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3.5 An improved framework for
large-scale multi-agent
simulations of travel behaviour

Bryan Raney* and Kai Nagel**

Abstract

We describe a framework for running large-scale multi-agent simulations of
travel behaviour. The framework represents each traveller as an individual
‘agent’ that makes independent decisions about its desired use of the transporta-
tion system during a typical day. An agent keeps a record of its decisions in a
‘plan’. A plan contains the agent’s schedule of activities it wants to perform
during the day, including times and locations, along with the travel modes and
routes it intends to utilise to travel between activities.

An agent database gives every agent a memory where it can store several
possible plans, as well as performance information it uses to compare how well
different plans meet its needs. Agents score a plan’s performance based on the
output of the micro-simulator. The agent database also allows agents to periodi-
cally generate new plans by connecting them to behavioural modules that model
the different kinds of decisions that affect an agent’s plan. For example, one
module chooses routes, while another chooses activity durations. This paper
describes the design and our current implementation of this framework, plus the
results of some verification scenarios.

1 Introduction

The established model for transportation planning is the four-step process, con-
sisting of the four modules: trip generation, trip distribution, modal split, and
route assignment. It is well known that the traditional (static) four-step process
falls short of many requirements that are desirable for modern transportation
planning, for example:

1 There is no time-of-day in the static modelling approach.
2 Because there is no time-of-day, it is difficult or impossible to model any

kind of time-dependent effect, such as emissions (which depend on engine
temperature, which in turn depends on how long the car has been running),
or peak traffic spreading.

3 Decisions are decoupled from persons and therefore from demographic
attributes.
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Item (3) is, at least conceptually, easy to fix by making the first three steps of the
four-step process explicitly person-dependent. The most common solution to
this is activity-based demand generation (ADG), which is discussed in many
places (e.g. Hensher and King, 2001), and implemented in some (e.g. Bowman
et al., 1999; Vovsha et al., 2002; Jonnalagadda et al., 2001). ADG typically con-
sists of the following steps:

iii Generation of a synthetic population by disaggregating census data into
individual people. The synthetic population is a random realisation of the
census, that is, a census taken from the synthetic population would return,
within statistical limits, the original census. The typical data content of a
synthetic population is households, which are located spatially, and which
possess some attributes, such as household income, or car ownership. These
households are populated with individuals, who possess additional attrib-
utes, such as gender and age.

iii For each individual of the synthetic population, a complete daily activity
plan is then generated. The word ‘activity’ refers to actions such as ‘being
at home’, ‘shopping’, ‘working’, ‘being at school’, etc. Besides the activity
pattern, the activity plan also contains the location of each activity, and
some timing information, such as when activities are started and ended.

iii Each individual selects a mode of transportation.

It is more difficult to solve items (i) and (ii), i.e. the lack of time-dependence of
static assignment. The advantage of static assignment over other methods is that
it has a range of mathematically proven properties, in particular the uniqueness
of the solution in terms of the link volumes. Clearly, this simplifies the compari-
son of implementations and the interpretation of different scenarios enormously.

When making the assignment formulation dynamic (dynamic traffic assign-
ment, DTA; e.g. Kaufman et al., 1991; Astarita et al., 2001; Friedrich et al., 2000),
the extent of mathematically proven properties becomes much smaller. In particu-
lar, when the dynamic formulation includes spillback (also called physical
queues), then one can construct examples of non-uniqueness, i.e. there are mul-
tiple user equilibrium solutions to the same origin-destination matrix and the same
network (Daganzo, 1998). In consequence, one may have to accept that DTA with
spillback is in general mathematically less well behaved than static assignment.

Conceptually, DTA can be decomposed into two components (Bottom,
2000): route generation, and network loading.1 In static assignment, the network
loading is done via the volume-cost function, which returns the cost of a link as
a function of the trips using that link. In a dynamic context, the relationship is
much more complicated, and it makes sense to look at simulation as a solution
to the network loading. Simulation, as is well known, is a technique where a
dynamic model is implemented on a computer, and run forward in time. Its con-
ceptually simplest incarnation with respect to transportation planning is a
representation of roads, and a way to move traffic forward along the links.
Network loading models are classified according to the following criteria:
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1 Resolution: Traffic can be represented by individual vehicles, but vehicles
can also be aggregated into packets or cells.

2 Fidelity: The behaviour of each individual entity can be more or less realis-
tically represented.

3 Modes: The simulation can concentrate on one mode only, or can combine
several modes including their interaction.

4 Time resolution/time step.

Note that at one end of this classification, one finds the traditional assignment
model (resolution aggregated on link level; fidelity reduced to volume-cost-
functions; car mode only; no time-dependency). Examples for more realistic,
simulation-based network loading models are DYNAMIT (MIT ITS Program,
2004), DYNASMART (University of Maryland at College Park, 2002),
METROPOLIS (de Palma and Marchal, 2002), TRANSIMS (The Regents of the
University of California, 2003), or the queue model (Gawron, 1998a, b).

So far, this introduction discusses that demand generation can be made more
realistic by moving to activities, and traffic assignment can be made more realis-
tic by making it time-dependent and then using simulation for the network
loading. Since these were discussed as separate changes, it is natural to assume
that they are designed so that they are backwards compatible to the four-step
process, which means that the ADG produces origin-destination (OD) matrices
as output, and the DTA takes them as input. This also means that ADG can be
fed into a traditional static assignment, and DTA can take its input from the
traditional demand generation.

However, the OD matrices generated by ADG are usually time-dependent,
while traditional static assignment works with a single, time-independent OD
matrix. Conversely, traditional demand generation produces a single, time-
independent OD matrix, but DTA needs time-dependent OD matrices to make
sense. Therefore, although the use of OD matrices superficially maintains back-
ward compatibility, this backward compatibility cannot be used for any mean-
ingful study. In order to obtain meaningful results, static demand generation
needs to be fed into a static assignment, or dynamic demand generation needs to
be fed into a dynamic assignment.

METROPOLIS (de Palma and Marchal, 2002) approaches this problem by
accepting a static OD matrix, but generating a time-dependent solution inter-
nally. In consequence, this allows one to feed a static OD matrix into a dynamic
assignment. It does, however, not offer a better solution if the demand genera-
tion is already dynamic.

An additional disadvantage of using OD matrices to couple ADG to DTA is
that it gives up the connection to the individual persons – the same connection
that was just gained in steps one to three of the four-step process by moving to
ADG. However, routing decisions can depend on individual attributes. The
decision to use a toll road can depend on income; a person needing to catch an
airplane may prefer a road with lower variability; etc. In addition, activity chains
have dependencies in the time direction – a delay in the morning may trigger
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changes in the afternoon – and the OD matrix severs this connection. It makes
sense, therefore, to bypass OD matrices completely and to feed the complete
information from the activity-based demand generation into the DTA. This
means that throughout the whole process, including the DTA, the travellers are
maintained as individual entities with individual attributes, and make individual
decisions based on these attributes. This is what is meant by an agent-based or
multi-agent approach (e.g. Ferber, 1999). And indeed, there are numerous
papers related to transport that mention ‘agent’ in their title (e.g. Arentze et al.,
2000; Wahle et al., 2002).

This paper concentrates on the multi-agent approach as an improvement of
the complete four-step process. The main differences against coupling ADG to
DTA via OD matrices are:

• The DTA is completely agent-based, as discussed above. In particular, it is
capable of feeding back agent-based information, not just link-based
information.

• The ADG is included into the feedback process. Historically, systematic
feedback is mostly between the route generation and the network loading;
feedback to the demand generation was often done manually by the ana-
lysts. However, it has been said for a long time (e.g. Loudon et al., 1997)
that this process should be automated.

It is useful to conceptually differentiate between a mental and a physical layer
(Figure 3.5.1):

• The mental layer represents the processes that are internal to the travellers.
It is sometimes also called the strategic layer.
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The physical world:
• limits on accel/brake
• excluded volume
• veh–veh interaction
• veh–system interaction
• ped–veh interaction
• etc.

performance
info

The strategical world:
Concepts which are in
someone’s head.

plans
(acts, routes, ...)

Figure 3.5.1 Physical and strategic layers of the framework.
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• The physical layer represents what the travellers actually do in the physical
world. In traffic, this is normally called the network loading, or the traffic
(micro-)simulation. In this paper, it will be called the mobility simulation, to
stress its total independence from the mental/strategic layer.

• There are mechanisms that couple the two layers. The attempt to execute a
plan causes changes in the physical layer; inability to execute the plan as
intended, for example because of congestion, feeds back into the strategic
layer.

There is, to our knowledge, no simulation package that executes this approach in
its entirety. Part of the challenge is that this necessitates a large number of
modules and module interfaces, which in itself is quite a challenge, in particular
in view of the fact that there are few programming and/or data exchange stand-
ards in the community. Another part of the challenge is that one needs parallel
computing techniques for metropolitan-size scenarios, and no established
technology is available to even define a viable standard for module interaction
once the simulation becomes parallel (Nagel and Marchal, 2003). Some partial
packages are discussed in the following.

Dynamic traffic assignment (DTA)

There are a large number of packages that do dynamic traffic assignment (e.g.
MIT ITS Program, 2004; University of Maryland at College Park, 2002; de
Palma and Marchal, 2002; Gawron, 1998b). As discussed above, these packages
typically take time-dependent OD matrices as input, assign routes according to
user equilibrium, and return time-dependent link travel times and other link-
based information as output. Although most of these packages have individual
travellers inside their model, often these are not fully developed. For example,
routes are calculated by the network rather than by the agent, and agent-based
output is often not available. While the latter is conceptually easy to fix, the
former means that making route choice dependent on agent attributes is close to
impossible. This is related to the fact that those models take OD matrices as
inputs, which contain no demographic attributes. A direct consequence is that it
will not be possible to connect an agent’s performance in the DTA to the
demand generation, since the OD matrices sever the connection to the individual
agents; it is only possible to feed aggregated information, such as link travel
times, back to the demand generation modules. In summary, although the DTA
models have a large number of agent-based elements, they are not fully agent-
based.

TRANSIMS

TRANSIMS (The Regents of the University of California, 2003) indeed replaces
the complete four-step process by an agent-based approach that as its first step
disaggregates census data and then works with individual travellers in all
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modules. In addition, TRANSIMS uses parallel computing to tackle large-scale
problems. The main shortcomings of TRANSIMS, in our view, are as follows:

• Although travellers are individually identifiable throughout all modules,
agent information is spread throughout the simulation system. For example,
the activity file does not contain demographic information, and the route file
contains neither demographic nor activity information. This makes it rather
difficult to use such ‘higher level’ information in the ‘lower level’ modules.
It also makes it possible, for example, that an agent leaves a location before
it has arrived – this is possible since the agent is not a singular entity in the
simulation.

• The file formats are rather inflexible. This makes it difficult to add/modify
information, for example when adding new modules to the system.

• The feedback mechanism ‘forgets’ old plans and their performance.
Although it is a bit difficult to see at first glance, this means that TRAN-
SIMS plans generation modules need to fulfil rather strong requirements.
For example, the routing module (‘router’) does not only have to generate
plausible routes, but also correct probabilities to choose between different
alternatives.

• Finally, it was impossible to obtain an academic license, including source
code, outside the United States. This made it impossible to improve the
above aspects inside TRANSIMS.

Land use simulations

There are land use simulations, such as URBANSIM (University of Washington,
2004), ILUTE (Salvini and Miller, 2003), or that of Hunt et al. (2001), which
are more or less agent-based, and which have the conceptual intention to couple
to the transportation system. However, in practice this connection is not well
established in those models at this point in time.

This paper will present an approach that is based on TRANSIMS but solves
the above TRANSIMS shortcomings. The conceptual idea behind our approach
is that we keep the agent concept consistent everywhere. The main technical
improvements are in the following areas:

• The different TRANSIMS files are replaced by a single XML file format.
That file contains, agent by agent, all information related to the agents, from
demographic information via activities to routes.

• An agent cannot be ‘divided’. This means in particular that the traffic simu-
lation (network loading) executes daily plans, rather than just trips.

• An agent database keeps track of agents’ past plans and performance of
those plans.

In the next section (Section 2), we describe the basic design of the framework,
including the agent and plan entities, the agent database, plan scoring, and itera-
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tions between the parts of the framework. Section 3 goes on to describe our
current implementation of this framework, in particular introducing the XML
data format that is one of the cornerstones of this framework. This is followed
by a description, in Section 4, of the set-up of our case study for verifying the
operation of this framework, including the specific behaviour of our mobility
simulator, and route and time choice modules. This section also describes the
utility function used by the modules to score plans, and the transportation sce-
nario we have executed. Section 5 then explains the results obtained by our
framework for this case study. Finally, we end with a discussion (Section 6) and
summary (Section 7).

2 Framework design

2.1 The core: agents and plans

The framework models the travel behaviour of a population of people living in a
given geographical region (e.g. town or metropolitan area) as they go about their
lives during a certain, often repeated period. The arguably most typical example
is a 24-hour weekday, but also other days (such as Sundays) or longer periods
(such as complete weeks) can be modelled as long as there is some repetition
from one period to the next, i.e. as long as there is something ‘typical’ about the
period.

During that period, the people carry out activities, such as sleeping, working,
shopping, eating, etc., at various locations in the region, and utilise the trans-
portation system of that region to travel between activities at different locations.
Thus, their activities motivate their travel choices. In addition, the limitations
caused by the transportation system, such as limited accessibility or congestion,
affect their activity choices.

The framework represents each person as an individual entity, called an
agent. Each agent makes independent decisions about which activities to
perform during the day, where and when to perform them, and what travel
modes and routes to take to travel between activities. In our system, each indi-
vidual agent is represented as a simplified classifier system (Holland, 1992).
Each agent has a collection of plans; each plan has a score that is updated after
the plan was used; and the choice between plans is done according to their score.
The main simplification when compared to a classifier system is that, at this
point, our plans are not conditional on the environment. See for example Figure
3.5.2.

Specifically, a plan contains the agent’s intended schedule of activities for the
day, and the travel legs connecting the activities. An activity schedule specifies
the following information for each activity:

• Type: what the agent wants to do (e.g. home, work, shopping, leisure).
• Location: x/y-co-ordinates within the simulated region and/or the network

link id (i.e. street).
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• Timing information: how much time the agent wants to spend at the activity
after arriving at its location, and/or absolute ending time of the activity.
More detail of this is discussed in Section 2.3.

A plan also contains leg information for each pair of consecutive activities. Each
leg contains the following information:

• Mode: what type of transportation to use.
• Travel time: estimated duration of trip.
• Departure time: estimate of what time the trip will begin.
• Route (certain modes only): the list of network nodes to traverse to get from

the previous activity to the next.
• (Other mode-specific information).

The entity containing all agents’ plans is called the agent database. Prototypes
of the agent database can be found in Nagel (1994/95, 1996) and in Raney and
Nagel (2004). Nagel (1994/95, 1996) describes a system where agents remember
individual scores for different plans, but the plans were the same for different
agents and the implementation was for demonstration purposes only. Raney and
Nagel (2004) describe prototypes of the implementation also described in this
paper, but concentrate on a completely different version. That version was not
general enough to go beyond dynamic traffic assignment.

2.2 Iterations

Above, it was stated that a plan’s score is updated after the plan is used. This
corresponds to the dichotomy between the mental and a physical layer men-
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Agent Plan num. In-use Score Plan
1 1 false 462.2 sleep until 7:00 am; go to

work at W1 for 8 h; go shop-
ping at S1 for 30 min, …

1 2 true undefined sleep until 8:00 am; go to
work at W1 for 7.5 h; drink
beer at B1 for 1 h, …

2 1 true 1047.8 sleep until 6:30 am; take kid
to kindergarten at K3; go to
work at W2 for 6 h, …

...
...

...
...

...

Figure 3.5.2 Example of information contained in the framework. It keeps all informa-
tion contained within the agents’ plans, with the addition of scores and
other bookkeeping information.
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tioned earlier. For a single agent, this simply means that the agent keeps repeat-
ing the following steps:

1 Select a plan.
2 Execute it and record the performance.
3 Update the score of the plan based on the performance.

In addition, from time to time plans that have a low score are replaced by new
plans (see Section 2.4). Note that ‘execution of a plan’ means that it is submitted
to the physical layer for execution. In our case, the physical layer is the mobility
simulation. For a multi-agent system, one has in addition that all agents learn
simultaneously. This means that a score for a plan is not necessarily stable over
the iterations; in consequence, an agent needs to re-evaluate previously bad
plans from time to time in order to check if the scores have improved.

The above is a generic design that should work for arbitrary multi-agent sim-
ulations. Some remarks are in order:

• It is important to have separate representations of the mental/internal and
the physical/external processes. Sometimes, for example in robosoccer (e.g.
Kim, 1997), it is possible that the physical layer is a real-world system, and
then part of the challenge is to formulate plans such that they can indeed
successfully execute in the physical world. For transportation simulations, a
true physical model world will in general not be possible; instead, there will
be a simulation of the physical world. However, plans should be designed in
a way that they could also execute in the real world.

• The execution of the plan in the physical system can also be seen as inter-
action of the agent with its external environment and other agents, collect-
ing ‘sensory’ input about its experiences, which it then uses to update its
mental state (i.e. learn).

• Inside the framework, it would be possible to make plans conditional. For
example, there could be a separate plan to follow if the agent was delayed
on the way to work. Activity durations (Section 2.3) are a (small) example
of conditional behaviour.

• A plan can be seen as a simple strategy from game theory. For a Nash equi-
librium in game theory, an agent attempts to find a strategy that he or she
cannot unilaterally improve.

• The framework as described so far is best suited for day-to-day (or more
generally period-to-period) replanning. It can, however, be extended to
within-day replanning. When doing this, one is confronted with some concep-
tual and some computational problems. These will be discussed in Section 6.

2.3 Conditional plans and activity durations

Some diligence is necessary in the treatment of activity durations. In principle, a
daily plan is entirely defined by the given sequence of activities, the departure
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time from the first activity, and the durations of all subsequent activities. This
can, however, lead to very implausible behaviour: An agent can, for example,
shop beyond the closing time of the shop, or remain in the movie theatre beyond
the end of the movie. In principle, an agent should not plan to do this; it may
happen, however, because of unexpected delays earlier in the day. Since this is
so grossly implausible, a first step toward conditional plans/strategies was
implemented in our framework. Both the activity duration and the activity
ending time can be specified, and the ending time takes priority over the dura-
tion if the agent’s arrival time plus the duration would cause the agent to stay
past the ending time. For example, say an agent wants to shop for 30 minutes
starting at 5.30pm, knowing the selected shop closes at 6.00pm (specified as the
end time of the activity). If the agent arrives late to the shop, at say 5.45pm, the
30 minute duration would put the end of the activity at 6.15pm, which is after
the ending time. In this case, the ending time takes precedence and the agent
departs at 6.00pm instead. However, if the agent arrives early, at say 5.15pm, it
still stays for 30 minutes and leaves at 5.45pm instead of waiting until 6.00pm.

There is in fact a similar problem with the start of an activity. Assume that a
shop opens at 8.00am, and the agent wants to arrive exactly at 8.00am and shop
for ten minutes. Now assume that the agent arrives 15 minutes early. The plausi-
ble thing to do would be to wait the 15 minutes and then shop for ten minutes.
Our current implementation will, however, let the agent wait for ten minutes and
then let him travel to the next activity location. This nonsensical behaviour will
probably need to be modified in future versions.

2.4 Generation of strategies/plans

The concept as described so far mostly discusses how agents maintain and use a
larger number of plans; there is little discussion of how plans are generated. This
is intentional since the precise methods of how strategies are generated do not
matter to the overall design. One can for example use constructive algorithms
(which construct plans from scratch), mutation (which locally modifies existing
plans), crossover (which generates new plans by combining existing ones), etc.
In particular, one can use externally existing programs that use the right type of
input and generate the right type of output. The only two conceptual require-
ments are:

• The external module needs to ‘think’ in terms of agents. For example, an
external route generation module needs to generate a path for a specific
agent between two locations, rather than, say, a shortest path tree.

• There needs to be some commonality between what the external module
attempts to achieve, and how the scoring is done by the agent database. The
system will work as long as some of the plans generated by external
modules are ‘good’ in the sense of the scoring function of the agent data-
base. This is a considerably weaker design requirement for external
modules than TRANSIMS has, where all of the plans generated by external
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modules need to be ‘good’. This is necessary in TRANSIMS because any
previous ‘good’ (or ‘bad’) plan an agent knows about is overwritten by the
new plan generated by the module.

2.5 Scores

The agent database needs a scoring function in order to give scores to plans that
were executed. The primary candidate for the scoring function is the traditional
utility function, but any plausible scoring function, for example one using
prospect theory (e.g. Avineri and Prashker, 2003), can be used. Without much
more implementation effort, concepts such as multicriteria decisions (De Smet
et al., 2002) could also be used.

An example of a utility-based scoring function will be presented in Section
4.7. As mentioned before, there needs to be some overlap between what the
external modules compute and what the scoring function optimises.

3 Implementation of the framework

When implementing the above concept, one needs to make some decisions about
the technologies to use. In our case, the most important criterion was that large-
scale scenarios (several millions of agents) should be feasible, followed by the
desire for flexibility and interoperability.

3.1 Agent database and external modules

The framework’s strategic/mental layer provides the mental state of the agents
and allows them to learn about their environment and make decisions about their
behaviour. We divide this layer into a central agent database and several behav-
ioural modules that model the different kinds of decisions that affect an agent’s
plan. For example, one module chooses activity durations, and another chooses
routes. Figure 3.5.3 graphically depicts the relationships and interactions
between these components. The agent database provides each agent with part of
its mental state, and with a high-level decision-making ability. The modules
provide the rest of the mental state and more detailed decision-making abilities.

3.2 Implementation of the agent database

The task of the agent database is to maintain, for each agent in the simulation,
some number of plans plus their scores, to select plans according to their scores,
to add new plans, and to remove plans with a bad performance. This looks like a
standard database, and in fact our first prototype was implemented in MySQL, a
public domain relational database (Raney and Nagel, 2004). A standard rela-
tional database is, however, not well suited to data that has hierarchies of vari-
able-length objects. In our case, we have a large number of agents, each of
which has a variable number of plans, each of which has a variable number of

Multi-agent simulation of travel behaviour 315

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

14_transport491  5/12/05  2:27 pm  Page 315

14_transport491.pdf



Routledge Research

activities/legs, each of which has a route description of variable length. Since
plans for a particular agent are added/removed one by one, this means that the
plans of an agent are spread out in memory within the database, resulting in
slow performance. In addition, the relational database approach is awkward to
use, since once more agent information is not in one place.

In fact, one would need an object-oriented database, rather than a standard
relational database. However, object-oriented databases are slow, which is a
direct consequence of the problem to insert variable-length objects into linear
memory. On the other hand, for our purposes many properties of databases, such
as an always-consistent state also in under crashes, are not needed. It is therefore
tempting to implement the agent database completely in software. Because of
performance reasons, a decision for C�� was made, and the STL (Standard
Template Library) was heavily used. This allows the program to implement a
Person class, which contains one or more Plan classes. Each plan contains a
sequence of activities and legs, and each leg contains the description of the
route. Since the STL is used, it is straightforward to, say, add or remove a plan
to or from a person. In addition, since the whole agent database is written in
C��, it is straightforward to do computations such as plan selection based on a
logit model. The number of plans that an agent database in software can hold is
limited by the memory that a single process can address. In a 32-bit architecture,
this number is 2GB. Since in our current implementation one plan needs about
0.5KB, our current implementation can hold about one million agents with a
maximum of four plans each.

3.3 XML plans

The agent database needs to communicate with external strategy generation
modules, and to send plans to the mobility simulation (Figure 3.5.3). All com-
munication is done by using exactly the same plans format. This format uses
XML; an example is in Figure 3.5.4. As one can see, the format is rather intu-
itive; this is in stark contrast to the TRANSIMS files. However, the main
advantage of XML is its extensibility. That is, one can add fields to the format
without breaking existing parsers. In particular, one can add fields only to a
subset of agents, for example a format to describe a conditional strategy (Section
2.3). Such extensions would be very hard to do with TRANSIMS. It is important
to note that the principal units of description are ‘agents’ and ‘plans’. Any exter-
nal module using the same principal units will be able to communicate with our
system. Somewhat unexpectedly, file size is less of an issue with XML than
expected. When compressed, XML files have about the same size as TRAN-
SIMS files with the same information.

3.4 Events

A question remains of how to feed performance information from the mobility
simulation back to the strategic modules (Figure 3.5.3). Our current solution is
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that the entire output of the physical simulation consists of events, which are
output directly when they happen. For example, a traveller can depart, can
enter/leave a link, etc. That is, the simulation of the physical system performs no
data aggregation; this is done by the other modules themselves.

At this point, we are still investigating if events should be in plain text or in
XML format; there are some performance advantages to the former, but in the
long run, this will probably be outweighed by the flexibility advantages of the
latter. An XML events format roughly looks as follows:

<event time�”..” type�”leave_activity” agent_id�”..” location�”..”/>

Note that such a line is generated separately for each event.
The agent database, for example, will read through the events information

and register, for each agent, events that are necessary to compute the score.
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Figure 3.5.3 Components and data flow in the framework.

<person id="393241" income="50000">
  <plan>
    <act type="h" end_time="07:00" x100="697150" y100="232790" link="5834" />
    <leg mode="car" dept_time="07:00" trav_time="00:25">

<route>1932 1933 1934 1947</route>
    </leg>
    <act type="w" dur="09:00" x100="700650" y100="233980" link="5844" />
    <leg mode="car" dept_time="16:25" trav_time="00:14">

<route>1934 1933</route>
    </leg>
    <act type="h" x100="697150" y100="232790" link="5834" />
  </plan>
</person>

Figure 3.5.4 A typical plan in XML. This agent, id 393241, leaves home (on link 5834)
at 7am, and drives to work via a four-node route (five links) which it
expects to take 25 minutes to traverse. The agent stays at work for nine
hours, then drives home again via a two-node route. (The ‘101’ on the x and
y co-ordinate labels refer to the 100�100 metre blocks of census informa-
tion. We do not know co-ordinates more accurately than that resolution).
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Since at this point the score depends on activity arrival and departure times only
(see Section 4.7), these are the only events that the agent database will consider.
In contrast, the router will read through the events and look for link
entering/leaving events. If an agent enters a link, the router will store that
information somewhere. If an agent leaves a link, the router will search for the
corresponding link enter event, compute the link travel time, and enter that into
some averaging mechanism for the link.

The advantage of events is that they are very easy to implement into the sim-
ulation of the physical system. In contrast, any data aggregation inside the simu-
lation of the physical system in our experience is a continuous source of errors.
This has to do with the fact that the team that writes the simulation is not truly
interested in correct aggregation. Their main tool to check simulation correct-
ness is the visual impression (and maybe some traffic flow considerations). In
contrast, the team that is responsible for, say, the router or the agent database
has a much higher interest in the correctness of the aggregation, since without
that their module will not function. In our experience, seemingly trivial aspects
such as this are rather important for the long-term robustness of the system.

3.5 Calling sequence

The modules need to be called in a certain sequence in order to make the system
run. For example, choosing new activity locations will necessitate new routes to
and from the changed activities, so the route-planning module should be called
sometime after the activity location module is called. But routes and activity
times do not (strictly) depend on each other, so it would be possible to make
calls to either the activity time choice module or the router without calling the
other one, or call them both in an arbitrary order.

At this point, let us assume that we treat period-to-period replanning only,
and that each period corresponds to a day. Within-period replanning will be
shortly discussed in Section 6. Let us assume further that the list of available
modules is known, as well as the dependencies between them, and that the
dependencies can be fulfilled without calling modules in a ‘circular’ order. Let
us also assume that there is some initial plans file, in which each agent is con-
tained, and each agent has exactly one completely specified plan. Such initial
plans files can be generated with variations of the methods discussed in this
paper, but the system is easier to explain if one assumes the file is already there.
Finally, let us assume that the mobility simulation was run based on the initial
plans file, and that it has written events to a file. This initial condition is now fol-
lowed by many iterations, each composed of the following sequence of actions:

1 The agent database reads the events, interprets them, and updates the scores
of each used plan.

2 The agent database, based on some behavioural model, and the information
about what dependencies exist between modules, selects agents that are up
for replanning on some level, and writes a corresponding plans file to disk.
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The level of replanning needs to be matched to an existing external module,
and any other modules that this module depends upon for plan information
must have been executed previously in this iteration. The plans file written
by the agent database can contain plans of arbitrary completeness, so long
as all the information required by the module is available.

3 The external module is started, it reads the events information and the plans
file, and updates the information that it can generate, by either overwriting
existing information, or filling in blanks. Information not filled in by the
module is left alone, or destroyed if it is invalidated by the new information
provided by the module. For example, a route-planning module may over-
write existing routes, but must not touch activity locations. On the other
hand, an activity location planning module may update activity starting
and/or ending locations, and must also delete those routes no longer con-
nected to the new locations.

4 The agent database reads the new plans file, and stores the corresponding
information. It then selects agents that are up for replanning on some other
level, and the whole process with an external module is repeated. Within
this process, the module dependencies described earlier need to be satisfied.

5 Once all module dependencies have been fulfilled and plans are completely
specified, the agent database selects the plans that are to be executed in the
mobility simulation. New plans, which do not have a score yet, are selected
with a high probability. If an agent has not received a new plan, the agent
selects between its existing plans, for example with a logit model. A spe-
cific version is discussed in Section 4.4. The selected plans are written to a
file.

6 The mobility simulation is run based on the last plans file, and outputs
events, as before.

As said before, this sequence denotes one iteration; many such iterations are run.
To improve performance, the agent database stays alive throughout the whole
process. This has the advantage that the several GB of data that the agent data-
base has stored need not be written to file during the iterations.

3.6 Specification of external strategy modules

The specifications of an external strategy module are perhaps already clear at
this point. The minimum requirements are:

• The external module reads an arbitrarily complete plans file.
• If the external module reacts to agent or system performance, then it reads

the events file.
• The external module writes out an updated plans file, where any invalid

information has been deleted.
• The external module needs to be reasonably fast; running it on 10 per cent

of all agents should not take more than about one hour.

Multi-agent simulation of travel behaviour 319

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

14_transport491  5/12/05  2:27 pm  Page 319

14_transport491.pdf



Routledge Research

Note that this specification leaves the internal functioning completely to the
module. In particular, the module is free to start anew with each iteration, or to
accumulate information over all iterations. An example for the former is a route
generator that uses link travel times from the last iteration; an example for the
latter is a mental map that is built successively over the iterations.

3.7 Specification of the mobility simulation

The specifications of the mobility simulation are perhaps also already clear at
this point. The minimum requirements are:

• The mobility simulation reads a complete plans file, with one plan per
agent. Plans should be executed as chains, i.e. an agent can only depart after
it has arrived at a location.

• The mobility simulation executes all those plans simultaneously.
• The mobility simulation writes events information to a file.
• There needs to be a mechanism to deal with all modes of transportation (see

below).
• The mobility simulation needs to be reasonably fast; running the whole sce-

nario once should not take more than about one hour.

In our experience, these specifications are not difficult to fulfil. They are,
however, a significant departure from the way in which most current mobility
simulations are written. They read OD matrices instead of plans, and they write
link performance information instead of events. Writing events instead of or in
addition to link performance information is relatively easy to implement. In con-
trast, making the simulation follow pre-specified plans sometimes necessitates a
major implementation change. That change corresponds to the fact that in the
agent-based approach all information is stored in the agent, whereas in many
existing approaches most of the information (such as shortest path trees) is
stored in the network. In addition, conditional plans files, such as discussed in
Section 2.3, may make the simulation logic more demanding in the future.

Furthermore, future versions will necessitate a consistent way to deal with
travel in different modes. It is clear that, in order to execute traffic with different
modes, the use of these modes needs to be planned by the agent database and its
external modules. However, as a simplification one could just assume that the
execution exactly follows the plan – this would correspond to a system without
congestion, without unexpected variability, etc. In that case, there are two
options:

• The agent database itself takes care of modes that the mobility simulation
cannot execute. That is, they are just not included into the plans file. The
main disadvantage of this is that no corresponding events would exist,
making, say, the consistent build-up of a mental map more difficult. For that
reason, the following solution is preferred.
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• The mobility simulation ‘fakes’ the execution of unknown modes. For
example, let us assume that a plans file has the following information:

<plan>
<act type�”home” location�”ab” .../>
<leg mode�”walk” duration�”20min”>

<route .../>
</leg>
<act type�”work” location�”cd” .../>

</plan>

A simulation that can simulate the walk mode would let the agent walk
along the specified route. A simulation that cannot simulate the walk mode
would just assume that the walk takes 20 minutes, as specified in the dura-
tion attribute of the leg tag, and move the agent to the next activity accord-
ingly.

3.8 Scoring function

As mentioned elsewhere, the agent database needs a scoring function in order to
give scores to plans that were executed. That scoring function needs to be
entirely based on events information, and it needs to score the complete period
(e.g. day). An example of a utility-based scoring function will be presented in
Section 4.7.

An open problem is how to couple the scoring function used by the agent
database to the scoring functions used by the external strategy generation
modules. Because of stochastic effects, it is not necessary that they are com-
pletely consistent, but as mentioned before, some conceptual overlap is neces-
sary. At this point, we solve this problem by manually defining the goals of the
external modules. This is a subject of further investigation.

4 Verification setup

In order to test our implementation, verification scenarios were designed. Those
scenarios are constructed in a way that they test the most important features of
the framework. The features that are tested are: (i) capability to relax to an
approximate equilibrium solution; (ii) capability to cooperate with more than
one external module; (iii) capability to generate a meaningful solution even with
an external module that just performs small random changes (‘mutations’) of
existing plans.

A scenario consists of: (i) the network; (ii) the initial plans file; (iii) specific
implementation details. These will be treated one by one in this section.
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4.1 The network

The network used for this scenario can be seen in Figure 3.5.5. It consists of a
circular arrangement where in one part travellers have multiple route options.
Internally, all those routes have the same lengths and capacities, so that there is
no bias toward one or the other. The expectation is that in the relaxed states all
those routes are used equally. All roads are uni-directional; travellers need to
follow the roads clockwise.
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Figure 3.5.5 Diagram of the testing network overlaid onto example snapshots of the
Routes Only scenario at 06.08am, (a) before and (b) after many iterations
of route replanning. After replanning, the agents have spread onto the dif-
ferent available routes between home and work. Link capacities are
36000veh/h except where indicated (the nine route options are identical).
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4.2 The initial plans file

All scenarios need to start with an initial condition. In our case, we take as initial
condition a plans file which contains 2000 agents, and one fully specified plan
per agent. Those plans are the same for all agents. They specify that the agents
leave the ‘Home’ location at 6.00am, take the middle road (through node 7) to
the ‘Work’ location, and work for eight hours. Then they take the lower part of
the ‘circle’, through nodes 14, 15, and 1, to return home. The total free-speed
travel time is about 54 minutes, with 15 minutes for the trip from ‘Home’ to
‘Work’, and 39 minutes for the return trip.

4.3 The mobility simulation

As the mobility simulation we use an improved version of a so-called ‘queue
simulation’ (Gawron, 1998a). The improvements include an implementation on
parallel computers, and an improved intersection dynamics, which ensures a fair
sharing of the intersection capacity among incoming traffic streams (Cetin et al.,
2003). As pointed out elsewhere, the mobility simulation takes a plans file, exe-
cutes it, and returns events information, such as when agents leave from or
arrive at activities, or when agents enter/leave links.

4.4 Agent database

As discussed elsewhere, the agent database contains all plans for all agents, and
manages addition, modification, removal, and selection of plans. The precise
functioning of the agent database for our test scenario is as follows:

1 The agent database may be required to limit the number of plans stored per
agent to Nplans. If any agent ends up with more than Nplans plans, it continues
to delete the plan with the worst score until the number of plans is small
enough. Note that in the steps following this one, an agent may obtain a
new plan, which means it will have Nplans �1 plans while trying a new one
out, but it will have only Nplans to choose from when selecting from old
plans.

2 With probability ptimes, agents are selected to undergo times replanning.
Each of these agents selects an existing plan from memory with uniform
probability (not based on score) to use as a template for the new plan. This
template is immediately copied into the agent’s memory, to serve as a
placeholder for the eventual new plan. The selected plans are written to a
file, and the time replanner (see below) is called with this file as input. It
writes the resulting new plans to a separate file. The agent database reads
this file and overwrites the template in each agent’s memory with the corre-
sponding plan from the file.

3 With probability proutes, agents are selected to undergo route replanning. As
with times replanning, each of these agents selects an existing plan as a tem-
plate and copies it into its memory as a placeholder for the new plan. In
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addition, we set the router to be dependent on the times generated by the
times replanning module, since the new leg departure times may offer better
routes than the ones currently used. Therefore, all agents that underwent
times replanning select their new plans for route replanning as well. Note
that no plans are copied for these agents, since the plan with the new times
already serves as the template for the new routes, and overwriting it will not
change the new time information. All the template plans are written to a
single file, the route replanner (see below) is called, the resulting new plans
are written again to file, and the agent database reads those plans and over-
writes the template plans with the new ones.

4 For each agent that has multiple plans, the plan to be executed in the follow-
ing mobility simulation is selected.
• All agents that possess a new plan select that new plan.
• A fraction prnd chooses a plan at random from their memory, using a

uniform probability for each plan, and ignoring plan performance. This
is done to force agents to re-evaluate existing plans from time to time,
even plans with a bad score.

• All other agents select between existing plans, with probability

pi �e�Si,

where Si is the score of plan i and � is a constant (see below). This is just
a standard multinomial logit model (e.g. Ben-Akiva and Lerman, 1985).
The value of � affects how likely agents choose ‘non-best’ plans. Higher
values of � lead toward the best plan being chosen more often, while
smaller values provide a more randomised choice. Since � interacts with
the scaling of the scoring function, it is discussed in more detail there.

• The selected plans are written to file; the mobility simulation runs with
these plans and writes events information to a file.

• The agent database reads the resulting events, computes corresponding
scores for each agent, and adds those scores to the existing scores
according to

Si � (1 ��)Si ��Si�

where Si is the stored score for plan i, Si� is the newly calculated score, and
�� [0, 1] is a constant blending factor. This leaves the question of how
plans are scored that have not been used before. Plans from the initial plan
set have no history, so there is no way to estimate their scores. Upon their
first use, the agent simply gives it the new score:

Si ��Si�.

However, when plans are copied as templates for replanning, score informa-
tion is available from other plans, which can be used to provide an estimate
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the initial value of Si. This estimate can be calculated in many ways; at
present, we set it to the score of the best plan in the agent’s memory.

For this paper, we set the above parameters to the following constant values:

• The maximum number of plans per agent, Nplans, is six.
• The probabilities of an agent to perform time replanning, ptimes, and route

replanning, proutes, are both 0.1.
• The probability of choosing a random plan, prnd, is 0.1.
• The plan selection constant, ��2C�1. Section 5.4 describes what happens

when we try different values of �.
• The score blending factor, �, is 0.1.

4.5 Routing module

An agent’s plan must connect successive activities at different locations by
travel legs that use the transportation network. Legs are described by their mode
and mode-specific information. For example, a car-mode leg contains a node-by-
node description of the vehicle’s route through the network from the location of
the previous activity to the location of the next activity. In principle, legs can be
selected from different mode types, but at present we only model car trips. The
legs have (expected) starting times, and the router needs to be sensitive to con-
gestion so that it can avoid using already congested links.

We currently use a router based on Dijkstra’s shortest-path algorithm, but
‘shortness’ is measured by the time it takes an agent to drive the route rather
than distance. The fastest path depends on the travel times of each individual
link (road segment) traversed in the route. These times depend on how con-
gested the links are, and so they change throughout the day. This is implemented
in the following way. The way a Dijkstra algorithm searches a shortest path can
be interpreted as expanding, from the starting point of the leg, a network-
oriented version of a wave front. In order to make the algorithm time-dependent,
the speed of this wave front along a link is made to depend on when this wave
front enters the link (e.g. Jacob et al., 1999).

That is, for each link l we need a function cl(t) that returns the link ‘cost’
(�link travel time) for a vehicle entering at time t. This information is calculated
from the events taken from a run of the mobility simulation. In order to make the
look-up of cl(t) reasonably fast, we aggregate over 15 minute bins, during which
the cost function is kept constant. That is, all vehicles entering a link between,
e.g. 9.00am and 9.15am will contribute to the average link travel time during
that time period.

4.6 Time choice module (time mutator)

In general, we want as a second module one that generates (or modifies) agents’
activity schedules, which form the basis of their plans (Vaughn et al., 1997;
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Bowman, 1998). One can divide the task of creating an activity schedule into
three parts: pattern choice, location choice, and timing choice. The pattern
choice determines which activities to perform during the day, and in what order.
For example, an agent might decide whether or not to go shopping, and if so,
before or after work. The location choice determines where the agent will
perform each activity. For some activities, such as home and work, agents make
this decision very infrequently, while for other activities, such as shopping, the
agent might choose a different location each time it wants to perform the activ-
ity. For example, an agent could go shopping at a bakery close to home or a
grocery store near work. The time choice determines the duration of each activ-
ity, including when to leave home at the start of the day. A single module can
make all of these decisions at the same time, or separate modules can be used to
handle each one individually.

For this particular study, there is only a time choice module. This module
takes the existing times of the plan and modifies them randomly. Note that there
is no ‘goal’ with this module, that is, the module does not try to improve any
kind of score. Rather, the module makes a random modification, and the plans
selection mechanism in conjunction with the scoring will make the agents
improve toward better scores.

The exact details of the time mutator are as follows. This module reads the
plans file, and for each plan alters the end time of the first activity by a random
amount r1 uniformly selected in the range r1 � [�30 minutes, �30 minutes].
Values that come before 00.00 are reset to that time. It then alters the duration of
each activity except the first and last by separate random values uniformly
selected from the same range. The last activity does not need modification since
it runs from whenever the agent arrives until 24.00. The modified plans are
written back out to a file.

4.7 Scoring

The utility function we currently use is described in detail in Charypar and
Nagel (2003). For the convenience of the reader, we summarise it here, though it
is sufficient to recognise that performing activities is rewarded, and travel, early
arrival, and late arrival are punished. The utility function essentially translates
the layout of the plan into a numerical value, which can be thought of as a score
or an actual value in monetary terms.

Agents have a ‘typical’ duration for each activity, represented by d0. The
utility for performing an activity (utilperform) is a logarithmic function of the dura-
tion of time spent performing the activity. It is calibrated so that performing the
activity for d0 (measured in hours) causes the marginal utility to equal a fixed
value, �perform, which is the same for all activity types. In addition, it sets the
utility for performing an activity for d0 to be (10 hours)�perform. Mathematically,

utilperform(d)��perform �10h�d0log�	
d

d

0

	��.
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The result of the log function is that staying longer than d0 always gains more
utility, but each additional hour gains less utility than the preceding hour.

Note that there is no direct penalty for agents to have a duration larger than d0

for an activity. This may seem counter-intuitive when looking at a single activ-
ity, but when agents must fit multiple activities into a limited amount of time
(e.g. a single day), they end up having to trade-off the time spent on each activ-
ity in order to maximise their total utility for the whole plan. Assuming no other
time restrictions, the optimal plan will be the one where all activity durations
lead to the same marginal utility for duration. Charypar and Nagel (2003) sets
�perform to C�20h�1, though for this study we set it to C�6h�1. The reason for
this change is explained below.

As mentioned previously, we have only two types of activities: home and
work. The preferred duration of work time is 8 hours, and the preferred duration
of staying home is 16 hours, so that the agents have no free time; i.e. their day is
‘full’. In addition to duration, we set the useful hours for performing the work
activity to between 7.00am and midnight, with the desired starting time to be
exactly the opening time of 7.00am. The home activity has no time constraints.
The utility of an agent who arrives to work before 7.00am must wait until 7.00
to start working. While waiting, the agent suffers a penalty defined by the mar-
ginal utility of waiting, �wait, times the number of hours the agent waits, twait.
Agents arriving after 7.00am are assessed a lateness penalty, determined by the
marginal utility of being late, �late, times the number of hours the agent is late,
tlate. The final component of the utility is the utility of travel, which is the mar-
ginal utility of travel, �travel, times the number of hours the agent spends travel-
ling, ttravel. We set the above parameters to the following values: �wait �C0h�1;
�travel �C�6h�1; �late �C�18h�1.

Given a full day plan, the agent prefers to spend all 24 hours in the day per-
forming some activity. Any time spent by the agent not performing an activity
causes a loss of potential utility. The agent would obtain a perfect score if it
spent exactly 8 hours at work and 16 hours at home, allowing it to earn utility
every minute of the day. This would earn the agent C60 for each activity, for a
total score of C120. In an actual day, the agent must spend some of its time trav-
elling. While travelling, the agent does not earn any utility for being at work or
at home, and is simultaneously losing utility for being on the road. This means
the agent incurs a double penalty: the actual negative utility for the travel itself,
and the loss of potential positive utility for not performing an activity. Similarly,
if the agent arrives early to work, it is also not spending time working (or being
at home) so it loses potential utility. Note that being late has a real penalty, but
does not cause any loss of potential utility, since the agent begins performing the
activity immediately upon arrival.

Therefore, there is an indirect penalty associated with arriving early to a loca-
tion (waiting) and travelling. If the agent’s activity durations are near the typical
duration, this penalty is approximately ��perform times the number of hours spent
waiting and/or travelling. Since agents will do their best to allocate time to the
activities, we can assume that the durations are as near to the typical duration as
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possible. Given that the total travel time is on the order of one hour, this is a rea-
sonable assumption. Thus, the effective values of the above parameters are
approximately: �wait �C�6h�1; �travel �C�12h�1; �late �C�18h�1. These
effective values are selected such that, in rough terms, they model the Vickrey
model of time choice (e.g. Arnott et al., 1993). The desire to match the Vickrey
model explains our choice of C�6h�1 for �travel; if it was C�20h�1, the effect-
ive penalty for arriving early would be of greater magnitude than the penalty for
arriving late.

As mentioned earlier, the � value used by the agent database to multiply
agents’ scores affects their selection of those plans. This value can be considered
to be a scaling function, which maps utility in euro to unit-less values for the
logit selection. In real-world applications, � will be estimated together with �wait,
�late, and �travel. This paper uses a value of 2C�1 as a baseline value for �, and
then looks at deviations from that value in Section 5.4. In estimated multinomial
logit models, it seems that values between 1C�1 and 10 C�1 are normal.

5 Results

In this section, we describe the results obtained from three scenarios based on
the modules, parameters, network, and initial conditions described above.

5.1 Routes Only

In the Routes Only scenario, we run the framework with the times replanning
disabled, so that only route replanning may occur (i.e. ptimes �0). All agents are
forced to forever use the initial activity time values, departing home at 6.00am
and staying at work exactly eight hours. This scenario demonstrates how well
the agents distribute themselves among the available routes.

Figure 3.5.6 shows the relaxation/learning behaviour of the agents within this
scenario, using two global performance measures: overall average score, and
overall average travel time. One sees here that the average score relaxes to about
C103.5 within 100–50 iterations, while average travel time relaxes to about 61
minutes within 20–30 iterations. Compared to the free-speed travel time of 54
minutes, the agents lose about 7 minutes due to congestion in this scenario.

Figure 3.5.7 shows the departure and arrival time distributions for this sce-
nario, at iteration 0 (Figure 3.5.7(a)) and iteration 250 (Figure 3.5.7(b)). One can
see from this figure that the work arrival time distribution (WATD) starts out at
iteration 0 with an average of about 80–85 vehicles per five minute time-bin,
corresponding to roughly 1000vehh�1, and lasting for about two hours. This
makes sense, as the capacity of the bottleneck for a single home-to-work route is
1000vehh�1 and there are 2000 vehicles that want to traverse that route. After
250 iterations, the arrival rate increases to about 750 veh/(5 minutes), or
9000vehh�1, which corresponds to the total capacity of nine routes of
1000vehh�1 each. After 15 minutes, over 90 per cent of the agents have arrived
at work, with the remaining arriving in the next ten minutes. This extra ten
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Figure 3.5.6 Relaxation of score and travel times for all three scenarios of the base-
line case. These plots display the average values of the (a) score and
(b) travel time collected over the entire population of agents during
each iteration.

minutes comes from the incomplete equilibrium in the route distribution caused
by the 10 per cent route replanning, which is explained further below. Since
agents cannot change their work duration in this scenario, the work departure
time distribution (WDTD) is the same as the WATD shifted by eight hours, and
since there are no bottlenecks on the route home, the home arrival time distribu-
tion (HATD) is the same as the WDTD shifted by 39 minutes.

The only degree of freedom in this scenario is the route choice. Figure
3.5.8(a) displays the usage of the different routes as a function of iteration. This

14_transport491  5/12/05  2:27 pm  Page 329

14_transport491.pdf



Routledge Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4  6  8  10  12  14  16  18

N
um

be
r 

of
 a

ge
nt

s

Time of Day (h) – Iteration 0

(2000) HDTD / WDTD
WATD / HATD

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4  6  8  10  12  14  16  18

N
um

be
r 

of
 a

ge
nt

s

Time of Day (h) – Iteration 250

(2000) HDTD / WDTD
WATD / HATD

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4  6  8  10  12  14  16  18

N
um

be
r 

of
 a

ge
nt

s

Time of Day (h) – Iteration 250

HDTD / WDTD
WATD / HATD

(a)

(b)

(c)

14_transport491  5/12/05  2:27 pm  Page 330

14_transport491.pdf



Routledge Research

figure has several features. First, as expected, all agents start out using the initial
route (number 7, ‘middle’), while the other eight routes (represented in the
figure by route numbers 5 and 9) start out with no agents. Second, the percent-
age of agents using the middle route decreases at approximately a negative
exponential rate. This makes sense, since 10 per cent of all agents perform
replanning each iteration. Some agents return to the middle route due to random
plan selection, but most will stay on the other routes, lowering the percentage of
agents using the middle route by roughly 10 per cent of its previous value each
iteration, until the agents are using all routes equally. It takes about 40 iterations
for the middle route to have about the same usage percentage as the other routes.

The third feature of this figure is that after equilibrium, most routes appear to
be used on average by 10 per cent of the agents at a time, rather than the 11.1
per cent expected when nine equivalent routes are available. In addition, some
routes appear to be used by 20 per cent of the agents during certain iterations.
These phenomena are explained by the fact that 10 per cent of the agents
perform replanning in each iteration, leaving the other 90 per cent to choose
freely which route they want to use. These 90 per cent split up approximately
evenly among the nine available routes, giving each a usage of about 10 per
cent, and the 10 per cent who replan tend to choose the same route. This route
will then have a total usage of about 20 per cent. Only three routes are displayed
here; if all nine were displayed, there would be a ‘spike’ of 20 per cent route
usage occurring for some route in each iteration. This extra group of agents
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Figure 3.5.7 Histograms showing home departure time distribution (HDTD), work
arrival time distribution (WATD), work departure time distribution
(WDTD), and home arrival time distribution (HATD) of the three sce-
narios, before and after relaxation (250 iterations). The histograms are
taken over five minute time-bins. For clarity, the range stops at 900
vehicles, though some of the initial departure peaks are above this
value; these peaks are labelled with their actual values.
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using one particular route causes that route to empty out later than the rest,
extending the length of time agents arrive at work, as seen in Figure 3.5.7(b).
Agents who replan tend to choose the same route because of the fluctuations in
the usage of a route. During a given iteration, some routes will happen to be
used least, and thus have the best travel time, so the router will use it for all (or
most) of the replanned routes in the next iteration. These fluctuations are also
driven by the fact that slightly more or less than 10 per cent of the agents may be
replanned in each iteration, due to the probabilistic selection of agents for
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replanning. Note that it is not until near iteration 100 that the spikes appear to be
in equilibrium.

The general interpretation of the above results for the Routes Only scenario is
that the agents equilibrate to the different routes as best as they can, and once
equilibrated stay in a very stable arrangement.

5.2 Times Only

In the second scenario, Times Only, we run the framework with the route
replanning disabled, so that only times replanning may occur (i.e. proutes �0).
Here all agents must forever use the middle route for their trips from home to
work. This scenario demonstrates how well the agents distribute themselves
through time; i.e. how they handle peak-hour spreading.

Figure 3.5.6 includes the average scores and travel times for this scenario.
One can see that these measures contain a considerable amount of oscillation in
comparison to those of the other two scenarios, though the oscillation appears to
diminish as the iterations continue. We presume that the oscillations are due 
to the system being in a chaotic regime, though more investigation is necessary
to learn the exact cause. For now, we only observe that they exist.

The average score oscillates around about C100.7, moving between C100.5
and C101.2, taking at least 200 iterations to reach this state. The average travel
time centres around 72 minutes, oscillating between 68 minutes and 75 minutes,
again taking about 200 iterations to get to that state. This scenario seems to find
the worst scores and travel times of the three. It makes sense that the average
travel times come out worse, since the agents cannot get around the 1000vehh�1

bottleneck of the middle route, while agents in the other scenarios can use nine
times the capacity of this route for their home to work trips. This in turn explains
why the average score is the lowest, because with more time being spent by the
agents in travel, they have less time to spend working or at home, so they lose
more potential score, which lowers their best achievable score.

Figure 3.5.7 shows the departure and arrival time distributions for this sce-
nario, at iteration 0 (Figure 3.5.7(a)) and iteration 250 (Figure 3.5.7(c)). One can
see that after 250 iterations, the WATD is still spread out to two hours and is
still limited to 1000vehh�1. This is as much as can be expected when all agents
use the same route. The main peak of the home departure time distribution
(HDTD) is shifted to about 5.30am, an earlier time compared to the 0th itera-
tion, with a secondary peak around 7.00am. Figure 3.5.9 shows a close-up of the
distributions during the morning rush hour. In this figure one can see that about
three quarters of the agents arrive in the 90 minutes before 7.00am, and about a
quarter arrive in the half hour after. This makes sense, because agents arriving to
work early are effectively penalised C�6h�1 while those arriving late are
penalised at three times this amount. Therefore, an agent arriving 30 minutes
late incurs the same penalty as one arriving 90 minutes early. Back to Figure
3.5.7(c), we see that the WDTD and HATD are much more spread out than the
WATD, lasting about three hours.
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The general interpretation of the results for the Times Only scenario is that
even with a time choice module that simply mutates existing plans, the feedback
mechanism and the agent database allow agents to learn enough about the
system to find a plausible distribution of departure times.

5.3 Routes and Times

In the Routes and Times scenario, we finally allow agents to utilise both the
routing module and time choice module to develop new plans. Agents who
perform time replanning also perform routes replanning on the resulting plan, as
discussed in Section 4.4. This scenario demonstrates the complete relaxation
behaviour of the agents, where they may spread out over space and time.

Figure 3.5.6 includes the relaxation of scores and travel times for this sce-
nario. One sees here that the average score is never perfectly relaxed, with what
appears to be a slight oscillation with a period of about 800 iterations. However,
after about 300 iterations the score seems to be rather stable, oscillating around
C108. The average travel time initially finds the free-speed travel time within
100 iterations, then deviates from this value, eventually flattening out at about
55 minutes. The travel times may also have an oscillation, though it might also
be a one-time ‘bump’. More iterations would be required to find this out. It
seems reasonable that this occurs because the agents are able to compensate for
slightly varying travel times, meaning the travel time is not as important to them
when they have more degrees of freedom to explore. In any case, this scenario
finds a better average score and better average travel time than the other two sce-
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Figure 3.5.9 Histograms showing HDTD and WATD for the Times Only scenario,
after relaxation (250 iterations). The histograms are taken over five
minute time-bins.
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narios, as expected given the larger number of degrees of freedom given to the
agents.

Figure 3.5.7 shows the departure and arrival time distributions for this sce-
nario, at iteration 0 (Figure 3.5.7(a)) and iteration 250 (Figure 3.5.7(d)). In itera-
tion 250, the HDTD peak has shifted to about 6.45am, a later time than that at
iteration 0, or that at iteration 250 for the other scenarios. It makes sense that the
peak is at a later time than that of the Times Only scenario, as the average travel
times in this scenario are shorter. The time of 6.45am makes sense as well,
because most agents only need 15 minutes for the home to work trip. This is
supported by the narrow WATD peak, which indicates that most agents arrive to
work between 6.50am and 7.00am. The peak is nearly the same as the HDTD
peak, only shifted by 15 minutes. See also Figure 3.5.10 for a close-up of those
peaks. Naturally, both the HDTD and WATD peaks are wider in this scenario
than in Routes Only, since the agents can explore alternate departure times from
home. They are not as wide as those in Times Only are, since agents can also
take alternate routes to avoid congestion, and do not have to spread out in time
as much.

Figure 3.5.8(b) displays the usage of the different routes as a function of iter-
ation. As with the Routes Only scenario, all agents start out using the middle
route, while representative routes numbers 5 and 9 start with no agents. In addi-
tion, like in the Routes Only scenario, the percentage of agents using the middle
route decreases rapidly while percentage of agents using the alternate route(s)
increases. However, since 20 per cent of the agents are given the chance to
change their routes each iteration (ptimes �proutes), the exchange of agents from the
middle route to the other routes occurs more rapidly.
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Figure 3.5.10 Histograms showing HDTD and WATD for the Routes and Times
scenario, after relaxation (250 iterations). The histograms are taken
over five minute time-bins.
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This figure shows higher oscillations in route usage compared to the Routes
Only scenario. In that scenario, route equilibration is the only option for agents
trying to avoid congestion. Agents using some routes tend to ‘notice’ other
agents using the same route, in the sense that their trip was made longer by the
presence of the other agents. In this scenario, however, agents can also avoid
congestion by choosing different departure times. So, agents using the same
route may do so at totally different times, and may not notice each other at all,
since they did not encounter any congestion from other agents along that route.
Thus, they do not have much reason to try to switch routes, causing less of an
equalisation among the route choices. Another way to put it is that the temporal
spreading allows the routes to remain equivalent to each other, even if the
number of agents using each route differs greatly.

The general interpretation of the results for the Routes and Times scenario is
that both modules work together well to allow the agents to explore both spatial
and temporal degrees of freedom to obtain better plans than possible with just
one degree of freedom.

5.4 Varying �

Here we vary the � plan selection parameter to higher and lower values from the
baseline value of 2C�1, to see how selecting the best plan more or less often
affects the score and travel time relaxation rates. We tried these values for �:
0.01C�1, 1C�1, 2C�1, 4C�1, and 
 C�1. A value of ∞ C�1 means agents always
choose the plan with the best score.

Figures 3.5.11(a) and (b) show the effect of � on the Routes Only scenario.
The relaxed score and travel time averages are the same; only the rate of
approach to those values differs. With a lower value of �, agents are allowed
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Figure 3.5.11 Relaxation of scores and travel times for the Routes Only scenario,
comparing the relaxation behaviour with varying � values. These
plots display the average values of the score (left) and travel time
(right) collected over the entire population of agents during each iter-
ation.

more random selection among their plans, so the system approaches the steady-
state at a slower rate, which makes sense. The infinite �, which causes agents to
always choose the best plan they have, allows for the fastest relaxation of both
scores and travel times.

Figures 3.5.11(c) and (d) show the effect of � on the Times Only scenario.
One can see that the oscillations have a higher amplitude and lower frequency
for lower values of �. For the scores, all the curves seem to have roughly the
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same worst score (lower bound) of about 100.5. However, with lower � the
system is able to find better (higher) scores, though it cannot stay at those
values. Similarly, on the travel time plots, one can see that the worse possible
travel time (upper bound) does not change much, but better (lower) travel times
are reached with lower values of �.

Figures 3.5.11(e) and (f) show the effect of � on the Routes and Times sce-
nario. Like with the Routes Only scenario, the relaxed value of the score seems
to remain essentially the same, but the different � values approach it differently.

Overall, it appears that the value of � does not matter very much for the sce-
narios with the routing module enabled. Perhaps this is due to the fact that the
routing module makes decisions with some ‘intelligence’ behind them, allowing
for an additional learning mechanism for the agents. Possibly, the Times Only
scenario is affected more by the value of �, as the decisions made by the agent
database are the only ones that have any effect on the learning behaviour.

5.5 Varying �travel

Here we vary the marginal utility of travel time, �travel from its baseline value of
C�6h�1, to see how making travel time more or less important in the score cal-
culation affects the score and travel time relaxation rates. We tried these values
�travel: C�0.06h�1, C�0.6h�1, C�6h�1, C�60h�1, and C�600h�1.

Figures 3.5.12(a) and (b) show the effect of �travel on the Routes Only sce-
nario. As expected, higher magnitudes of �travel cause the average score to relax
to a lower value, since all else being equal, the same travel time costs more to
the agent. For all values above C�600h�1, the curves seem to have the same
relaxation behaviour as seen in Figure 3.5.6. For �travel �C�600h�1, the score
takes about 200 more iterations to relax, while the travel time takes only 10–20
more iterations to relax.

Figures 3.5.12(c) and (d) show the effect of �travel on the Times Only scenario.
Here we see that different values of �travel can also change the oscillation amplitude
and frequency for the scores and the travel times. For �travel �C�60h�1, the oscil-
lation frequency is higher, and the amplitude is smaller, and for
�travel �C�600h�1, the oscillation is nearly non-existent. For the smaller two
magnitudes of the marginal utility of travel, the score and travel times curves look
qualitatively like those of the Routes and Times scenario in Figure 3.5.6. They
improve at first, then slightly deviate from the best value obtained. This supports
the idea that the behaviour of the Routes and Times scenario comes from the fact
that travel time is less important to the agents when they are able to adjust their
routes and their activity schedules simultaneously. In addition, as with the Routes
Only scenario, Times Only takes longer to relax when the �travel value is higher.

Figures 3.5.12(e) and (f) show the effect of �travel on the Routes and Times
scenario. Here we once again get basically the same relaxation behaviour, offset
only by the different strengths of the travel time in the overall score. The scores
for �travel �C�600h�1 takes longer to relax, but all scores for the Routes and
Times scenario relax to higher values than those of the other two scenarios.
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Figure 3.5.12 Relaxation of scores and travel times for the different scenarios, com-
paring the relaxation behaviour with varying �travel values. These plots
display the average values of the score (left) and travel time (right)
collected over the entire population of agents during each iteration.
For better comparison of the relaxation rate, we shift the average
score curve for �travel �C�600h up by C500.
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Furthermore, one can see that for the lower marginal utility of travel, the travel
times stay flat at close to the free-speed travel time. The deviation from this
level occurs more for higher values of �travel, with �travel �C�6h�1 being the
only one that deviates and appears to return to the lower value.

Overall, it appears that reasonable values of �travel, as compared to the other
marginal utility parameters, lead to the same relaxation behaviour (if not the
same scores) in the scenarios with the routing module enabled. The Times Only
scenario’s relaxation behaviour is more affected by the value of �travel, and it
appears that a value of C�6h�1 may represent an unstable case at the border
between two more stable regimes: one where travel time dominates the decision-
making, and one where it is not very important at all.

6 Discussion and future work

We have shown that the system can relax to an uncongested state using the
present times mutator module, however the relaxation takes many hundreds of
iterations. We expect that a more goal-oriented module, which tries to return
new activity time schedules that are better than old ones, would allow the system
to relax faster. We are working on two versions of such module at different
stages of development and capability. Both of them use genetic algorithms (GA)
to ‘evolve’ activity schedules by mutating or mixing existing schedules. One of
these contains a global (for all agents) mental map of the traffic network for esti-
mating travel times between proposed activities, but only adjusts the durations
of the activities, leaving patterns and locations alone. Unfortunately, this module
has some bugs in the mental map that have not been worked out yet, so it gener-
ates faulty schedules (Schneider, 2003; Raney et al., 2003). The second GA-
based model has no known bugs but is not yet integrated into the framework
(Charypar and Nagel, 2003).

In addition, we plan to add a population generation module that would disag-
gregate demographic data to obtain individual households and individual house-
hold members (agents), with certain characteristics, such as a street address, car
ownership, or household income (Beckman et al., 1996).

As mentioned in Section 3.5, the agent database must be aware of dependen-
cies between modules. At this stage, with only two modules, it is easy to hard-
code this dependency. However, once we begin adding more modules, we will
need to make this information configurable in some way. In fact, it might be
desirable to have different ‘module paths’ an agent can carry out, with different
execution probabilities. For example, an agent could be given the choice
between calling only the activity time choice module, calling only the routing
module, or calling both (perhaps even with different choices for the calling
order). The combination and probabilities of the available choices could reflect
behavioural aspects, such as the low frequency of changing work locations (with
a work location choice module) compared to the high frequency of changing
shopping locations or durations.

Currently a lot of time is spent writing and reading files to communicate
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plans between the agent database and the modules/simulation. We are working
on including a message-based technology into the framework so that plans can
be sent directly between the modules as needed, and plans and events can be
sent to and from the simulation while it is running. This change will allow
decision-making and simulation to occur simultaneously, meaning this change
would allow us to implement within-day replanning.

As mentioned in the previous section, we intend to eliminate the memory size
limitation imposed on the agent database by current 32-bit architecture by
spreading it over many CPUs. The agent database on each CPU would maintain
the plans and scores for a subset of the agents in the simulation and would utilise
its own set of modules to update those plans. The different plan-sets would be
merged when sent to the simulation.

7 Summary/conclusions

This paper presents a framework for large-scale multi-agent simulations of
travel behaviour. The immediate goal is a replacement of the traditional four-
step process for transportation planning; the longer-term goal is to have an
agent-based system for all aspects of urban and regional planning. The core
ideas of the system are:

• One should separate the simulation of the physical world from the simula-
tion of the mental world of the agents. This is reflected by a design that
strictly separates those two worlds. A mental/strategic layer generates strat-
egies (‘plans’); these plans are executed by a physical layer; and then strat-
egies are adapted based on how they performed in the physical layer. In the
specific case of transportation simulations, the physical layer is also called
the traffic (micro-)simulation, or the mobility simulation.

• Agents should memorise more than one strategy. This gives them the option
to try out all strategies multiple times, and thus to obtain average scores for
them (‘exploration’). When agents do not explore, then they exploit, by
selecting strategies based on the score, possibly using some behaviourally
justified model such as multinomial logit. From time to time, agents should
also add new strategies to their repertoire, or delete strategies with low
scores. All this functionality is implemented by a so-called agent database.

• As said above, agents from time to time add new strategies to their reper-
toire. These strategies need to be generated by some method. In our
approach, the methods that generate new strategies can be completely
independent modules. They read an XML file that specifies which pieces of
an agent’s plan are already known, and the external module adds or changes
pieces. For example, one module could generate activity patterns, another
one activity locations, a third one activity times, and a fourth one routes.
The framework will call all those modules one by one and in the end have a
completely new plan. The XML plans file uses exactly the same format for
all those exchanges; and the same format is again used to send plans to the
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physical simulation. This means that we have only one file format specify-
ing agent plans.

• Performance information from the physical simulation is communicated
back via an events file. Events are output every time something relevant
happens, such as an agent leaving an activity, or entering a link. In general,
the physical simulation performs no data aggregation at all; in consequence,
something like link travel time needs to be constructed from link entry and
link exit events. The two big advantages of this approach are: (1) it is
straightforward to retrofit those outputs to any existing agent-based mobility
simulation, since there is no data aggregation either along space or along
time. Any event is just a simple print command inside the mobility simula-
tion; (2) external strategy generation modules can also read this information
and use it as they like. For example, an external module building a mental
map for one specific agent will use the link entry/exit information in com-
pletely different ways than the routing module. If the simulation would
aggregate link entry/exit information into link travel times, adding such a
mental map module would no longer be possible.

• Strategies are full 24-hour day plans, and are evaluated as such. The strategy
evaluation is based on the events, and therefore on actual individual perform-
ance of each agent. The evaluation is therefore immune against errors intro-
duced by aggregation. One obvious candidate for the scoring function is the
conventional utility function, but other systems such as aspect theory can be
used. Since all agents are individually represented, it is no problem to couple
those evaluations to individual attributes, such as gender or income.

• The approach is completely transparent toward parallel computing. Having
a parallel mobility simulation needs some programming effort, but is con-
ceptually straightforward since methods from the simulations of other phys-
ical systems can be applied. And making the agent database or the external
strategy generation modules parallel is completely trivial as long as agents
do not interact. One simply distributes agents (or possibly households)
across CPUs. Only when interactions beyond the household level become
important will more advanced computing techniques become necessary.

• The implementation was tested with three scenarios, one testing route equi-
libration, one testing times choice, and one testing route equilibration in
conjunction with time choice. Route equilibration works as expected, in the
sense that the system ends up with using nine equivalent routes equiva-
lently. Also time choice works as expected, in the sense that agents adjust
their daily timings in a plausible way.

• A curious aspect about the time choice test is that the external module that
generates alternative timing schemes has no ‘intelligence’ at all. Instead, it
just randomly mutates existing schedules of the agents. The interpretation of
the new schedules is entirely done by the agent database and its scoring
function. This means in practice that the correctness specifications toward
external modules are significantly relaxed. In essence, it is sufficient if
external modules generate meaningful solutions plus some variability.
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