
This version is available at https://doi.org/10.14279/depositonce-8265

Copyright applies. A non-exclusive, non-transferable and limited
right to use is granted. This document is intended solely for
personal, non-commercial use.

Terms of Use

Cavens, D.; Gloor, C.; Illenberger, J.; Lange, E.; Nagel, K.; Schmid, W. A. (2007). Distributed intelligence
in pedestrian simulations. Pedestrian and Evacuation Dynamics 2005, 201–212.
https://doi.org/10.1007/978-3-540-47064-9_18

Duncan Cavens, Christian Gloor, Johannes Illenberger, Eckart Lange, Kai
Nagel, W. A. Schmid

Distributed intelligence in pedestrian
simulations

Submitted manuscript (Preprint)Conference paper |

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/195775836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Distributed intelligence in pedestrian simulations

D. Cavens
1
, C. Gloor

2
, J. Illenberger

3
, E. Lange

4
, K. Nagel

3
, W. A. Schmid

1

1
ETH Zürich, Switzerland

2
Gloor Consulting, Switzerland

3
Technical University of Berlin, Germany

4
University of Sheffield, United Kingdom

In order to accurately simulate pedestrian behaviour in complex

situations, one is required to model both the physical environment and

the strategic decision-making of individuals. We present a method for

integrating both of these model requirements, by distributing the

computational complexity across discrete modules. These modules

communicate with each other via XML messages. The approach also

provides considerable flexibility for changing and evolving the model.

The model is explained using an example of simulating hikers in the

Swiss Alps.

1 Introduction and Motivation

An important question in pedestrian simulation systems is the determination of the

direction in which the pedestrians are heading. For the investigation of simple

geometrical structures, it is sufficient to give the pedestrians pre-computed and fixed

directions, which translate to a desired velocity vector for each pedestrian which is

constant in time. Somewhat more advanced are evacuation simulations, which are

solved either by using potentials or by using simple rules that combine searching and

herd behaviour.

As one moves towards more complex spatial environments and social situations, a

correspondingly more complex approach is required to modelling agents’ desired

direction. This is required for models that simulate, for example, how pedestrians

explore a museum or a department store, or how they move around in a crowded urban

park at lunchtime. In these situations, agents, like the individuals they represent, need

to be able to adapt their desired directions in response to their surrounding

environment and the activities of other agents.

In general, a mobility simulation consists of at least two components: the simulation of

the agents’ interactions with the physical world, and the simulation of the agents’

strategic or mental decision-making [1]. The first component, what we call the

physical simulation, deals with how a pedestrian adapts its movement to accommodate

obstacles and physical constraints in its immediate environment (i.e. strategies to avoid

a group of other pedestrians that are between the agent and its destination.) The

second component, the agents’ decision-making, models the agents’ goals and

strategies at a broader and temporal scale (i.e. the selection of an agent’s destination

from a set of similar alternatives.) While there is some overlap between the two

components, for the purposes of this paper the agents interaction While both of these

components, plus their interplay, are important to making a realistic pedestrian

simulation, there has been comparatively little research into how to make the two

components work together [2].

While the primary purpose of the work presented here seeks to integrate the modelling

of pedestrians’ physical movements with their strategic decision-making, it was also

triggered by a research project that simulates the reaction of hikers to changes in the

landscape. This created additional demands on the described system, requiring that

the system be able to model and simulate the following aspects:

• Large scale: The study area is typically used for extensive day hikes. This

implies an area of at least 25 km x 25 km, and requires the simulation of

several thousand pedestrians per day.

• Sophisticated mental models: The evaluation of a landscape (both

aesthetically and from a functional perspective) by recreational users is a

process that is not well understood. This implies the use of a flexible method

in which very different mental models can be tested.

• Distributed Computation: Since variability of experiences over the course

of a day seems to have a strong influence on hiker satisfaction, a

computational method that automatically evaluates sequences of views is

needed. Since this is a time-consuming computation, this implies the use of

distributed computing where several view analyzers can run on different

computers.

We present an approach that satisfies these goals.

2 Overview of the Approach

Our method consists of dividing the simulation into distinct modules. These modules

interact with each other via network messages. Each module has a distinct role in the

overall simulation system, but can be classified into the following broad categories:

• Mental modules simulate the processes that go on in peoples’ heads. These

modules determine how an agent can best fulfil its goals and expectations,

based on their experience on previous simulation runs. These modules also

receive events from the other modules, in order to refine their knowledge of

the area being simulated.

• The physical simulation (in this case a pedestrian simulation) executes the

plans of all involved agents simultaneously. The module is responsible for

modelling how the agents react to their physical environment such as slow-

downs due to congestion or path characteristics. While the mobility

simulation is running, it constantly emits messages (called events) stating the

status of each agent. Most of these events are simply status messages

(containing the agent’s location), but some messages contain additional

information about the agent’s surrounding environment.

• There are secondary analyzer modules that read the event stream, compute

secondary information, and re-insert that secondary information into the same

event stream.

• There are additional control modules that coordinate communication

between the other modules and keep track of the overall state of the

simulation.

The simulation is designed to run over many iterations, during which the agents

„learn“ about their environment. Initially, the agents are assigned characteristics and

non-spatially specific goals, but have no knowledge of the physical characteristics of

the simulated area. These characteristics and goals are generated externally to the

simulation and fed to the Agent Database.

Figure 1: Overview of the Simulation System. Each Module can be implemented as a

separate executable if required.

At the beginning of each simulation run (in this case representing a single day), the

Agent Database, with the assistance of the mental modules, generates for each agent a

plan that the simulation system expects is the most likely to fulfil the particular agent’s

goals and expectations. Once all plans have been elaborated, the Agent Database

submits these plans to the physical simulations which simultaneously execute them.

During the model run, the physical simulations broadcast events to the rest of the

simulation. These events include information about the location of the agents and any

experiential information that is available (i.e. indicating that the agent has encountered

a steep hill, or is in a congested area.) The mental and analyzer modules listen to

events being broadcast by the physical simulation. This information is used by the

mental modules to refine their knowledge of the physical environment and generate

better plans in subsequent model runs. For example, they might note that an agent

sees nothing but trees while the agent is interested in sunshine. On subsequent model

runs, the agent will search for a different hiking path that provides more open areas.

At the end of a simulation run, the control module determines if the agents have

achieved their goals and expectations using the current plan. If not, the mental

modules are asked for a new plan. In order to ensure that agents are able to discover

new locations, a degree of randomness is used to determine the agents’ choices (the

random factor decreases over many simulation runs.)

3 Modules

In order to further elucidate the major concepts, the following are descriptions of key

modules in the simulation system. More complete descriptions are available in [3] and

[2].

3.1 Agent Database / Controller Module

The Agent Database fulfils two major functions within the simulation system: it

maintains the master list of agents in the simulation and co-ordinates the rest of the

modules.

As part of the system initialization, the agent database loads in a synthetic population

of agents. This population, defined in an externally generated XML file, describes

each agent’s individual characteristics. This includes the agents’ physical constraints

(such as fitness levels) as well as their goals and expectations. At this stage, the goals

and expectations are non-spatial: they are simply a list of activities (in the case of the

Hiking simulator, these include hiking, eating at a restaurant, etc.) and their desired

durations.

Before each simulation run, the Agent Database determines if the agent has a plan that

meets its expectations. If not, the Agent Database requests that the Mental Modules

(Activity Generator, Location Generator and Router) provide suggested routes that

potentially fulfil the agent’s goals. In these transactions, the Agent Database acts as an

“ignorant” broker: it contains very little knowledge about the simulated environment

or agent logic.

At the end of this elaboration process, the Agent Database contains a plan for each

agent has a plan that represents the overall system’s current best solution to the agent’s

goals and expectations. (Over the course of many simulation runs, this solution will

generally improve as the agents have the opportunity to explore the simulated

landscape and discover more appropriate solutions.)

A simplified representation of an agent’s plan is contained in figure 2.

Once the Agent Database has received elaborated plans for each agent, they are

submitted to the Physical Simulation for execution. At this point, the Agent Database

assumes more of a “controller” role, primarily ensuring that the various modules are

able to keep up with each other. It does this by throttling the entire simulation (by

requesting that the physical simulation wait after each time step) if some of the

modules not able to process events and/or requests quickly enough.

Figure 2: Simplified XML Plan. The simulation system dynamically generates a new

plan for each agent every day. The plan is used by the Physical Simulation Module to

direct the agent’s movements over the course of a simulation run.

3.2 Physical Simulations - Pedestrian Simulation Module

The Pedestrian Simulation Module models how the agents interact with the physical

environment. This includes interactions with other agents (such as avoiding

collisions) and interactions with the physical world (i.e. slowing down when climbing

up steep hills.)

<plan agent =”1” plan_id=”1” >
 <activity id=”1-1” type=”enter_simulation” time=”324000”>
 <location id=”1-1-1” type=”parking_lot” x=”512432.2” y=”508343.5” />
 </activity>
 <activity id=”1-2” type=”hike” suggested_duration=”3600” >
 <waypoint id=”1-2-1” type=”node” node_id=”1246” x=”512438.5 y=”5078334.3” />

<waypoint id=”1-2-2” type=”node” node_id=”1247” x=”512436.0 y=”507820.9” />
 (…)
<location id=”1-2-1” type=”hike_waypoint” x=”512450.0” y=”508012.3” />
<waypoint id=”1-2-12” type=”node” node_id=”1281” x=”512470.5 y=”507950.3” />
<waypoint id=”1-2-13” type=”node” node_id=”1284” x=”512322.5 y=”507912.8” />

 (…)
 </activity>
 <activity id=”1-3” type=”eat” duration=”1800” >
 <location id=”1-3-1” type=”restaurant” x=”514432.0” y=”505323.0” />
 </activity>

</plan>

Because of the need for realistic arbitrary movement, the pedestrian simulation module

uses a hybrid approach adopted from Mauron [4]: the module uses a continuous

representation of geographic space, but also uses a network representation of available

paths as a guide for the agents’ movements. This means that agents are free to move

anywhere in the model, but are more likely to walk along existing paths and trails.

The pedestrian model uses a force-based approach, with strong forces along the path

trajectories and weak forces toward the middle of the path which encourage agents to

follow the trails. Additional forces are generated by neighbouring agents and

inanimate objects near the agent. The force model was calibrated based on video data

of pedestrian movement and provides very realistic movement patterns.

A continuous space implementation requires, in general, considerably more

computational resources than a network-based approach, particular for areas as large

as our study area (over 600 km
2
). However, the particular nature of hiking areas

means that the study area is very sparsely populated with agents at any given time, and

they tend to congregate within a much smaller subset of the total area available to

them. In order to reduce the computational demand, the pedestrian simulation module

takes advantage of these features and uses lazy-initialization and caching techniques to

ensure that only a small proportion of the total area is loaded into memory at any given

time[3]. As a result, the physical simulation module can easily fit within the resources

available on standard desktop PCs.

Figure 3: Hybrid Continuous Space Model: Traces of Simulated Pedestrians

following a path while avoiding each other.

From the perspective of the Pedestrian Simulation Module, the agent’s plan consists of

a series of waypoints that it needs to traverse over the course of a simulated day. The

plan also indicates where and when the agent should enter the simulation, and if it

should wait at any given waypoint (such as at a bench for a rest). Once the simulation

module has received all of the agent plans, it simultaneously executes these plans for

all agents in the simulation.

While the simulation is being executed, the module broadcasts messages describing

the agents’ interactions with the physical world to the event stream. These messages

include:

• the location and orientation of each agent,

• if the agent has encountered congestion,

• information about the steepness of the terrain, and

• trail condition information.

The physical simulation uses additional GIS data, provided as a series of raster layers,

to provide information such as the steepness and trail conditions. These two particular

kinds of information are also used by the simulation, in conjunction with the agent’s

particular characteristics (such as agent fitness), to determine the agents’ velocity.

This is calibrated based on hiker data collected in other recreational areas[5].

3.3 Mental Modules

As described in section 2, part of the role of the mental modules is in elaborating

plans. More importantly, however, is the mental module’s key roles in observing and

interpreting the agents’ environment. The Mental Modules are where all agent

learning takes place: the modules receive events from the physical simulations, which

describe the agents’ experiences, and use them to inform their suggested agent plans.

Each mental module is responsible for a different spatial and temporal scale in the

plan-generating phase:

• The activity generator generates an ordered chain of activities based on the

agent’s goals and expectations.

• The location generator assigns specific locations to this activity chain,

including key points in the middle of mobile activities such as hiking.

• The router generates specific routes between the locations specified by the

location generator.

The three mental modules share a lot of similarities (they are implemented as closely

related software classes). Each:

• maintains an internal representation of all possible agent choices at their

respective spatial scales (for the router and location generators these

representations are akin to a geographic map of nodes and links, while the

location generator’s is simply a list of possible permutations, in keeping with

its non-spatial nature.)

• listens to the event stream generated by the physical simulation and

summarizes this information into distinct “experiences”. These experiences

are stored based on the spatial and temporal scale of the module (i.e. per

activity pair in the case of the activity generator, per location pair by the

location generator and per node-pair for the router).

• Contains an evaluator function that scores these previous experiences based

on a particular agent’s expectations (i.e. while a hike may be too steep for

another hiker, it might be exactly what another hiker is seeking.)

Enter

Simulation
Hike Eat

 course of day

Restaurant

“A”

Parking

Lot “C”

Waypoint

at x1,y1

ACTIVITY

GENERATOR

LOCATION

GENERATOR

ROUTER

Path of Agent

wp wp wp wp wp wp

Waypoint (node in path network)wp

...

...

...

Figure 4: Schematic representation of each Mental Module’s contribution to the plan

generation process. As the Agent Database queries the Modules from top to bottom,

the agent’s plan gains increasing resolution.

In the current implementation, only the location generator and router have been fully

implemented: as an interim measure the activity generator uses some simple heuristic

rules to create plausible activity chains.

Example Mental Module: Router

The router operates at the smallest spatial scale- it suggests routes between locations

provided by the location generator. In order to do so, the router is preloaded with an

internal network of nodes and links which represent the available paths within the

simulated area. During a simulation run, every time an event is received indicating

that an agent has passed a node (and therefore entered a link), the router begins

collecting the events and stores them until a subsequent event indicates that the agent

has left the link. These events, which indicate landscape features (such as the quality

of a view, type of landscape or terrain difficulty) or human factors (congestion, trail

closed etc.) are then summarized by the router and stored, along with the time the

agent entered the link and how long it took for the agent to walk the link. Over time,

as other agents walk the same route, their experiences are also associated with that

particular link.

When asked to elaborate an agent’s plan, the router parses the given plan, and extracts

all of the location pairs. For each of these pairs, it computes the best available route

along the path network according to the agent’s individual characteristics. It computes

this by first converting each link’s set of experiences to a numerical value using a

generalized cost function calibrated to the agent’s goals and expectations (as the

precise implementation of this function is part of ongoing research, details are to

follow in a forthcoming publication.) An optimal path between the two locations is

then computed using a modified Djikstra’s algorithm[6]. Although our standard

implementation uses the typical Djikstra algorithm, its heritage as a shortest path

algorithm means that it is unsuited for modelling recreational activity: as at least part

of the attraction for recreational users is the “getting there”, a more complex algorithm

is required and is currently under development.

3.4 Analyzer Modules

One particular strength of the described modelling framework is the ability to create

new modules that model external factors and/or interpret the agents’ environment in

different ways. One does this by creating new analyzer modules that listen to the

event stream (broadcast either by the physical simulations or by other analyzer

modules). The analyzer modules can then insert additional information as events into

the event stream, where they can be interpreted by the various Mental Modules, if

appropriate. While the mental modules do need to be modified to be able to react to

any additional information provided by the Analyzer Module, the overall simulation

approach means that only minor changes need to be made (i.e. in the Evaluator and

Summarizing functions of a single Mental Module). Two analyzer modules have

already been implemented: a weather simulator, and a Visibility / Visual Quality

Model.

Figure 6: The visibility analyzer module calculates what can be seen by each agent in

the simulation. Using positional data generated by the physical simulation, the module

uses 3D rendering techniques to render false colour images and depth maps of the

agent’s field of view. These images are analyzed and information about what is seen

is broadcast back to the event stream.

Example Analyzer Module: Visibility / Visual Quality Module

The visibility module is an example of a secondary analyzer module: it listens to the

main event stream, and based on the current agent locations, it calculates what is

visible to that particular agent. It then broadcasts this visibility to the main event

stream, where it can be “heard” and interpreted by one of the mental modules. The

visibility module uses a 3D representation of the landscape being modelled to

calculate what can be seen from any location in the model [7]. Depending on the

needs of the questions asked of the simulation, the visibility calculations information

can be pre-computed or done in real-time as the simulation in running (useful if the

visibility of other agents is important.) As interpreting the results of the visibility

calculations are rather computationally intensive, a further Analyzer Module was

developed that interprets what an agent sees and returns an aggregated visual quality

score. This means that the mental modules need not be further complicated by this

interpretation. Like any other analyzer module, the Visual Quality Module can be

inserted almost transparently into the event stream.

4 Communication and Coordination

As the individual modules are implemented in most cases as separate executables,

communication and co-ordination between the modules is a crucial part of the overall

system design. The modules communicate with each other via TCP network

messages, which are formatted as XML. There are two major message types in the

system:

• Control messages: these messages are used for communication between the

control modules and the mental modules or physical simulations. They

consist of XML “requests” from the control modules and “responses” from

the other modules.

• Event messages: these messages are used to broadcast information about

agents’ current location and state to the entire simulation system. The events

are sent by the physical simulation and analyzer to the Event Broker module,

which re-broadcasts them to all interested modules. The events indicate when

an agent has started a specific activity (such as hiking), reached a specific

location (such as a path intersection), encountered congestion, etc.

A key issue is timing: in order to keep all modules synchronized during a model run,

messages are sent to identify which modules are ready to receive additional input. We

use a variation of the Time Warp algorithm [8], whereby modules inform the control

module at which temporal resolution they are operating (some modules, such as the

physical simulation might need to react every 10 seconds “real-time”, whereas others,

such as the weather simulator, might only need to re-compute every 15 minutes) and if

they are ready for the simulation to proceed.

One of the advantages of using XML messages over TCP is that it is relatively trivial

to distribute the various modules across multiple computing nodes. While this

requires some configuration changes in the control modules, and perhaps in the

modules being distributed, those modules receiving messages generally do not need to

be modified to accommodate this. The current implementation has the visibility

analyzer distributed transparently across multiple hosts, as it requires a fair amount of

computing resources.

Another advantage of this approach is that the modular nature allows one to test

different implementation approaches for different modules without needing to rewrite

the entire system.

4.1 Within-Simulation Replanning

One example of using the modular structure to test different approaches was the

implementation of replanning during the simulation run. In the typical

implementation, during a model run the mental modules only observe the event

stream. They use this data to make decisions for the next model run. However, with a

simple modification to the mental modules, the system was modified to accommodate

changing the agents’ plans in the middle of a simulation run. As the mental modules

realized that an agent’s plan was not appropriate for the day’s weather (modelled by

the weather simulator), it sends a revised plan to the control module, which forwards it

to the pedestrian simulation.

5 Outlook

While at first glance the system might seem rather over-complicated, the modular

structure now in place allows for it to be easily extended and tweaked without

extensive rewriting of software code. A particular strength of the framework is that

modelling the agents’ physical interaction is completely separate from modelling the

agents’ mental processes, which is an area which requires extensive research before

the simulation of pedestrian behaviour will be entirely plausible.

Although the current implementation is still some steps away from a real-world

applicability in the tourism industry, our prototype nevertheless demonstrates that all

these features can indeed be implemented into a computational system. Future work

will include to make the system more robust, and to include better behavioural models.

6 Acknowledgements

Parts of this work were funded by the Swiss National Research Foundation’s research

Programme “NFP 48: Habitats and Landscapes of the Alps.”

References

1. Ferber, J., Mutli-agent Systems. An Introduction to distributed artificial

intelligence. 1999: Addison-Wesley.

2. Gloor, C., Distributed Intelligence in Real World Mobility Simulations, in

Unpublished Doctoral Thesis, Department of Computer Science. 2005, ETH

Zürich: Zürich.

3. Gloor, C., et al., A Pedestrian Simulation for Very Large Scale Applications,

in Multi-Agenten-Systeme in der Geographie, A. Koch and P. Mandl, Editors.

2003, Institut für Geographie und Regionalforschung der Universität

Klagenfurt.

4. Mauron, L., Pedestrian simulation methods, in Unpublished Diploma Thesis,

Department of Computer Science. 2002, ETH Zürich: Zürich.

5. van Wagtendonk, J.W. and J.M. Benedict, Travel Time Variation on

Backcountry Trails. Journal of Leisure Research, 1980. 12: p. 99-104.

6. Dijkstra, E.W., A note on two problems in connexion with graphs.

Numerische Mathematik, 1959. 1: p. 269–271.

7. Cavens, D., et al. Integrating Visual Quality Modeling within an Agent-Based

Hiking Simulation for the Swiss Alps. in The Second International Conference

on Monitoring and Management of Visitor Flows in Recreational and

Protected Areas. 2004. Rovaniemi, Finland.

8. Jefferson, D.R., Virtual Time. ACM Transactions on Programming

Languages and Systems, 1985. 7(3): p. 404-25.

