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In order to accurately simulate pedestrian behaviour in complex 

situations, one is required to model both the physical environment and 

the strategic decision-making of individuals.  We present a method for 

integrating both of these model requirements, by distributing the 

computational complexity across discrete modules.  These modules 

communicate with each other via XML messages.  The approach also 

provides considerable flexibility for changing and evolving the model.  

The model is explained using an example of simulating hikers in the 

Swiss Alps. 

1 Introduction and Motivation 

An important question in pedestrian simulation systems is the determination of the 

direction in which the pedestrians are heading. For the investigation of simple 

geometrical structures, it is sufficient to give the pedestrians pre-computed and fixed 

directions, which translate to a desired velocity vector for each pedestrian which is 

constant in time. Somewhat more advanced are evacuation simulations, which are 

solved either by using potentials or by using simple rules that combine searching and 

herd behaviour.  

 

As one moves towards more complex spatial environments and social situations, a 

correspondingly more complex approach is required to modelling agents’ desired 

direction.  This is required for models that simulate, for example, how pedestrians 

explore a museum or a department store, or how they move around in a crowded urban 

park at lunchtime.  In these situations, agents, like the individuals they represent, need 

to be able to adapt their desired directions in response to their surrounding 

environment and the activities of other agents.   

 

In general, a mobility simulation consists of at least two components: the simulation of 

the agents’ interactions with the physical world, and the simulation of the agents’ 

strategic or mental decision-making [1].  The first component, what we call the 

physical simulation, deals with how a pedestrian adapts its movement to accommodate 



obstacles and physical constraints in its immediate environment (i.e. strategies to avoid 

a group of other pedestrians that are between the agent and its destination.)  The 

second component, the agents’ decision-making, models the agents’ goals and 

strategies at a broader and temporal scale (i.e. the selection of an agent’s destination 

from a set of similar alternatives.)  While there is some overlap between the two 

components, for the purposes of this paper the agents interaction While both of these 

components, plus their interplay, are important to making a realistic pedestrian 

simulation, there has been comparatively little research into how to make the two 

components work together [2]. 

 

While the primary purpose of the work presented here seeks to integrate the modelling 

of pedestrians’ physical movements with their strategic decision-making, it was also 

triggered by a research project that simulates the reaction of hikers to changes in the 

landscape.  This created additional demands on the described system, requiring that 

the system be able to model and simulate the following aspects: 

• Large scale: The study area is typically used for extensive day hikes.  This 

implies an area of at least 25 km x 25 km, and requires the simulation of 

several thousand pedestrians per day. 

• Sophisticated mental models: The evaluation of a landscape (both 

aesthetically and from a functional perspective) by recreational users is a 

process that is not well understood. This implies the use of a flexible method 

in which very different mental models can be tested. 

• Distributed Computation: Since variability of experiences over the course 

of a day seems to have a strong influence on hiker satisfaction, a 

computational method that automatically evaluates sequences of views is 

needed. Since this is a time-consuming computation, this implies the use of 

distributed computing where several view analyzers can run on different 

computers. 

 

We present an approach that satisfies these goals.  

2 Overview of the Approach 

Our method consists of dividing the simulation into distinct modules.   These modules 

interact with each other via network messages.  Each module has a distinct role in the 

overall simulation system, but can be classified into the following broad categories: 

• Mental modules simulate the processes that go on in peoples’ heads. These 

modules determine how an agent can best fulfil its goals and expectations, 

based on their experience on previous simulation runs.  These modules also 

receive events from the other modules, in order to refine their knowledge of 

the area being simulated. 

• The physical simulation (in this case a pedestrian simulation) executes the 

plans of all involved agents simultaneously.  The module is responsible for 

modelling how the agents react to their physical environment such as slow-

downs due to congestion or path characteristics.  While the mobility 



simulation is running, it constantly emits messages (called events) stating the 

status of each agent. Most of these events are simply status messages 

(containing the agent’s location), but some messages contain additional 

information about the agent’s surrounding environment. 

• There are secondary analyzer modules that read the event stream, compute 

secondary information, and re-insert that secondary information into the same 

event stream.  

• There are additional control modules that coordinate communication 

between the other modules and keep track of the overall state of the 

simulation.   

 

The simulation is designed to run over many iterations, during which the agents 

„learn“ about their environment.  Initially, the agents are assigned characteristics and 

non-spatially specific goals, but have no knowledge of the physical characteristics of 

the simulated area.  These characteristics and goals are generated externally to the 

simulation and fed to the Agent Database.   

 

 

Figure 1: Overview of the Simulation System.  Each Module can be implemented as a 

separate executable if required. 

 

At the beginning of each simulation run (in this case representing a single day), the 

Agent Database, with the assistance of the mental modules, generates for each agent a 



plan that the simulation system expects is the most likely to fulfil the particular agent’s 

goals and expectations.  Once all plans have been elaborated, the Agent Database 

submits these plans to the physical simulations which simultaneously execute them.   

 

During the model run, the physical simulations broadcast events to the rest of the 

simulation.  These events include information about the location of the agents and any 

experiential information that is available (i.e. indicating that the agent has encountered 

a steep hill, or is in a congested area.)  The mental and analyzer modules listen to 

events being broadcast by the physical simulation.  This information is used by the 

mental modules to refine their knowledge of the physical environment and generate 

better plans in subsequent model runs.   For example, they might note that an agent 

sees nothing but trees while the agent is interested in sunshine. On subsequent model 

runs, the agent will search for a different hiking path that provides more open areas.  

 

At the end of a simulation run, the control module determines if the agents have 

achieved their goals and expectations using the current plan.  If not, the mental 

modules are asked for a new plan.  In order to ensure that agents are able to discover 

new locations, a degree of randomness is used to determine the agents’ choices (the 

random factor decreases over many simulation runs.) 

3 Modules 

In order to further elucidate the major concepts, the following are descriptions of key 

modules in the simulation system.  More complete descriptions are available in [3] and 

[2].  

3.1 Agent Database / Controller Module 

The Agent Database fulfils two major functions within the simulation system: it 

maintains the master list of agents in the simulation and co-ordinates the rest of the 

modules. 

 

As part of the system initialization, the agent database loads in a synthetic population 

of agents.  This population, defined in an externally generated XML file, describes 

each agent’s individual characteristics.  This includes the agents’ physical constraints 

(such as fitness levels) as well as their goals and expectations.  At this stage, the goals 

and expectations are non-spatial: they are simply a list of activities (in the case of the 

Hiking simulator, these include hiking, eating at a restaurant, etc.) and their desired 

durations.   

 

Before each simulation run, the Agent Database determines if the agent has a plan that 

meets its expectations.  If not, the Agent Database requests that the Mental Modules 

(Activity Generator, Location Generator and Router) provide suggested routes that 

potentially fulfil the agent’s goals.  In these transactions, the Agent Database acts as an 

“ignorant” broker: it contains very little knowledge about the simulated environment 

or agent logic.   



 

At the end of this elaboration process, the Agent Database contains a plan for each 

agent has a plan that represents the overall system’s current best solution to the agent’s 

goals and expectations.  (Over the course of many simulation runs, this solution will 

generally improve as the agents have the opportunity to explore the simulated 

landscape and discover more appropriate solutions.  ) 

 

A simplified representation of an agent’s plan is contained in figure 2.   

 

Once the Agent Database has received elaborated plans for each agent, they are 

submitted to the Physical Simulation for execution.  At this point, the Agent Database 

assumes more of a “controller” role, primarily ensuring that the various modules are 

able to keep up with each other.  It does this by throttling the entire simulation (by 

requesting that the physical simulation wait after each time step) if some of the 

modules not able to process events and/or requests quickly enough.  
 

 

Figure 2: Simplified XML Plan.   The simulation system dynamically generates a new 

plan for each agent every day.  The plan is used by the Physical Simulation Module to 

direct the agent’s movements over the course of a simulation run.  

3.2 Physical Simulations - Pedestrian Simulation Module 

The Pedestrian Simulation Module models how the agents interact with the physical 

environment.  This includes interactions with other agents (such as avoiding 

collisions) and interactions with the physical world (i.e. slowing down when climbing 

up steep hills.) 

<plan agent =”1” plan_id=”1” > 
 <activity id=”1-1” type=”enter_simulation” time=”324000”> 
  <location id=”1-1-1” type=”parking_lot” x=”512432.2” y=”508343.5” /> 
 </activity> 
 <activity id=”1-2” type=”hike” suggested_duration=”3600”  > 
  <waypoint id=”1-2-1” type=”node” node_id=”1246” x=”512438.5 y=”5078334.3” /> 

<waypoint id=”1-2-2” type=”node” node_id=”1247” x=”512436.0 y=”507820.9” /> 
 (…) 
<location id=”1-2-1” type=”hike_waypoint” x=”512450.0” y=”508012.3” /> 
<waypoint id=”1-2-12” type=”node” node_id=”1281” x=”512470.5 y=”507950.3” /> 
<waypoint id=”1-2-13” type=”node” node_id=”1284” x=”512322.5 y=”507912.8” /> 

  (…)  
 </activity> 
 <activity id=”1-3” type=”eat” duration=”1800” > 
  <location id=”1-3-1” type=”restaurant” x=”514432.0” y=”505323.0” /> 
 </activity> 

</plan> 



 

Because of the need for realistic arbitrary movement, the pedestrian simulation module 

uses a hybrid approach adopted from Mauron [4]: the module uses a continuous 

representation of geographic space, but also uses a network representation of available 

paths as a guide for the agents’ movements.  This means that agents are free to move 

anywhere in the model, but are more likely to walk along existing paths and trails. 

 

The pedestrian model uses a force-based approach, with strong forces along the path 

trajectories and weak forces toward the middle of the path which encourage agents to 

follow the trails.  Additional forces are generated by neighbouring agents and 

inanimate objects near the agent.  The force model was calibrated based on video data 

of pedestrian movement and provides very realistic movement patterns. 

 

A continuous space implementation requires, in general, considerably more 

computational resources than a network-based approach, particular for areas as large 

as our study area (over 600 km
2
).  However, the particular nature of hiking areas 

means that the study area is very sparsely populated with agents at any given time, and 

they tend to congregate within a much smaller subset of the total area available to 

them.  In order to reduce the computational demand, the pedestrian simulation module 

takes advantage of these features and uses lazy-initialization and caching techniques to 

ensure that only a small proportion of the total area is loaded into memory at any given 

time[3].  As a result, the physical simulation module can easily fit within the resources 

available on standard desktop PCs. 

  

 

Figure 3: Hybrid Continuous Space Model: Traces of Simulated Pedestrians 

following a path while avoiding each other. 

From the perspective of the Pedestrian Simulation Module, the agent’s plan consists of 

a series of waypoints that it needs to traverse over the course of a simulated day.  The 

plan also indicates where and when the agent should enter the simulation, and if it 

should wait at any given waypoint (such as at a bench for a rest).  Once the simulation 



module has received all of the agent plans, it simultaneously executes these plans for 

all agents in the simulation.  

 

While the simulation is being executed, the module broadcasts messages describing 

the agents’ interactions with the physical world to the event stream.  These messages 

include: 

• the location and orientation of each agent, 

• if the agent has encountered congestion, 

• information about the steepness of the terrain, and 

• trail condition information. 

 

The physical simulation uses additional GIS data, provided as a series of raster layers, 

to provide information such as the steepness and trail conditions.  These two particular 

kinds of information are also used by the simulation, in conjunction with the agent’s 

particular characteristics (such as agent fitness), to determine the agents’ velocity.  

This is calibrated based on hiker data collected in other recreational areas[5].  

3.3 Mental Modules 

As described in section 2, part of the role of the mental modules is in elaborating 

plans.  More importantly, however, is the mental module’s key roles in observing and 

interpreting the agents’ environment.  The Mental Modules are where all agent 

learning takes place: the modules receive events from the physical simulations, which 

describe the agents’ experiences, and use them to inform their suggested agent plans.   

 

Each mental module is responsible for a different spatial and temporal scale in the 

plan-generating phase:   

• The activity generator generates an ordered chain of activities based on the 

agent’s goals and expectations.   

• The location generator assigns specific locations to this activity chain, 

including key points in the middle of mobile activities such as hiking. 

• The router generates specific routes between the locations specified by the 

location generator.   

 

The three mental modules share a lot of similarities (they are implemented as closely 

related software classes).  Each: 

• maintains an internal representation of all possible agent choices at their 

respective spatial scales (for the router and location generators these 

representations are akin to a geographic map of nodes and links, while the 

location generator’s is simply a list of possible permutations, in keeping with 

its non-spatial nature.)   

• listens to the event stream generated by the physical simulation and 

summarizes this information into distinct “experiences”.  These experiences 

are stored based on the spatial and temporal scale of the module (i.e. per 



activity pair in the case of the activity generator, per location pair by the 

location generator and per node-pair for the router). 

• Contains an evaluator function that scores these previous experiences based 

on a particular agent’s expectations (i.e. while a hike may be too steep for 

another hiker, it might be exactly what another hiker is seeking.) 
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Figure 4: Schematic representation of each Mental Module’s contribution to the plan 

generation process.  As the Agent Database queries the Modules from top to bottom, 

the agent’s plan gains increasing resolution. 

 

In the current implementation, only the location generator and router have been fully 

implemented: as an interim measure the activity generator uses some simple heuristic 

rules to create plausible activity chains. 

Example Mental Module: Router 

The router operates at the smallest spatial scale- it suggests routes between locations 

provided by the location generator.  In order to do so, the router is preloaded with an 

internal network of nodes and links which represent the available paths within the 

simulated area.  During a simulation run, every time an event is received indicating 

that an agent has passed a node (and therefore entered a link), the router begins 

collecting the events and stores them until a subsequent event indicates that the agent 

has left the link.  These events, which indicate landscape features (such as the quality 

of a view, type of landscape or terrain difficulty) or human factors (congestion, trail 

closed etc.) are then summarized by the router and stored, along with the time the 

agent entered the link and how long it took for the agent to walk the link.  Over time, 

as other agents walk the same route, their experiences are also associated with that 

particular link. 

 



When asked to elaborate an agent’s plan, the router parses the given plan, and extracts 

all of the location pairs.   For each of these pairs, it computes the best available route 

along the path network according to the agent’s individual characteristics.  It computes 

this by first converting each link’s set of experiences to a numerical value using a 

generalized cost function calibrated to the agent’s goals and expectations (as the 

precise implementation of this function is part of ongoing research,  details are to 

follow in a forthcoming publication.)   An optimal path between the two locations is 

then computed using a modified Djikstra’s algorithm[6].  Although our standard 

implementation uses the typical Djikstra algorithm, its heritage as a shortest path 

algorithm means that it is unsuited for modelling recreational activity: as at least part 

of the attraction for recreational users is the “getting there”, a more complex algorithm 

is required and is currently under development. 

3.4 Analyzer Modules 

One particular strength of the described modelling framework is the ability to create 

new modules that model external factors and/or interpret the agents’ environment in 

different ways.   One does this by creating new analyzer modules that listen to the 

event stream (broadcast either by the physical simulations or by other analyzer 

modules).  The analyzer modules can then insert additional information as events into 

the event stream, where they can be interpreted by the various Mental Modules, if 

appropriate.  While the mental modules do need to be modified to be able to react to 

any additional information provided by the Analyzer Module, the overall simulation 

approach means that only minor changes need to be made (i.e. in the Evaluator and 

Summarizing functions of a single Mental Module).  Two analyzer modules have 

already been implemented: a weather simulator, and a Visibility / Visual Quality 

Model. 

 

 

Figure 6: The visibility analyzer module calculates what can be seen by each agent in 

the simulation.  Using positional data generated by the physical simulation, the module 

uses 3D rendering techniques to render false colour images and depth maps of the 

agent’s field of view.  These images are analyzed and information about what is seen 

is broadcast back to the event stream. 

Example Analyzer Module: Visibility / Visual Quality Module 

The visibility module is an example of a secondary analyzer module: it listens to the 

main event stream, and based on the current agent locations, it calculates what is 



visible to that particular agent.  It then broadcasts this visibility to the main event 

stream, where it can be “heard” and interpreted by one of the mental modules.  The 

visibility module uses a 3D representation of the landscape being modelled to 

calculate what can be seen from any location in the model [7].  Depending on the 

needs of the questions asked of the simulation, the visibility calculations information 

can be pre-computed or done in real-time as the simulation in running (useful if the 

visibility of other agents is important.)    As interpreting the results of the visibility 

calculations are rather computationally intensive, a further Analyzer Module was 

developed that interprets what an agent sees and returns an aggregated visual quality 

score.  This means that the mental modules need not be further complicated by this 

interpretation.  Like any other analyzer module, the Visual Quality Module can be 

inserted almost transparently into the event stream.  

4 Communication and Coordination 

As the individual modules are implemented in most cases as separate executables, 

communication and co-ordination between the modules is a crucial part of the overall 

system design.  The modules communicate with each other via TCP network 

messages, which are formatted as XML.  There are two major message types in the 

system: 

• Control messages: these messages are used for communication between the 

control modules and the mental modules or physical simulations.  They 

consist of XML “requests” from the control modules and “responses” from 

the other modules.    

• Event messages: these messages are used to broadcast information about 

agents’ current location and state to the entire simulation system.  The events 

are sent by the physical simulation and analyzer to the Event Broker module, 

which re-broadcasts them to all interested modules.  The events indicate when 

an agent has started a specific activity (such as hiking), reached a specific 

location (such as a path intersection), encountered congestion, etc.  

 

A key issue is timing: in order to keep all modules synchronized during a model run, 

messages are sent to identify which modules are ready to receive additional input.  We 

use a variation of the Time Warp algorithm [8], whereby modules inform the control 

module at which temporal resolution they are operating (some modules, such as the 

physical simulation might need to react every 10 seconds “real-time”, whereas others, 

such as the weather simulator, might only need to re-compute every 15 minutes) and if 

they are ready for the simulation to proceed.   

 

One of the advantages of using XML messages over TCP is that it is relatively trivial 

to distribute the various modules across multiple computing nodes.  While this 

requires some configuration changes in the control modules, and perhaps in the 

modules being distributed, those modules receiving messages generally do not need to 

be modified to accommodate this.  The current implementation has the visibility 



analyzer distributed transparently across multiple hosts, as it requires a fair amount of 

computing resources.   

 

Another advantage of this approach is that the modular nature allows one to test 

different implementation approaches for different modules without needing to rewrite 

the entire system. 

4.1 Within-Simulation Replanning 

One example of using the modular structure to test different approaches was the 

implementation of replanning during the simulation run.  In the typical 

implementation, during a model run the mental modules only observe the event 

stream.  They use this data to make decisions for the next model run.  However, with a 

simple modification to the mental modules, the system was modified to accommodate 

changing the agents’ plans in the middle of a simulation run.  As the mental modules 

realized that an agent’s plan was not appropriate for the day’s weather (modelled by 

the weather simulator), it sends a revised plan to the control module, which forwards it 

to the pedestrian simulation. 

5 Outlook 

 

While at first glance the system might seem rather over-complicated, the modular 

structure now in place allows for it to be easily extended and tweaked without 

extensive rewriting of software code.  A particular strength of the framework is that 

modelling the agents’ physical interaction is completely separate from modelling the 

agents’ mental processes, which is an area which requires extensive research before 

the simulation of pedestrian behaviour will be entirely plausible. 

 

Although the current implementation is still some steps away from a real-world 

applicability in the tourism industry, our prototype nevertheless demonstrates that all 

these features can indeed be implemented into a computational system. Future work 

will include to make the system more robust, and to include better behavioural models.   
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