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Correspondence should be addressed to Petr Hušek; husek@fel.cvut.cz
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In the paper, we propose distributed feedback control laws for active damping of one-dimensional mechanical structures equipped
with dense arrays of force actuators and position and velocity sensors. We consider proportional position and velocity feedback
from the neighboring nodes with symmetric gains. Achievable control performance with respect to stability margin and damping
ratio is discussed. Compared to full-featured complex controllers obtained by modern design methods like LQG, H-infinity, or
mu-synthesis, these simplistic controllers are more suitable for experimental fine tuning and are less case-dependent, and they
shall be easier to implement on the target future smart-material platforms.

1. Introduction

'e established paradigm in past and current active damping
projects is as follows: the mechanical object is defined first
(plate, beam, car door, wing panel, etc.). Systems detailed
design and modelling phases follow the methods in [1, 2]
giving rise to very accurate FEM models with tens of
thousands of degrees of freedom. Alternatively for existing
prototypes, the experimental identification approach can be
applied to get the mathematical models directly via exper-
imental modal analysis [3]. Model order reduction [1, 4]
then gives accurate enough yet tractable models for optimal
actuators and sensors placement [5–7]. Finally, a very
limited number of them are considered (say up to twenty)
for the design of the control laws [1, 8]. Finally, validation
and verification of the solutions by high-fidelity simulations
is performed, followed by laboratory experiments and final
deployment of the product. For any new project—or even
a relatively mild modification of a previously accomplished
project—all these steps must be performed (or re-visited)
again. Implications towards requested research and devel-
opment costs are significant and obvious.

'erefore, there is a need to use other type of control
methodologies, and recent advances in MEMS sensors and
microactuators, ongoing intensive research on new smart
materials, and progress in computational power pave the
way to massive development of heavily distributed control in
this context.

Distributed control is now a very active field of research,
thanks to potential applications which require high scal-
ability and reliability. 'e main advantage of using dis-
tributed control is the locality of the necessary measurement
and actuation—the measurements are collected and pro-
cessed in a distributed manner. 'is kind of control can be
applied for automated highway systems [9], car formations
[10], and also flexible structures. 'e work in [11], for in-
stance, studies a flexible beam model with bending and
torsion motions, and a distributed arrangement with two
force-actuators and three moment-actuators paired with
rate gyros was elaborated. In [12], a dense network of pi-
ezoelectric patch actuators was proposed to realize the
distributed actuation. In [13], a distributed piezoelectric
actuation was involved and applied to the placement
problem of patches so that the deformations are suppressed
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at preselected locations. Multipositive feedback approach for
flexible structure control was presented in [14]. Since the
flexible systems are passive by nature, one can also employ
a lot of results available for distributed control of the passive
system [15, 16]. Completely passive solutions can be ob-
tained using piezostructures, as reported in [17].

One of the natural goals when dealing with control of
flexible mechanical structures is vibration suppression. One
standard approach relies on application of a large number of
neutralizers placed in prespecified locations along the
structure composed from masses and springs. 'e goal is not
only to design the neutralizers’ parameters but specify their
locations as well since vibrations can be eliminated only at the
attachment point of the vibrating beam while amplification of
vibration may occur in other parts of the beam. Dynamic
vibration absorbers using magnetorheological elastomers
were used in [18]. In [19, 20], a set of optimum conditions for
global control of the kinetic energy based on the fixed-points
theory was proposed. Dynamic transfer matrices using mo-
bility or impedance were used in [21]. In [22], an iterative
procedure was developed to find the required resonance
frequencies of variable stiffness neutralizers to create nodes at
selected locations. Wide-band frequency passive vibration
attenuation design for the absorbers was introduced in [23].
In [24], explicit model predictive vibration control was tested.
A different approach consists in control and attenuation of
multiple travelling waves propagated in a one-dimensional
structure [25–28]. Sliding mode control on seat vibration
reduction problem was applied in [29].

2. Structured Control Laws for Smart Materials

'e paper presents an attempt to systematic proportional
decentralized position-velocity feedback for active damping
of mechanical structures equipped with dense arrays of force
actuators and position and velocity sensors. Such a control
law is characterized by a very small number of parameters
and simple procedures for their tuning compared to cen-
tralized approach. Although the results are presented for
a one-dimensional structure model only, it is believed that
a generalization to two-dimensional mechanical structures
will be possible.

'e research is motivated by vehicular platoon control
where relative position and relative or absolute velocity
feedback related to the preceding and succeeding vehicle is
often considered [30–32]. Nevertheless, the measure of
control performance in both applications is different. For
vehicular platooning, the main goal consists in preserving
a prescribed spacing between the vehicles and in keeping the
leader’s velocity, whereas when dealing with mechanical
structures, a fast and adequate damping of the oscillating
modes is required. Hence, the presented control design is
focused on investigation of feasible damping ratio of the least
damped mode and achievable stability margin of all modes.

'roughout the paper, the superscript T denotes
transpose, In stands for n × n identity matrix, Re(·) and
Im(·) denotes real and imaginary part, respectively, ⊗ de-
notes the Kronecker product, and σ(·) denotes the spectrum
of a matrix.

3. One-Dimensional Structure
Longitudinal Model

Let us consider a one-dimensional structure composed from
the masses m, springs k, and dampings b, each of the same
value. Let us assume that the input forces may act on each
individual mass independently and we are able to measure
positions and velocities of each mass, i.e., actuators and
sensors are placed in the same positions. Longitudinal vi-
brations of such a structure can be described by a state-space
model:

_x � Ax + Bu, (1)

where

x � p1, _p1, p2, _p2, . . . , pη, _pη􏽨 􏽩
T ∈ R2η

, (2)

where pi, i � 1, . . . , η, are the positions of the masses, η is the
number of nodes, and u ∈ Rη is the vector of the input forces
[32].

'e matrices A ∈ R2η×2η and B ∈ R2η×η are given by

A � Iη ⊗A1 + L⊗A2,

B � Iη ⊗ 0 1􏼂 􏼃
T

􏼐 􏼑,
(3)

with

A1 �
0 1

0 0
􏼢 􏼣,

A2 �
0 0

−k0 −b0
􏼢 􏼣,

(4)

where k0 � k/m, b0 � b/m. 'e matrix L ∈ Rη×η is the
Laplacian of the graph corresponding to the structure which
is in this case given as

L �

1 −1

−1 2 −1

⋱ ⋱ ⋱

−1 2 −1

−1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Since for practical reasons at least one of the nodes has to
be fixed, the equation (1) becomes

_x � Ax + Bu, (6)

where x ∈ R2n, u ∈ Rn comes from x and u by omitting the
entries corresponding to the fixed nodes, and n is the
number of the nonfixed nodes.

'e matrices A ∈ R2n×2n and B ∈ R2n×n are then given
by

A � In ⊗A1 + Lg ⊗A2,

B � In ⊗ 0 1􏼂 􏼃
T

􏼐 􏼑,
(7)

where the matrix Lg ∈ R
n×n is called the grounded Laplacian

that results from Laplacian L (5) by omitting the rows and
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columns corresponding to the fixed nodes. In the sequel, we
will assume without loss of generality that the fixed nodes are
the first and last one, n � η− 2, and

Lg �

2 −1

−1 2 −1

⋱ ⋱ ⋱

−1 2 −1

−1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

'e eigenvalues of Lg are all positive and are given by

λℓ � 2− 2 cos
ℓπ

n + 1
􏼒 􏼓, ℓ � 1, . . . , n. (9)

We will see later that from the eigenvalues (9), the
minimum and maximum ones are of special interest. 'ose
can be determined as

λmin � min
ℓ

λℓ � λ1 � 2− 2 cos
π

n + 1
􏼒 􏼓,

λmax � max
ℓ

λℓ � λn � 2− 2 cos
nπ

n + 1
􏼒 􏼓.

(10)

In this paper, we will use distributed control law where
the control action applied to each node depends symmet-
rically on relative positions and velocities with respect to its
neighbors, i.e.,

ui � −k pi+1 −pi( 􏼁− k pi+1 −pi+2( 􏼁− b _pi+1 − _pi( 􏼁

− b _pi+1 − _pi+2( 􏼁, i � 1, . . . , n, k, b≥ 0,
(11)

with p1 and pn+2 being fixed (Figure 1).
'e control law (11) can be written as

u � Kx � Lg ⊗ k b􏼂 􏼃􏼐 􏼑x. (12)

After substituting (12) into (6), one obtains the description
of the closed-loop system:

_x � Acx � (A + BK)x, (13)

where

A + BK � In ⊗A1 + Lg ⊗A2 + Lg ⊗K2

� In ⊗A1 + Lg ⊗ A2 + K2( 􏼁,
(14)

with

K2 �
0 0

−k −b
􏼢 􏼣. (15)

For determination of the eigenvalues of matrix Ac, we
will use the following lemma.

Lemma 1 [32].

σ In ⊗ 􏽥A1 + 􏽥L⊗ 􏽥A2􏼐 􏼑 � ∪
λℓ∈σ(􏽥L)

σ 􏽥A1 + λl
􏽥A2􏼐 􏼑􏽮 􏽯. (16)

Using Lemma 1, we immediately obtain the following
result:

σ Ac( 􏼁 � σ In ⊗A1 + Lg ⊗ A2 + K2( 􏼁􏼐 􏼑

� ∪
λℓ∈σ Lg( 􏼁

σ
0 1

−λℓ k0 + k( 􏼁 −λℓ b0 + b( 􏼁
􏼢 􏼣􏼨 􏼩.

(17)

It turns out that the closed-loop eigenvalues are given as the
roots of the characteristic equation:

s
2

+ λℓ b0 + b( 􏼁s + λℓ k0 + k( 􏼁 � 0, ℓ � 1, . . . , n, (18)

i.e.,

s
±
ℓ �
−λℓ b0 + b( 􏼁 ±

���������������������

λ2ℓ b0 + b( 􏼁
2 − 4λℓ k0 + k( 􏼁

􏽱

2
, ℓ � 1, . . . , n.

(19)

4. Control Strategies

'ere are many options where to place the closed-loop
eigenvalues. Nevertheless, from the vibration suppression
point of view, the following two are the most interesting
ones.

4.1. Prescribed Damping Ratio. A quite natural option is to
force all modes to be damped with a prescribed minimum
damping ratio ζmin ∈ [0, 1]. From (19), one can see that if k is
fixed then with increasing value of b, the least damped mode
is that corresponding to λmin.'e ratio of imaginary and real
part of the least damped mode that corresponds to λmin is
given by

ξmax �
Im s1( 􏼁

Re s1( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

������������������������

4λmin k0 + k( 􏼁− λ2min b0 + b( 􏼁
2

􏽱

λmin b0 + b( 􏼁
. (20)

Hence, the minimum value of b satisfying this condition is
given by

bdamp �

������������

4 k0 + kdamp􏼐 􏼑

λmin ξ2max + 1􏼐 􏼑

􏽶
􏽴

− b0, (21)

where kdamp is set arbitrarily.
Since the corresponding damping ratio is given as

ζmin �

�������
1

1 + ξ2max

􏽳

, (22)

after substitution into (21), we obtain

bdamp � 2ζmin

���������
k0 + kdamp

λmin

􏽳

− b0. (23)

Let us define stability margin as

δ � min
ℓ

Re sℓ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (24)

Stability margin of such a control law is determined by
the distance of the least and most damped closed-loop ei-
genvalues, s1 and s+

n , respectively, from the imaginary axis
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for b � bdamp, k � kdamp. 'e distance of complex conjugate
s±1 corresponding to λmin whose position is given by the
prescribed damping ratio is given by

d s
±
1( 􏼁 � −Re s1( 􏼁 �

λmin b0 + bdamp􏼐 􏼑

2
, (25)

whereas distance of real s+
n corresponding to λmax can be

obtained as

d s
+
n( 􏼁 �

λmax b0 + bdamp􏼐 􏼑−
�������������������������������

λ2max b0 + bdamp􏼐 􏼑
2
− 4λmax k0 + kdamp􏼐 􏼑

􏽱

2
.

(26)

Stability margin is then given as minimum of (25) and
(26):

ddamp � min d s
±
1( 􏼁, d s

+
n( 􏼁􏼈 􏼉, (27)

which after some algebraic manipulations yields

ddamp � min
⎧⎨

⎩ζminλmin

���������
k0 + kdamp

􏽱
,

��������������

λmax k0 + kdamp􏼐 􏼑

􏽱

ζmin

����
λmax

λmin

􏽳

−

����������

ζ2min
λmax

λmin
− 1

􏽳

⎛⎝ ⎞⎠
⎫⎬

⎭.

(28)

It should be noted that, for very small damping
(ζmin < λmin/λmax), the eigenvalue sn is not real and the
second term in (28) becomes complex and should not be
considered. Nevertheless, considering such a small damping
is highly impractical.

'e dependence of stability margin on prescribed
minimum damping ratio given by (28) for n � 48 and k0 +

kdamp � 1 is depicted in Figure 2.

4.2. Maximum Stability Margin. Another interesting option
is to find the control parameters that maximize the stability
margin (24). From (19), it follows that the stability margin of
the eigenvalues lying on real axis is determined by that

corresponding to λmax and stability margin of the eigen-
values lying out of real axis is determined by those corre-
sponding to λmin. 'us, the maximum stability margin is
achieved if

Re s
±
1( 􏼁 � Re s

+
n( 􏼁, (29)

where s1 and sn are the eigenvalues corresponding to λmin
and λmax, respectively.

Condition (29) can be written as

−λmin b0 + b( 􏼁 � −λmax b0 + b( 􏼁 +

������������������������

λ2max b0 + b( 􏼁
2 − 4λmax k0 + k( 􏼁

􏽱

,

(30)

from which we obtain

bmarg �

���������������

4λmax k0 + kmarg􏼐 􏼑

λmin 2λmax − λmin( 􏼁

􏽶
􏽴

− b0, (31)

for arbitrarily chosen kmarg.

Control

Structure

b b b

kkk

m = 1
b0

k0

pi–1 pi pi+1 pi+2

k0 k0

b0 b0

m = 1 m = 1 m = 1

Figure 1: Distributed control law of a one-dimensional structure.
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Figure 2: Stability margin dependence on damping ratio.
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By substituting (31) in (29), we obtain the maximum
stability margin as

δmax �
��������
k0 + kmarg

√ ����������
λmaxλmin

2λmax − λmin

√

. (32)

�e ratio of imaginary and real part of the least damped
mode that corresponds to λmin is given by

ξmax �
Im s1( )
Re s1( )

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ �

������������������������������
4λmin k0 + kmarg( )− λ2min b0 + bmarg( )

2
√

λmin b0 + bmarg( )
,

(33)

that yields after substitution from (31) and some
simpli�cations

ξmax �

�������

1−
λmin

λmax

√

. (34)

From that, the damping ratio of the least damping mode
follows as

ζmin �
�������

1
1 + ξ2max

√
�

����������
λmax

2λmax − λmin

√

. (35)

�e achievable stability margins for di erent values of n
for both approaches are shown in Figure 3, whereas the
minimum damping ratio corresponding to maximum sta-
bility margin is depicted in Figure 4. Both �gures are plotted
for k0 + kmarg � 1.

5. Example

Let us illustrate the results derived in the previous section on
an example. We will consider the following parameters:
m � 5 · 10−4 kg, b � 3.3 · 10−3 Ns/m; k � 0.4 N/m, and
n � 48. We set the control parameter k � kdamp � kmarg
� 10 N/m.

�e minimum and maximum eigenvalues of the
grounded Laplacian become

λmin � 2− 2 cos
π

n + 1
( ) � 0.0041,

λmax � 2− 2 cos
nπ
n + 1
( ) � 3.99.

(36)

�e minimum value of b � bdamp damping all the ei-
genvalues with minimum damping ratio ζmin � 0.6 is given
by

bdamp � 2ζmin

���������
k0 + kdamp

λmin

√

− b0 � 527 s−1. (37)

Such a control law guarantees the stability margin:

δdamp � min 1.521, 1.095{ } � 1.095. (38)

�e position of dominant open- and closed-loop ei-
genvalues is plotted in Figure 5.

�e value of control parameter b guaranteeing maxi-
mum stability margin yields

bmarg �

���������������
4λmax k0 + kmarg( )
λmin 2λmax − λmin( )

√√

− b0 � 622 s−1, (39)

corresponding to stability margin:

δmax �
��������
k0 + kmarg

√ ����������
λmaxλmin

2λmax − λmin

√

� 1.29. (40)

Damping ratio of the least damped mode is given by

ζmin �

����������
λmax

2λmax − λmin

√

� 0.707. (41)

�e corresponding position of dominant open- and
closed-loop eigenvalues is depicted in Figure 6.

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

n

δ

ζmin = 1
Max margin

Figure 3: Comparison of stability margins of both approaches
depending on number of nodes.

10 20 30 40 50 60 70 80 90 100
0.707

0.708

0.709

0.71

0.711

0.712

0.713

0.714

n

ξ m
in

Figure 4: Minimum damping ratio for maximum stability margin
approach depending on number of nodes.
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To demonstrate the presented design, we compare time
and frequency responses of a point lying in the middle of the
beam for di erent values of damping ratios. �e open-loop
responses to initial condition pi(0) � 0.01 m, _pi(0) � 0, i �
1, . . . , n are shown in Figure 7.

�e initial condition response for di erent prescribed
minimum damping ratios is depicted in Figure 8. �e Bode
plots are compared in Figure 9.

Let us compare the achieved results with other two
standard design methods typically used by the control
community. At �rst, we design an LQ controller with relative
positions and velocities considered as measurable state
variables, i.e.,

ui �∑
j�1

n

(−kij pj+1 −pj( )− kij pj+1 −pj+2( )− bij _pj+1 − _pj( )

− bij _pj+1 − _pj+2( )), i � 1, . . . , n. (42)

�e di erence between the LQ and presented control law
is that the LQ control law uses relative positions and ve-
locities between all neighboring nodes and not between the
closest neighbors only as in (11). To force the LQ control to
use relative positions and velocities, we introduce a modi�ed
state vector:

−0.25 −0.2 −0.15 −0.1 −0.05 0

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.98

0.92

0.84

0.98

0.92

0.25 0.2 0.15 0.1 0.05

0.72 0.6 0.46 0.3 0.16

0.84 0.72 0.6 0.46 0.3 0.16

Re

Im

Open-loop eig
Closed-loop eig

Figure 6: Dominant modes for maximum stability margin
approach.
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Figure 8: Initial condition displacement response for di erent
damping ratios.
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Figure 5: Dominant modes for minimum damping ratio
ζmin � 0.6.
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Figure 7: Initial condition displacement response of uncontrolled
structure.
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z � [p2 −p1 + p2 −p3, _p2 − _p1 + _p2 − _p3, . . . , pn+1

−pn + pn+1 −pn+2, _pn+1 − _pn + _pn+1 − _pn+2]
T
.

(43)

�e criterion to be minimized is then given by

J � ∫
∞

0
zTQz + uTRu( ) dt, (44)

resulting in LQ feedback control law

u � Kz, (45)

with

K �

k22 b22 k23 b23 · · · k2n+1 b2n+1

k32 b32 k33 b33 · · · k3n+1 b3n+1

⋮ ⋮ ⋮ ⋮ · · · ⋮ ⋮

kn+12 bn+12 kn+13 bn+13 · · · kn+1n+1 bn+1n+1




.

(46)

By tuning the weighting matrices Q and R to guarantee
minimum damping ratio ζmin � 0.6 we obtained the cor-
responding stability margin δdamp � 1.162, see dominant
poles in Figure 10. Tuning the weighting matrices to
maximize stability margin, we arrived to δmax � 1.01 with
corresponding ζmin � 0.903 that can be seen from dominant
poles in Figure 11. Hence, the dominant poles con�guration
is very similar to the proposed design (Figures 5 and 6).

�e control gains kij and bij for the former case are
depicted in Figures 12 and 13, respectively. One can see that
the control law uses the relative positions and velocities to
the closest neighbors only and that the gains are almost the
same for all nodes.

To compare our methodology with another control
design approach, we formulated the task as anH∞ design for
the �xed structure controller (11). It can be easily done with
hinfstruct() function inMatlab Robust Control Toolbox.�is
tuning minimizes the H∞ norm of the closed-loop transfer
function modeled by the closed-loop control system with
tunable components and weighting �lters. In our case, the
high-pass �lter with cuto  frequency 8 rad/s has been used to
penalize all system modes.

�e H-in�nity design methodology o ers e�cient algo-
rithms how to obtain multivariable control laws by specifying
closed-loop frequency response requirements. �is approach
was used, for e.g., in [33], where authors compare classical
single-input single-output controllers with H-in�nity ap-
proaches in terms of robustness and performance.�e order of
the H-in�nity control system is however equal to the so-called
augmented plant containing themodel of the controlled system
along with the weighting �lters de�ning performance and
robustness requirements. �is leads to excessively high-order
control laws typically, with strong negative impact on imple-
mentation and experimental �ne-tuning. For this reason, e.g.,
in [34], there was a method presented for the controller order
reduction which is one possible way how to get control laws
with reasonable complexity. Nevertheless, loss or deterioration

of closed-loop performance and/or stability is often an un-
wanted e ect associated with this approach. �anks to recent
structured H-in�nity control synthesis results (see,
e.g., [35, 36]), it is possible to receive the parameters of such
reduced-order controllers directly, minimizing the H-in�nity
norm under the controller complexity constraints.

�e Bode plots of original system, LQ controller tuned
for prescribed minimum damping ratio ζmin � 0.6, the H∞
controller, and the proposed design for ζmin � 0.6 are
compared in Figure 14. �e plots con�rm that all designs
give very similar results.

6. Conclusion

In the paper, we presented an active approach of one-
dimensional structures with dense array of collocated
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sensors and actuators using proportional position and velocity
feedback control laws. �e control law was formulated in
a distributivemanner, i.e., each actuator uses information from
its closest neighbors only. �e achievable stability margins and

damping ratios were analyzed based on the properties of
Laplacian matrix describing the corresponding information
graph. Comparison with LQ controller andH∞ designs shows
that the presented approach achieves similar results yet with
much lower computational and actuator complexity.
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