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Probability Theory — Connectedness of random set attractors, by Michael

Scheutzow and Isabell Vorkastner, communicated on April 20, 2018.1

Abstract. — We examine the question whether random set attractors for continuous-time ran-

dom dynamical systems on a connected state space are connected. In the deterministic case, these
attractors are known to be connected. In the probabilistic setup, however, connectedness has only

been shown under stronger connectedness assumptions on the state space. Under a weak continuity
condition on the random dynamical system we prove connectedness of the pullback attractor on a

connected space. Additionally, we provide an example of a weak random set attractor of a random

dynamical system with even more restrictive continuity assumptions on an even path-connected
space which even attracts all bounded sets and which is not connected. On the way to proving con-

nectedness of a pullback attractor we prove a lemma which may be of independent interest and
which holds without the assumption that the state space is connected. It states that even though

pullback convergence to the attractor allows for exceptional nullsets which may depend on the com-
pact set, these nullsets can be chosen independently of the compact set (which is clear for s-compact

spaces but not at all clear for spaces which are not s-compact).
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measurable selection
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1. Introduction

While attractors for (deterministic) dynamical systems have been studied for a
long time, attractors for random dynamical systems were only introduced and
studied in the nineties of the last century. The question of connectedness of a ran-
dom pullback attractor was first addressed in the seminal paper [4]. Proposition
3.13 of that paper states that if a random dynamical system in discrete or con-
tinuous time taking values in a connected Polish space admits a pullback attrac-
tor A (in the sense that A attracts every bounded set in the pullback sense almost
surely) then A is almost surely connected. Later, a gap was found in the proof of
that proposition and an example in [6] shows that the claim does not even hold
true in the deterministic case when time is discrete. Positive results (in discrete
and continuous time) have been found in [2] under the additional condition that
any compact set in the state space can be covered by a connected compact set
(a property which clearly does not hold in the example in [6]).
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The aim of this paper is to examine the question whether random set attrac-
tors of continuous-time random dynamical systems on a connected state space
are connected.

In this paper, we distinguish between two kinds of random set attractors, pull-
back and weak attractors (precise definitions will be provided in the next section).
By set attractor we mean an attractor which either attracts every deterministic
compact set or every deterministic bounded set (we will state explicitly in each
case if we want the attractor to attract every compact or even every bounded
set). Pullback and weak attractors di¤er in the type of convergence of compact
(or bounded) sets under the action of the random dynamical system to the attrac-
tor. Pullback stands for almost sure convergence and weak for convergence in
probability. Both of these set attractors are known to be (almost surely) unique,
see [5, Lemma 1.3].

In Section 3, we consider pullback attractors for continuous-time random dy-
namical systems taking values in a connected Polish space. Under a rather weak
continuity assumption on the random dynamical system which we call pullback
continuity we show that the pullback attractor (if it exists) is almost surely con-
nected (even if it is only required to attract all compact sets). The first lemma in
that section may be of independent interest. It states that even though pullback
convergence to the attractor allows for exceptional nullsets which may depend
on the compact set, these nullsets can be chosen independently of the compact
set (even if the space is not s-compact). This lemma does not assume the state
space to be connected. The result allows us to argue pathwise (for fixed o) in the
proof of the main result.

In Section 4 we provide an example of a random dynamical system on a path-
connected state space where the weak attractor is not connected. In that example
the random dynamical system enjoys even stronger continuity properties than in
the previous section and the attractor even attracts all bounded and not just com-
pact sets. The state space in that example is the same as that in [6] but the random
dynamical system on that space is more sophisticated.

Apart from set attractors for continuous-time system other types of random
attractors such as random point attractors or random Hausdor¤-Delta-attractors
have been studied in the literature either in the pullback or weak sense ([2], [9]).
These are generally not connected even if the ambient space is connected and the
attractors are chosen to be minimal (unlike set attractors they are generally not
unique). As an example for a disconnected minimal point attractor consider the
scalar di¤erential equation dx ¼ ðx� x3Þ dt on the interval ½0; 1�. Each trajectory
converges to f0g or f1g. Hence, f0gA f1g is the minimal (pullback or weak)
point attractor (while the set attractor is the whole interval ½0; 1�).

2. Notation and preliminaries

Let ðX ; dÞ be a Polish (i.e. separable complete metric) space with Borel s-algebra
BðXÞ and ðW;F;P; yÞ be a metric dynamical system, i.e. ðW;F;PÞ is a probabil-
ity space and ðytÞt AR a group of jointly measurable maps on ðW;F;PÞ such that
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y0 ¼ id with invariant measure P. Denote by F the completion of F with respect
to P. We further denote by P the (unique) extension of P to F.

Let j : Rþ �W� X ! X be jointly measurable, j0ðo; xÞ ¼ x, jsþtðo; xÞ ¼
jtðyso; jsðo; xÞÞ for all x a X , and x 7! jtðo; xÞ continuous, s; t a Rþ and
o a W. Then, j is called a cocycle and the collection ðW;F;P; y; jÞ is called a
random dynamical system (RDS ), see [1] for a comprehensive treatment. We call
an RDS pullback continuous if t 7! jtðy�to; xÞ is continuous for each o a W and
x a X .

A semi-flow f : f�l < sa t < lg �W� X ! X satisfies fs;uðo; xÞ ¼
ft;uðo; �Þ � fs; tðo; xÞ, fs; tðo; xÞ ¼ fsþh; tþhðyho; xÞ and fs; sðo; xÞ ¼ x for o a W,
x a X , h a R and �l < sa ta u < l. There is a one-to-one relation between
cocycles and semi-flows. One can either define a semi-flow by fs; tðo; xÞ :¼
jt�sðyso; xÞ or a cocycle by jtðo; xÞ :¼ f0; tðo; xÞ. We say a semi-flow respec-

tively RDS is jointly continuous if ðs; t; xÞ 7! fs; tðo; xÞ respectively ðs; t; xÞ 7!
jt�sðyso; xÞ is continuous. Note that a jointly continuous RDS is pullback con-
tinuous but the converse does not necessarily hold true.

For a set A � X we denote

Ae :¼ x a X : dðx;AÞ :¼ inf
a AA

dðx; aÞ < e

� �
:

Definition 2.1. A family fAðoÞgo AW of non-empty subsets of X is called

(i) a random compact set if it is P-almost surely a compact set and o 7!
dðx;AðoÞÞ is F-measurable for each x a X .

(ii) j-invariant if jtðo;AðoÞÞ ¼ AðytoÞ for almost all o a W, t a Rþ.

Definition 2.2. Let ðW;F;P; y; jÞ be a random dynamical system. A random
compact set A is called a pullback attractor if it satisfies the following properties

(i) A is j-invariant
(ii) for every compact set B � X

lim
t!l

sup
x AB

dðjtðy�to; xÞ;AðoÞÞ ¼ 0 P-almost surely:

If the convergence in (ii) is merely in probability, then A is called a weak
attractor.

3. Pullback attractor

In this section, we show that the pullback attractor of a pullback continuous
RDS on a connected space is connected. The pullback attractor attracts any
compact set almost surely. We prove that the nullsets where it may not converge
can be be chosen independently of the compact set. This allows us to analyze the
RDS pathwise and to use similar arguments as in the deterministic proof of
[6, Theorem 3.1].
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Lemma 3.1. Let A be the pullback attractor of the pullback continuous RDS j.
Then, there exists some ŴW a F with PðŴWÞ ¼ 1 such that for any o a ŴW and com-
pact set K � X,

lim
t!l

sup
x AK

dðjtðy�to; xÞ;AðoÞÞ ¼ 0:

Proof. First, we consider convergent sequences in X . Let

ĉc :¼ ðxl; x1; x2; x3; . . .Þ a XN : dðxn; xlÞa 1

n
for all n a N

� �

which is closed in the Polish space XN and hence itself a Polish space. Further, let

MðoÞ :¼
[
n AN

\
m AN

[
q AQ;qbm

[
k ANAflg

fðxl; x1; x2; . . .Þ a ĉc :

jqðy�qo; xkÞ a AðoÞ
1
ngc

be the set of sequences of ĉc that are not uniformly attracted. By measurability
of j and A, the graph of M is measurable.

Assume there is a subset ~WW a F with Pð~WWÞ > 0 such that MðoÞA j for all
o a ~WW. Define

~MMðoÞ :¼ MðoÞ if o a ~WW

ĉc else.

�

Then the graph of M is in F�BðXÞ and hence in F�BðX Þ. Note that F
is closed under the Souslin operation (see [10, Example 3.5.20 and Theorem
3.5.22]). Hence, [8, Corollary of Theorem 7] (see also the survey by Wagner [11,
Theorem 3.4]) implies the existence of a F-measurable selection xðoÞ ¼ ðxlðoÞ;
x1ðoÞ; x2ðoÞ; . . .Þ a ~MMðoÞ. The set

S
k ANAflgfxkðoÞg is sequentially compact for

each o a W. By the same arguments as in [3, Proposition 2.15], there exists some
deterministic compact set ~KK � X such that

PðxkðoÞ a ~KK for all k a NA flgÞ > 1� Pð~WWÞ:

Using the definition of ~WW and M̂M it follows that

PðxðoÞ a MðoÞ and xkðoÞ a ~KK for all k a NA flgÞ > 0:

This contradicts the fact that the pullback attractor attracts ~KK almost surely.
Hence, MðoÞ ¼ j almost surely. Using pullback continuity of j, it follows that
there exists some ŴW a F with PðŴWÞ ¼ 1 such that for any o a ŴW and ðxl; x1;
x2; . . .Þ a ĉc,

lim
t!l

sup
k ANAflg

dðjtðy�to; xkÞ;AðoÞÞ ¼ 0:ð1Þ
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Now, assume there exists some compact set K , e > 0, o a ŴW and sequence tm
going to infinity such that jtmðy�tmo;KÞ 6� AðoÞe for all m a N. Hence, there
are ym a K such that jtmðy�tmo; ymÞ B AðoÞe for all m a N. Since K is compact,
there is a convergent subsequence ymk

with yl :¼ limk!l ymk
and ðyl; ym1

;
ym2

; . . .Þ a ĉc which is a contradiction to (1). r

Remark 3.2. The statement of Lemma 3.1 remains true for pullback attractors
of RDS in discrete time.

Lemma 3.3. Let A be the pullback attractor of the RDS j. For d > 0 there exist
compact sets Kn � X and tn b 0, n a N such that

Pðjtnðy�tno;KnÞ � AðoÞ and

jtðy�to;KnÞ � AðoÞ
1
n for all tb tn; n a NÞb 1� d:

Proof. Let n a N. By [3, Proposition 2.15] there exists some compact set
Kn � X such that

PðAðoÞ � KnÞb 1� d

2nþ1
:ð2Þ

The definition of the pullback attractor implies that there exists some tn > 0 such
that

Pðjtðy�to;KnÞ � AðoÞ
1
n for all tb tnÞb 1� d

2nþ1
:ð3Þ

By j-invariance of A, y-invariance of P and (2) it follows that

Pðjtnðy�tno;KnÞ � AðoÞÞb 1� d

2nþ1
:

Combining this estimate and (3), we conclude

Pðjtnðy�tno;KnÞ � AðoÞ and

jtðy�to;KnÞ � AðoÞ
1
n for all tb tnÞb 1� d

2n

which implies the claim. r

Theorem 3.4. Let X be a connected Polish space and j be a pullback continuous
RDS. If there exists a pullback attractor A, then A is almost surely connected.

Proof. Assume A is not connected with positive probability. By Lemma 3.1
and 3.3 we can choose ~WW a F with Pð~WWÞ > 0, compact sets Kn � X and a
sequence tn such that for any o a ~WW, n a N and compact set K � X it holds
that
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• AðoÞ is not connected,
• limt!l supx AK dðjtðy�to; xÞ;AðoÞÞ ¼ 0,

• jtnðy�tno;KnÞ � AðoÞ and jtðy�to;KnÞ � AðoÞ
1
n for all tb tn.

Fix o a ~WW. For this fixed o we will follow the idea of the proof in the determin-
istic case (see [6, Theorem 3.1]). Note however that Step 3 below requires some
extra argument in our case.

Step 1: Let AðoÞ ¼ A1 AA2, where A1 and A2 are nonempty, disjoint, compact
sets. There exists some e > 0 such that Ae

1BAe
2 ¼ j. Define

X1 :¼ fx a X : there exists t such that jsðy�so; xÞ a Ae
1 for all sb tg

X2 :¼ fx a X : there exists t such that jsðy�so; xÞ a Ae
2 for all sb tg:

If we show that X1 and X2 are disjoint nonempty open sets satisfying X1 AX2 ¼
X , then we found a contradiction to X being connected. Obviously, X1BX2 ¼ j.

Step 2: We show that X1 AX2 ¼ X .
Let x a X . By definition of ~WW, there exists some t > 0 such that jsðy�so; xÞ a

AðoÞe for all sb t. Define

St :¼ fjsðy�so; xÞ : sb tg:

Then, St � AðoÞe and St is connected by pullback continuity. Therefore, St is
either totally contained in Ae

1 or totally contained in Ae
2.

Step 3: We show that Xi A j for i ¼ 1; 2.
Let n a N with 1

n
a e. By definition of ~WW, jtnðy�tno;KnÞ � AðoÞ and

jtðy�to;KnÞ � AðoÞe for all tb tn for some n a N. Hence, there exists x a
Kn � X such that jtnðy�tno; xÞ a Ai. By continuity in time, jtðy�to; xÞ a Ae

i for
all tb tn.

Step 4: We show that Xi is open for i ¼ 1; 2.
Assume that Xi is not open. Then, there exist an x a Xi, a sequence xk con-

verging to x and a sequence sk converging to infinity such that jskðy�sko; xkÞ B
Ae

i for all k a N. By definition of ~WW, there exists some s > 0 such that
jtðy�to; xkÞ a AðoÞe for all k a N and tb s. Since x a Xi, xk is converging to x
and j is continuous in the state space, there exists some k� such that jsðy�so; xkÞ
a Ae

i for kb k�. Using pullback continuity, it follows that jtðy�to; xkÞ a Ae
i for

tb s and kb k� which is a contradiction to the definition of xk. r

4. Weak attractor

The question arises whether the result in the previous section can be extended to
weak attractors. In contrast to pullback attractors, convergence to weak attracors
is merely in probabilty. We give an example of an RDS where the weak attractor
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is not connected. In addition to the assumption on the RDS and state space of
Section 3, this example has a jointly continuous RDS, a path-connected state
space and every bounded set converges to the attractor.

Example 4.1. Step 1: The metric space. We choose the same metric space as in
[6, Remark 5.2]. Set sn ¼

Pn
i¼0 2

�i for n a N0. Let us consider the following sets
in R2:

P�l :¼ ð�1; 0Þ; Pl :¼ ð2; 0Þ;
Pn :¼ ðsn�1; 0Þ; P�n :¼ ð1� sn; 0Þ;
X L

n :¼ fðx; yÞ a R2 : x ¼ sn�1 þ l2�n�1 and

y ¼ l2�n for some l a ½0; 1�g;
XR

n :¼ fðx; yÞ a R2 : x ¼ sn�1 þ ð2� lÞ2�n�1 and

y ¼ l2�n for some l a ½0; 1�g;
X L

�n :¼ fðx; yÞ a R2 : x ¼ 1� sn þ l2�n�1 and

y ¼ l2n for some l a ½0; 1�g;
XR

�n :¼ fðx; yÞ a R2 : x ¼ 1� sn þ ð2� lÞ2�n�1 and

y ¼ l2n for some l a ½0; 1�g;
X�l :¼ fð�1; yÞ a R2 : yb 0g;

Y :¼ fðx; yÞ a R2 : ya 0; ðx� 0:5Þ2 þ y2 ¼ 2:25g

and

Xz :¼ X L
z AX R

z

for n a N0 and z a Z. The sets Xz are the two equal sides of isosceles triangles
in the halfplane with base PzPzþ1 and height 2�z. The left- respectively right-
hand side of Xz is denoted by X L

z respectively X R
z . Finally we define the complete

metric space

X :¼
[l
z AZ

Xn AX�l AY

with the metric induced by R2.

Step 2: The dynamics. We characterize the dynamics by phases of length one. To
each phase there corresponds a random variable xm where ðxmÞm AZ is a sequence
of independent identically distributed random variables with Pðx0 ¼ kÞ ¼ 2�k for
k a N. In a phase with corresponding xm ¼ k all points to the right of P�ðkþ1Þ!þ1

get pushed k! triangles to the right and all points on the lower half of the triangles
to the left of P�ðkþ1Þ! decrease their height. We describe the dynamics during a
phase by a function f : f0a sa ta 1g �N� X 7! X . Let f be such that

613connectedness of random set attractors



• P 7! f0; tðk;PÞ is bijective
• fs; t ¼ f0; t � f �1

0; s

• ðs; tÞ 7! fs; tðk;PÞ is continuous
• if zb�ðk þ 1Þ! and P ¼ ðx; yÞ a X R

z , then f0;1ðk;PÞ a fð~xx; ~yyÞ a X R
zþk! : ~yy ¼

2�k!yg
• if zb�ðk þ 1Þ!þ 1 and P ¼ ðx; yÞ a X L

z , then f0;1ðk;PÞ a fð~xx; ~yyÞ a X L
zþk! :

~yy ¼ 2�k!yg
• if zb�ðk þ 1Þ!þ 1 and P a XR

z�1 AX L
z , then j f0; tðk;PÞ � f0; tðk;PzÞja

jP� Pzj
• if za�ðk þ 1Þ! and P ¼ ðx; yÞ a X L

z with ya 2�z�1, then f0; tðk;PÞ a
fð~xx; ~yyÞ a X L

z : ~yy ¼ 2�tyg
• if za�ðk þ 1Þ!� 1 and P ¼ ðx; yÞ a X R

z with ya 2�z�1, then f0; tðk;PÞ a
fð~xx; ~yyÞ a X R

z : ~yy ¼ 2�tyg
• if P;Q a X L

z or P;Q a XR
z for z a Z, then j fs; tðk;PÞ � fs; tðk;QÞja

4ðk!þ 1ÞjP�Qj
• if P a X�l and P ¼ ð�1; yÞ, then f0; tðk;PÞ ¼ ð�1; 2�tyÞ
• if P a Y , then f0; tðk;PÞ ¼ P.

Then, t 7! fs; tðxm;PÞ describes the dynamics of the system started in a point P at
time s in a phase with corresponding random variable xm. Since ðs; tÞ 7! fs; tðk;PÞ
is continuous and P 7! fs; tðk;PÞ is Lipschitz continuous with Lipschitz constant
depending on k, the map ðs; t;PÞ 7! fs; tðk;PÞ is continuous.

In the following steps we show that the weak attractor of this system exists
and is not connected.

Step 3: Attractor of discrete-time system. Let r a N be arbitrary. Define the
bounded set Kr :¼ fðx; yÞ a X : ya 2rg and the neighborhood Ur ¼ fðx; yÞ a
X : ya 2�rg of

S
z AZ Pz AY . Consider the discrete-time system generated by

the iterated functions ð f0;1ðxm; �ÞÞm AZ. If xm b k for some phase with k!b 2r,

Figure 1. Bounded subset of X
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then the process started in
Sl

z¼�r XzBKr stays in Ur after this phase. Running 2r
phases, all points in KrB ð

Sl
i¼rþ1 X�i AX�lÞ decrease their height and reach Ur.

Therefore, after 2r phases where at least one corresponding xm b k with k!b 2r
the discrete-time process started in Kr is in Ur. In contrast to the continuous-time
process, the discrete-time process cannot leave Ur afterwards. By [2, Theorem
3.4], there exists a pullback attractor of the discrete-time process and this attrac-
tor is a subset of

S
z AZ Pz AY . For n a N define

Fnðx�1; x�2; . . . ; x�nÞ :¼ f0;1ðx�1; �Þ � f0;1ðx�2; �Þ � � � � � f0;1

�
x�n;

[
z AZ

Pz

�

�
[
z AZ

Pz:

By definition of the pullback attractor, Fnðx�1; x�2; . . . ; x�nÞ converges to the
pullback attractor as n goes to infinity P-almost surely. Therefore, P0 a Fn for
large enough n implies that P0 is in the attractor as well. The point P0 is not in
Fn i¤ there exist k a N and times �na t0 < t1 < � � � < tk < 0 such that xti ¼ k
for all 0a ia k and xs a k for all t0 a s < 0. Then,

PðP0 is in the attractorÞ ¼ lim
n!l

PðP0 a Fnðx�1; x�2; . . . ; x�nÞÞ

b 1�
X
k AN

Pðx0 ¼ k j x0 b kÞkþ1 ¼ 1

2

which implies that the pullback attractor is not connected with positive probabil-
ity. More generally, the attractor is not connected if there exists an mb 0 such
that for all n a N the point P0 a Fnðx�m�1; x�m�2; . . . ; x�m�nÞ. This event is in
the terminal sigma algebra. By Kolmogorov’s zero-one law, the pullback attrac-
tor of the discrete-time system is almost surely not connected.

Step 4: Attractor of continuous-time system. When we consider the continuous-
time system we need to add a random phase shift which is uniformly distibuted
on ½0; 1Þ. For 0a s; t < 1 and n a N, the system started in a point P at time s of a
phase is described by

j�sþnþtðo;PÞ ¼ f0; tðxn; �Þ � f0;1ðxn�1; �Þ � � � � � f0;1ðx1; �Þ � fs;1ðx0;PÞ:

with o ¼ ðs; ðxmÞm AZÞ a ½0; 1Þ �NZ ¼: W and canonical shift on W and the basic
probability measure on W is the product of Lebesgue measure on ½0; 1Þ and the
laws of ðxmÞm AZ. Then, j is a jointly continuous RDS as a composition of jointly
continuous maps.

Let rb 2. If we start in a set Kr as in Step 3 in an incomplete phase with
corresponding xm a r, then at the end of this phase the process is still in Kr. The
pullback attractor of the discrete-time system attracts this bounded set. Hence,
there exists a time nr a N such that the discrete process started in Kr stays in a
ball around the discrete-time attractor with radius 2�ðrþ1Þ! after time nr with prob-
ability 1� 2�r.
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We extend the discrete-time attractor to continuous time in such a way that
the so constructed random set stays strictly invariant under the given dynamics.
If one starts the end phase in a ball around the discrete-time attractor with radius
2�ðrþ1Þ!, one can leave the ball around the invariantly extended random set with
radius 2�ðkþ1Þ! only during a phase with corresponding xm b r.

Combining these three parts, the continuous-time process started in Kr at time
tb nr þ 1 is in a ball around the discrete-time attractor with radius 2�ðrþ1Þ! with
probability 1� 2�rþ1.

This probability tends to one as r goes to infinity. Therefore, the continuous-
time extension of the discrete-time attractor is the weak attractor of the
continuous-time system. By construction, the weak attractor of the continuous
system is almost surely not connected. Note that the weak attractor will not al-
most surely be contained in the set

S
z AZ Pz AY .

Remark 4.2. If every compact set in X can be covered by a connected compact
set, then the weak attractor is connected. This follows by the same arguments
as in [2, Proposition 3.7] where this result was stated for the pullback attractor.
Here, one does not need to assume continuity in time.

This assumption is in particular satisfied for an attractor that attracts bounded
sets in probability on a connected and locally connected Polish space. By local
connectedness, a compact set can be covered by finitely many open connected
sets. Since a connected and locally connected Polish space is also path-connected
(see Mazurkiewicz-Moore-Menger theorem in [7, p. 254, Theorem 1 and p. 253,
Theorem 2]), one can connect these sets by paths.
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