2013; Viegas, 2012; Brera, 2002; Iavicoli, 2002). In this case, 

chronic bronchitis and asthma-like disorder and the accelerated decline of lung 

functions can occur together with other serious pathologies like cancer as well. 

However, there is a lack of epidemiological studies showing the relation between 

exposure and health effects, probably due to the fact that in the workplace, the risk 

assessment of mycotoxins has never been done routinely. In fact, while mycotoxin 

exposure via food intake is largely documented in the literature, the occupational 

exposure to these toxic compounds has been much less evaluated so far, despite its 

high frequency. Probably, this trend is due both to the fact that mycotoxins are not 

recognized as real and common occupational risk factor in specific settings (Viegas, 
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2018a) and to the difficulty to recruit volunteers prone in providing biological 

fluids. 

Due to their severe toxicological implications, exposure to mycotoxins must be 

characterized by an accurate evaluation. Commonly, two different approaches can 

be followed for targeting this issue: via dietary exposure assessment and/or via 

biological monitoring. In both cases, a considerable number of uncertainties is 

present because of the lack of representativity in assessing the intake via food and 

the peculiar characteristics of toxicokinetics and toxicodynamics associated to the 

intake of the parent mycotoxins and the formation in vivo of the corresponding 

biomarker of exposure in the case of biomonitoring studies. 

The dietary risk assessment is classically performed combining contamination data 

with consumption rates. The scenario that can be outlined, taking into consideration 

lower (LB) and upper (UB) boundaries of the contamination values, has multiple 

uncertainty sources such as the paucity of occurrence data available, censored 

dataset and their use, consumption rates not always updated and fit for purpose. 

Moreover, one other important source of uncertainty is associated to the variability 

coming from the sampling procedures carried out during the implementation of 

monitoring studies for data collection. This sampling drawback is of upmost 

importance since mycotoxins are characterized by an uneven distribution in the 

commodity lots, both in raw and in some processed commodities, too. In all cases, 

the uncertainty associated with the sampling step is much higher than the one 

associated with the analytical step. 
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Therefore, in consideration of the relevant problems associated with the sampling 

step, with the aim to get more direct information of the intake of single or multiple 

mycotoxins, the use of biomonitoring studies deserves a noteworthy mentioning. 

While in the risk-based control programs, the classic deterministic method to 

estimate dietary exposure is accepted, in specific cases the biomonitoring studies, 

leading to the measurement of biomarkers of exposure, may represent a 

complementary method to directly confirm an exposure event or to substantiate the 

relevance or applicability of results derived from classical studies (Kroes, 2002). 

Moreover, researches on mycotoxins in biological fluids greatly contribute to 

clarify the mechanism of health impairment attributable to these toxic compounds 

and to elucidate the dose–response relationship (Miraglia, 1996). 

The use of biomarkers is a tool that is still being explored in the mycotoxin field 

but is gaining more and more reliability for the most important mycotoxins in 

different population groups. Biomarkers represent a measure of the overall 

exposure and they are unable to discriminate between different sources of exposure 

(i.e. food or airborne) (Aitio, 1999) and in some cases this may represent a limit or 

a constrain to be taken into account. Biomarkers represent a parallel approach to 

the classic estimates of exposure based on food consumption and concentration 

levels, having the advantages of measuring exposure over time, estimating exposure 

directly (not relying on models and uncertainty assumptions) and assessing 

individual estimates (especially useful for specific subpopulations e.g. vegetarians, 

celiac patients). 
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2.2. Aflatoxins 

On the basis of their potent toxic effects aflatoxins, in particular aflatoxin B1 (AFB1) 

[CAS number: 1162-65-8], are historically the main toxins of concern since their 

characterization in 1958. These toxins are mainly produced by Aspergillus flavus 

and Aspergillus parasiticus, particularly in hot and humid areas, together with 

Aspergillus nomius and Aspergillus pseudotamarii (Ito, 2001; Kurtzman, 1987). 

Moisture higher than 85% and temperatures above 25°C are favorable conditions 

to the growth of aflatoxin producing fungi during storage (Diener, 1969). Aflatoxin 

B-hydroxilated metabolites, aflatoxins M1 and M2 [CAS number: 6885-57-0], are 

two toxins occurring in milk and derived products, as an effect of the fast 

metabolism of aflatoxins B1 and B2 (AFB2). 

 

2.2.1. Physical and chemical properties 

Aflatoxins (Figure 1) are substances that are chemically related to 

difuranocoumarin and classified in two broad groups according to their chemical 

structure; the difurocoumarocyclopentenone series, or B series, including AFB1 and 

AFB2 [CAS number: 7220-81-7], and the difurocoumarolactone series, or G series, 

including aflatoxin G1 (AFG1) [CAS number: 1165-39-5], aflatoxin G2 (AFG2) 

[CAS number: 7241-98-7] and aflatoxin M1 (AFM1) [CAS number: 6795-23-9].  

The G series contains a D-lactone ring, while the B series contains a cyclopentenone 

ring, which is responsible for the major toxicity of the B series. The aflatoxins 

fluoresce strongly in UV light (ca. 365 nm), the B series produces a blue 
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fluorescence whereas the G series produces green fluorescence. Aflatoxins are 

crystalline substances, insoluble in non-polar solvents, slightly soluble in water 

(10–20 µg/mL) and freely soluble in moderately polar organic solvents (e.g. 

chloroform, methanol), especially in dimethyl sulfoxide (Cole, 1981; O’Neil, 

2001). Aflatoxins in dry state are very stable to heat up to their melting point. Pure 

aflatoxins are unstable to UV light in the presence of oxygen. Unstable to extremes 

of pH (< 3 or > 10). Unstable in the presence of oxidizing agents (Castegnaro, 1980, 

1991). Under alkaline conditions, the lactone ring opens and the aflatoxins are 

apparently absent; however, the reaction is reversible upon acidification. 

Ammoniation, at high temperature and high pressure opens the lactone ring and 

results in decarboxylation, this reaction is not reversible. 
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Figure 1. Chemical structure of aflatoxins. 
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2.2.2. Toxicity and metabolism 

Aflatoxins are characterized by acute and chronic toxic effects. The target organ is 

the liver, AFB1 is hepatotoxic, and several epidemiological studies related AFB1 

assumption to cellular hepatocarcinoma (HCC) that is the major cause of death in 

many parts of the world. AFB1 is cancerogenic and genotoxic and is classified in 

group 1 from the International Agency for Research on Cancer (IARC, 1993). 

Few cases of acute human poisoning were recorded, however there are known cases 

for animals, as Turkey X disease. Aflatoxicosis is characterized by hemorrhages, 

oedema, liver damage and can lead to death (IARC, 2012). 

Aflatoxins metabolism has been extensively studied in animals and humans, this 

knowledge has provided the basis for development of biomarkers. 

AFB1 absorption occurs mainly in the small intestine (Wilson, 1985). Its 

permeability to the hepatocytes bring to accumulation in the liver, which is the 

principal organ for the xenobiotic transformation metabolism. Aflatoxins toxicity 

is activated by phase I of xenobiotic transformation metabolism. Among aflatoxins, 

AFB1 is characterized by stronger toxic effects because of highly efficient 

metabolic activation with respect to the other forms. 

AFB1 is activated by cytochromes P450. The major CYP enzymes involved in 

human aflatoxin metabolism are CYP3A4 and 1A2. CYP3A4 is the predominant 

cytochrome in human liver and metabolizes AFB1 mainly to exo-8,9-epoxide with 

much less efficient formation of AFQ1 which represents the detoxification product 

(Wang, 1998). Also CYP1A2 can lead to formation of exo-epoxide, but also a 
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considerable amount of endo-epoxide is formed, as well as the hydroxylated AFM1 

(Gallagher, 1996; Ueng., 1995). 

The exo-epoxide binds to DNA to form the predominant 8,9-dihydro-8-(N7-

guanyl)-9-hydroxy-AFB1 (AFB1–N7-Guanine) adduct that confers the mutagenic 

properties to the compound. The positively charged imidazole ring of the AFB1-N
7-

Guanine adduct promotes depurination and, consequently DNA damage (Wang, 

1999). The AFB1-N
7-Guanine can be found in urine in a 3-day period and represents 

approximately the 0.2% of ingested AFB1. AFB1-N
7-Guanine is a validated 

biomarker of exposure for AFB1 (Groopman, 1985). 

AFM1 is a poorer substrate for epoxidation and, consequently, is less mutagenic, 

carcinogenic and toxic than AFB1. AFM1 is the major AFB1 metabolite excreted in 

milk and urine (1.2 and 2.2% of dietary AFB1, respectively) and is a validated 

biomarker of recent exposure (Groopman, 1985). 

The exo- and endo-epoxides in blood are hydrolyzed with non-enzymatic reaction 

to AFB1-8,9-dihydrodiol that form a dialdehyde phenolate ion. 

Dialdehydes with a ring opening base-catalyzed reaction does not bind to DNA, but 

can form Schiff bases with primary amine groups for example with lysine, to form 

protein adducts such as aflatoxin–albumin (Wild, 2002). This adduct can be reduced 

by proteolysis at AFB1-Lysine that is a biomarker of a 3-4-weeks period exposure; 

it was estimated that 1.4 – 2.3% of ingested AFB1 is covalently bound to albumin 

(Wild, 1992). 
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Considering the metabolic pathway of aflatoxin B1, it was decided to determine 

AFB1, AFM1 and AFB1-N
7-Guanine adduct in urine and AFB1 and AFB1-Lysine 

adduct in serum samples. 

 

2.3. Ochratoxin A 

Ochratoxins A (OTA) [CAS number: 303-47-9], B and C (Figure 2) are compounds 

containing a phenylalanine moiety attached to a dihydroisocoumarin group via an 

amide bond. OTA, the toxin of most concern, also contains a chlorine atom on the 

aromatic ring, which accounts for its toxicity. Ochratoxins are produced by both 

Aspergillus ochraceus and Penicillium viridicatum (among others), with OTA 

being the most relevant toxin (Ciegler, 1973). 

 

 

 

Figure 2. Chemical structure of ochratoxins. 
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2.3.1. Physical and chemical properties 

OTA is a white odorless crystalline solid (Pohland, 1982), intensely fluorescent in 

UV light, emitting green and blue fluorescence in acid and alkaline solutions, 

respectively, due to two different forms, i.e. closed or open lactone ring, 

respectively. The melting point is 59°C when recrystallized from benzene–hexane 

(Natori, 1970); 169°C when recrystallized from xylene (Van der Merwe et al., 

1965a, 1965b); 168–173°C after drying for 1 hour at 60°C (Pohland, 1982). OTA 

shows specific rotation with [α]20
D –118° (c = 1.1 mmol/L in chloroform) (Van der 

Merwe, 1965a, 1965b); [α]21
D –46.8° (c = 2.65 mmol/L in chloroform) (Pohland, 

1982). As for the UV spectrum, at λmax of 214, 282, and 332 nm, extinction 

coefficients of 37.2×10-3, 0.89×10–3, and 63.3×10–3 L×mol–1×cm–1, respectively, 

have been reported (Cole, 1981). OTA is moderately soluble in polar organic 

solvents (e.g. chloroform, ethanol, methanol) and is partially degraded under 

normal cooking conditions (Müller, 1983). The stability of OTA to heating 

conditions depends on the water activity of the medium (Subirade, 1996; Van der 

Stegen, 2001). The lactone ring opens under alkaline conditions, but the reaction is 

reversible. Solutions of OTA are completely degraded by treatment with an excess 

of sodium hypochlorite. Reaction in methanol and hydrochloric acid yields the 

OTA methyl ester, which can be used as a confirmatory reaction. 
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2.3.2. Toxicity and metabolism 

The primary effect of OTA in all farm animals is nephrotoxicity. Fatty liver can occur 

in poultry. The most sensitive indicator of acute ochratoxicosis in chickens is the 

reduction in total serum proteins and albumin. A decrease in phosphoenolpyruvate 

carboxykinase in the kidney is a sensitive and specific indicator in pigs (Krogh, 1992; 

Marquardt, 1992). 

The mechanism of action in farm animals is unclear. However, the structural similarity 

of OTA to phenylalanine and the fact that it inhibits many enzymes and processes that 

are dependent on phenylalanine, strongly suggest that OTA acts at least partially by 

disrupting phenylalanine metabolism (CAST, 2003; Riley, 2011). 

In addition to inhibition of protein synthesis via binding to phenylalanine - tRNA 

synthetase, recent studies have demonstrated the ability of OTA to induce oxidative 

stress, reduce cellular defense, and alter signalling pathways involved in various aspects 

of cellular and mitotic regulation (Mally, 2009). 

OTA is rapidly absorbed, the half-life in plasma depends on the extent of binding 

to plasma proteins. Published reviews have extensively summarized evidence on the 

absorption, distribution, metabolism, and mechanisms of action of OTA (IARC, 

1993; Pfohl-Leszkowicz, 2007; Marin-Kuan, 2008; Mally, 2009). 

Wide species differences have been reported in the serum half-life of OTA in vivo. 

In humans, the elimination of OTA follows a two-phase pattern, a fast excretion 

followed by a slow clearing, with a calculated plasma half-life of 35 days. Even 

infrequent exposure (consumption of contaminated food once a week or even once a 

month) can result in persistent blood levels of OTA (Studer-Rohr, 2000). Blood 
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samples from healthy people living in European countries show OTA levels in the 

range 0.1–40 ng/mL (WHO, 2008). 

The parent molecule is the major compound found in blood, whereas ochratoxin α is 

the major component detected in urine (Studer-Rohr, 2000). OTA is absorbed from 

the gastrointestinal tract in mammals and becomes strongly bound to plasma 

proteins (predominantly albumin) in blood, whereby it is distributed to the kidneys, 

with lower concentrations in liver, muscle, and fat. 

OTA is metabolized by several different CYP enzymes, depending on the species 

and tissue involved. In cells expressing human CYP enzymes, the main metabolite 

was 4(R)-hydroxy- OTA formed by CYP1A2, 2B6, 2C9, 2D6, and 2A6, whereas 

the 4(S)- hydroxy-OTA derivative was formed by only CYP2D6 and 2B6 (Pfohl- 

Leszkowicz, 2007). 

Identified OTA metabolites include not only these two hydroxylated species but 

also 10-hydroxy-OTA and ochratoxin α, which is formed by hydrolysis of the 

peptide bond in OTA, the elimination of the phenylalanine moiety accounts for its 

non- toxicity. 

The kidney is the major target organ for adverse acute effects of OTA (Pfohl- 

Leszkowicz, 2007; WHO, 2002). Short-term toxicity studies in mice, rats, dogs, 

and pigs have shown both time- and dose-dependent development of progressive 

nephropathy. Significant sex and species differences exist, as well as differences 

due to route of administration. 

Other toxic effects include cardiac and hepatic lesions in rats, lesions of the 

gastrointestinal tract and lymphoid tissues in hamsters, myelotoxicity in mice, and 
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kidney lesions in chickens. Pigs appear to be the most sensitive species to the 

nephrotoxic effects; the lowest- observed-effect level (8 µg/kg bw) was used as the 

basis for establishing the Tolerable Weekly Intake (TWI) which was set by EFSA 

at 120 ng/kg bw (EFSA, 2006). 

Due to the OTA strong interaction with serum albumin (yield>99%) (Chu, 1974), the 

presence of OTA itself in serum samples can be considered as a biomarker of exposure. 
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2.4. State of the art 

Mycotoxins biomonitoring studies are mainly performed by LC-MS/MS, this 

approach allows to reach accuracy, selectivity and low LOD/LOQ values suitable 

for biological fluid analysis where mycotoxins content is quite low when compared 

to food and feed concentration levels (Capriotti, 2012; Warth, 2013). Recently, high 

resolution mass spectrometry (HRMS) methods for mycotoxins determination in 

biological fluids were also published. 

In this study an Orbitrap Q-Exactive was used, this HRMS drives high resolution 

and accurate mass data, generating high resolution measurements of up to 500000 

FWHM. When the instrument generates full-scan HRMS data during untargeted 

analysis, identification of novel compounds and retrospective data analysis are 

accomplished without the need to re-run samples. During targeted analysis scans, 

the instrument achieves confirmation and identification of residual small and large 

molecules (Righetti, 2016). 

A research in the literature of methods on mycotoxin determination by LC-HRMS 

in biological fluids was performed before starting the methods set up for this 

project. 

The first published method was the quantitative determination of zearalenone and 

its major metabolites in chicken and pig plasma samples (De Baere, 2012), followed 

by the study of Rubert et al. (2014) reporting a multi-mycotoxins method in milk 

also including AFB1 and OTA determination. Slobodchikova and Vuckovic (2018) 

published a high resolution mass spectrometry method for monitoring 17 

mycotoxins in human plasma including AFB1, for which a LOD of 40 pg/mLserum 
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was reported, and OTA, for which the obtained recovery factor was not acceptable 

and the toxin excluded from the quantitative determination. The recent work of 

McMillan et al. (2018) reports the determination of the AFB1-Lysine adduct in 

serum samples of Nigerian children. None of the previous work is able to determine 

the needed mycotoxins/matrix combination, in addition the published methods 

report LOD/LOQ not fitting with the requirements set for this biomonitoring study. 

Regarding the sample preparation, for urine and serum purification and 

concentration different approaches are reported starting with light treatment and 

sample manipulation such as liquid-liquid extraction (LLE) (Meucci, 2005; Palli, 

1999; Slobodchikova, 2018) that may be followed by further treatments such as 

QuEChERS (SLLE) (De Santis, 2017), or the employment of SPE cartidges 

(Brezina, 2014; Jager, 2016; McCoy, 2005). Also the use of mycotoxin specific 

immunoaffinity column (IAC), that allows to reach high selectivity and sensitivity 

but only on a very limited number of analytes, is reported (Ahn, 2010; Breitholtz, 

1991; Dinis, 2007; Petkova-Bocharova, 2003; Sabbioni, 1990; Solfrizzo, 2011; 

Wild, 1992). Dilute&shoot approach may be conveniently applied for urine, 

providing that the LOD/LOQ requirements are fulfilled, but is not suitable for 

serum determination due to the matrix complexity (Gerding, 2015). 
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2.5. Aim of the work 

The presented study was performed in the framework of the EFSA project 

“Biomonitoring data as a tool for assessing aflatoxin B1 exposure of workers – 

BIODAF” and aims to explore the validity of the biomonitoring studies as a tool to 

investigate the intake of mycotoxins in population groups, such as workers 

operating in risky workplaces, being potentially exposed to mycotoxins through the 

inhalation of contaminated dust and/or by dermal contact. 

The objective is to produce a more accurate exposure and risk assessment of these 

population groups, by considering the fraction derived from the workplace 

environment by inhalation of dusts and/or dermal contact. The use of biomarker 

approach allows determining the possible contribution to the overall exposure due 

to potential professional exposure by enrolling for the study a group of 

professionally exposed workers as well as a control group composed of not exposed 

volunteers. The study also intends to contribute to obtain a more comprehensive 

and updated dataset on which management actions, aimed at minimizing the risk 

and improving the workplace conditions and workers’ health, should be generated. 

In particular, this study was conducted on two groups of population, the exposed 

workers groups, that includes staffs working in an Italian feed plant, and a control 

group composed by administrative employees (non-exposed) working on the same 

plant. Urine and serum samples were collected for the determination of mycotoxins, 

AFB1, AFM1 and AFB1-N
7-Guanine adduct were analyzed in urine samples, while 

AFB1, AFB1-Lysine adduct and OTA were analyzed in serum samples. 
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The analytical determination of mycotoxins and their metabolites should be based 

on validated method with performance characteristics fitting for the purpose of 

biomonitoring. Therefore, the study also includes the set up and validation of 

suitable methods for the determination of the selected analytes in specimens. In 

particular, for urine analysis two methods were optimized and validated, a 

dilute&shoot method and an immunoaffinity clean-up method; for serum analysis 

a method based on liquid-liquid extraction and QuEChERS purification was 

developed and fully validated. 

Moreover, due to the unavailability of commercial standard of AFB1-N
7-Gaunine 

and AFB1-Lysisne, the adducts were synthetized. Unfortunately, it was not possible 

to purify the synthesis products and to determine their concentrations; however, the 

obtained adducts were used for methods set up and for qualitative analysis 

(presence/absence) in the collected samples. 

The synthesis of AFB1-N
7-Guanine and the validation of the dilute&shoot method 

for AFB1, AFM1 and AFB1-N
7-Guanine analysis were included in the conclusive 

thesis of dr Gianmarco Mazzilli (AA 2016/2017), while the synthesis of AFB1-

Lysine adduct and the development and validation of the serum method were 

included in the conclusive thesis of dr Elisa Sonego (AA 2017/2018). As supervisor 

of dr Mazzilli and dr Sonego thesis I wish to thank them for the valuable work 

performed and the results obtained as well as for the contribution to this broader 

work. 
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3. MATERIALS AND METHODS 

3.1. Samples 

The investigation was conducted in a large feedstuff plant located in Northern Italy 

(Reggio Emilia), producing every year about 540000 metric tons of feedstuffs (e.g., 

flour, compost and pellet), nearly 100000 metric tons derived from maize. 

The study was conducted under the supervision of the Local Health Unit of Reggio 

Emilia and was approved by the Ethical Committee of the Reggio Emilia Province. 

The plant management of the company agreed to participate according to the 

criteria and principles set by Italian legislation on workers’ health and safety and 

the study on human samples was also agreed with trade union representatives and 

the competent medical team. The workers were informed about the purpose of the 

study through a public meeting. During the meeting, formal consent for 

participation was individually requested and signed. 

Two groups of volunteers were selected, the exposed group corresponding to all 

workers in direct contact with some risky activities such as the downloading of the 

raw material, its handling and the cleaning procedures, and the control group 

corresponding to people working in the same company but, designated to perform 

other activities to be considered not risky for the absence of contaminated 

environmental dusts. 

The collection of human urine and serum samples was carried out on the work site 

by a physician and a nurse. The urine of exposed workers was collected in the 

morning and delivered to the medical staff before starting the morning shift. At that 

time, a blood sample was taken. A total of 61 male volunteers were enrolled. Blood 
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and urine samples were collected on Monday and Friday morning of the same 

working week from 32 exposed workers (employees working in dusty plant areas) 

and 29 non-exposed workers (employees with administrative duties working far 

from the dusty areas) as control group. Monday was chosen since it reflects a 

situation characterized by a preceding two-days washing period and Friday was 

selected with the aim to verify the possible accumulation of mycotoxins intake over 

the week of sampling. Blood samples were collected in 10 mL cryogenic tubes and 

immediately transported in refrigerated boxes at 0°C to the analytical laboratory. 

Urine samples were collected using sterile tubes (VACUETTE® Urine System, 10 

mL, Greiner Bio-One Gmbh, 4550 Kremsmüster, Austria). Serum and urine 

samples were stored at -20°C until analysis. 

The mean value and range for age and body weight of the enrolled volunteers are 

reported in Table 1. 

 

 

Table 1. Distribution of enrolled volunteers by group, age and body weight. 

Volunteers 
Number of 

subject 

Mean age (range); 

years 

Mean body weight (range); 

kg 

Exposed 32 53 (32-65) 80.1 (62-99) 

Non - exposed 29 48 (33-63) 83.4 (64-125) 

Total 61 - - 
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3.2. Analytical method 

3.2.1. Apparatus 

Beside the ordinary laboratory equipment, for the analytical determination a 

UHPLC-HRMS system was used. The analytes were separated with Ultra High 

Performance Liquid Chromatography (UHPLC) (Thermo ScientificTM Dionex 

UltimateTM 3000; (©2016 Thermo Fisher Scientific Inc.). The UHPLC is interfaced 

with a High Resolution Mass Spectrometer (Orbitrap™ Q-Exactive™; ©2016 

Thermo Fisher Scientific Inc). 

The scheme of the Q-Exactive is reported in Figure 3. 

 

 

 

Figure 3. Schematic of the Q-Exactive mass spectrometer. 
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The Q-Exactive consists of 5 main components: 

 Ion source (HESI II) 

 Injection flatapole with mass resolving capabilities 

 Quadrupole mass filter for precursor ion selection 

 Intermediate storage device (C-Trap) for short pulse injection 

 Collision cell for performing HCD (Higher Energy Collisional 

Dissociation) experiments 

 Orbitrap analyzer for Fourier transform mass analysis 

 

Sample is introduced into HESI II probe from the UHPLC system. The HESI II 

probe transforms ions in solution into ions in the gas phase by using electrospray 

ionization (ESI) in combination with heated auxiliary gas. 

The ions are transferred into the C-Trap through four stages of differential pumping. 

The injection flatapole transmits ions from the source to the quadrupole, the 

injection flatapole also performs coarse pre-filtering of ions according to their m/z 

ratios. In the C-Trap, the ions are accumulated and their energy is dampened with 

a bath gas (N2). The ions are then injected through three further stages of differential 

pumping by a lens system (Z-lens) into the Orbitrap analyzer where mass spectra 

are acquired by image current detection. The vacuum inside the Orbitrap analyzer 

is maintained below 1E-9 mbar. Ions are passed through the C-Trap into the HCD 

cell. The HCD cell adds a Higher Energy Collision Induced Dissociation capability 

to the instrument, this allows performing all-ion fragmentation (AIF) experiments. 
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After the ions have been fragmented in the HCD cell, the HCD cell voltages are 

ramped up and the ions are transferred back into the C-Trap from where they are 

injected into the Orbitrap analyzer for detection. 

 

 

3.2.2. Chemicals and reagents 

Chemicals and solvents used for sample preparation were ‘pro-analysis’ quality or 

better. LC-MS grade solvents, including water, methanol, acetonitrile (ACN) and 

formic acid (FA) were purchased from Fisher Scientific (Milano, Italy). The 

following reagents were purchased from Sigma-Aldrich (Darmstadt, Germany): 

ammonium formate, meta-chloroperoxybenzoic acid, protease from Streptomyces 

griseus, type XIV ≥3,5 units/mg, guanine (purity ≥98%), L-lysine (purity ≥98%). 

QuEChERS were from Waters (DisQuE, Waters, Milford, MA, USA). 

The analytical reference standards of AFM1 and OTA were purchased as stock 

solutions (0.5 and 10 µg/mL in ACN for AFB1 and OTA respectively) from Biopure 

(Tulln, Austria). The internal standards U-[13C17]- AFB1 (99.3% 13C), U-[13C17]-

AFM1 (98.3% 13C) and U-[13C20]-OTA (99.2% 13C) were also purchased as ACN 

solution (0.5 µg/mL AFB1 and AFM1, 10 µg/mL OTA) (Biopure). Crystalline 

powder of AFB1 from Aspergillus flavus (purity ≥98%) were purchased from 

Sigma-Aldrich (Darmstadt, Germany). 
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3.2.3. AFB1-N
7-Guanine adduct synthesis 

The AFB1-N
7-Guanine adduct was synthetized since it was not commercially 

available at the moment of the study. The synthesis was made accordingly with 

Vidyasagar et al. (Vidyasagar, 1997) as follows: meta-chloroperoxybenzoic acid 

(MCPBA), 20 mg in 4 mL of dichloromethane, was washed with 100 mM 

phosphate buffer, pH 7.4 (4 mL x 4). The resulting MCPBA solution was passed 

through anhydrous sodium sulphate to remove residual water. 

AFB1 (0.64 µmoles) was dissolved in 250 µL of dichloromethane and was 

converted to AFB1-8,9-epoxide (Figure 4) by addition of 250 µL of the above 

MCPBA solution (4 µmoles) and 500 µL of 100 mM phosphate buffer, pH 7.2. The 

reaction was carried out at 5°C for 100 min with continuous vigorous stirring. At 

the end of 100 min the buffer fraction was pipetted out. 

 

 

 

Figure 4. Electrophilic addition of oxygen to the double bond. 

 

 

Guanine dissolved in 0.1 N HCl (0.32 µmoles) was taken in 500 µL of 100 mM 

phosphate buffer, pH 7.4 (maximum solubility of guanine in phosphate buffer was 
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found to be 140 µg/mL). The buffer with guanine was added to the tube containing 

AFB1-8,9-epoxide in dichloromethane and the reaction was continued for 60 min 

at 5°C with continuous vigorous stirring. At the end of 60 min the reaction mixture 

was centrifuged at 4000 rpm for 5 min. The organic phase was separated and the 

buffer fraction was repeatedly washed with dichloromethane (500 µL x 3 times). 

Both the aqueous and organic phases were checked for the presence of AFB1-N
7-

Guanine adduct by UHPLC-HRMS (for experimental conditions see section 

3.2.5.2). Chromatograms and spectra obtained for AFB1-N
7-Guanine are reported 

in Figures 5 and 6, respectively. Due to the difficulties in assessing the 

concentration level of the synthetized adduct, it was used only for a qualitative 

evaluation of presence/absence in the collected urine samples. 
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Figure 5. Extracted ion chromatogram for AFB1-N7-Guanine ([M+H]+, m/ztheo = 480.11499, 

retention time 4.38 min). 

 

 

 

Figure 6. Data dependent mass spectrum (dd-MS2) of AFB1-N7-Guanine. 

RT: 0.00 - 15.00 SM: 15G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Time (min)

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

R
e

la
tiv

e
 A

b
u

n
d

a
n

ce

4.38

4.36

4.39
4.36

4.40

4.34
4.41

4.424.33

4.44
4.444.32

4.46 4.913.50 5.223.513.480.69

4.36

4.40

4.44

NL: 5.43E6

m/z= 
480.11259-
480.11739 F: FTMS + 
p ESI Full ms 
[100.00-700.00]  MS 
20_12_17_Spk_Gua

NL: 2.01E7

TIC F: FTMS + p ESI 
d Full ms2 
480.11@hcd65.00 
[50.00-510.00]  MS 
20_12_17_Spk_Gua

20_12_17_Spk_Gua #970-1005 RT: 4.36-4.44 AV: 3 NL: 2.65E5
F: FTMS + p ESI d Full ms2 480.11@hcd65.00 [50.00-510.00]

138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

152.05678

165.05499

153.04090

161.05988

147.04430

167.07074

137.05996

145.06485

149.73211

141.07021

166.05828
159.08087157.06487143.08524 151.03951

142.07785

144.08100

155.06039
146.06031 164.49245

148.04798 169.07720

160.07551

168.08078

162.09086154.02666



 

 

31 

3.2.4. AFB1-Lysine adduct synthesis 

The AFB1-Lysine adduct was synthetized since it was not commercially available 

at the moment of the study. The synthesis was made accordingly with the 

procedures available in the literature and described by Sass et al. (Sass, 2014). The 

synthesis of the AFB1-Lysine started by the preparation of AFB1-8,9-epoxide as 

summarized in Figure 7. 

 

 

 

 

Figure 7. Steps for AFB1-Lysine adduct synthesis. 
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The MCPBA (16 mg, 51 µmoles) was dissolved in 1 mL of dichloromethane and 

washed four times with phosphate buffered saline pH 7.4 (4 x 1 mL). The aqueous 

phase was removed and 0.8 mL of phosphate buffer (0.1 M, pH 7.6) was added to 

the organic phase. 

The mixture was cooled to 0°C, and 2 mg of AFB1 (6 µmoles) dissolved in 1 mL 

of dichloromethane was added. The reaction remained under agitation for 6 hours 

at 0°C. The aqueous phase was pipetted off, and the organic phase was dissolved in 

1 mL of dichloromethane and washed with 0.5 M sodium thiosulfate (3 x 1 mL). 

Dichloromethane was removed by evaporation in a stream of nitrogen (Baertschi, 

1988; Raney, 1992). Due to the instability of AFB1-epoxide, the reaction mixture 

containing the AFB1-8,9-exo/endo-epoxide was submitted to reaction with 0.8 mL 

of phosphate buffer (0.1 M, pH 7.6) to form the AFB1-dialdehyde in equilibrium 

with AFB1-diol, which are more stable than the corresponding AFB1-epoxide 

(Scholl, 2008). After 20 min of stirring, the solution was washed with 

dichloromethane (3 x 0.8 mL) to remove the unreacted AFB1. Afterwards, L-lysine 

(5 mg) previously dissolved in 0.4 mL phosphate buffer (0.1 M, pH 7.6) was added 

in the aqueous phase containing the products AFB1-dialdehyde and AFB1-diol 

(approximately 1 mg in total). The reaction remained under stirring for 24 hours to 

form the product AFB1-Lysine. Chromatograms and spectra obtained for AFB1-

Lysine are reported in Figures 8 and 9, respectively. For experimental conditions, 

see section 3.2.6.2. Due to the difficulties in assessing the concentration level of the 

synthetized adduct, it was used only for a qualitative evaluation of presence/absence 

in the collected serum samples. 
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Figure 8. Extracted ion chromatogram for AFB1-Lysine ([M+H]+, m/ztheo = 457.16054, retention 

time 4.84 min). 

 

 

 

Figure 9. Data dependent mass spectrum (dd-MS2) of AFB1-Lysine. 
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3.2.5. Urine 

3.2.5.1. Sample preparation 

 

Dilute&Shoot 

Urine samples were allowed to reach room temperature, a volume of 100 µL was 

mixed with 860 µL of H2O LC-MS grade, for quantification purpose 20 µL of U-

[13C17]-AFB1 5 ng/mL in ACN and 20 µL of U-[13C17]-AFM1 10 ng/mL in ACN 

were added to the sample. The diluted sample was centrifuged for 10 minutes at 

10000 rpm before the injection of 10 µL into the UHPLC-HRMS system. 

 

Immunoaffinity column clean-up 

Urine samples were allowed to reach room temperature. Two mL of urine sample 

were mixed with 10 mL of phosphate buffered solution (PBS, pH=7.4) and applied 

to an IAC containing antibodies specific to AFB1 and AFM1 and tested for cross-

reactivity with AFB1-N
7-Guanine adduct (Easy-extract aflatoxins; R-Biopharm, 

Darmstadt, Germany). The IAC was washed with 30 mL of H2O (10+10+10 mL), 

then the toxins were eluted with 1 mL of MeOH (500+500 µL). Five hundred µL 

of eluted sample were added with 20 µL U-[13C17]-AFB1 2.5 ng/mL in ACN, 20 µL 

U-[13C17]-AFM1 5 ng/mL in ACN and 460 µL of H2O. Twenty µL of the sample 

were injected into the UHPLC-HRMS system. In Figure 10, the scheme of the 

sample preparation is reported. 
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Figure 10. Scheme of the sample preparation for AFB1, AFM1 and AFB1-N7-Guanine analysis in 

urine with IAC clean-up method. 

 

3.2.5.2. LC-HRMS analysis 

Determination was performed by UHPLC-HRMS. Chromatographic separation 

was performed using UHPLC Dionex UltiMate 3000 (Thermo Scientific, San Jose, 

CA, USA) with Waters RP column Acquity BEH C18 (1.7 µm, 100 × 2.1 mm, 

Milford, MA, USA). The flow rate of 0.3 mL/min and the column temperature of 

40° C were used for all analytes. The mobile phases A and B were water and 

methanol containing 0.002% formic acid and 2 mM ammonium formate. The 

following step gradient was used: 20% B increase to 99% in 10 min, keep isocratic 

at 99% B for 4 min, from 14 to 14.6 min return to 80% B, and finally re-equilibrate 

the column at 20% B for 2.4 min. The injection volume was set at 10 µL for 

dilute&shoot method and 20 µL for IAC method. High-resolution MS (HRMS) 

analysis was performed using Q-Exactive Orbitrap equipped with HESI source 

(Thermo Scientific, San Jose, CA, USA). The following ESI (+) parameters were 

• 2mL urine
• +10 mL PBS (pH 7,4)

 IAC

• Pass the diluted extract
•Wash with 30 mL H2O
• Elute with 500+500 µL MeOH

• 500 µL of the eluted sample

• 460 µL H2O

•+20 µL U-[13C17]-AFB1 2,5 ng/mL
•+20 µL U-[13C17]-AFM1 5 ng/mL

 Vinj = 20 µL UHPLC-HRMS



 

 

36 

used: source voltage 3.5 kV, in-source CID 18 eV, NCE 50, capillary temperature 

320°C, auxiliary gas heater temperature 350° C, sheath gas flow 40, S-lens RF level 

75 and auxiliary gas flow 14. The MS acquisition was performed in Full Scan/Data 

Dependent (full MS/dd-MS2) for confirmatory purpose. In this acquisition mode 

the Q-Exactive Orbitrap automatically switch between full scan (mass range 100-

700 m/z; automatic gain control target 1 × 106 ions, and resolution of 70.000) and 

MS/MS acquisition, performing data-dependent scans. Precursor ions, selected by 

the quadrupole, are sent to the HCD collision cell; here they are fragmented to 

obtain ion spectra. At this stage resolution was set at 17.500 and automatic gain 

control target 2 × 105 ions. Normalized collision energy (NCE) was set at 25 and 

27 for AFB1 and AFM1 respectively and at 40 and 90 for AFB1-N
7-Guanine adduct. 

Precursor ion, fragments and collision energy (CE) used for the determination of 

the selected mycotoxins are reported in Table 2. 

 

Table 2. Precursor ion, fragments and collision energy used for the determination of the selected 

mycotoxins in urine samples. 

 Chemical 

formula 

Precursor ion (m/z) 

[M+H]+ 
Fragment (m/z) NCE(a) 

AFB1 C17H12O6 313.07066 
285.07571; 

241.04952 
25 

U-[13C17]-AFB1 C17H12O6 330.12770 - - 

AFM1 C17H12O7 
329.06558 + 

351.04752(b) 

273.07538; 

229.04937 
27 

U-[13C17]-AFM1 C17H12O6 
346.12261 + 

368.10456 
- - 

AFB1-N7-Guanine C22H17N5O8 480.11499 
152.05678, 

165.05499 
40; 90 

(a) NCE: Normalized Collision Energy 

(b) [M+Na]+ 
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All analytical batches included analysis of appropriate extracts and solvent blanks, 

solvent calibration curves at the beginning and end of the analytical batch, and 

injection of a calibration level every 10 sample injections to ensure LC–MS stability 

throughout the run. For data acquisition and processing, Xcalibur software 

4.0.27.19 was used. Mycotoxins were quantitated using the precursor ion which 

was extracted with ±5 ppm window. For AFM1 the sum of the molecular ion and 

the [AFM1+Na]+ signals was considered. 

The extracted ion chromatograms and dd-MS2 TIC obtained by the injection of the 

highest calibration solution are reported in Figure 11. The data dependent spectra 

of AFB1 and AFM1 are reported in Figure 12 and 13, respectively. The extracted 

ion chromatograms of a urine sample naturally contaminated with AFM1 is reported 

in Figure 14. 
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Figure 11. Extracted chromatograms obtained by the injection of the highest calibration solution. 

From the top AFB1 peak followed by dd-MS2 TIC of AFB1 fragments, AFM1 peak followed by 

dd-MS2 TIC of AFM1 fragments, the extracted ion chromatograms for U-[13C17]-AFB1 and U-

[13C17]-AFM1, respectively. 

 

 

 

Figure 12. Data dependent mass spectrum (dd-MS2) of AFB1. 
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Figure 13. Data dependent mass spectrum (dd-MS2) of AFM1. 

 

 

 

Figure 14. Extracted chromatograms obtained by the injection of a urine sample naturally 

contaminated with AFM1. From the top the extracted ion chromatograms of AFB1, AFM1, U-

[13C17]-AFB1 and U-[13C17]-AFM1, respectively. 
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3.2.5.3. Analytical quantification 

For mycotoxins quantification an internal standard (ISTD) approach was adopted. 

The internal standard for AFB1 and AFM1 was the 13C isotope labelled molecule in 

which all carbon atoms are substituted by the stable isotope 13C. The calibration 

curve was obtained by plotting the ratio (standard area/13C area) versus the 

concentration expressed in pg/mLurine. The calibration curve was obtained by fitting 

the data with a linear regression model based on least squares method. ISTD was 

applied to the sample prior to extraction allowing to correct for extraction efficiency 

and matrix effects. 
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3.2.6. Serum 

3.2.6.1. Sample preparation 

Serum samples were allowed to reach room temperature. Five hundred µL were 

diluted with 200 µL of PBS (pH=7.4), mixed with pronase solution (100 µL, 40 

mg/mL) and incubated in a water bath at 37°C for 18 hours. After enzymatic 

treatment with pronase, labelled internal standard solutions were added (20 µL U-

[13C17]-AFB1 5 ng/mL; 20 µL U-[13C20]-OTA 5 ng/mL). Serum sample was shacked 

for 5 min with 800 µL of n-hexane and centrifuged at 15000 rpm for 15 minutes at 

4°C. The sample was then extracted in a 2 mL Eppendorf tube with 1 mL of 

acidified ethyl acetate (1% formic acid) by shaking for 30 min. The sample was 

centrifuged at 15000 rpm for 15 minutes at 4°C and the supernatant transferred in 

a collection amber vial. One mL of ACN was then added to the serum residue, 

sample is vortexed and mixed with 300 mg of QuEChERS (DisQuE, Waters, 

Milford, MA, USA). The sample was centrifuged at 15000 rpm for 15 minutes at 

4°C and the organic layer transferred in a separate collection vial. Both collected 

organic phases were evaporated to dryness, reconstituted in 500 µL of MeOH:H2O 

10:90 v/v and 20 µL injected into UHPLC-HRMS system. In Figure 15, the scheme 

of the sample preparation is reported. 
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Figure 15. Scheme of the sample preparation for AFB1, OTA and AFB1-Lysine analysis in serum. 

 

 

3.2.6.2. LC-HRMS analysis 

Only slight modifications were applied for mycotoxins determination in serum with 

respect to the method previously reported for urine (Section 3.2.5.2). Namely, the 

following step gradient was used: 10% B increase to 99% in 10 min, keep isocratic 

at 99% B for 4 min, from 14 to 14.6 min return to 80% B, and finally re-equilibrate 

the column at 10% B for 2.4 min. The injection volume was set at 20 µL. For HRMS 

determination, the in-source fragmentation was not applied. Precursor ion, fragment 

and collision energy used are reported in Table 3. 

The analytical method used for detecting AFB1 in serum was also applied for the 

determination of OTA by the quantification of the free toxin. This extension to OTA 

was motivated by the explorative idea to evaluate a possible co-occurrence of AFB1 

and OTA in serum. 

PRETREATMENT

 Digestione enzimatica

• 500 µL serum
• +200 µL PBS 0.1 M (pH 7.4)
• +100 µL  pronase 40 mg/mL 18 h at
37 °C

• Centrifuge 15000 rpm, 4°C, 15 min

 Labelled ISTD addition

• +20 µL AFB1
13C 1,25 ng/mL

• +20 µL OTA 13C 50,0 ng/mL

 Cleaning step

• +800  µL  n-hexane
• Centrifuga 15000 rpm, 4 °C, 15 min

• 1 mL Ethyl acetate 1%HCOOH
• 30 min shake
• Centr 15000 rpm, 4°C, 15 min

Organic fraction
Dry the sample 40 °C under a 

stream of N2

• 500 µL MeOH/H2O 10/90
• Centrifuge 15000 rpm, 
4 °C 20 min

• Filtration (PTFE filter, 0,2 µm)

• 1 mL ACN + QuEChERS
• 3 min vortex
• Centr 15000 rpm, 4°C, 15 min

Organic fraction
Dry the sample 40 °C under a 

stream of N2

• 500 µL MeOH/H2O 10/90
• Centrifuge 15000 rpm, 
4 °C 20 min

• Filtration (PTFE filter, 0,2 µm)

AFB1 OTA AFB1-Lysine

First extract Second extract
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The extracted ion chromatograms and dd-MS2 TIC obtained by the injection of the 

highest calibration solution are reported in Figure 16. The data dependent spectra 

of AFB1 and OTA are reported in Figure 17 and 18, respectively. In Figure 19 the 

extracted ion chromatograms of a serum sample naturally contaminated with AFB1 

and OTA is reported. 

 

 

Table 3. Precursor ion, fragments and collision energy used for the determination of the selected 

mycotoxins in serum samples. 

 Chemical 

formula 

Precursor ion (m/z) 

[M+H]+ 
Fragment (m/z) NCE 

AFB1 C17H12O6 313.07066 
285.07571; 

241.04952 
50 

U-[13C17]-AFB1 C17H12O6 330.12770 - - 

AFB1-Lysine C23H24N2O8 457.16054 
394.12782, 

328.08112 
37 

OTA C20H18ClNO6 404.08954 
257.02147; 

239.01087 
40 

U-[13C20]-OTA C20H18ClNO6 424.15664 - - 

NCE: Normalized Collision Energy 
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Figure 16. Extracted chromatograms obtained by the injection of the highest calibration solution. 

From the top TIC of the full scan in the range 100-800, AFB1 peak followed by dd-MS2 TIC of 

AFB1 fragments, OTA peak followed by dd-MS2 TIC of OTA fragments, the extracted ion 

chromatogram for U-[13C17]-AFB1 and U-[13C20]-OTA. 

 

 

Figure 17. Data dependent mass spectrum (dd-MS2) of AFB1. 
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Figure 18. Data dependent mass spectrum (dd-MS2) of OTA. 

 

 

Figure 19. Chromatogram obtained by the injection of a serum sample naturally contaminated 

with AFB1 and OTA. From the top, the TIC of the full scan in the range 100-800, AFB1 peak 

followed by dd-MS2 of AFB1 fragments, OTA peak followed by dd-MS2 of OTA fragments and 

the extracted ion chromatograms of AFM1, U-[13C17]-AFB1 and U-[13C20]-OTA, respectively. 
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3.2.6.3. Analytical quantification 

For mycotoxins quantification an internal standard (ISTD) approach was adopted. 

The internal standard for AFB1 and OTA was the 13C isotope labelled molecule in 

which all carbon atoms are substituted by the stable isotope 13C. The calibration 

curve was obtained by plotting the ratio (standard area/13C area) versus the 

concentration expressed in pg/mLserum. The calibration curve was obtained by 

fitting the data with a linear regression model based on least squares method. ISTD 

was applied to the sample prior to extraction allowing to correct for extraction 

efficiency and matrix effects. 
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3.3. Method validation 

Identification criteria were set for all the analyzed mycotoxins. Linearity and LOD 

and LOQ of the analytical methods were assessed. Precision and trueness were 

assessed from repeated analyses on spiked blank urine and serum samples. 

Precision was evaluated by calculating the intermediate relative standard deviation 

(repeated analyses on different days), while trueness was estimated in terms of 

apparent recovery (RA). Extraction efficiency (RE) and matrix effect (SSE) were 

also evaluated during the validation process. 

 

3.3.1. Identification criteria 

According to the criteria reported in the DG SANTE guidance document on 

identification of mycotoxins in food and feed (SANTE/12089/2016), the retention 

time (RT) of the analyte in the sample extract should correspond to the average RT 

of the calibration standards measured in the same sequence with a tolerance of ±0.1 

min. Moreover, for the 13C-isotopically labelled analogue of the analyte (internal 

standard) added to the sample extract, the RT of the analyte should correspond to 

that of its labelled internal standard added to the pure solvent standard solution with 

a tolerance of ±0.05 min. For HRMS analysis identification is based on observation 

of the molecular ion (or, if not available, adducts) and at least one fragment that is 

specific for the selected analyte. 
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3.3.2. Linearity 

Linearity of the method was evaluated from six points calibration curves injected 

in triplicate for three consecutive days, for each mycotoxin/matrix combination. For 

each calibration point a response ratio between response of target compound and 

response of internal standard was calculated and plotted against concentration. 

Regression lines were plotted applying a linear regression model based on least 

squares method. 

The linearity was assessed by visual checking of the residual plot of response ratios 

(plotted in y-direction) versus the respective concentration levels (plotted in x-

direction). The final estimated linearity model was verified using the lack-of-fit test 

(significance of the test with pvalue below 0.05), to confirm that the selected 

regression and linearity were acceptable. Once visual checking of the residual and 

lack-of-fit test passed, the R squared coefficient was taken as a measure of linearity. 

 

3.3.3. Limit of detection and quantification  

The limit of detection (LOD) is defined as the smallest amount or concentration of 

analyte in the test sample that can be reliably distinguished from zero (Thompson, 

2002). 

The limit of quantification is the lowest concentration of analyte that can be 

determined with an acceptable repeatability and trueness (Thompson, 2002). 

According to Wenzl (Wenzl, 2016), the variability of multiple analyses of 

representative matrix blank samples may be used to estimate the LOD of an analyte 

in the respective matrix. If blanks do not exist or if a signal cannot be obtained from 
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blank analysis, a pseudo-blank sample (blank sample spiked at low level) may be 

used instead. The spiked blanks approach was used for LOD and LOQ assessment, 

the spiked sample was analyzed in ten replicates under repeatability conditions. The 

variability, expressed as standard deviation, obtained for the ten analyses of spiked 

blanks was used for the estimation of the critical value of LOD. Calculation was 

carried out according to Equation A. 

 

𝑥𝐿𝑂𝐷 = 3.9 ∗
𝑠𝑦,𝑏

𝑏
  (A) 

 

Where sy,b is the standard deviation of the 10 replicates and b represents the slope 

of a dedicated calibration curve at concentration levels close to the expected LOD 

value. 

According to Wenzl (Wenzl, 2016), the LOQ was estimated according to Equation 

B. 

 

𝑥𝐿𝑂𝑄 = 3.3 ∗ 𝑥𝐿𝑂𝐷  (B) 

 

The LOQ values obtained with the theoretical calculation approache were included 

in the validation as the lowest concentration level. 
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3.3.4. Apparent recovery, matrix effect and extraction recovery 

The validation was carried out on 5 different levels of contamination, including the 

calculated LOQ values, for each level triplicate analyses of spiked blank sample on 

2 consecutive days were performed (3 + 3 = 6 spiked samples for each validated 

level). Due to the limited amount of blank sample, especially for serum, validation 

experiments were conducted with the aim of minimizing the amount of sample 

needed. For this purpose, blank samples were spiked at the beginning of the 

analytical procedure, while isotopically labelled internal standards were added 

before injection into LC-HRMS system. The obtained data were used for apparent 

recovery (RA), matrix effect and extraction recovery (RE) calculations and for 

precision assessment. 

The apparent recovery is calculated as the ratio between the slope of the spiked 

sample curve, obtained from the spiked samples, and the slope of the calibration 

curve in pure solvent (Equation C). In this case, the curves were obtained 

considering the area and not the ratio with the labelled internal standard added for 

each mycotoxin. The RA represents the influence of the whole analytical process 

(sample preparation + determination) on the signal and it is also referred to as 

overall or total recovery of a method. RA was the parameter used for trueness 

evaluation. 

 

𝑅𝐴(%) =
𝑠𝑙𝑜𝑝𝑒𝑠𝑝𝑖𝑘𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒

𝑠𝑙𝑜𝑝𝑒𝑝𝑢𝑟𝑒 𝑠𝑜𝑙𝑣𝑒𝑛𝑡 
× 100  (C) 
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The matrix effect was evaluated in terms of Signal Suppression/Enhancement 

(SSE) and it was calculated, according to Equation D, as the ratio between the mean 

area of the labelled internal standard (ISTD) in the spiked sample extracts and in 

the pure solvent standard solutions. 

 

𝑆𝑆𝐸 (%) =  
𝐼𝑆𝑇𝐷 𝑚𝑒𝑎𝑛 𝑎𝑟𝑒𝑎𝑒𝑥𝑡𝑟𝑎𝑐𝑡

𝐼𝑆𝑇𝐷 𝑚𝑒𝑎𝑛 𝑎𝑟𝑒𝑎𝑝𝑢𝑟𝑒 𝑠𝑜𝑙𝑣𝑒𝑛𝑡
× 100  (D) 

 

 

The extraction recovery, accounting to incomplete extraction of the analyte from 

the matrix, was calculated from RA and SSE, according to Equation E. 

 

𝑅𝐸 (%) = 
𝑅𝐴

𝑆𝑆𝐸
× 100  (E) 

Precision was estimated in terms of intermediate precision as Relative Standard 

Deviation of repeatability (RSDr). 
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4. RESULTS AND DISCUSSION 

4.1. Method validation 

4.1.1. Identification criteria 

Identification criteria were met during validation for AFB1, AFM1 and OTA and 

were used for identification in the determination of each analyzed sample. 

 

4.1.2. Linearity 

Linearity was checked in the working range by the lack-of-fit test based on the 

analysis of variance (F test with pvalue < 0.05) and the plot of the residual values 

randomly distributed around zero, confirming the linearity. During routine 

analytical sessions an R2>0.990 was set as a criterion for calibration curve 

acceptability. 

In Table 4 the calibration curve ranges, the amount of labelled internal standard 

added to each calibration level and the correlation coefficients obtained for each 

mycotoxin/matrix combination are reported. In Figure 20 the calibration curves 

obtained for AFB1 and AFM1 in urine with dilute&shoot and IAC clean-up method 

are reported. Calibration curves for AFB1 and OTA in serum are reported in Figure 

21. 
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Table 4. Calibration curve range, labelled internal standard concentration and correlation coefficients obtained for each mycotoxin/matrix 

combination are reported. 

 
Calibration curve range 

(pg/ml) 

Labelled standard 

(pg/ml) 

R2 (RSD) 

 AFB1 AFM1 OTA 

U-[13C17]-

AFB1 

U-[13C17]-

AFM1 

U-[13C20]-

OTA 

AFB1 AFM1 OTA 

Urine – 

dilute&shoot 

5 – 100 10 - 200 - 10 20 - 

0.9965 

(0.04) 

0.9967 

(0.20) 

- 

Urine – IAC clean-

up 

2.5 - 50 5 - 100 - 50 100 - 

0.9973 

(0.09) 

0.9976 

(0.10) 

- 

Serum 2.5 – 50 - 250 - 5000 50 - 2000 

0.9963 

(0.20) 

 

0.9966 

(0.20) 
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Figure 20. Calibration curves prepared for AFB1 and AFM1 determination in urine with dilute&shoot method (left side) and with IAC clean-up method (right 

side). 

y = 0,0084±0,0003x - 0,0065±0,003
R² = 0,999

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

0 20 40 60 80 100 120

A
re

a
/A

re
a

 1
3
C

pg/ml

AFB1

y = 0,0053±0,0005x - 0,038±0,009
R² = 0,9991

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0 50 100 150 200 250

A
re

a
/A

re
a

 1
3
C

pg/ml

AFM1

y = 0,0164±0,0007x - 0,0316±0,004
R² = 0,9988

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 10 20 30 40 50 60

A
re

a
/A

re
a

 1
3
C

pg/ml

AFB1

y = 0,0106±0,0004x - 0,0291±0,006
R² = 0,9989

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0,0 20,0 40,0 60,0 80,0 100,0 120,0

A
re

a
/A

re
a

 1
3
C

pg/ml

AFM1



 

 

55 

 

 

Figure 21. Calibration curves prepared for AFB1 and OTA determination in serum. 
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4.1.3. Limit of detection and quantification 

Limit of detection was assessed as described in section 3.3.3 by replicate analyses 

(n=10) of a spiked blank sample for both urine and serum. For quantification 

purpose, a 6 points calibration curves at concentration levels close to the expected 

LOD value were build, namely 2 – 20 pg/mL for AFB1, 4 – 40 pg/mL for AFM1 

and 200 – 2000 pg/mL for OTA. As required, the upper concentration level of 

calibration standards to be used for the estimation of the value of b should not 

exceed 10 times the expected LOD. 

The LOQ values were calculated from Equation B given in section 3.3.3. The values 

obtained from this theoretical calculation were included in the validation as the 

lowest concentration level. 
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4.1.4. Apparent recovery, matrix effect and extraction recovery 

4.1.4.1. Urine 

The performance characteristics of the urine methods are summarized in Table 5. 

Both methods may be applied for quantitative analysis of AFB1 and AFM1 as well 

as for the evaluation of presence/absence of the AFB1-N
7-Guanine adduct. The 

dilute&shoot method is characterized by higher LOD and LOQ values when 

compared with the IAC clean-up method, but on the other hand the dilute&shoot 

approach is very quick and characterized by a conservative approach with respect 

to the sample, giving the possibility of a retrospective analysis on the acquired data. 

Due to the absence of a sample pretreatment only matrix effect, in terms of SSE, 

and precision, in terms of relative standard deviation (RSDr), were evaluated during 

dilute&shoot method validation. SSE percentages for AFB1 and AFM1 are very 

close to 100% due to the dilution applied to the urine sample; method precision was 

assessed by performing 8 independent analyses at the LOQ level. 

The IAC clean-up method was fully validated, trueness was evaluated in terms of 

apparent recovery while precision was assessed by repeatability RSD measures. 

The results, reported in Table 5, are considered satisfactory and the method fitting 

for the purpose. Although the IAC clean-up, which is a very selective approach, the 

influence of the matrix was evaluated. The percentages of SSE for AFB1 and AFM1 

reveal that the influence of the matrix on the instrumental response is very limited. 

Anyway, the use of labelled internal standard for quantification always correct for 

the extraction efficiency and for the influence due to the presence of matrix in the 

ionization step. 
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Table 5. Performance characteristics obtained during validation for AFB1 and AFM1 in urine with 

dilute&shoot and IAC clean-up methods. 

 Dilute&shoot method IAC clean-up method 

 AFB1 AFM1 AFB1 AFM1 

LOD (pg/mlurine) 20 40 0.8 1.5 

LOQ (pg/mlurine) 50 100 2.5 5.0 

Working range (pg/mlserum) 50.0 – 1000.0 100.0 – 2000.0 2.5 – 25.0 5.0 – 50.0 

RA (%) - - 101 98 

RE (%) - - 97 92 

SSE (%) 82 111 104 107 

RSDr 8 11 6 12 

 

 

4.1.4.2. Serum 

The serum method allows the quantitative determination of AFB1 and OTA and the 

evaluation of presence/absence of the AFB1-Lysine adduct. The validation was 

conducted on 5 different levels of contamination, including LOQ. The results 

obtained during the validation process are reported in Table 6. The total RSDr for 

AFB1 and OTA are 11 and 9 respectively; apparent recovery is 55% for AFB1 and 

61% for OTA. While precision is in compliance with requirements established by 

this laboratory (RSDr ≤ 20%), based on different reference standards (Commission 

Regulation 401/2006, Commission Decision 2002/657), recovery percentages are 

relatively low, even if, considering references standard for AFB1 (Commission 

Regulation 401/2006, Commission Decision 2002/657) at these low levels and the 

complexity of the analyzed matrix, reasonably acceptable. 
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The serum method included a clean-up step with a QuEChERS, which allows a 

limited purification of the sample, however the matrix effect experienced results in 

a quite low signal suppression, especially for OTA, for which SSE falls in the range 

90-120 where it is reported to be negligible (Malachová, 2014). 

 

 

Table 6. Performance characteristics obtained during validation for AFB1 and OTA in serum 

samples. 

 AFB1 OTA 

LOD (pg/mlserum) 1.5 180 

LOQ (pg/mlserum) 5 500 

Working range (pg/mlserum) 5.0 – 50.0 500.0 – 5000.0 

RA (%) 55 61 

RE (%) 67 63 

SSE (%) 82 96 

RSDr 11 9 
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4.2. Analytical results 

4.2.1. Statistical analyses and Data handling - Left censored data 

A statistical analysis was carried out to describe the analytical results dataset. The 

hypothesis of normality distribution (Shapiro–Wilk test) was refused, thus non-

parametrical tests (which do not imply any distribution assumption) were used for 

the statistical treatment. All possible differences between concentration levels of 

mycotoxins in exposed and non-exposed groups were explored by a Wilcoxon rank-

sum test. To assess the correlation between mycotoxin levels, a Spearman’s rank 

correlation coefficient (or Spearman’s rho) was used. All tests were conducted with 

a level of significance of 5%. Analyses were conducted by means of STATA14 

software (Stata/IC 14.0, Copyright 1985–2015 StataCorp LP). 

The LOQ levels were assessed during validation, and more specifically, for all the 

presented methods, the LOQ corresponded to the first validated contamination 

level, consistently with the established criteria of precision and trueness. LOD was 

estimated case by case in the analyzed samples, all samples below LOQ were 

considered positive reflecting the presence of the characteristic fragments in data 

dependent acquisition. Under the rigid identification criteria for analyte 

determination in urine and serum, namely the retention time criteria (RT±0.1 min 

with respect to the standard RT) and the presence of the precursor ion and at least 

one characteristic fragment for each considered analyte, it was decided to include 

and report also all the values below LOQ obtained by the interpolation of the 

calibration curve. Thus, values lower than LOQ were reported in the dataset as 

positive samples provided that the identification criteria were met. 
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The remaining results are to be considered as left censored data and for LB and UB 

mean calculation a substitution method was applied. In particular, for LB and UB 

calculation, zero and LOQ values were used respectively. The choice of LOQ 

instead of LOD in the substitution method is due to the fact that LOD was not 

unequivocally determined but was estimated case by case in the analyzed samples. 

Besides, the LOQ better represents the worst case within the LB and UB range, 

representing the optimistic (LB) or pessimistic (UB) scenario deriving from the 

sample analyses. 

Due to variation in matrix composition, matrix effect tolerances were evaluated. An 

acceptance criterion was set for serum samples with respect to the RA values 

calculated for each analyzed sample as the ration between the area of the labelled 

ISTD in the sample and the mean area of the labelled ISTD in pure solvent standard 

solutions used for the calibration curves. The samples with RA<40% were excluded. 

 

4.2.2. Urine sample analyses 

The collected urine samples were analyzed first with the dilute&shoot method and 

none of the sample showed a measurable level of AFB1 or AFM1; also the adduct 

of AFB1 with guanine was not detected. 

To overcome the limitations coming from the detection limit threshold of the 

dilute&shoot method and verify that the negativity of the results could be caused 

by the level of LOD/LOQ declared, it was decided to set up and validate a method 

with lower LOQ. A purification step was introduced using an immunoaffinity 

column with the aim of cleaning and concentrating the urine sample. By using this 
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method for reprocessing the urine samples, AFB1 and its adduct with guanine were 

not detected, AFM1, instead, was found in 14 samples (12%) within the range 1.9-

10.5 pg/mLurine. The positive samples for AFM1 < LOQ were in the range 1.9 - 4.7 

pg/mLurine. Only one sample showed a value above the LOQ (10.5 pg/mLurine). 

Table 7 summarizes the number and percentages of positive samples, maximum 

values found, and mean values (LB-UB, and positive). To note that when values 

reported for AFM1 are below the LOQ they shall be considered as affected by a 

standard uncertainty higher than 25%, which was the performance criteria set for 

maximum standard uncertainty for the LOQ. 

For the mean calculations, the substitution method was applied. The LB mean value 

was obtained substituting the zero value to all the samples where AFM1 was not 

detected; the upper-bound (UB) mean value was obtained substituting the LOQ 

value (5 pg/mLurine) to all the samples where AFM1 was not detected. These two 

mean values reflect the optimistic and pessimistic scenario range of possible mean 

values. 

Figure 22 shows the data trend for AFM1 in urine for both groups, Monday and 

Friday sampling. In the left side UB substitution method was applied, due to the 

high number of non detected (87%), box plot is flattened to the mean value (5 

pg/mLurine). In the right side the box plot reports all the positive values. The band 

inside the box is the second quartile (P50, median). Dots are suspected outliers. 

Whiskers are set from minimum to maximum value. The bottom and the top of the 

box are the first and third quartiles (P25 and P75). 

 



 

 

63 

Table 7. Results of AFB1 and AFM1 urinary biomarkers of worker and control groups. 

Exposed workers group AFB1 AFM1 

Monday and Friday; subjects (n=63)   

Positivea (n) 0 8 

Positive (%) 0 13 

Maxb (pg/mLurine) - 10.5 

Mean (LB-UB) (pg/mLurine) - 0.5-4.9 

Mean positive (pg/mLurine) - 3.9 

Monday; subjects (n=32)   

Positive (n) 0 4 

Positive (%) 0 13 

Max (pg/mLurine) - 4.6c 

Mean (LB-UB) (pg/mLurine) - 0.4-4.48 

Mean positive (pg/mLurine) - 3.1 

Friday; subjects (n=31)   

Positive (n) 0 4 

Positive (%) 0 13 

Max (pg/mLurine) - 10.5 

Mean (LB-UB) (pg/mLurine) - 0.6-5.0 

Mean positive (pg/mLurine) - 4.8 

Control group; subjects   

Monday and Friday; subjects (n=57)   

Positive (n) 0 6 

Positive (%) 0 11 

Max (pg/mLurine) - 4.1c 

Mean (LB-UB) (pg/mLurine) - 0.3-4.8 

Mean positive (pg/mLurine) - 2.9 

Monday; subjects (n=29)   

Positive (n) 0 2 

Positive (%) 0 7 

Max (pg/mLurine) - 2.8c 

Mean (LB-UB) (pg/mLurine) - 0.2-4.8 

Mean positive (pg/mLurine) - 2.4 

Friday; subjects (n=28)   

Positive (n) 0 4 

Positive (%) 0 14 

Max (pg/mLurine) - 4.1c 

Mean (LB-UB) (pg/mLurine) - 0.4-4.7 

Mean positive (pg/mLurine) - 3.1 

a)Positive: values above LOD 
b)Max: maximum value 
c)Value below the LOQ 
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Left side, mean UB values; right side, mean positive values. The horizontal band (inside the box) 

is the second quartile (P50, median). Dots are suspected outliers. Whiskers are set from minimum 

to maximum value. The bottom and the top of the box are the first and third quartiles (P25 and 

P75). 

Figure 22. Urine data graphs of AFM1 in exposed and non-exposed workers, Monday and Friday 

deliveries. 

 

 

No statistical difference was observed between Monday and Friday samples in each 

group (exposed and non-exposed workers). To note that two individuals of the 

exposed workers group showed AFM1 in both Monday and Friday deliveries with 

a concentration level of 3.3 and 3.0 pg/mLurine and 4.6 and 10.5 pg/mLurine as 

Monday and Friday values for each individual, respectively. 
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Further statistical analyses were performed merging data of Monday and Friday (63 

analyses for exposed workers group and 57 for non-exposed workers group). 

Examining in depth the samples within and between the groups, it was highlighted 

that: i) eight samples (13%) resulted positive in the workers group where the highest 

contaminated sample was found (10.5 pg/mLurine); ii) six samples (11%) were 

positive in the control group, the higher detected value was 4.1 pg/mLurine. In order 

to find differences among the positive values found in workers and control group, 

a Wilcoxon rank-sum test was performed but no statistical significances were 

highlighted. Even exploring the two days of urine delivery (i.e. sampling on 

Monday and Friday), no differences were highlighted. 

The absence of a statistical difference when the mean values for workers and control 

groups are compared suggests that in this specific setting, no professional exposure 

occurs. Moreover, taking into account the very low level of AFM1 in the collected 

urine samples, also the contribution from the diet to the overall exposure is to be 

considered negligible. 

In a previous study (Ferri, 2017), conducted in 2013 in the same Italian feed plant, 

higher values of AFM1 content in urine samples were reported, namely mean values 

of 35 and 27 pg/mLurine for workers and controls group, respectively. However, also 

in this case, no statistical difference was highlighted when the two groups were 

compared, suggesting that the exposure only accounts for the contribution due to 

the diet. The differences in contamination levels detected in the two studies may be 

explained by taking into account the influence that weather conditions have on 

mycotoxin production. In 2012, North Italy experienced an extremely dry season, 
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thus during the 2012-2013 harvest, food with higher AFB1 level may be released 

on the market. Also the presence of AFB1 in feed may results in a AFM1 

contamination in cow milk, source of AFM1 exposure also for humans. However, 

also in this first study the AFM1 levels detected were low depicting a safe scenario 

in terms of AFB1 exposure. 

 

4.2.3. Serum sample analyses 

Serum samples were analyzed for AFB1 and the presence/absence of AFB1-Lysine 

adduct. Due to the versatility of the analytical method, free OTA was also evaluated. 

Due to serum sample composition variability, the labelled internal standard was 

added at the beginning before sample extraction in order to take into account the 

total recovery (RA) due to extraction recovery and SSE contributions. In some cases, 

the influence of the matrix on the method was very strong leading to RA value 

considered unacceptable. More specifically for this purpose, inclusion/exclusion 

criteria for accepting values was established, and it was decided to exclude sample 

results showing RA lower than 40%. 

The obtained results are presented in Table 8. The percentage of positive samples 

reported in the table is calculated on the number of samples retained after the 

exclusion due to unacceptable RA, namely 62 and 59 exposed worker samples for 

AFB1 and OTA, respectively, and 52 and 50 control samples for AFB1 and OTA, 

respectively. None of the analyzed samples showed the presence of AFB1-Lysine 

adduct; however, it should be reminded that it was not possible to define the 
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concentration level of the synthetized product, therefore the adduct absence may be 

due to high LOQ value of the method. 

The samples with OTA < LOQ were in the range 0.05 - 0.49 ng/mLserum, no positive 

samples for AFB1 were < LOQ. To note that, in Table 8, when values reported for 

OTA are below the LOQ they shall be considered as affected by a standard 

uncertainty higher than 25%, which was the performance criteria set for maximum 

standard uncertainty for the LOQ. 

The number and percentages of positive samples, maximum values found, and 

mean values (LB-UB, and positive) are reported. For the mean calculations, the 

substitution method was used. The LB mean value was obtained substituting the 

zero value to all the samples where AFB1 was not detected; the upper-bound (UB) 

mean value was obtained substituting the LOQ value (5 pg/mLserum) to all the 

samples where AFB1 was not detected. These two mean values reflect the optimistic 

and pessimistic scenario range of possible mean values. 

In the same way as urine statistical assessment, no differences were observed either 

comparing AFB1 Monday and Friday values in each group (exposed and non-

exposed workers), neither comparing values between exposed and non-exposed 

workers group (Monday and Friday merged) (Wilcoxon rank-sum test). To note 

that two individuals of the exposed workers group showed AFB1 in serum (2.4 and 

4.6 pg/mLserum) and AFM1 in urine (289.8 and 154.9 pg/mLurine) both toxins in 

Monday deliveries. 

The same consideration made for urine analytical results can be done for the results 

obtained for serum. The low incidence of aflatoxins in serum cannot be attributable 
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to occupational exposure and reveals a safe scenario also for dietary exposure by 

AFB1. 

The 100% of the analyzed samples revealed the presence of OTA with 33% of the 

samples showing a concentration higher than the LOQ (0.5 ng/mLserum) and the 

remaining 67% with a signal below the LOQ. 

For OTA, taking into account that in this context (corn-based feedstuffs company) 

this mycotoxin is not relevant for workers exposure, few considerations are done 

after scrutiny of the samples within and between the groups: i) no statistical 

differences were highlighted between the average levels of exposed and control 

groups; ii) no statistical differences were highlighted between Monday and Friday 

OTA levels; iii) a correlation (ρ= 0.48 p= 0.0005) was found between Monday and 

Friday OTA levels, without group distinction, which emphasizes the consistency of 

the OTA content in the serum coherently with the persistence of OTA in human 

beings with a blood half-life of 35 days after a single oral dosage due to unfavorable 

elimination toxicokinetics (Petzinger, 2000). 

Figure 23 and 24 shows the data trend for AFB1 and OTA in serum for both groups, 

Monday and Friday sampling. In Figure 23, UB substitution method was applied 

and due to the high number of non detected (90%), box plot is flattened to the mean 

value (5 pg/mLserum). 
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Table 8. Results of AFB1 and OTA serum biomarkers of worker and control groups. 

Exposed workers group AFB1 OTA 

Monday and Friday; subjects (n=63)   

Excluded (n) 1 4 

Positivea (n) 6 59 

Positive (%) 9.7 100 

Maxb (pg/mLserum) 947.4 3700 

Mean (LB-UB) (pg/mLserum) 24.2-28.7 - 

Mean positive (pg/mLserum) 249.9 600 

Median (pg/mLserum) - 380c 

Monday; subjects (n=32)   

Excluded (n) 1 3 

Positivea (n) 4 29 

Positive (%) 12.9 100 

Maxb (pg/mLserum) 289.8 2880 

Mean (LB-UB) (pg/mLserum) 16.7-21.0 - 

Mean positive (pg/mLserum) 249.9 600 

Median (pg/mLserum) - 360 

Friday; subjects (n=31)   

Excluded (n) - 1 

Positivea (n) 2 30 

Positive (%) 6.5 100 

Maxb (pg/mLserum) 947.4 3700 

Mean (LB-UB) (pg/mLserum) 31.7-36.4 - 

Mean positive (pg/mLserum) 491.8 600 

Median (pg/mLserum) - 380 

Control group; subjects   

Monday and Friday; subjects (n=55)   

Excluded (n) 3 5 

Positivea (n) 1 50 

Positive (%) 1.9 100 

Maxb (pg/mLserum) 19.7 6450 

Mean (LB-UB) (pg/mLserum) 0.4-5.3 - 

Mean positive (pg/mLserum) - 600 

Median (pg/mLserum) - 370 

Monday; subjects (n=28)   

Excluded (n) 1 2 

Positivea (n) 0 26 

Positive (%) - 100 

Maxb (pg/mLserum) - 2330 

Mean (LB-UB) (pg/mLserum) - - 

Mean positive (pg/mLserum) - 530 

Median (pg/mLserum) - 450 

Friday; subjects (n=27)   

Excluded (n) 2 3 

Positivea (n) 1 24 

Positive (%) 4 100 

Maxb (pg/mLserum) 19.7 6450 

Mean (LB-UB) (pg/mLserum) 0.8-5.6 - 

Mean positive (pg/mLserum) - 680 

Median (pg/mLserum) - 350 

a)Positive: values above LOD 
b)Max: maximum value 
c)Value below the LOQ 
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The horizontal band inside the box is the second quartile (P50, median). Dots are suspected 

outliers. Whiskers are set from minimum to maximum value. The bottom and the top of the 

box are the first and third quartiles (P25 and P75). 

Figure 23. Serum data graphs of AFB1 in exposed and non-exposed workers, Monday and Friday 

deliveries. 
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The horizontal band inside the box is the second quartile (P50, median). Dots are suspected 

outliers. Whiskers are set from minimum to maximum value. The bottom and the top of the 

box are the first and third quartiles (P25 and P75). 

Figure 24. Serum data graphs of OTA in exposed and non-exposed workers, Monday and Friday 

deliveries. 
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4.3. Estimated daily intake 

The estimation of the daily intake (EDI) was performed only for OTA that accounts 

for a 100% of positive results. The EDIs are calculated as individual value, and 

compared to the reported TDI in order to evaluate the possible health concern due 

to this level of exposure. 

Individual daily intakes were calculated starting from OTA level measured in serum 

samples. The daily intake of OTA was calculated on the basis of serum toxin levels 

using the Klaassen equation: 

 

𝑘0 =
𝐶𝑙𝑝×𝐶𝑝

𝐴
  (F) 

 

Where: 

k0 is the daily intake (ng/kg bw/day) 

Clp is the plasma clearance (mL/kg bw/day) 

Cp is the serum concentration of ochratoxin A (ng/mLserum) 

A is the bioavailability of the toxin 

 

For A and Clp assumptions are made (Duarte, 2011): bioavailability (A), i.e., 

fraction of OTA taken up, is considered for most animals around 50% (Hagelberg, 

1989); plasma clearance (Clp,) considers only renal filtration rates, which might 

underestimate the plasma clearance, since no other than renal filtration is 

contemplated (Breitholtz, 1991). Two main values exist for the calculation of 

human renal filtration rate, and so two major versions exist for the same equation 
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(Miraglia, 1996; Gilbert, 2001; Scott, 2005). The first value (Cp = 0.67 

mL/kg·bw/day) was calculated from the glomerular filtration rate of inulin (0.033 

mL/min) and the free fraction of OTA, 0.02% (Hagelberg, 1989). The second value 

(Cp = 0.99 mL/kg·bw/day) resulted from a study with a single human volunteer that 

ingested 3H-labeled OTA, which allowed the calculation of renal clearance of OTA 

as 0.048 mL/min referred to a 70 kg person (Schlatter, 1996). 

In this study, calculations were made with Clp = 0.99 mL/kg·bw/day, according to 

Schlatter et al. (1996) and A = 0.5 considering a 50% of OTA bioavailability 

(Hagelberg, 1989). Although the Equation F is referred to OTA content in plasma, 

according to Palli et al. (1999), it was assumed that serum specimen concentration 

might be approximated to plasma concentrations. 

In 2006, EFSA established for OTA a Tolerable Weekly Intake (TWI) of 120 ng/kg 

bw/week, equivalent to a Tolerable Daily Intake (TDI) of 17.14 ng/kg bw (EFSA, 

2006). In 2007, JECFA reconfirmed the established value of 100 ng/kg·bw/week 

based on pig nephrotoxicity, corresponding to a TDI of 14.28 ng/kg·bw/day. More 

recently, Kuiper-Goodman et al (2010) reevaluated the TDI as 4 ng/kg·bw/day. 

In Figure 25 the EDIs are reported for workers group Monday-Friday (in red and 

orange, respectively) and for controls group Monday-Friday (in blue and light blue, 

respectively); the red line is the EFSA TDI while and the green line represents the 

TDI value reevaluated by Kuiper-Goodman et al. (2010). 
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Figure 25. Individual OTA daily intake calculated for Workers group Monday-Friday (in red and 

orange, respectively) and for Controls group Monday-Friday (in blue and light blue). The red line 

represents the EFSA TDI value (17.14 ng/kg bw/day) and the green line represents a reevaluated 

TDI at 4 ng/kg bw/day. 

 

 

From Figure 25 is observable that the EDI values are very low when compared with 

the EFSA TDI, with the highest value estimated being 12.77 ng/kg bw/day related 

to the Friday delivery of a volunteer from the controls group. When the revised TDI 

at 4 ng/kg bw/day is considered, 5 subjects showed an EDI above that threshold 

value, 3 results from the workers group, one sampled on Monday (5.70 ng/kg 

bw/day) and two on Friday (7.32 and 5.62 ng/kg bw/day), and 2 results from 

controls group, from Monday (4.61 ng/kg bw/day) and Friday (12.77 ng/kg bw/day) 

deliveries. Moreover, the EDIs exceeding the 4 ng/kg bw/day, for the workers group 

on Monday and Friday, are from the same subjects, namely 5.70 – 5.62 and 7.32 – 

3.9 ng/kg bw/day). In total, the 6% of the EDIs exceeded the reevaluated TDI. 
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The estimated daily intakes were then compared with the Italian daily intake 

reported in the SCOOP Task “Assessment of dietary intake of ochratoxin A by the 

population of European Union Members States” (SCOOP Task, 202)elaborated in 

2002 (Table 9). For this purpose, a single EDI mean value was calculated 

considering that no statistical differences were observed between workers and 

controls group and between Monday and Friday deliveries (1.19 ng/kg bw/day). 

The SCOOP Task reports the daily intake estimated as dietary intake (1.13 ng/kg 

bw/day) and via biomarkers approach (1.16 ng/kg bw/day). The EDIs reported in 

the SCOOP Task, estimated via traditional exposure calculations as dietary intake, 

or via biomonitoring approach, overlap with the mean value of the volunteers 

enrolled in this study, confirming that the estimated exposure is mainly due to the 

diet. 

A previous work published by Brera et al. (2002) reports the OTA levels in serum 

collected from Italian volunteers working in cocoa, coffee and spices processing 

plants located in Tuscany, the derived EDIs, reported in Table 9, are lower but in 

line with the discussed values. 

The obtained results were also compared with the values obtained in a recent 

publication originally aiming at assessing professional exposure that, in agreement 

with this study, concluded that the serum OTA levels are to be only attributable to 

the dietary intake (Viegas, 2018b). Moreover, the mean value reported for the 

enrolled population in the work of Viegas et al. is very close to the EDI presented 

in this study; also the ranges of OTA levels for both studies are in perfect agreement, 

confirming the primary role of the diet for OTA exposure (Table 9). 
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Table 9. Comparison of different estimated daily intakes. 

 
This study 

SCOOP Task 

Biomarker approacha 

SCOOP Task 

Dietary intake approacha 

Italian workersb 

(Brera, 2002) 

Portuguese waste workersc 

(Viegas, 2018) 

EDI (ng/kg bw/day) 1.19 1.16 1.13 1.05 1.99 

Range (ng/kg bw/day) 0.99-12.77 - - 1.86-6.49 0.87-11.98 

Median (ng/kg bw/day) 0.73 - - - 1.50 

aEDIs calculated for Italian total population (SCOOP Task 3.2.7. 2002) 

bEDIs calculated for Italian volunteers working in cocoa, coffee and spices processing plants (Brera, 2002) 

cEDIs calculated for volunteers working in on Portuguese waste management setting (Viegas, 2018) 

 



 

 

77 

5. CONCLUSIONS 

The presented study aims to explore the validity of the biomonitoring studies as a 

tool to investigate the intake of mycotoxins in population groups such as workers 

operating in risky workplaces. The study also intends to contribute to obtain a more 

comprehensive and updated dataset. Moreover, the work aimed to set up and 

validate suitable methods for the determination of the selected mycotoxins and their 

metabolites in specimens. 

The study was conducted on two groups of population, the exposed workers groups 

that includes staffs working in an Italian feed plant, and a control group composed 

by administrative employees (non-exposed). Urine and serum samples were 

collected for the determination of mycotoxins, AFB1, AFM1 and AFB1-N
7-Guanine 

adduct were analyzed in urine samples, while AFB1, AFB1-Lysine adduct and OTA 

were analyzed in serum samples. 

In conclusion, no statistical difference was observed between workers and controls 

group for urine and serum samples revealing that no professional exposure to AFs 

and OTA occurred for the enrolled volunteers. 

Regarding AFs results, the low positive samples in terms of both, prevalence and 

concentration levels, confirm that there is not a concern for public health deriving 

from the diet. 

Regarding OTA analyses in serum, the 100% of the analyzed samples were 

positive. In particular, the 33% of the serum samples were above the LOQ value, 

however, it was decided, under the rigid identification criteria for analyte 

determination, to include and report also all the values below LOQ. The data 
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obtained for OTA were used for estimate the individual daily intake according to 

Klaassen equation. The comparison of the obtained results with TDI reported values 

reveals that the estimated daily intakes are far below the EFSA TDI (17.17 ng/kg 

bw/day) with the highest contaminated sample being 12.77 ng/kg/bw/day. Also the 

comparison with previous exposure studies related to Italian population referring to 

total population or workers, showed a general agreement in terms of estimated daily 

intake. 

From the obtained results, it can be concluded that in the investigated occupational 

setting no professional exposure to OTA was experienced by the workers. 

Nevertheless, further studies are needed to also explore other settings where 

temperature and humidity conditions, together with indoors settings, for instance 

stables, might promote an occupational exposure via inhalation or dermal contact. 

Moreover, an EFSA opinion, reviewing the OTA TDI, has been requested by the 

European Commission and may require new evaluation of the obtained results. 

In this study, different methods have been set and fully validated for the analysis of 

urine and serum with very low LOD/LOQ, also taking into consideration the 

presence of urine and serum AFB1 adducts (N7-Guanine and Lysine adducts, 

respectively). The availability of suitable method is of crucial importance for a 

reliable assessment of exposure. A future need is undoubtedly, the organization of 

inter-laboratory studies with the aim of completing the validation process with a 

comparison study and harmonizing the analytical procedures to be applied for 

biological fluid analyses. 
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